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Quantum gravitational effects become significant at a cut-off species scale that can be much lower
than the Planck scale whenever we get a parametrically large number of fields becoming light. This
is expected to occur at any perturbative limit of an effective field theory coupled to gravity, or
equivalently, at any infinite distance limit in the field space of the quantum gravity completion. In
this note, we present a universal pattern that links the asymptotic variation rates in field space
of the quantum gravity cut-off Λsp and the characteristic mass of the lightest tower of states m:
∇⃗m
m

· ∇⃗Λsp

Λsp
= 1

d−2
, where d is the spacetime dimension. This restriction can be used to make more

precise several Swampland criteria that constrain the effective field theories that can be consistently
coupled to quantum gravity.

INTRODUCTION— Effective Field Theories (EFTs)
are very useful in High Energy Physics to describe the
physical phenomena of our world. However, they are
characterized by having a finite regime of validity, mean-
ing that there is some cut-off energy scale at which the
EFT breaks down and must be modified to incorporate
e.g. new physical degrees of freedom. In this paper,
we are interested in the quantum gravity cut-off scale
at which an EFT weakly coupled to classical Einstein’s
gravity breaks down, and how this happens. In other
words, what is the scale at which quantum gravitational
effects become significant?

The first naive guess is to set this scale to the Planck
mass (of order 1019 GeV), since this determines the
strength of the gravitational coupling. However, in cer-
tain cases, quantum gravitational effects can become
significant at a cut-off scale which is much lower than
the Planck scale. This occurs, for instance, when we
have many light fields weakly coupled to gravity (termed
species), which renormalize the graviton propagator and
lower the quantum gravity cut-off to Λsp = MPl/

√
N

with N being the number of species. Above this energy
scale Λsp (known as the species scale), quantum gravita-
tional effects kick in and it is no longer possible to have
a local EFT description weakly coupled to gravity. This
scale is further motivated by black hole physics [1, 2],
unitarity of scattering amplitudes [3–8] and string the-
ory [9–12].

Clearly, the species scale can be made arbitrarily small
Λsp ≪ MPl whenever we get a parametrically large num-
ber of species. This is known to occur whenever we get
an infinite tower of states becoming light (either because
they open up some extra dimension, or because they cor-
respond to oscillator modes of a weakly coupled higher
dimensional object like a string). From a string theory
perspective, the presence of a light tower of states is a

universal feature that occurs whenever we try to engi-
neer an exact global symmetry, since this pushes us to the
boundaries of the field space. However, the existence of
these towers acting as a censorship mechanism to restore
global symmetries is expected to be a general feature of
quantum gravity (even beyond string theory) and plays
a central role in the Swampland program [13–25]. The
absence of exact global symmetries in quantum gravity
has been shown using AdS/CFT [26–28] and black hole
physics [29–31], in addition to the string theory evidence.
Understanding in a quantitative way the behaviour of the
tower of states would allow us to quantify how approxi-
mate a global symmetry can be and put sharp bounds on
the value of gauge couplings and axionic decay constants
(since the limit of a vanishing gauge coupling is equiva-
lent to restoring a global symmetry). This can have im-
portant phenomenological implications for beyond Stan-
dard Models in Particle physics and Cosmology.
In this note we present a precise constraint that relates

the asymptotic variation rates of the characteristic mass
of the leading (i.e. lightest) tower of states, mt, and the
species scale Λsp as follows

∇⃗mt

mt
· ∇⃗Λsp

Λsp
=

1

d− 2
, (1)

where d is the spacetime dimension of our theory. The
variation rates are taken with respect to the space of
couplings of the EFT as we take a perturbative limit
in which some of these couplings become parametrically
small. Since by definition, mt ≤ Λsp, we will see that
this pattern leads to sharp bounds on how fast the tower
of states can become light and the value of the species
scale at which quantum gravitational effects become sig-
nificant. In the context of string theory, all coupling con-
stants are controlled dynamically by the vacuum expec-
tation values (vevs) of scalar fields, so the derivatives are
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taken with respect to those, as we explain below. There-
fore, the pattern (1) can also constrain the scalar field
variation that can be described by an EFT weakly cou-
pled to gravity, yielding bounds of phenomenological in-
terest for cosmological models of inflation or quintessence
[32], as well as other dynamical proposals to explain the
electro-weak hierarchy problem like cosmological relax-
ation [33].

In a companion paper [34] we present strong evidence
on its favour by analyzing a plethora of string theory
constructions in different dimensions and with all allowed
levels of supersymmetry. This pattern makes manifest an
underlying structure behind all the different string the-
ory examples that highly constrains the structure of the
possible towers of states and helps to make more precise
the Distance conjecture [35, 36] in the Swampland pro-
gram. In this paper, we introduce the pattern as well
as some of its most immediate consequences, highlight-
ing the key ingredients that make it work and providing
the first steps towards a bottom-up explanation for the
constraint.

SYSTEMATICS OF THE PATTERN— We con-
sider in what follows a d-dimensional EFT containing
some massless scalars (moduli), weakly coupled to grav-
ity as follows

LEH + scalar =
1

2κ2
d

(
R+ Gij(ϕ) ∂ϕ

i · ∂ϕj
)
, (2)

where Mϕ is the moduli space of the theory, namely the
space of physically distinct vacua parametrized by the
massless scalar field vevs ⟨ϕi⟩. When probing any infi-
nite distance boundary of Mϕ, the Distance Conjecture
[35] requires from the appearance of at least one infinite
tower of states becoming exponentially light. Therefore,
in terms of the traversed geodesic distance, which is de-
fined by

∆ϕ =

∫
γ

dσ

√
Gij(ϕ)

dϕi

dσ

dϕj

dσ
, (3)

with γ denoting some geodesic path and σ an affine pa-
rameter, there should exist a tower whose mass scale de-
creases as m ∼ e−λ∆ϕ for ∆ϕ ≫ 1 (in Planck units), with
λ some O(1) factor.

In the presence of several moduli, it is useful to define
a ζ-vector for each tower becoming light, whose compo-
nents read as

ζi := −Gij ∂

∂ϕj
logm = −∂i logm. (4)

These are denoted scalar charge-to-mass vectors [36–38],
and they encode the information about how fast the as-
sociated tower of states becomes light. In particular, for
any given asymptotically geodesic direction in moduli
space characterized by some normalized tangent vector

T̂ , the decay rate of the tower can be simply determined
as the projection λ = ζ⃗ · T̂ . Moreover, for any such limit,
we will denote by ζ⃗t the scalar charge-to-mass vector of
the leading (i.e. lightest) tower.
Relatedly, the presence of an increasing number of light

particle species in the theory implies a drastic breakdown
of the EFT we started with. The maximum energy scale
at which such description holds is known as the species
scale Λsp (see e.g. [39] and references therein), which in
general is given by

Λsp ≃ MPl; d

N
1

d−2

, (5)

where N is roughly the number of species at or below
the species scale itself. Notice that whenever N grows
large at infinite distance, the species scale goes to zero
(exponentially) in Planck units. To characterize how this
occurs, one analogously introduces a Z-vector as follows
[40]

Zi
sp := −∂i log Λsp , (6)

thus providing the asymptotic decay rate of the species
scale.
In principle, there is some degree of independence be-

tween the vectors ζ⃗t and Z⃗sp, meaning that one can get
very different casuistics upon exploring different asymp-
totic corners of the moduli space. This is so since the
species scale knows a priori about all towers of (suffi-
ciently) light states, such that the leading one does not
always determine Λsp alone. Nevertheless, the idea that
we want to put forward in the present paper is that there
seems to be a very precise link between these two quan-
tities via the (asymptotic) relation

ζ⃗t · Z⃗sp = Gij (∂i logmt) (∂j log Λsp) =
1

d− 2
. (7)

This pattern holds universally regardless of the nature of
the infinite distance limit that is explored as well as the
microscopic interpretation of the towers. Using (5), we
can equivalently rewrite the above relation as follows

∇⃗mt

mt
· ∇⃗N

N
= −1 , (8)

where the product is again taken with respect to the field
space metric. Hence, the more fields we get, the slower
they become light, in a very concrete way that is even
independent of the spacetime dimension.
In the following, we will explain via some (realistic)

toy model how this comes about, as well as commenting
on the consequences that derive immediately from eq.
(7). In a companion paper [34], we will present string
theory evidence in a wide range of scenarios supporting
the claim.

A simple Toy Model— Let us first show how the
pattern works in simple single-modulus examples. We
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consider two cases: First, when dealing with a Kaluza-
Klein decompactification of n internal dimensions, we
find a KK tower with characteristic mass mKK, n yield-
ing infinitely many states becoming light, with a spec-
trum of the form mk = k1/nmKK, n, where k =
1, . . . ,∞ [41]. Its associated species scale is the higher-
dimensional Planck mass, which is given by MPl; d+n =

MPl; d

(
mKK, n

MPl; d

) n
d+n−2

. Hence, the relevant charge-to-

mass and species vectors, which can be obtained via di-
mensional reduction [42], read as follows [40]

ζKK, n =

√
d+ n− 2

n(d− 2)
, ZKK, n =

√
n

(d+ n− 2)(d− 2)
.

(9)
It is easy to check that these always reproduce the pat-
tern (7), regardless of the number n of decompactified
dimensions.

Secondly, we can also get an infinite tower of states
when having a higher dimensional object (like a weakly
coupled string) becoming tensionless. In this case, the
tower of string oscillator modes behaves asmk =

√
kmosc

where k = 1, . . . ,∞, with an exponential degeneracy of
states per level k. This leads to the following relevant
vectors [38]

ζosc =
1√
d− 2

= Zosc , (10)

since the species scale coincides with the string scale [39].
From this, it automatically follows that ζosc ·Zosc =

1
d−2 ,

in agreement with (7).

However, this is not yet enough to show that the pat-
tern holds in full generality, since when dealing with the-
ories with more than one scalar field and more than one
tower, the vectors ζ⃗t and Z⃗sp will not be necessarily par-
allel to each other. Still, the structure of the towers and
the angles subtended by the vectors are always such that
eq. (7) is satisfied. For example, consider the case where
several KK towers (associated to different internal cycles)
become light. Then, the species scale is always given
by some higher dimensional Planck mass, as in the one-
modulus example above. For simplicity, we focus on a
two-dimensional slice spanned by two KK towers decom-
pactifying to d + n and d + n′ dimensions, respectively,
with associated canonically normalized volume moduli ρ̂
and ρ̂′. The ζ-vectors are given by [36]

ζ⃗KK, n =

(
0,

√
d+ n− 2

n(d− 2)

)
,

ζ⃗KK, n′ =

(√
d+ n+ n′ − 2

n′(d+ n− 2)
,

√
n

(d+ n− 2)(d− 2)

)
,

(11)

whilst the relevant Z-vectors are [40]

Z⃗KK, n =
n

d+ n− 2
ζ⃗KK, n ,

Z⃗KK, n′ =
n′

d+ n′ − 2
ζ⃗KK, n′ ,

Z⃗KK, n+n′ =
nζ⃗KK, n + n′ζ⃗KK, n′

d+ n+ n′ − 2
.

(12)

The species scale will correspond to the lightest Planck
scale for any chosen asymptotic trajectory T̂ (i.e. that

with the largest value of the exponential rate λsp = Z⃗ ·T̂ ).
Hence, it will always be given by the Planck scale asso-
ciated to full decompactification, Z⃗KK, n+n′ , unless we
move parallel to either one of the individual species vec-
tors. The leading tower, on the other hand, will always
be one of the two individual KK towers unless we move
precisely parallel to Z⃗KK, n+n′ , where all the internal ge-
ometry decompactifies in a homogeneous fashion. In any
event, the pattern is always satisfied for any intermediate
direction, since one can check that

ζ⃗KK, n · Z⃗KK, n+n′ = ζ⃗KK, n′ · Z⃗KK, n+n′ =
1

d− 2
. (13)

Similarly, when exploring some perturbative string limit
in higher dimensions, the species scale will be given by
the string scale, as in (10) but the leading tower might
be a KK tower rather than the tower of string oscillator
modes. Upon restricting again to a 2d slice parametrized
by the overall volume modulus and the d-dimensional
dilaton, one finds the following relevant vectors (in a flat
frame) [36, 40]:

ζ⃗osc = Z⃗osc =

(
1√

d+ n− 2
,

√
n

(d+ n− 2)(d− 2)

)
,

(14)

whilst ζ⃗KK, n and Z⃗KK, n are computed as in (12). Re-
call that the leading tower (resp. species) becomes that
with maximal projection along a given normalized tan-
gent vector T̂ . Therefore, for intermediate directions (i.e.
not aligned with any ζ-vector in (14) above), Λsp will be
given by the string scale, while having the KK tower as
the leading one. However, even in such case the pattern
is still fulfilled, since

ζ⃗KK, n · Z⃗osc =
1

d− 2
. (15)

Let us mention that all the previous considerations can be
easily understood in a geometric way, upon depicting the
different charge-to-mass and species vectors that enter in
the game as illustrated below. Interestingly, despite the
apparent simplicity of the previous “toy models” it turns
out that all the different asymptotic corners of the moduli
spaces arising from string theory constructions fit into
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one of these two sub-cases [43]. In fact, essentially the
same type of pictures are always drawn, as analyzed in
detail in the companion paper [34], differing only in how
the diagrams are glued together in a way that respects
the pattern, which puts non-trivial constraints on how
different perturbative dual descriptions of the theory can
fit together. This will also be further explored in [44].

Derived bounds on the exponential rates— We
would like to stress that a sharp relation like (7) be-
comes rather constraining. In fact, several bounds in the
Swampland literature immediately follow from imposing
the pattern, as we now explain. First, eq. (7) implies
a lower bound for the scalar charge-to-mass ratio of the
leading tower of states. This is a direct consequence of
the consistency condition mt ≤ Λsp, from where one de-

duces that |ζ⃗t · Z⃗sp| ≤ |ζ⃗t|2 (by Cauchy-Schwarz) and
therefore

|ζ⃗t|2 ≥ 1

d− 2
. (16)

This leads precisely to the following lower bound for the
exponential rate of the lightest tower

λt = |ζ⃗t| ≥
1√
d− 2

, (17)

which was recently proposed in [36]. Relatedly, the fact
that any infinite tower always satisfies the pattern with
its own species scale implies, via the same argument, that
there is an upper bound for the decay rate of Λsp:

λsp = |Z⃗sp| ≤
1√
d− 2

. (18)

This coincides with another recent proposal in [10] based
both in string theory examples and consistency of the
EFT description [45].

Moreover, the pattern (7) constrains the structure of
the possible towers of states and how they can fit together
as we move in moduli space. It is clearly related to the
Emergent String Conjecture (ESC) [43], which proposes
that any infinite distance limit is either a decompact-
ification or a perturbative string limit, since these are
the obvious cases that fullfill the pattern. However, it
is important that, when having several KK towers be-
coming light and signaling different decompactification
limits, they can all be interpreted as KK towers in the
same dual frame. Otherwise, the pattern will not hold,
as we further discuss later on.

Computing the quantum gravity cut-off — Let us
now use the pattern to compute the quantum gravity
cut-off upon knowledge of the behaviour of the mass of
the tower but without assuming anything about its mi-
croscopic origin nor the associated density of states.

Consider first a single tower of states with a scalar
charge-to-mass vector (4), denoted by ζ⃗I . The species

FIG. 1. Sketch on how the pattern (1) and the ζ-vectors
associated to the leading towers mI and mJ , depending in
some scalars x̂ and ŷ, uniquely determine the multiplicative
species scale Z⃗eff .

scale associated to this tower has Z⃗I parallel to ζ⃗I , satis-
fying moreover (7). This scale sets the quantum gravity
cut-off if we move along an asymptotic direction parallel
to ζ⃗I , so that the exponential rates are related as

λsp = λ−1
t /(d− 2) . (19)

Notice that the structure and density of states of the
tower determine the relation between Λsp and mt, while
the pattern (7) further constraints that this relation is
fully determined by the variation of the mass in the field

space, so that Λsp ∼ m
1/((d−2)λ2

t )
t in this particular case.

As we start moving along other asymptotic directions,
there might be additional towers of states becoming light,
thus contributing to the species scale. This is illustrated
e.g. in Figure 1, where we have another tower with vector
ζ⃗J . Hence, the species scale along any other intermediate
asymptotic direction T̂ will not be given by Z⃗I but rather
determined by another vector Z⃗sp that receives contribu-
tions from both towers. Interestingly, the pattern (1) de-

termines uniquely the species scale Z⃗sp once the mass of
the leading towers is known. First, notice that satisfying
the pattern for both towers, i.e. ζ⃗I · Z⃗sp = ζ⃗J · Z⃗sp = 1

d−2 ,

implies that Z⃗sp must be perpendicular to ζ⃗J − ζ⃗I . Sec-

ondly, the projection of Z⃗sp over ζ⃗I must be precisely

Z⃗I since ζ⃗I · Z⃗I = ζ⃗I · Z⃗sp. Finally, Z⃗sp sets the value
of the species scale as soon as we cease to move paral-
lel to ζ⃗I , which is only consistent if the second tower ζ⃗J
starts contributing (i.e. its mass gets below ΛI) at the

same moment, implying that the projection of ζ⃗J over ζ⃗I
must also be Z⃗I . All this determines the magnitude of
Z⃗sp and forces the vectors to be geometrically related as
illustrated in Figure 1.
In summary, the exponential decay rate of the quan-

tum gravity cut-off for any direction T̂ = (cos θ, sin θ)

within the cone spanned by ζ⃗I and ζ⃗J reads:

λsp(θ) = T̂ · Z⃗sp =
1

d− 2

(
∇⃗ log mI

mJ

)⊺
ε T̂(

∇⃗ logmI

)⊺
ε ∇⃗ logmJ

, (20)
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where for simplicity we work in a local basis of flat coor-
dinates in the tangent bundle of the moduli space such
that Gij = δij , and ε =

(
0 −1
1 0

)
. This gets reduced to

(19) in the particular case that T̂ is parallel to ζ⃗I .
Therefore, the maximum (geodesic) variation of the

scalar fields that can be consistenly described by an EFT
coupled to gravity in some perturbative corner reads:

∆ϕmax =
1

λsp
log

MPl

Λsp
, (21)

where we have used that the quantum gravity cut-off Λsp

decays exponentially with the field distance, and the ex-
ponential rate λsp can be either computed or bounded as
explained above. If replacing Λsp ↔ mt and λsp ↔ λt, we
get the maximum scalar field range before we encounter
the first state of the tower.

TOWARDS A BOTTOM-UP RATIONALE—
The pattern introduced in this note has been tested for
a wide range of string theory compactifications, with dif-
ferent amounts of supersymmetry and diverse internal
manifolds [34]. It is natural to wonder whether this re-
lation is a general feature of quantum gravity or just a
lamppost effect of the string landscape. While we do not
have yet a purely bottom-up argument (e.g. based on
black hole arguments), we are still able to identify and
motivate some sufficient conditions that allow the pattern
to hold in a general way.

The Distance Conjecture [35] ensures that the mass of
the leading tower – and consequently, the species scale
– decreases exponentially with the moduli space distance
(3). This can be further motivated from a bottom-up
perspective by the Emergence Proposal [14, 15], by which
all the IR dynamics emerges from integrating out the dual
massive degrees of freedom. This guarantees that ζ⃗t · Z⃗sp

approaches a constant value asymptotically, but it does
not constrain it to take the same constant value 1

d−2 for
all infinite distance limits. To argue for this, we propose
three sufficient conditions which ensure that the pattern
(1) is fulfilled along any asymptotic direction.

Condition 1: The exponential rates λI of the different
towers mI are continuous over the asymptotic regions
where they are defined. Furthermore, ζ⃗t · Z⃗sp must be

well defined along any asymptotic direction.

This means that the exponential rate λt = T̂ · ζ⃗t of
the leading tower is purely determined by the asymp-
totic direction T̂ , regardless of the particular geodesic we
follow towards it. This does not imply that ζ⃗t has to re-
main constant along parallel trajectories, being allowed
to change or slide in the components perpendicular to
T̂ [46]. It implies, though, that the change in ζ⃗t has to
be seen as a discrete jump in terms of the asymptotic
direction. This can occur either because: (1) the micro-
scopic interpretation of the leading tower changes as a

different tower starts dominating, in whose case the de-
cay rate for both towers automatically coincides in the
transition and λt is continuous, or (2) because a compli-

cated moduli dependence of the mass makes ζ⃗t to jump
when crossing some sliding loci (see [38] for a detailed
example when decompactifying to running solutions). In

this latter case, we further need to require that ζ⃗t · Z⃗sp

remains well-defined, otherwise the product will depend
on the trajectory taken. The consequence of this con-
dition is that we can divide the set of infinite distance
limits into regions over which the ζ⃗t and Z⃗sp take fixed
expressions, and thus their product is constant.

Condition 2: For every infinite distance limit along
which several towers decay at the same rate, there must
exist bound states involving all of them, such that the

species scale must be given by the associated
multiplicative species.

Consider several towers {m1, . . . ,mk} becoming light at
the same rate along some trajectory (or interface) with

unit tangent vector T̂ , so that λt = T̂ · ζ⃗1 = . . . = T̂ · ζ⃗k.
These towers span a lattice of “charges” (n1, . . . , nk)

given by the tower levels mni,i ∼ n
1/pi

i mi (with pi > 0
depending on the nature and multiplicities of the tower
[41]). If a (sub-)lattice of these charges is populated
by particle states, then the total number of species is
N ∼

∏k
i=1 Ni (i.e. multiplicative) rather than N ∼∑k

i=1 Ni (i.e. additive). It can be shown [40] that in

the former case the resulting Z⃗sp is orthogonal to the
hull spanned by the ζ-vectors, and moreover dominates
over the individual species scales. This implies that
ζ⃗1 · Z⃗sp = . . . = ζ⃗k · Z⃗sp, such that the product (7) takes
the same value in the different adjacent regions (as well as
in the interface). For additive species, though, we do not

obtain any additional species vector, and ζ⃗t · Z⃗sp would
generically change upon crossing the interfaces. This
is why Condition 2 requires the existence of the (sub-
)lattice of bound states yielding a multiplicative number
of species, which can be further motivated by Swampland
considerations [47].

Condition 3: For every connected component of the
space of infinite distance limits, there exists at least one
direction associated to an emergent string limit or the
homogeneous decompactification of an internal cycle to

a higher dimensional vacuum.

With the previous two conditions, we have divided the
moduli space into different regions and shown that ζ⃗t ·Z⃗sp

remains constant across those. The only thing left is
to set this constant to 1

d−2 , which occurs if there exists
at least one asymptotic direction resulting in a string
perturbative limit or a decompactification to a higher
dimensional vacuum. This resembles but it is a weaker
condition than the Emergent String Conjecture [43].
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CONCLUSIONS— We propose a very concrete
relation (1) between the quantum gravity cut-off Λsp in
an EFT consistently coupled to quantum gravity, and
the mass scale mt of the lightest tower, which holds
asymptotically in moduli space. At the moment, it is a
common thread underlying all known string theory ex-
amples that have been explored so far. Finding a purely
bottom-up rationale would have profound consequences
for the consistency of EFTs coupled to gravity, since it
constrains the possible towers of states predicted by the
Swampland Distance conjecture and implies a precise
lower bound on how fast they can become light. It also
provides a clear recipe to determine the species quantum
gravity cut-off upon knowledge of the leading tower of
states, which puts further constraints on how different
perturbative limits can fit together in the field space of
a quantum gravity theory.
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