
CERN-RD53-PUB-xxxx
Version 1.92, September 18, 2024

The RD53C-CMS Pixel Readout Chip Manual

ABSTRACT: Manual for the RD53C design in the CMS chip implementation.

5

Contents

1. Overview 4

2. Dimensions, Floorplan and Pads 6
2.1 Bump Bond Pads 8
2.2 Wire Bond Pads and Alignment Marks 810

3. Basic Operation and Reset (Intro and Quick Start Guide) 10
3.1 Chip Startup 10

3.1.1 Default and User Configurations 12
3.2 Reset 13

3.2.1 Command Activity Detector 1415

4. Power and References 16
4.1 Shunt LDO Regulator 16
4.2 References and Startup 17

4.2.1 Offset Voltage Start-up 19
4.3 Offset Voltage and Low Power Mode 2020

4.4 Under-shunt Current Protection 21
4.5 Over-voltage Protection 23

5. Analog Front End 24
5.1 Front End Bias Generation and Distribution 24
5.2 CMS Analog Front End 2525

5.2.1 Front-end registers 28
5.2.2 Krummenacher current: KRUM_CURR_LIN 29
5.2.3 Global threshold: Vthreshold_LIN 29
5.2.4 Threshold trimming: LDAC_LIN 30
5.2.5 Secondary settings 3130

6. Calibration Injection 32
6.1 Generation of S0 and S1 signals 33
6.2 Cal Command 34
6.3 Injection Voltages 37

7. Digital Core 3835

7.1 4-Pixel Region 38
7.2 Pixel Hit Logic 39
7.3 ToT counter and storage 39
7.4 Latency, Trigger and Readout (LTR) block 41
7.5 Pixel Addressing 4340

7.5.1 25 µm × 100 µm pixels 43

– 1 –

8. Commands and Configuration 45
8.1 Receiver Circuit 45
8.2 Command Protocol 46

8.2.1 Short Commands 4745

8.2.2 Long Commands 48
8.3 Command Protocol Initialization 49
8.4 Command Protocol Transmission 50
8.5 Command Protocol Decoding 50
8.6 Command Protocol Timing 5150

8.7 Global Configuration 51
8.8 Pixel Configuration 52

9. Trigger Processing, Tags, and Data Flow 55
9.1 Pixel Matrix Processing and Wait Time 56
9.2 Tags 5755

9.3 Trigger Table 57
9.4 Self Trigger Source 59
9.5 Data Flow 59

10. Data Output 63
10.1 Data Output Drivers 6360

10.2 Aurora and RD53C Data 65
10.3 Aurora and streams 67
10.4 Hit data encoding 68
10.5 Stream construction and efficiency 70
10.6 Hit map construction 7065

10.7 Multi-chip encoding 72
10.8 Event size limit and data filtering 73
10.9 Precision ToT data 74
10.10 Format Options 75

11. Multi-Chip Data Aggregation 7670

11.1 Data Receivers 76
11.2 Setup and Operation 76
11.3 Data flow, alignment, and idles 78

12. Sensing and Monitoring Functions 79
12.1 Analog Multiplexer (MUX) 8075

12.1.1 Multiplexer Configuration 80
12.2 General Purpose ADC 80

12.2.1 12-bit DAC 81
12.2.2 ADC comparator 82
12.2.3 ADC conversion timing 8380

12.2.4 ADC Configuration 83

– 2 –

12.2.5 ADC Control Sequence 84
12.3 Transistor-based Temperature and Radiation Sensors 84

12.3.1 Transistor Sensor Theory 84
12.3.2 Precision Biases 8585

12.3.3 Measurement Approaches 85
12.4 Resistive Temperature Sensors 86
12.5 Sensor Configuration 87

13. Test and Miscellaneous Functions 88
13.1 General purpose LVDS and CMOS outputs 8890

13.2 Bypass mode 88
13.3 Scan Chains 88
13.4 Hit OR 88
13.5 Heartbeat and test patterns 88
13.6 Ring Oscillators 8895

13.7 Precision ToT module 90
13.8 Capmeasure circuit 91

14. Clock Generation and Data Recovery Technical Details 94

15. Known Issues 95

16. Reference Tables (pinouts, configuration, etc.) 97100

16.1 Wire Bonding Pinout 97
16.2 Global Configuration 99
16.3 IMUX and VMUX selection values 106
16.4 General Purpose LVDS and CMOS Output Assignments 107
16.5 Internal and External Component Nominal Values 108105

16.6 Command and Trigger Encoding 109
16.7 Output Tags 111
16.8 ToT Table 111
16.9 Ring Oscillator Assignments 112

A. Aurora 64b66b Technical Reference 113110

– 3 –

1. Overview

This manual provides a technical description of the RD53C chip design and operation adequate
for simulation, testing, debugging and DAQ development. A basic familiarity with pixel systems
and readout chips is assumed. A more general introduction explaining the basic functions and115

principles can be found in [6].
The production readout chips for the ATLAS and CMS HL-LHC pixel detectors are two sep-

arate instances of a common design framework called RD53C. The main differences between AT-
LAS and CMS are the size of the pixel matrix and the pixel analog front end. There are other
differences partly stemming for the sequential fabrication: RD53C-ATLAS in spring and RD53C-120

CMS in fall of 2023. RD53C-CMS has a few minor added features relative to RD53C-ATLAS. For
convenience this manual is compiled in two separate versions, RD53C-ATLAS and RD53C-CMS.
This version is for the RD53C-CMS chip, designated by CMS as CROC-V2. Both manual ver-
sions use the same revision number as most of the elements are common. RD53C is an evolution
of the RD53B framework [?] and RD53B-ATLAS and RD53B-CMS pre-production chips. The125

requirements were defined by the experiments for RD53B [2] and have not changed for RD53C.
RD53C is a pixel readout chip framework that can be instantiated into different size physical

chips. The design work and much of the verification are largely independent of the final instantiated
size. RD53C consists of a pixel matrix and a chip bottom. The pixel matrix is built up of identical
8 by 8 pixel cores stepped and repeated in columns and rows. A core is physically 400 µm by130

400 µm. The selected numbers of core columns and rows determine the chip size. The chip bottom
contains all the system functionality and should be viewed as a fixed element that does not depend
on matrix size. A physical chip, therefore, cannot be narrower than 20 mm (50 cores), because that
is the width of the unique wire bonding pad frame in the chip bottom, but it can be wider. The
height (number of core rows) is not constrained by the chip bottom, but is limited to a maximum of135

50 by power and bias distribution as well as readout timing. This high level organization concept
is shown in Fig. 1. The instantiated dimensions are detailed in Sec. 2.

The core contains 64 pixel front ends organized in 16 identical so-called analog islands with
4 fronts ends each, which are embedded in a flat digital synthesized “sea” as shown in Fig. 2. The
analog front end and island design are described in Sec. 5. The digital core design is described in140

Sec. 7. The pixel matrix is produced by stepping and repeating identical cores, which also takes
care of the distribution of analog biases, as described in Sec 5.1.

The chip bottom contains all system functionality and the wire bond pads. RD53C is a system-
on-chip including power management, sophisticated digital communication, sensing and monitor-
ing. An overview of the basic operation, including a description of the reset scheme, is given in145

Sec 3. Sec 3 also serves as an introduction to the more detailed content of other sections. All tab-
ular information, including pinout and configuration register values, is collected in the Reference
section (Sec 16).

Power management, including design of the Shunt-LDO regulators are covered in Sec 4. The
command and control interface (how one talks to the chip) and the configuration are covered in150

Sec 8. The data output (what comes out of the chip), including special (non-hit data) and the
aggregation of data from multiple chips, are described in Sec. 10. The sensing and monitoring
functions are described in Sec 12. Test features and miscellaneous functions are covered in Sec 13.

– 4 –

Figure 1: Conceptual depiction of RD53C framework, with a matrix composed of 50 or more
columns by up to 50 rows of identical cores, and a fixed chip bottom. The dashed lines indicate
the minimum width of 50 cores. Core number 0,0 is at the top left of the figure, while the highest
column, row numbered core is at the bottom right.

Figure 2: Layout view of analog islands within synthesized logic. Four complete islands can be
seen in the center of the figure. One core contains four by four analog islands.

The designs of the bump bond and wire bond pads are covered in Sec. 2.1 and 2.2. RD53C only
has wire bond pads along the bottom edge, to make it 3-side abuttable.155

– 5 –

Parameter ATLAS CMS
Pixel bump pitch 50 µm × 50 µm
pixel rows (H) 384 336
pixel columns (W) 400 432
core rows 48 42
core columns 50 54
Chip width (including seal ring) 20.050 mm 21.654 mm
Chip height (including seal ring) 21.0213 mm 18.622 mm

Table 1: Size of ATLAS and CMS chips in cores and outline measured from outside edge of seal
ring.

2. Dimensions, Floorplan and Pads

RD53C uses a 9 metal layer stack, consisting of 7 thin, 1 thick and 1 ultra-thick metal layers.
In addition, the 28K AP layer is also used for power lines distribution. In Fig. 3 the layout and
functional view of RD53C floorplan are shown. The sensitive area of the chip is placed at the top
of the chip and is arranged as a matrix of pixel bump pads on 50 µm × 50 µm pitch according to160

Table 1. The peripheral circuitry is placed at the bottom of the chip and contains all global analog
and digital circuitry needed to bias, configure, monitor and readout the chip. The wire bonding
pads are organized as a single row at the bottom chip edge and are separated from the first row of
bumps by 1.7 mm in order to allow for wire bonding after sensor flip-chip (Sec. 2.2).

Figure 3: RD53C floorplan, functional view.

In the chip periphery, all the analog building blocks are grouped in a macroblock called Ana-165

– 6 –

log Chip Bottom (ACB), which is fully assembled and characterized in an analog environment.
The ACB block is surrounded by a synthesized block, called Digital Chip Bottom (DCB), which
implements the Input, Output and Configuration digital logic.

Analog macros:
Monitoring mux, CALIB, DACs3

5
0

 u
m

3.72 mm

PADFRAME with ShuLDOs

3
0

5
 u

m

Digital chip bottom
(synthesized logic)

PLL

20 mm

1
0

0
 u

m

1
.5

 m
m

19.8 mm (centered)

ROSCA
T, Rad
center

330 um

9
5

 u
m

R
O

SC
B170 um

170 um

3
2

0
 u

m

8
5

 u
m

3.25 mm

.5
 m

m

8.1 mm

8.52 mm

8.92 mm

6
8

0
 u

m

5
8

5
 u

m

fi
lle

r

fi
lle

r

Resistive T sensor

Resistive T sensor

1
9

.2
 m

m

0.95mm
10 um

45 um

10 um

Figure 4: Size and location of elements in the CMS chip bottom and top (Not to scale). The outline
is the chip seal ring (tightest possible diced edge).

Figure 5: Size and vertical position of power devices relative to the chip seal ring (tightest possible
diced edge). Horizontal placement is given in Table 2

Device AO AS AP DP DS DO AO AS AP DP DS DO
Left edge (um) 954 1371 1715 2734 3139 3480 6154 6571 6715 7934 8339 8680

Device AT DT
Left edge (um) 7125 7825

Device AO AS AP DP DS DO AO AS AP DP DS DO
Left edge (um) 11354 11771 12115 13134 13539 13880 16654 17071 17415 18434 18839 19180

Table 2: Companion table to Fig. 5 showing the position of the left edge of power devices in
ATLAS chip relative to the outside edge of the seal ring: A=Analog, D=Digital, O=Over voltage
protection, P=Pass device, S=Shunt device, T= Temperature and radiation sensor. The devices are
arranged in four groups (delimited by double lines) as can be seen in Fig. 8.

– 7 –

2.1 Bump Bond Pads

The bump bonds pads are defined by a regular pattern of openings in the passivation as shown in170

Fig. 6 (left). The alignment of aluminum metal shape under each passivation opening can vary
by up to 1 µm from pixel to pixel, but as the shapes are bigger than the opening there is always
exposed aluminum for the entire pad. The bump bond pads do not have ESD protection. The
passivation opening is square with 45 degree corners, which will appear rounded in the as-built
chip. Fig. 6 (right) shows the expected height profile across the center of a bump pad as derived175

from the metal stack. Aluminum metal is exposed in the 12 µm passivation opening and extends
below the passivation beyond the opening, resulting in a passivation ridge surrounding the opening,
as shown. The exposed metal may not be completely flat: it can have depressions less than 1 µm
deep due to vias below. The figure shows such a depression.

Figure 6: Bump bond pad dimensions. Matrix layout on the left and cross section on the right.

2.2 Wire Bond Pads and Alignment Marks180

The wire bond pads are along the chip bottom on a 100 µm pitch. The pad area is large enough
to meet production requirements (Fig. ??). There are 198 pads, 4 of which are not used and not
connected to any internal net. The location of these unused pads was chosen to eliminate wire
bonding tool interference at the edges of fanout regions. Most pads are for power and ground and
are grouped strategically for PCB/module layout as shown in Fig. 8. The detailed pinout is given185

in Sec. 16.1.
The wire bond pads have visible numbering on the chip (the numbers label the pads to their

right), and are flanked by alignment marks, as can be seen in Fig. 7.
The RD53C chip has internally four separate power domains:

• Analog: VDDA, GNDA190

• Digital: VDDD, GNDD
• PLL (PLL/CDR + CMD_IN LVDS receiver): VDD_PLL, GND_PLL
• CML (serializer + cable driver): VDD_CML, GND_CML

The local ESD devices connect to both power and ground rails or to the ground rail only in case
of over-voltage tolerant pads (OVT). OVT pads are used where the input voltage could potentially195

exceed the local power rail (see pad listing in Sec. 16.1). In a typical environment, all ground
rails are wire-bonded to the same system ground, which enables ESD paths between the (otherwise

– 8 –

isolated) power domains. However, during assembly or wafer probing, a common external ground
rail might not be established yet. To account for this, a common ESD bus (VSS) has been used to
connect the different ground rails via on-chip anti-parallel diodes to create a safe ESD path between200

power domains at all times. This net (VSS, also used for connecting the global substrate VSUB)
should be wire-bonded first (pads 9, 91, and 196), then all remaining ground pads, and finally the
rest of the pads.

0

0 100
-87.5

-75.5

200

25

1732.5

CL

25

2150020599
21597.5

Pixel 0,0

 Pixel
431,335

21300899200

Figure 7: Detail of CMS chip dimensions. The location of the first and last pixel bump bonds on
the matrix is also indicated. There are 4 bump bond pads below the full matrix on each of left and
right sides to contact sensor bias/guard rings.

Figure 8: Organization of wire bond pad frame and generic bonding scheme. All wire bonds are
shown, including connections for testing (not used on detector modules). The number of fanned-
out signal bonds is written in each box, while the power supply bonds run parallel (not fanned out).
The red arrows indicate the four unused pads.

– 9 –

3. Basic Operation and Reset (Intro and Quick Start Guide)

This section walks through the steps for basic, beginner level operation of a single chip on the205

bench. It also describes how the chip is reset- a critical point for correct start-up. Advanced users
will often do things differently than stated in this introductory section, and so the more detailed
sections of the document are referenced as appropriate. Thus, this section can also be used as a
guide to the rest of the document. Each item in this section is just one choice out of several possible
connections and configuration values (recommended for initial operation). Whenever registers or210

pins are mentioned they can be found in the reference section (16).

3.1 Chip Startup

The startup sequence is power, clock, communication, configuration, operation.

Power Typical bench testing will use the LDO powering option, in which the internal regulators
are used as classic linear regulators fed from a constant voltage power supply, rather than serial215

power regulators fed from a constant current supply as they will be used in the experiment. LDO
powering is more convenient for single chip testing (LDO stands for Low Drop Out voltage). A
single chip card will contain jumpers to select LDO mode. A single power supply will be con-
nected to all the chip’s V_IN pins, while the shunt mode controller voltage, VDD_SHUNT, will be
disconnected, which is all that is needed to disable shunt mode. For details see Sec. 4, which also220

describes the serial power and direct power configurations. External components should be set to
their nominal values (Table 30). A power supply current limit of 2 A (half analog and half digital)
will be typical.

LDO mode allows to view the internal current consumption. (VINA and VIND can be con-
nected individually to monitor currents in analog and digital domains). The supply voltage should225

be a minimum of 1.4 V and never more than 2.0 V. 1.6 V should be a typical setting to have com-
fortable margin for cable voltage drops. When power is turned on, the current consumption will
be determined by the default configuration, which is low (normal) power for the ATLAS (CMS)
chip. Typical current consumption is given in Table 3. The VDDA and VDDD regulator outputs,
which connect to external decoupling capacitors, should produce approximately 1.2 V, which is the230

default setting (one should verify that this is the case when first testing a chip). Both the regulated
voltages and current consumption will be affected by the main reference current (Iref), which has
a nominal value of 20 µA and can be trimmed with wire bonds (or jumpers on a single chip test
card) if needed (Sec. 4.2). Without any IREF wire bonds (or jumpers on a single chip test card) the
current reference will be at its maximum value, significantly more than 20 µA, while default and235

recommended configuration settings assume 20 µA. Since all internal biases are derived from this
current reference, all bias currents will be high in this case. A very quick and dirty solution to this
is to wire bond (or load the jumper on a single chip card) the most significant bit, which will trim
to the middle of the trimming range.

Clock The PLL Clock Data Recovery circuit will become active as soon as it has power and will240

produce clock edges on all the internal clocks even in the absence of any external command input.
But these will have arbitrary frequency and phase. This arbitrary clock is useful as a diagnostic: it
will drive the data output stage (all four CML outputs) and produce a “heartbeat” idle pattern that

– 10 –

ATLAS (mA) CMS (mA)
Status Analog Digital Total Analog Digital Total
Power only (I/O unplugged) 160 185 345 650 400 850
Communication up 165 270 435 650 430 1080
Configured for testing 700 740 1440 800 740 1540

Table 3: Typical current consumption for single chip bench test operation, assuming a nominal
(20 µA) reference current (Iref). Unconnected Iref pins/jumpers can result in 15% higher values.
The total column is what should be observed when using a single power supply, as recommended.

can be observed to confirm that the chip is alive and the data connections present. But this arbitrary
clock is not useful for operation. For that one needs a known frequency and phase clock that is245

obtained by locking to the incoming command bitstream.
The initialization and reset procedures needed to establish a proper clock and communication

will be carried out automatically by the DAQ without user intervention, but they are described here
to provide a basic introduction to how the chip operates and allow troubleshooting.

The reset organization is described in Sec. 3.2. Regardless of the state of the command input250

during power up, after power is stable, communication must be initialized by first “idling” the com-
mand line to a nominal bitrate of 1 Mbps1 for at least 10 µs, and then supplying a 160 Mbps clock
pattern (80 MHz effective clock frequency) for at least 1 ms. The clock pattern is an uninterrupted
stream of PLL_LOCK symbols (Sec. 8.2). This is equivalent to a No Operation (NOOP) command
in many processors, and can be used as filler when no other commands must be sent, but it will be255

referred to as PLL_LOCK or PLLlock in RD53C.
This “idling” of the command line is the main hard reset mechanism for RD53C. It can be

done at any time to recover the chip from a bad state without a need to power cycle. It should be
thought of as the equivalent of power cycling hard reset, so it is a reset tool of last resort. After the
command idle reset, the PLL will enter lock mode, and supplying a clock pattern is critical for it to260

lock to the correct frequency. The locking of the PLL can be verified with an optional diagnostic
output (see below), but during detector operation this diagnostic will not be available and there
will be no external indication that the PLL has locked. It will therefore be necessary to hold the
clock pattern long enough to leave no doubt that there has been enough time to lock (1 ms). Further
details are given in Sec 14.265

Optional Diagnostics During bench testing it is possible to access a variety of test outputs. The
chip has one CMOS and four LVDS general purpose outputs that can show a selection of internal
signals (see Sec. 16.4). By default these carry the following information:

CMOS: gpo_ch_sync_lock: 1 if the ChannelSync is locked, 0 when it is unlocked (see below).
LVDS_0: CMD_raw: repeater of the chip command serial input. A buffered version of what the270

chip receives.
LVDS_1: cdr_cmd_data_predel: sampled input command pattern before applying any delay (should

be very similar to the above).

1A DC level- low or high- instead of 1 Mbps will also work for initiating the reset, but is not advised for A/C coupled
command lines.

– 11 –

LVDS_2: PorResetB: output of Power On Reset circuit (active low) in case it is needed (not nor-
mally used in RD53C).275

LVDS_3: gpo_cdr_lock_status: PLL Lock signal. 1 if Locked, 0 otherwise (see clock above).

Communication Now the all clocks will be at the correct frequency and the gpo_cdr_lock_status
shown above should be high. But the chip is not yet ready to understand commands, because
the alignment of the incoming command frames has not yet been established (gpo_ch_sync_lock
should still be low). This alignment is done by a circuit called the channel synchronizer, that rec-280

ognizes unique bit patterns called sync symbols (all command symbols are described in Sec. 8).
Therefore, after the clock pattern, the sending of sync symbols will be enabled (once again, the
DAQ system will do this automatically). One can send a constant string of sync symbols or simply
enable automatic insertion of one sync every N frames (where N is set by configuration, default
32). So either (sync, sync, sync,...) or (PLLlock, PLLlock, PLLlock, sync, PLLlock, PLLlock,...)-285

it makes no difference. The important thing is to send a large number of sync symbols (exceeding a
minimum number set by configuration, default 16) before sending any commands. When the chan-
nel synchronizer locks, the gpo_ch_sync_lock signal will go high on the general purpose CMOS
output. Commands will not be accepted (so the chip configuration cannot be changed) unless this
lock signal is high. Again, the DAQ will normally ensure the correctness of this sequence with no290

need to look at the diagnostic signals.
The CMS chip has a reduced power default configuration. The chip starts with a power con-

sumption a bit lower than nominal: the analog FE are set to absorb 4 µA instead of the nominal
5 µA, the global threshold is set to a very high value and the comparators are set in such a way to
prevent anomalous currents at startup. Moreover, only 1/3 of pixels receive the clock.295

In general a new configuration will have to be loaded for most single chip testing. Test setups
will include a baseline configuration suitable for most tests (which may also be called default in
test setup documentation, should not be confused with the internal chip default configuration).

3.1.1 Default and User Configurations

When the chip starts up and is reset, (A) the global configuration will be supplied by internal hard-300

wired default values and (B) the user programmable configuration registers will be automatically
loaded with those same default values. This complex scheme of having two configurations (hard-
wired and programmed) is needed to ensure that the default configuration is present immediately
upon power-up or upon CMD idle reset, regardless of the presence of a clock, or of the time it
takes to load the programmable configuration registers. Which of the two configurations controls305

the chip is determined by multiplexers associated with each register, as indicated in Fig. 9. At start-
up, the hard-wired default global configuration will be controlling the chip. The same mechanism
is implemented for the pixel configuration, but unlike the pixel matrix, where the programmed
configuration has no reset at all, the global configuration has both the MUX and a synchronous
reset, so that whenever the MUX selects the hard-wired configuration, the programmed values will310

soon (when clocks arrive) be reset to equal the hard-wired values.
In order to use a programmed configuration different from the default, control of the chip

must first be switched over from the hard wired to the programmable configuration. The con-
figuration selection is controlled by both the CMD idle reset signal and a logic comparator that

– 12 –

Figure 9: Configuration selection and reset.

compares the value stored in a pair of special configuration registers (32 bits total) to a hard-wired315

key code or “magic number” (labeled MagicNumberReg in the figure). When the stored value
does not match the key, the hard-wired configuration is selected. Since at power-up the registers
will contain something arbitrary, and will be reset to zero as soon as clock edges are present, the
hard-wired configuration will be selected. To switch over control of the chip to the programmed
configuration, the user must write the key into the magic number registers (the key code is Hex320

AC75 in GCR_DEFAULT_CONFIG and Hex 538A in GCR_DEFAULT_CONFIG_B, as can be
seen in Table 22). Since at start-up the programmable registers will have been initialized to the
default configuration, when the magic number is written and the control of the chip switches over,
nothing should actually change, because each register is switched from the hard-wired default to
the same default in a its programmable register. This is important to avoid a sudden current jump325

since all registers switch over at the same time. Now each programmable register can be written to
the desired value, one at a time.

To guard against SEU, in addition to being triple redundant (as are all global configuration
registers), any permutation of the key codes with one bit flipped will also select the programmed
configuration. In addition to a possible bit flip in the key code, an SEE could put a glitch in the330

MUX control level and that will cause the active configuration bits to switch between hard-wired
and programmed for the duration of the glitch. This is relatively benign and not persistent: after the
glitch everything will be in the original state and there is no corruption of the stored configuration.
Most configuration bits control DACs, which have a slow response time and will therefore not
propagate a glitch in their control bits to their output analog level.335

3.2 Reset

The driving requirements of the RD53C reset scheme are:

• Avoiding introduction of Single Event Effect vulnerability. This led to having reset capability
only on circuits that absolutely need it, and to use only synchronous reset for them. A
synchronous reset signal is a logic level that is sampled locally every clock edge. Spurious340

– 13 –

glitches on this reset signal have no effect (in contrast to an asynchronous reset, for which a
transition produces a reset regardless of clock).

• Need for a default configuration present immediately upon power up. This is done without
the use of a power-on reset, as this would require an asynchronous reset on the global con-
figuration registers. The default configuration is not stored in registers, but hard-wired and345

selected by a 2-to-1 multiplexer (Sec. 3.1.1)

• The ability to reset a chip (or a subcircuit within) without cycling the power, which would
require tuning off and on an entire serial chain. This is accomplished with activity detection
on the command input (Sec. 3.2.1)

Figure 10: Block diagram of reset signals in the RD53C chip as described in the text.

The overall reset organization is shown in Fig. 10. All signal use negative logic: low means350

reset. There is a power-on reset generation circuit in the chip, inherited from RD53A, but the output
of this circuit is not used to reset anything in RD53C and is only sent to the general purpose output
multiplexer so that is available for external routing. The only asynchronous reset signal that is used
in RD53C is the command activity detector (Sec. 3.2.1), labeled .CMD_RESET_B in the figure.
This signal performs 3 functions: (1) it resets the PLL circuit that recovers the clock, (2) it selects355

the default configuration (Sec. 3.1.1), and (3) it is used (after synchronization) to actuate all the
synchronous resets in the digital chip bottom.

All digital blocks have synchronous resets. These can be individually actuated at any time us-
ing the Global Pulse command, in addition to the actuation by the synchronized .CMD_RESET_B
signal in (3) above. The organization of the digital block resets is shown in Fig. 11. The global360

configuration registers are explained in Sec. 3.1.1. The logic to write and read global configuration
has its own synchronous reset, labeled .GlobalConfReset_B in the figure.

3.2.1 Command Activity Detector

The purpose of this circuit is to provide a “hard reset” mechanism for PLL/CDR block that recov-
ers the clock from the input command stream and controls internal resets. The command activity365

– 14 –

Figure 11: Block diagram of reset signals in the RD53C digital bottom as described in the text.

detector measures the rate of transitions in the incoming command signal. A positive edge rate
below a nominal 10 MHz causes a reset to be asserted, while a higher frequency removes the reset.
This nominal 10 MHz threshold has a significant uncertainty, with process, voltage, and tempera-
ture dependence. Thus, an edge rate «10 MHz (called idling) should be provided to guarantee reset,
while normal command activity has a positive rate always between 30 MHz and 80 MHz. The cir-370

cuit bandwidth is low enough that it takes of order 2 µs after command line idling for the reset to
be asserted. It will take of order 0.5 µs to release the reset once the command line is returned to
normal.

The activity detector is part of the PLL/CDR block. It directly resets the PLL, which means it
puts it back into frequency lock mode.375

This is the main hard reset mechanism of the RD53C chip, conceptually equivalent to cycling
the power in a typical system. This is necessary because in a serial power chain, cycling the power
is truly an action of last resort that should never be needed.

– 15 –

4. Power and References

RD53C is designed for operation in a serial powered system, where multiple chips are powered380

in parallel within a module, and multiple modules are connected in series. All circuits needed for
such operation are built into the chip, such that only passive external components are needed to
implement serial power chains. The foundation of this system a custom constant current regula-
tor called Shunt LDO (SLDO). In addition to the SLDO proper, RD53C contains auxiliary circuits
including voltage/current references with automatic start-up (Sec. 4.2), “under-shunt” transient pro-385

tection analogous to a current limit for constant voltage supplies (Sec. 4.4), overvoltage protection
(Sec. 4.5), and a low current operation mode for detector tests with limited cooling (Sec. 4.3).

4.1 Shunt LDO Regulator

The Shunt LDO regulator (SLDO) regulator is a combination of a linear Low Drop-Out voltage reg-
ulator (LDO) and a shunt element. The goal is to provide constant current operation with multiple390

devices connected in parallel (which is not possible for conventional shunt regulators). The circuit
was invented as part of the FE-I4 chip development [4], but the design has evolved significantly
towards the final implementation in RD53C.

The basic principle of operation of the SLDO circuit can be explained using Fig. 12. A con-
ventional LDO voltage regulator is used to power the main load, L, as usual, plus an internal load,395

Ls, in parallel. This internal load (referred to as the shunt element, hence Ls) is actively controlled
to achieve the desired behavior at the input, no matter what the main load L does. To first order, the
desired behavior is Iin = IL + Is = constant.

 L Ls

IL Is
ref

Vin

gnd

LDO

Iin

Vout

Figure 12: Concept of SLDO operation as a linear regulator (LDO) powering an main load L and
a variable internal shunt load Ls.

The real needed behavior for serial power operation is more complex in order to achieve effi-
cient current sharing among parallel chips and is given by Eq. 4.1.400

Iin = IL + Is =
Vin−V0

Reff
[Vin >V0] (4.1)

– 16 –

where V0 is a constant but programmable offset needed for high efficiency and Reff, also user
programmable, gives an ohmic behavior necessary to share current evenly among parallel devices.
A diagram of the desired behavior is shown in Fig. 13.

Figure 13: Desired current vs. voltage characteristics for SLDO. The unregulated input voltage
and regulated output voltage are shown. Indicated values are discussed in the text.

The simplified circuit schematic of the RD53C SLDO is shown in Fig. 14. The red part of the
circuit is a classic LDO regulator with pass device M1. The rest of the circuit can be disabled in405

order to operate in pure LDO mode, which is useful for testing individual chips and for observing
the current consumption. The main load L (external to the SLDO) is not shown- it is the chip itself.
Device M4 is the internal load, Ls, of Fig. 12 and the rest of the black circuitry is the active control.
This control ensures that the current in the pass device M1 is equal to the the current through Rshunt

(Ictrl for control current) times the scale factor K, which has a design value of 1000. Rshunt is410

an external resistor to allow the user precise control Reff. It can be seen that Reff = Rshunt/1000.
Finally, the blue circuit provides the offset V0. This is controlled by a reference voltage labeled
Vofs. User control of Vofs is described in Sec. 4.3.

The SLDO circuit is designed to be compatible with 2 V input voltage. All transistors are
cascoded in order to always have more than two transistors between voltage supply and ground,415

with supply voltage distributed across several transistors. Device voltage limits checks in static and
dynamic simulations show that no transistor sees more than 1.32 V across any two terminals, even
during transients. The one exception is the pass device M1, where cascoding to protect against
over-voltage would cause higher drop-out voltage and therefore higher power consumption. This
lack of cascoding of device M1 leads a lower limit to the undershunt protection range equal to Vref420

(Sec. 4.4). The SLDO circuit also uses a Low-ESR output capacitor compensation scheme, such
that careful control of the external component equivalent series resistance (ESR) is not necessary.

4.2 References and Startup

For serial chain operation the SLDO must become active immediately upon current flow, before
communication is possible. Once operational, it must work with high efficiency and uniformity425

among chips in the chain. Furthermore, startup must work reliably over a wide temperature range,

– 17 –

Rshunt

M6

+

-

Vofs

A4

M7

+ -

A2

M3

+

-

A3M4

Ishunt

+

-

Vin

Gnd

Vref A1
M1

R1

R2

M2

M5

k : 1

𝑉𝑜𝑢𝑡 = 2𝑉𝑟𝑒𝑓
𝐼ctrl𝑖𝑛𝐼 𝐼ctrl

Figure 14: Simplified schematic RD53C SLDO regulator. The colors differentiate the LDO (red),
shunt (black), and offset (blue) functions as discussed in the text.

from room temperature for bench testing and wafer probing, to the evaporative cooling base tem-
perature (taken to be -40◦C, that may be reached before power is applied. The generation of current
and voltage references is intimately connected to the startup behavior.

Figure 15: Generation of references and recommended connection to internal grounds. See Fig. 16
for further detail on R_OFS, shown here as a single resistor.

The RD53C reference scheme is shown in Fig. 15. RD53C does not use the SLDO output to430

power any reference circuit. A dedicated low current linear regulator (the preregulator) is used to
power the main reference current generator. All other references are then derived from this unique
main reference current. The preregulator is outside of and in parallel to the chip power delivered
by the SLDO, but because it is low current it does not noticeably alter the behavior of Eq. 4.1 and
Fig. 13. The preregulator includes its own dedicated bandgap voltage reference, which does not435

– 18 –

need to be very precise, as the preregulator output does not need to be exactly 1.2 V, but merely
between 1.1 V and 1.32 V. The preregulator is a low power device capable of a current of order
20 mA. This maximum current can be reached at very high shunt current Is, well beyond normal
operation values, and symptoms of a saturated pre-regulator can include increased jitter in the PLL
leading to worsening of the output data eye diagram.440

The Core Bandgap generates the main reference current, which can be adjusted with a 4-bit
trim set by wire bond pads with internal pull-up resistors. This allows to compensate for process
variations and equalize all chips to the design reference current value of 20 µA. Note that unless
some of the pads are externally grounded the reference current will be at its maximum value.
The generated main reference current also depends on the external resistor RIref (Table 30), which445

is external in order to avoid the temperature variation of internal devices. The two LDO reference
voltages, Vre f analog and Vre f digital, are each generated by a known current (derived from the main
reference) across a dedicated external resistor (Table 30). Each Vre f is independently adjustable by
configuration to allow some fine adjustment of the chip internal operating voltage. Vre f adjustment
does not change the Vin vs. Iin behavior of the chip, making sudden jumps due to configuration450

upset or operator error harmless for serial chain operation. The offset reference Vofs is common to
both SLDOs and is not adjustable by configuration, as sudden jumps in Vofs would be problematic
for serial chain operation. The generation is shown in Fig. 16.

Figure 16: Offset voltage generation and startup. See text for description. The resistors in series
Rofs1 and Rofs2 may sometimes be referred to as simply Rofs. The dashed blue line separates
internal from external components and connections, while wire bonds pads are indicated by the pin
symbol and blue labels. See Fig. 18 for optional connection of the VOFS_OUT and VOFS_IN wire
bond pads on a module.

4.2.1 Offset Voltage Start-up

As the main current reference that all bias currents are derived from is powered from a dedicated455

linear regulator (the preregulator), circular dependencies requiring start-up circuits are generally
absent from RD53C. However, the offset voltage (Vofs_half) does require a startup (Fig. 16), be-
cause a very low offset voltage would cause the shunt device (M4 of Fig. 14) to be fully on, and
this would clamp the input voltage, Vin, to a low value even if a large current were supplied. This

– 19 –

is especially critical for low power mode (Sec. 4.3). The built-in start-up circuit shown in Fig. 17460

boosts the offset voltage to follow Vin until Vin is high enough for the preregulator to work and all
references to be at their correct values. The circuit injects a current into the offset voltage setting
resistor until the preregulator reference voltage rises. The rise of the preregulator reference shuts
off this startup circuit.

Figure 17: Offset voltage startup circuit. The Resistor Rofs is either Rofs1 in normal operating
mode or Rofs1 + Rofs2 in low power mode (see Fig. 16).

4.3 Offset Voltage and Low Power Mode465

The SLDO offset voltage plays critical roles. It is the most important voltage for regulators operat-
ing in parallel, because the total current in a given SLDO, Iin, is very sensitive to V0 (and therefore
to Vofs), as can be seen by the dIin/dV0 derivative to Eq. 4.1, which is -1/Reff. (This is also true
for dIin/dVin, but Vin is by construction equal for all SLDOs wired in parallel.) It is very important
to note that the actual offset voltage, V0, in Fig. 13 is twice the generated Vofs_half voltage. This470

is because the actual offset voltage may need to be higher than the preregulator output voltage,
and so is impossible to generate directly. A ×2 buffer with Vin rail internally generates the true
offset voltage from Vofs_half (Fig. 16). Only Vofs_half is accessible outside the chip and can be
manipulated via the VOFS_OUT, VOFS_IN and VOFS_LP wire bond pads.

Vofs may not necessarily be equal for different chips placed in parallel, and this can lead to475

current imbalance. While a small value of Reff will make a single SLDO more efficient (lower
voltage drop between Vin and Vout), it can make a multi-chip module less efficient by amplifying
a small Vofs chip-chip mismatch into a large current imbalance. Two solutions to this problem are
possible in RD53C 2. First, it is possible to trim the main current reference to produce a target Vofs

value, rather than to produce a target current value. This will result in a larger chip-chip variation480

of reference current, but since all internal biases are adjusted with dedicated DACs this is not a
problem. In return for the larger variation of reference current there will be a smaller variation in
offset voltage. The second solution is to tie together the Vofs outputs of all chips in the same module
via resistors (Fig. 18). For this purpose, in RD53C the Vofs output of Fig 16 and the Vofs input of
Fig 14 are on separate wire bond pads.485

2Assuming the Rofs resistors cannot be practically trimmed individually

– 20 –

chip 1

VOFS_OUT

chip 2 chip n

Vofs_half module

VOFS_IN VOFS_OUT VOFS_IN VOFS_OUT VOFS_IN

Figure 18: Common offset voltage wiring option for a multi-chip module. The VOFS_OUT
and VOFS_IN wire bond pads can be seen in Fig. 16 and Table 22. For single chip operation
VOFS_OUT should be simply looped back to VOFS_IN.

The common Vofs wiring of Fig. 18 is robust against chip failure. Should one of the Vofs outputs
be grounded, the common Vofs will be reduced. This will cause the working chips to draw more
current for a given Vin, which is actually beneficial in the case the failing chip draws low current,
as the working chips must now carry the extra current from the failing one.

Rather than a single external resistor to set Vofs, Fig 16 shows two resistors with a center tap490

switch- effectively a 1-bit variable resistor. The switch is internal in RD53C, while the resistors are
external. This allows implementation of a low power serial chain mode. For normal serial chain
operation the switch is conducting and the resistor value is just Rofs1. When the switch is off, the
resistor becomes Rofs1+Rofs2, leading to a higher Vofs. A higher Vofs means that a small current will
develop a high enough value of Vin needed for the SLDO output to reach 1.2 V. This also requires495

the default configuration to be very low current, as is the case in RD53C ATLAS.
The switch is controlled by a dedicated A/C input as this mode is only intended for use during

detector construction, when additional contacts can be made. An A/C signal on this special input
will turn the switch off, and the absence of a signal (as will be the case for normal operation) will
leave the switch conducting. Note that if this high Vofs low power mode is never needed one can500

simply leave out Rofs2 and connect Rofs1 to ground, in which case it no longer even matters what
the state of the switch is.

The amplitude of the A/C signal to activate low power mode should be 1.2 V peak-to-peak and
should not exceed 1.32 V. A square wave with a rise time below 100 ns should have any frequency
larger than 80 kHz, while a sine wave should have a frequency larger than 130 kHz. This assumes505

the A/C signal is coupled to the chip by a 100 nF external capacitor (Table 30). The rectification
circuit that turns the A/C signal into an internal logic level is shown in Fig. 19. It consists of
a 2 stage rectifier using low threshold NMOS transistors with applied forward-body biasing as
rectification elements to achieve the minimum possible threshold voltage.

4.4 Under-shunt Current Protection510

The variable internal shunt load Ls of Fig. 12 can act to keep the total current constant as long as
the load current drawn by the chip, IL, is less than the programmed total current Iin. But if due to
an error or fault condition IL > Iin, then there is nothing the variable load Ls can do to prevent the
total current from exceeding Iin. An additional function is need to react to the condition IL > Iin.
The under-shunt circuit acts to prevent the IL > Iin condition. It is different from a classic current515

– 21 –

Figure 19: Rectification circuit for external A/C signal that enables low power mode.

limiting circuit, because the programmed value of Iin is not fixed in advance, but set by an external
resistor. Thus it is not possible to have a hard-wired absolute current limit.

Turning around Eq. 4.1, Is = Iin− IL, where Is is the internal shunt current in M4 of Fig. 14.
The desired condition IL < Iin is equivalent to a non-zero shunt current, Is > 0. Thus, the under-
shunt protection compares a scaled replica of the M4 current to a threshold (which does not have520

to be precise), and if it goes below threshold (known as the under-shunt condition), it reduces Vre f

(by reducing the current it is derived from). Lowering the voltage powering the load L will reduce
the load current IL. The circuit is shown in Fig. 20. However, the Vre f is not allowed to drop below
0.35 V, to avoid the possibility of a voltage greater than 1.32 V across M1 of Fig. 20, which could
cause permanent damage to the device.525

Figure 20: Under-shunt protection circuit.

The under-shunt protection is disabled by default and must be enabled in the global configu-
ration. It can prevent internal shorts from being visible outside the chip, as long as their effective
resistance is greater than 0.7 V/Iin. It can also prevent transient “shorts” (for example due to a si-
multaneous firing all comparators or a wrong configuration setting) from drawing more than the
programmed Iin. Simulations of selected test cases show that the under-shunt protection generally530

mitigates both DC shorts and transients, but it can also lead to internal oscillation when the reduc-
tion of the load voltage removes the under-shunt condition, but then the condition returns when the
load voltage recovers. These internal oscillations are not expected to be a problem for the system

– 22 –

outside the chip. Ultimately, the use or not of under-shunt protection will have to be informed by
system tests.535

4.5 Over-voltage Protection

In the SLDO design the shunt element M4 of Fig. 14 is placed after the pass device M1. The
total current draw is limited by the pass device and additional current cannot be shunted by M4.
Therefore, classic over-voltage protection (OVP) is implemented with a current clamp in parallel
to the SLDO. Since the voltage being clamped is Vin, which is common to both SLDOs, there is540

only one single clamp for the whole chip. The circuit is shown in Fig. 21.

Figure 21: Over-voltage protection clamp.

The OVP must only become active if the input voltage is close to 2 V. The clamp threshold is
0.333×Vref_ovp, where Vref_ovp is an internal reference obtained as a copy of the preregulator
bandgap output voltage Vref_PRE and is expected to be around 0.6 V. This value can be overridden
with the wire-bond pad VREF_OVP, without affecting Vref_PRE. OVP can be disabled by driving545

VREF_OVP to a high value (for example VDD_PRE). Note that if multiple chips in parallel go
into OVP, there is no current balancing mechanism for this function, so the chip with the lowest
effective OVP threshold will take most of the current.

– 23 –

5. Analog Front End

The ATLAS and CMS chips use different front ends (FE). However, they are treated the same way550

by the design framework and share many features. Much about the RD53C FE can be described
generically, applying equally to ATLAS and CMS. The FE is a pure analog circuit: it contains no
memory latches, flip-flops or counters. Static configuration values are provided by the digital core,
which receives only the comparator output signal from the analog part. The design is a small-area,
low-power, free-running amplifier and discriminator for negative input charge. All necessary biases555

are generated in the chip bottom as described in Sec. 5.1. The calibration charge injection circuit
and operation are described in Sec. 6.

The FE circuits are laid out in analog islands of 4 FE’s each, as was described in Sec. 1.

5.1 Front End Bias Generation and Distribution

The bias voltages for the analog front-ends are provided by a set of programmable 10-bit DACs560

placed in the Analog Chip Bottom, near the pad frame. The list of configuration registers of the
bias DACs is available in Sec. 16.2.

The bias distribution to the pixel array is based on a 2-stage scheme, as shown in Fig. 22.
The biases from the DACs are distributed in parallel to the DOUBLE_COLUMN_BIAS blocks
placed at the bottom of the pixel matrix. Then, each DOUBLE_COLUMN_BIAS generates and565

distributes the bias and threshold voltages to two pixel columns. The chosen granularity allows a
certain level of redundancy, so that a hard failure in one pixel will not affect the bias of the full
pixel array.

Figure 22: Bias distribution scheme.

main top rightleft
top
left

top
right

Figure 23: Clarification of input device bias scheme.
Each square is a 2 by 2 pixel analog island. All columns
are identical, with two bias lines (an arbitrary column
is circled). Six DACs at the chip bottom control differ-
ent lines as indicated. The distinction between center,
sides, top, and corners is made by which DACs connect
to which columns.

– 24 –

The distribution scheme takes also care to provide dedicated biases to the edge and top pix-
els, that will serve larger than normal sensor pixels to span the gap between adjacent chips in570

quad or dual chip modules. Edge/top pixels may need different bias to cope with greater capac-
itance and leakage current than the normal pixels. Simulations of the analog front-end showed
that the only bias requiring different setting is the current of the preamplifier input transistor: a
higher current allows both to align in time the response of the edge pixels and also partially re-
cover the noise increase due to the greater capacitance. Therefore, only the input transistor bias575

can be adjusted differently for edge/top pixels, while all other biases are the same everywhere.
The distribution of the input transistor bias is illustrated in Fig. 23. This distribution creates
six groups of 4-pixel islands: Main (the interior if the chip), Left edge, Right edge, Top, Top
Left corner, and Top Right corner. Each group has its own dedicated DAC for the input tran-
sistor bias, and these DACs can be set to the same or different values as needed by changing580

the value of the corresponding DAC_PREAMP_{M,L,R,TL,TR}_DIFF registers (ATLAS) or the
DAC_PREAMP_{M,L,R,TL,TR}_LIN registers (CMS) (see Table 22).

In addition to the input transistor bias, the global thresholds setting is also modular for the
left and right edge double-columns. Instead, the pixels of the top edge do not have an independent
threshold. Therefore, the chip is equipped with three global threshold DACs: Left double column,585

Main array and Right double column. The global threshold is then set by setting a fixed value to the
DAC_VTH2_DIFF register, and adjusting the value of the DAC_VTH1_{L,M,R}_DIFF registers
(ATLAS) or adjusting the DAC_GDAC_{L,M,R}_LIN registers (CMS) as needed (see Table 22).

5.2 CMS Analog Front End

+

CF
Vref

IK

IK/2

VDDA

Vth

Injection
circuit Vout,csa

sensor
bump PAD

CK

Vout,comp

5-bit
threshold

tuning DAC

Figure 24: Schematic of the CMS analog front-end

The analog front-end (FE) for the CMS pixel readout chip is based on the RD53A Linear FE,590

with improved comparator and threshold-tuning DAC. The FE block diagram, with some transistor

– 25 –

level details, is shown in figure 24. The readout chain includes a charge sensitive amplifier (CSA)
with Krummenacher feedback complying with the expected large radiation induced increase in the
detector leakage current and providing a linear discharge of the feedback capacitor CF . The de-
signed charge sensitivity, set by CF , is around 26 mV/ke−. The signal from the CSA is fed to a595

low power comparator that, combined with a time-over-threshold counter, is exploited for time-to-
digital conversion. Channel to channel dispersion of the threshold is addressed by means of a local
circuit for threshold adjustment, based on a 5-bit, current-mode binary weighted DAC. The front-
end chain has been optimized for a maximum input charge around 30 000 electrons and features an
overall current consumption close to 5 µA.600

M3

in out

M2

M1

M4

M8

M6

M7

I1

I2

M5

20 nA

20 nA

1

IPA_IN_BIAS

VDDA

1

IFC_BIAS

Figure 25: Charge sensitive amplifier forward gain stage.

The core element of the charge sensitive amplifier is the gain stage shown in figure 25. This
is a folded cascode architecture including two local feedback networks, composed by the M4-M5
and M7-M8 pairs, boosting the signal resistance seen at the output node. With a current flowing in
the input branch equal to 3 µA and a current in the cascode branch close to 200 nA, the CSA is605

responsible for most of the power consumption in the analog front-end. The DC gain and the -3dB
cutoff frequency of the open loop response, as obtained from simulations, are 76 dB and 140 kHz,
respectively.

The noise performance of the charge preamplifier is mainly determined by the contributions
from the CSA input device and from the PMOS transistor part of the feedback network. The610

preamplifier gain stage is identical to the one integrated in the RD53A Linear front-end. Notice that

– 26 –

M3

M5

from CSA

M1
Vth

M2

M4

BIAS_COMP

M7

M6

M9

VDDA

M10

COMP_STARV

M8

Comp_out

Figure 26: Threshold discriminator schematic diagram.

B3 B2 B1 B0

ILDAC

M0M1M2M3

M8 M7 M6 M5

In-pixel

M12

Itrim

M11

to discriminator

M10

1248

B4

16
M4

M9

Figure 27: Threshold tuning DAC schematic diagram.

a gain selection bit was implemented in the RD53A version, whereas a single gain configuration is
used in the CMS FE. Detailed simulation results are presented in [?].

The comparator schematic diagram is shown in figure 26. It includes a transconductance stage
(M1-M5) whose output current is fed to the input of a transimpedance (TIA) amplifier providing615

a low impedance path for fast switching. A couple of inverters is used after the TIA in order to
consolidate the logic levels. With respect to RD53A, the main modifications to the comparator are
in its transimpedance stage. In particular, the TIA feedback network (transistors M6 and M7) has
been modified with the aim of improving the time-walk performance of the front-end. A starving
mechanism (transistor M8) has been added in the gain stage (M9 and M10) to limit the power620

consumption of the TIA. The trimming DAC schematic diagram is shown in figure 27. This is a 5-

– 27 –

Table 4: Linear AFE settings

Rec Std Range
FC_BIAS_LIN 20 10-70
Vthreshold_LIN - REF_KRUM_LIN-900
COMP_LIN 110 70-250
COMP_STAR_LIN 110 50-300
LDAC_LIN 110 80-COMP_LIN×2
KRUM_CURR_LIN 70 5-200
PA_IN_BIAS_LIN 300 100-700
REF_KRUM_LIN 360 300-450

bit, current-mode, binary weighted DAC featuring regular current mirrors. The DAC output node,
sinking a current Itrim, is connected to the output of the transimpedance stage of the comparator.

5.2.1 Front-end registers

Table 4 reports a list of the DAC settings for the CMS AFE, showing the recommended (Rec) values625

and the operating range (Std range). The recommended values are used to operate the front-end
with a total analog current of 5 µA, with a ToT close to 130 ns for an input charge of 6000 electrons.
Some simulation results are given in this section and more detailed results can be found in [?].
The DAC settings can be divided into two categories, in particular:

• Main settings:630

– Vthreshold_LIN

– LDAC_LIN

– KRUM_CURR_LIN

• Secondary settings

– FC_BIAS_LIN635

– COMP_LIN

– COMP_STAR_LIN

– PA_IN_BIAS_LIN

– REF_KRUM_LIN

The main DAC settings can be modified to achieve different threshold and ToT operation, whereas640

secondary settings should be in principle kept at their default value.

– 28 –

time

time

pr
ea

m
pl

ifi
er

 o
ut

pu
t

co
m

pa
ra

to
r o

ut
pu

t
Increasing KRUM_CURR_LIN

Increasing KRUM_CURR_LIN

ToT

Vthreshold_LIN

Figure 28: Effects of KRUM_CURR_LIN on preamplifier output waveform and ToT.

0

50

100

150

200

250

0 50 100 150 200 250 300

To
T	
[n
s]

KRUMM_CURR_LIN	[DACu]

Figure 29: ToT as a function of KRUM_CURR_LIN for a 1000 electrons threshold.

5.2.2 Krummenacher current: KRUM_CURR_LIN

KRUM_CURR_LIN sets the current in the Krummenacher feedback, used to linearly discharge
the preamplifier feedback capacitance. Increasing KRUM_CURR_LIN results in a faster pream-
plifier return to baseline and a reduced Time Over Threshold (ToT), as schematically shown in645

Fig. 28. The recommended value, 70, should results in a ToT close to 133 ns for an input charge of
6000 electrons. The simulated relationship between KRUM_CURR_LIN and the ToT is shown in
Fig. 29, for a threshold set around 1000 electrons.

5.2.3 Global threshold: Vthreshold_LIN

Vthreshold_LIN sets the global threshold of the Linear AFE, corresponding to the DC thresh-650

– 29 –

time

pr
ea

m
pl

ifi
er

 o
ut

pu
t Decreasing Vthreshold_LIN

REF_KRUM_LIN
0

Figure 30: Effects of Vthreshold_LIN on the global threshold.

old voltage applied to the discriminator input. Increasing Vthreshold_LIN results in an increased
global threshold, as conceptually shown in Fig. 30. It is worth noticing that the effective threshold
is the difference between Vthreshold_LIN and REF_KRUM_LIN which, in turn, sets the pream-
plifier output DC baseline (increasing REF_KRUM_LIN results in a higher baseline). Vhresh-
old_LIN=400 should provide a threshold (after tuning) close to 1000 electrons (as REF_KRUM_LIN655

is kept to 360).

80

100

120

140

160

180

200

220

300 350 400 450 500 550 600 650 700

R
ec

om
m

en
de

d
LD

A
C

 [d
ac

 c
od

e]

Untuned threshold dispersion [e r.m.s.]

R
D

53
A

 b
ar

e
ch

ip
 @

 w
ar

m

R
D

53
A

 a
ss

em
bl

y
@

 1
 G

ra
d

RD53A region

Figure 31: Recommended LDAC_LIN values as a function of the un-tuned threshold dispersion.

5.2.4 Threshold trimming: LDAC_LIN

LDAC_LIN sets the LSB of the in-pixel threshold trimming DAC and, in turn, its output dynamic
range. In particular, LDAC_LIN controls the current ILDAC shown in the schematic of Fig. 27.
Increasing LDAC_LIN results in increased LSB and output range. An increase in the un-tuned660

– 30 –

threshold dispersion is expected for the Linear AFE after irradiation. In that case it could be
required to operate the front-end with an increased LDAC_LIN in order to compensate for the
larger dispersion.
Recommended values of LDAC_LIN are shown in Fig. 31 as a function of the un-tuned threshold
dispersion. Typical values of the untuned threshold dispersion before irradiation are in the range665

350-550 electrons (as obtained from RD53A and prototype measurements, depending on sensors
geometry, temperature, ...). As shown in the figure, the untuned threshold dispersion can get up to
650 electrons after irradiation at 1 Grad (from RD53A measurements).

5.2.5 Secondary settings

The DAC settings listed in this section are mainly related to preamplifier and comparator bias and670

should be, in principle, kept at their default value. A brief overview of these settings is given in the
following.

• FC_BIAS_LIN: sets the current in the preamplifier folded cascode branch.

• COMP_LIN: sets the bias current in the threshold discriminator input (transconductance)675

stage. This parameter can be slightly increased to improve speed.

• COMP_STAR_LIN: sets the maximum current flowing in the comparator output branch
(controlled by the starving transistor M8 in Fig. 26).

• PA_IN_BIAS_LIN: sets the current in the preamplifier input branch. This current represents
the main contribution to the Linear AFE current consumption. This parameter can be slightly680

decreased to reduce power, at the cost of an increased noise.

• REF_KRUM_LIN: as explained in section 2.2, this parameter sets the preamplifier output
DC baseline (Vout,csa in Fig. 24).

– 31 –

6. Calibration Injection

The calibration injection circuit can internally inject signals into any combination of pixels without685

the need for a sensor or radiation. There are two types of calibration injection: digital and analog.
The same command (Sec. 6.2) is used for both, and which one is active is selected by configuration
in register CalibrationConfig (Table 22). Digital injection bypasses the front end and inputs a
digital pulse to the hit processing logic as shown in Fig. 41. It is therefore relatively simple: the
digital pulse generated by the Cal command is directly what the hit processing uses and is fully690

deterministic (no noise). It is useful to test proper functioning of the readout chain, as a timing
reference for each pixel’s FE analog delay, etc. The rest of this section is concerned with analog
injection.

The calibration injection circuit uses two distributed DC voltages plus in-pixel switches to
chop them and generate steps fed to an injection capacitor. Having two voltages allows a precise695

differential voltage that will be independent of local ground drops in the chip, as well as two
consecutive injections into the same pixel. The injection circuit is implemented in every pixel and
its topology is shown in Fig. 32. The control signals, S0 and S1, are generated in the digital domain
as explained in Sec. 6.1. They can be phase shifted relative to the bunch crossing clock with a fine
delay, which is global for the whole chip. The enable bit (EN) is programmable for each pixel and700

injection takes place only for enabled pixels. Charge is injected when either S0 or S1 switch from
low to high. Analog injection must therefore be primed by setting at least one control signal low,
prior to being able to inject. This priming is not automatic, so that the user is able to control the
amount of settling time allowed prior to injection. The CAL command is used for both functions:
prime and inject (see Sec. 6.2). The value of the injection capacitor can deviate from nominal due705

to process variations, so a dedicated circuit is provided to measure a replica capacitor array in each
chip during wafer probing (Sec 13.8).

S0 S0b
S0b

S1 S1b
S1b

Vcal_Hi

Vcal_Med

Cinj

Pixel_In

Analog Macro

OR

OR

Digital Section

S0*

S1*

EN

Figure 32: Calibration injection circuit in each pixel. The injection capacitor nominal value is
8.02 fF.

– 32 –

The injection circuit resembles two CMOS inverters, and just as in a common inverter, there
will be a switching transient when a control signal switches from low to high, but simulations show
these transients to have a negligible impact on the distributed Vcal_Hi and Vcal_Med voltages.710

Note that at the top of each inverter the injection circuit adds an NMOS transistor in parallel with
the PMOS, which switches first (before the PMOS) when injecting. This allows the switches to
operate for any choice of voltages Vcal_Hi>Vcal_Med>GND, but since the top NMOS switches
first, it does not contribute transients during injection. During priming, on the other hand, the
top NMOS switches first, while the bottom NMOS is still conducting, resulting in a short circuit715

lasting one inverter delay. This will cause a transient on the Vcal_Hi and Vcal_Med voltages, and
the user must therefore allow some settling time between priming and injection. In addition to this
transient, priming injects a positive polarity pulse into each enabled front end, so one must allow
for the front end to settle in any case. The use of two voltages means that the charge injected by S0
is given by a differential voltage and not affected by local ground potential differences. Keeping720

S1=0 and only toggling S0 will result in single pulse differential injection. Conversely, the two-
voltage injection circuit also allows injection of two successive pulses without priming in between,
and with arbitrary delay between these pulses (one pulse differential and another referenced to
ground). An additional control feature exploits the use of two voltages to inject a different amount
of charge simultaneously in neighboring pixels, by changing the meaning of S0 and S1 in different725

pixels (see Sec. 6.1).
Finally, since the voltage distribution lines have finite impedance, injecting into too many

pixels simultaneously will cause the voltages to droop, introducing a nonlinearity in the injected
charge vs. number of pixels injected. Simulations show this nonlinearity to be less than 1% for
simultaneous injection into 3 full rows of pixels and less than 2% for 4 rows, but the exact value730

of this nonlinearity should be measured in actual chips by measuring threshold vs. number (and
pattern) of injected pixels.

6.1 Generation of S0 and S1 signals

The signals S0 and S1 of Sec.6 exist locally in each pixel but are derived from different internal
signals produced by the command decoder and distributed to the array. This two-step scheme is735

necessary in order to implement the above injection options of either consecutive different pulses
into the same pixel or parallel different pulses into neighboring pixels. It also avoids having to
distribute two switching signals with precise timing, instead of just one, saving power and area.
Since the calibration input is used to study and calibrate timing, it must occur simultaneously in
all enabled pixels, just as is the case for the bunch crossing clock (here, simultaneously means740

within a 2 ns window). Two control signals are distributed: CAL_edge and CAL_aux. As the name
implies, CAL_edge needs to be simultaneous in all pixels, while CAL_aux does not. CAL_edge
has a fine phase adjustment relative to the beam crossing clock, which is called CAL_delay. In
fact CAL_edge looks like a traditional injection pulse, with user controlled leading edge time
and duration. In uniform injection mode (which allows injecting two pulses close in time into all745

selected pixels), S0 and S1 are derived from CAL_edge and CAL_aux identically for all pixels:

S0 = CAL_edge OR CAL_aux (6.1)

S1 = CAL_edge AND CAL_aux (6.2)

– 33 –

The rising edge of CAL_edge throws the S0 switch, while the falling edge throws the S1 switch.
The CAL_aux starts low and then goes high after CAL_edge, but not with precise timing. In
uniform mode the injection switches can only be thrown in that order. Either only use S0 for single
pulse, differential voltage injection, of use S0, then S1, for double pulse injection.750

In order to allow injection of different size pulses simultaneously into adjacent pixels, there
is an alternating analog injection mode that can be selected instead of the default uniform mode.
In this mode the S0 and S1 signals are derived as above only for even pixels, but swapped for odd
pixels:

S1odd = CAL_edge OR CAL_aux (6.3)

S0odd = CAL_edge AND CAL_aux (6.4)

where an even (odd) pixel is one for which the sum of row + column is an even (odd) number. Thus,755

for example, in single injection mode the CAL_edge rising edge throws S0 for even pixels, but S1
for odd pixels. The S0 and S1 assignment options are independent of the cal enable bit in each
pixel. The Analog Mode bit of the injection configuration controls whether injection is uniform
(mode=0) or alternating (mode=1).

6.2 Cal Command760

The Cal command controls the generation of the two internal signals CAL_edge and CAL_aux.
For digital injection only the CAL_edge signal is relevant. The CAL_edge signal to be generated
is specified by the first 14 data bits of the Cal command, while the CAL_aux signal is specified by
last 6 data bits. The detailed bit assignment of the command payload (four 5-bit fields) is shown in
Fig. 33.765

Figure 33: Bit assignment of the Cal command payload. Two data frames totaling 20 bits. M=
mode bit, E= CAL_edge parameters, A= CAL_aux parameters (value and delay). All delays and
duration are in units of 160 MHz clock cycles.

The CAL mode bit (M) selects between two behaviors for the CAL_edge signal: a single
step (mode=0) or a pulse (mode=1). The step is always from low to high, so an edge is only
produced if the prior state of CAL_edge was low; if it was high it remains high. Thus, for typical
injection it is necessary to first arm the system to ensure CAL_edge is low, as shown in Fig. 34. The
standard injection sequence is then shown in Fig. 35. In this case voltage at the injection capacitor770

of the selected pixels is switched from Vcal_Hi and Vcal_Med, effectively providing a differential
injection voltage that will be insensitive to power and ground local voltage variations across the
matrix. The delay value controls the “coarse” delay from the Cal command to the injection (in
cycles of the 160 MHz clock), and a global fine delay is added on top of that. This fine delay is

– 34 –

Figure 34: Timing diagram illustrating the
arming of calibration injection, to set both
CAL_edge and CAL_aux to the correct levels
without knowing their prior state. The Cal com-
mand parameters are as follows: M=1, delay=1,
duration=15, A=0, Adelay=0 (the exact delay
and duration values are not important).

Figure 35: Timing diagram illustrating stan-
dard calibration injection. Only the CAL_edge
signal is active. The Cal command parame-
ters are as follows: M=0, delay=16, duration=1,
A=0, Adelay=0 (the exact delay and duration
values are not important).

pre-programmed in a global register and is in units of 1.28 GHz clock cycles. This allows precision775

scanning of the pixel timing. The duration serves no purpose in edge mode and the CAL_aux signal
is unchanged. But note that CAL_aux must be low the whole time in order for the rising CAL_edge
to switch from Vcal_Hi and Vcal_Med. If the CAL_aux signal were instead high, the switching
would be from ground to CAL_edge. This would inject positive polarity charge, which the Front
End is not designed for, but may be of interest for special tests.780

In pulse mode (M=1) the CAL_edge signal will be set to high after the coarse plus fine delay,
just as it happened for edge mode, but then it will be set to low after the duration value elapses. Note
that if duration is set to zero then CAL_edge will simply go low after the delay (a duration zero
pulse with final state low). Thus, pulse mode with duration zero is the complement of step mode:
the former brings CAL_edge low while the latter brings CAL_edge high. Step mode is used to785

produce two consecutive injections. Starting from the armed state of Fig. 34, the rising CAL_edge
will inject from Vcal_Hi and Vcal_Med as usual, but then, before the falling CAL_edge at the end
of injection the CAL_aux signal is set high, which then causes the falling CAL_edge to switch
from Vcal_Med to ground. This sequence is shown in Fig. 36. The CAL_aux signal will be set
to the level indicated in the command (A) after the given delay value. The fine scale for the delay790

allows changing the CAL_aux value in the middle of a bunch crossing cycle, as is needed to inject
charge in two consecutive crossings. Since at the end of this sequence CAL_edge is low, it’s no
longer necessary to repeat the Fig. 34 arming sequence. However, the CAL_aux signal has to be
returned low, which can be done with the sequence in Fig. 37.

Executing a double injection with a single Cal command in pulse mode is limited the injec-795

tions being closer together in time than the maximum CAL_edge duration. To perform a double
injection separated by longer times, two separate Cal commands can be used. The first would
be a standard injection (Fig. 35), while the second command would accomplish the Vcal_Med to
ground injection as shown in Fig. 38. Note that this is not the same as two consecutive standard

– 35 –

Figure 36: Timing diagram illustrating double calibration
injection using the pulse mode of the Cal command. The
Cal command parameters are as follows: M=1, delay=16,
duration=19, A=1, Adelay=25 (the exact values are repre-
sentative. The Cal_AUX transition must be between the
CAL_edge rising and falling edges).

Figure 37: Timing diagram illus-
trating the re-arming of the CAL_aux
signal after double injection. The
Cal command parameters are as fol-
lows: M=1, delay=0, duration=0,
A=0, Adelay=0.

injection sequences, because in between standard injections one must re-arm, which produces a800

positive polarity injection at the time of re-arming. In contrast, in the double injection there is no
activity between the two injections. This can be important when studying threshold stability vs.
time, for example. One can achieve the same thing using standard injection, but it requires more
commands and, therefore, more time between injections.

Figure 38: Timing diagram for an arbitrarily delayed second injection in a double injection se-
quence. The Cal command parameters are as follows: M=1, delay=0, duration=16, A=1, Adelay=8
(the exact values are representative. The Cal_AUX transition must be before the CAL_edge falling
edge).

– 36 –

6.3 Injection Voltages805

The two injection voltages Vcal_Hi and Vcal_Med are generated by two 12-bit DACs in the chip
bottom as shown in Fig. 39. Using the SEL_GRANULARITY configuration bit, the circuit can
operate either with high dynamic range or with fine step sizes. In the former configuration, the
DACs voltage reference is the same as the ADC voltage reference Vref_ADC (Sec. 12.2), while
in the latter case it is Vref_ADC/2. As these voltages are relatively high impedance, injection810

into many pixels at once will introduce a systematic bias, as the current pulse from the combined
effect of all injected pixels will cause a voltage shift of the injection voltages. This effect is small
and can be ignored for many applications, but should be considered for precision studies. An
additional consideration for any precision studies is that the absolute scale of calibration injection
depends on Vref_ADC and on the injection capacitor value, Cinj. Therefore, when converting to815

units of injected charge (typically in electrons), the conversion is only as good as the knowledge of
Vref_ADC and Cinj. This conversion is typically done automatically within the readout systems.
The value of Vref_ADC (which depends on the trimmable Iref main current) should be checked
and Cinj should be measured (Sec. 13.8).

Vcal_Hi

Vcal_Med

CAL_HI

CAL_MED

Figure 39: Generation of the injection voltages Vcal_Hi and Vcal_Med.

– 37 –

7. Digital Core820

The digital core implements all the functionality of digitization, time stamping, storage, trigger
retrieval, configuration memory, and injection control for the 64 pixels in the core. All cores are
identical and the layout is stepped and repeated to from the matrix. The address of each core is
generated by a combinatorial subtracter that subtracts 1 to the address of the previous core, starting
from a hard-wired seed address of 41 at the bottom of the matrix (thus the top-most core has825

address 0). The distribution of the bunch crossing clock and calibration pulse (CAL_edge) along
the column is not done with a global clock tree, but they are time aligned though delays that depend
on the core address, compensating for the propagation delay accumulated along the column.

Within the core, the pixel hits are processed in pixel regions (Sec. 7.1), each made of 4 pixels
(i.e. in total there are 16 pixel regions in a digital core). Even though each analog island also has830

4 pixels, the region pixels are organized in 4×1 rows, a region receives the hits from two pixels
in one analog island and two in another. The 4 pixels in a region share timing information, while
each individual pixel has its own hit processing (Sec. 7.2) along with dedicated ToT counter and
memory (Sec. 7.3). The pixel region aspect ratio is chosen to minimize the size of its timestamp
and ToT memories for the areas of the detector with the highest hit rates (i.e. the end of the835

innermost barrel, where a particle normally hits an elongated cluster of pixels). Additionally, the
region manages clock gating, which reduces digital power consumption even at the maximum hit
rate. This is because even at the maximum hit rate not all pixel regions are processing hits at any
given point in time. At maximum hit rate (3 GHz/cm2), digital power is approximately half of what
it would be without clock gating.840

7.1 4-Pixel Region

LE TE

LE

wr. addr.

rd. addr.

data out (4x4-bits)
BCID, BCID req.,
Trig., Trig. ID, Trig. ID req.
Rd token, Rd, Clr

FE hit
outputs

40MHz
BX clk

Rd token

Latency, Trigger
 & Readout

ToT Counter
& Memory

Pixel Hit Logic

Figure 40: 4-Pixel region block diagram. LE is leading edge, TE is trailing edge, BCID is bunch
crossing counter value. See text for details.

The pixel region logic contains three main blocks as indicated in Fig. 40: the Hit Logic (four
instances), the ToT counter and storage (four instances), and one Latency, Trigger and Readout

– 38 –

(LTR) block. Sharing the LTR block among four pixels leads to a more compact layout than if each
pixel was independent.845

The Hit Logic (Sec. 7.2) determines if an hit is present in a given bunch crossing and drives
the ToT counter (Sec. 7.3). The LTR block (Sec. 7.4) is the brain of the region. It keeps track of
the timing of all hits, decides which ToT memories to use, and manages triggering, reading and
clearing of ToT data.

7.2 Pixel Hit Logic850

Digital
Enable

Binary in
from FE

CAL_edge

Cal
Enable

HitOr
Enable

Enable

Region Hit

ToT Code
4

Hit Disc.
& Counter

HitOR In
HitOR Out

ToT latch

BX Clock

Injection

Figure 41: Single pixel hit digital processing path. The bold text indicates global signals, while
the italic text indicates local pixel signals.

The hit output of the analog front end is processed to produce all the needed digital values and
signals as shown schematically in Fig. 41. There are two parallel paths with independent enable
bits: the DAQ path leading to hits being collected and encoded into the chip data output (Sec. 10,
and the HitOr path, which feeds the wired OR core column lines as described in Sec. 13.4. The hit
source can be selected to be the analog front end, or digital hit calibration injection, which checks855

the full digital functionality bypassing the analog front end. The Cal Enable, (data output) Enable,
and HitOR Enable bits are independently set for every pixel (Sec. 8.8), while Enable Digital Injec-
tion is globally controlled by the CalibrationConfig register (Table 22) The Hit Disc. & Counter
block contains logic to detect and synchronize hits (Fig. 42), as well as a ToT counter dedicated to
this pixel (Sec. 7.3).860

Fig. 42 shows the schematic of the “asynchronous option” logic to process the hit output of
the analog front end, while Fig. 43 shows the corresponding waveforms. This option will detect
all FE output pulses even if they are very short duration. An alternate “synchronous option” is
also available. If selected, this option will fist synchronize the FE output with the 40 MHz clock
before further processing. Now only output pulses that are high during a clock transition will865

be registered as hits. Thus all pulses wider than one clock cycle will be registered, while pulses
narrower than one clock cycle will sometimes be registered and sometimes not, depending on their
phase relationship to the clock.

7.3 ToT counter and storage

ToT is counted independently for each pixel using the 40 MHz clock. An 80 MHz effective reso-870

lution is provided by capturing the clock phase with the asynchronous hit. In this case, the clock

– 39 –

Figure 42: Schematic of the logic to process the
asynchronous hit output of the analog FE. The
reset_b signal globally provided during initial-
ization. The state shift register controls clock
gating, timestamping, ToT counting and storage.

Figure 43: Waveforms showing the processing
of a hit output from the analog FE. HitLE stores
the timestamp in the pixel region, HitTE stores
the ToT in the pixel ToT memory.

falling phase is latched, based on the assumption that hits are time-aligned on the rising-edge.
80 MHz ToT counting can be enabled through global configuration (the default is 40 MHz). The
ToT counter schematic is shown in Fig. 44. A 6-bit counter is used (including the above mentioned
clock phase capture bit), but only 4 bits are stored and read out, as described below.

Figure 44: ToT counter schematic. At the end of the count, the Clk latch captures the clock falling
phase, which is used as the LSB (Q0,80 MHz) of the count, achieving 80 MHz ToT counting. The
input signals reported on the schematic are the same shown in the pixel control logic in Fig. 42.

875

In addition to 80 MHz resolution, a dual slope ToT mapping is supported and can be enabled
by global configuration. In this case, the 6 bits of the counter are compressed to 4 bits. If the feature
is disabled, either the 4 LSBs (80 MHz mode) or the middle 4 bits (40 MHz mode) are stored. The
logic implementing the dual slope mapping is shown in Fig. 45.

The meaning of each 4-bit ToT code in terms of true ToT value is shown in Table 5 for the880

two possible speeds or dual slope compression. Note that in the default mode (40 MHz and no
compression) the output ToT code is the true ToT bin low edge.

In any mode, the ToT code that is read out goes from 0 to 14. Code 15 is reserved in the
pixel region to identify non-hit pixels. Also, if the ToT counter reaches maximum while the pixel
comparator output is still high, the counting concludes and the maximum ToT (14) is recorded.885

The pixel region clock is gated off whenever there is no ToT counting taking place.
The ToT storage has 8 locations per pixel, 4 bits each. The value of the ToT counter is stored

– 40 –

Output True ToT bin (low edge) [BX]
4-bit 40 MHz speed 80 MHz speed
code 4-bit (DEF) 6-to-4 bit 4-bit 6-to-4 bit

0 0 0 0 0
1 1 1 0.5 0.5
2 2 2 1 1
3 3 3 1.5 1.5
4 4 4 2 2
5 5 5 2.5 2.5
6 6 6 3 3
7 7 7 3.5 3.5
8 8 8 4 4
9 9 12 4.5 6

10 10 16 5 8
11 11 20 5.5 10
12 12 24 6 12
13 13 28 6.5 14
14 ≥14 ≥32 ≥7 ≥16

Table 5: True ToT value in bunch crossing (BX = 25 ns units) for each output ToT 4-bit code,
depending on speed (40 or 80 MHz) and compression (4 bit or 6-to-4 bit) settings. Always the low
edge of the true ToT bin is shown. For example code 3 having a true ToT low edge of 3 means the
true ToT was at least 3 bunch crossings and at most x, where x is the true ToT low edge of the next
code (4 in this case). The last bin (code 14) has no high edge and includes all overflows. Code 15
means “no hit” and should never be seen because unhit pixels are internally suppressed.

Figure 45: ToT 6-to-4 bit mapping schematic.

once the conversion is finished, indicated by a trailing edge pulse or by the counter reaching max
count. Which of the memories the ToT is stored in is fixed at the start of the ToT conversion by a
write address from the LTR, shown as wr. addr. in Fig. 40. This is common to the 4 pixels in the890

pixel region.
The pixel ToT memory bank has a 4-bit output port. Which ToT memory is presented on this

port is given by a select address from the LTR block (rd. addr. in Fig. 40).

7.4 Latency, Trigger and Readout (LTR) block

If any pixel in the pixel region is hit, the timestamp is stored in a memory common to the whole895

– 41 –

pixel region. If multiple pixels fire in the same region in the same crossing, still only one memory
is written. The timestamp is necessary to determine when the trigger latency for a certain event
expires and the storage elements are therefore often referred to as latency memories.

Each 4-pixel region has 8 latency memories just as each pixel has 8 local ToT storage registers.
Each of the 8 ToT registers of a given pixel is associated with one region latency memory (hard-900

wired). This way, when one pixel is counting ToT it does not prevent the other pixels in the region
from being hit, i.e. there is no region dead time, only single pixels have dead time while the
comparator is high.

Each memory consists of a 9-bit buffer and comparator, as shown in Fig. 46, which is a low
power solution compared to local latency counters. The 9-bit memory stores the value of a global905

bunch crossing counter (BCID) distributed from the chip bottom (9 bits translates to a maximum
trigger latency of 29-1=511 bunch crossings or 12.8 µs). Every subsequent bunch crossing, this
value is compared to a delayed bunch crossing counter (BCID request), also global, that is delayed
by the trigger latency relative to the BCID. Both are Gray counters so that only one of the 9 bits
changes every bunch crossing. If the event is triggered, the same memories are recycled to store910

the trigger ID value.

BCID Trig. ID

LE or
triggered

triggered

BCID or
Trig ID
match

BCID
request

Trig. ID
request

digital comparators

Figure 46: Latency memory block diagram. The same memory and comparators are used to store
BCID values or trigger ID values, as there is never a case when both need to be stored at the
same time. Only 3 instances of each circuit are shown in the figure, but in reality there are 8 9-bit
memories and comparators in the region.

Each memory cell also contains a 2-bit state register to identify whether the memory is idle,
triggered, to be read out or to be cleared. The latter is only used in two-level trigger mode or for
event truncation. Two-level trigger mode is a prototype functionality that was not selected for use
in the final ATLAS or CMS detectors. Therefore, while partly present in RD53C, it has not been915

fully supported. The memory is in idle state until a leading edge (LE) signal arrives. With each
new LE pulse, a new memory location is written. When a location reaches the programmed latency
(the BCID and BCID request values match) the presence of a trigger is checked. If no trigger is
present, the latency buffer and associated ToT memory are released (marked available). If a trigger
is present, then the ToT memories are marked triggered (not available) and a trigger ID is stored to920

label the hits for later readout.
When a region hit is selected by a trigger, the latency buffer mechanism is reused for queuing

– 42 –

the hit for readout. The stored BCID value is overwritten with a trigger ID value, which is compared
to a trigger ID request value. When the trigger ID request matches the stored value, the LTR will
hold the read token and select ToT data to be placed on the output. The read token travels from one925

region to the next to scan a core column for data. The generation of the trigger ID is explained in
Sec. 9.3.

The Precision ToT modules in the chip bottom reuse the region latency memory mechanism
and readout logic. Sec. 13.7 may give further insight about the region operation.

7.5 Pixel Addressing930

The pixel addressing is hierarchical, first in cores (like postal codes) and then regions within a core
(like the street address). This structure is shown graphically in Fig. 47.

For writing pixel configuration values, the basic unit which can be addressed is a pixel pair (see
Fig. 47). This is achieved by writing to two registers of the chip global configuration. The Core_Col
and Core_Row values are preserved in the global configuration registers 1 and 2, respectively, but935

the four Region_in_Core are divided between the two registers as follows. Additionally, there is a
Pair_in_Region bit need (17 total bits instead of 16), because configuration is written in pixel pairs
rather than pixel regions or individual pixels.

Register 1= [7:2]=Core_Col, [1]=Region_in_Core[0], [0]=Pair_in_Region

Register 2= [8:3]=Core_Row, [2:0]=Region_in_Core[3:1]940

In this way, Register 1 identifies the pixel pair column address, while Register 2 contains the pixel
row address.

In the RD53C data output (Sec. 10.4) the basic unit is instead a quarter core, which contains
two rows of 8 pixels. Thus, a core from Fig. 47 is vertically divided into four quarter cores, with the
numbering of the quarter cores as shown in Fig. 48. A binary tree compression scheme is used to945

encode the address of each pixel in a quarter core, as described in details in Sec. 10.4. Fig. 48 also
shows an example of the compressed bit codes for all 16 cases of a single hit pixel in the quarter
core.

7.5.1 25 µm × 100 µm pixels

While for 50 µm × 50 µm sensors the chip pixel numbering will carry over unchanged to the950

sensor, for 25 µm × 100 µm sensors a mapping is needed to know which sensor pixel is connected
to which chip channel. This mapping is determined by the sensor metalization and there are two
possible mappings as shown in Fig. 49.

– 43 –

47

..
.

Figure 47: Pixel core addressing scheme, down to
pixel pairs for pixel register configuration.

10101010 1010100 1010010 101000

1001010 100100 100010 10000

 0101010 010100 010010 01000

 001010 00100 00010 0000

core_row + 0

core_row + 1

core_row + 2

core_row + 3

Figure 48: Numbering of quarter-cores
for readout (top) and compressed binary
code for each single hit pixel (bottom).

0 2

31

8

9

10

11

4

5

12

16

17

24

25

18

19

1 3

20

9

8

11

10

5

4

13

17

16

25

24

19

18

(a) (b)

Figure 49: Two options (a and b) for mapping of 25 µm × 100 µm pixel sensors to the core
pixel address. Which option is correct is determined by the sensor metalization. The filled circles
represent the bump bond locations while the open rounded rectangles extend from each bump to
the center line of the sensor pixel served. The top left corner of an 8 by 8 pixel core is shown.

– 44 –

8. Commands and Configuration

RD53C is fully controlled with a 160 Mbps differential serial input stream with a custom, DC-955

balanced encoding described in Sec. 8.2. The differential receiver circuit is described in Sec. 8.1.
The received signal, without any processing, can be optionally repeated on the general purpose
differential outputs (Sec. 13.1). The command input also contains an activity detector that will
cause a reset when the rate of transitions falls to very low value (Sec. 3 and 14). A Clock and
Data Recovery circuit (CDR) recovers the input bitstream and also produces the internal clocks for960

the chip, based on the transitions on input stream, as described in Sec. 14. A dedicated command
(PLL_LOCK) equivalent to a clock pattern is provided to ease locking the internal phase locked
loop (Sec. 14).

8.1 Receiver Circuit

Figure 50: Equivalent circuit for differential receiver input.

The CMD receiver is implemented as a differential amplifier with a rail-to-rail input stage.965

The inputs are connected to an on-chip resistor bias network in the kΩ range, which allows the
receiver to be ac-coupled to the serial input stream. The resulting input common-mode voltage
is VDD_PLL/2 (600 mV for nominal 1.2 V supply). The bias network also adds a small offset
voltage to the differential input signal to keep the receiver in a static input state in case of a broken
signal connection. A termination resistance is not implemented in the CMD receiver to allow970

multiple RD53C chips to be connected to the same CMD line (a multi-drop configuration with
one termination at the end). The differential receivers for the data aggregation inputs (Sec. 11)
use the same rail-to-rail input stage . The input impedance of the receiver, together with the ESD
protection and wire bond pads, have been simulated with extracted parasitics. The capacitive and
resistive contributions are shown Fig. 50.975

– 45 –

8.2 Command Protocol

The input stream is a continuous sequence of commands. All commands are built in 16-bit frames
made out of two 8-bit symbols. As the bitrate is 160 Mbps each frame spans four periods of the
40 MHz bunch crossing clock. Commands that are one frame long (four BX clocks) and are called
short commands (Sec. refsec:short-commands) of which Triggers are an example. Frames are in-980

terpreted one at a time and short commands are executed immediately, while long (multi-frame)
commands (Sec. 8.2.2) are executed after their last frame is received. Long commands have the
property that they can be interrupted by short commands without the need of restarting the inter-
rupted command. This gives the ability to send Trigger commands (which are short) whenever
needed, and to send long commands during data taking without worrying if trigger might be com-985

ing.

The command input is intended to be shared by multiple chips (multi-drop). Commands can
be broadcast, in which case all chips sharing the command input will execute them, or addressed,
in which case only the chip with the selected address will execute it and all other chips receiving
it will ignore it. A chip can have one of 16 possible chip ID values (set by 4 wire bonds to ground990

overriding internal pull-up resistors). The first frame of addressed commands consists of an 8-bit
symbol identifying which of the 7 commands it is, and a data 8-bit symbol specifying a chip ID.
Addressed commands can also be sent in broadcast mode by specifying a chip ID value greater
than 15. A chip that receives a command not broadcast or addressed to it will still process it (so
as not to produce “unexpected data frame” errors), but will not execute it. The PLL_LOCK, Sync,995

and trigger command are always broadcast, while all others are addressed.

Each 16-bit frame is exactly DC balanced. DC balance is needed for A/C coupling, reliable
transmission, and clock recovery. The symbols used also provide error detection 3. There is a
unique sync frame (used to perform frame alignment as explained in Sec. 8.3), plus 3 kinds of TTC
(Trigger, Timing and Control) frames: trigger, command, or data. TTC frames contain two 8-bit1000

symbols which are themselves DC-balanced. Furthermore, symbols that begin or end with three
or more 1’s or 0’s are not used, resulting in a maximum run length of 4, except for the sync frame
which has a run length of 6. The valid symbols and commands are given in Tables 6, 7, and 32.
There is one sync frame, 7 non-trigger commands, 15 trigger symbols allowing the encoding of 15
trigger patterns (Tables 6, 7), and 32 data symbols allowing the encoding of 10 bits of content per1005

data frame or 5 bits of chip ID per command frame (Table 32). All valid symbols are allowed to be
used as trigger tags in the trigger frame; thus there are 54 possible tags (see Sec. 9). A single bit flip
always results in an invalid symbol (formally, all symbols are separated by a Hamming distance of
2).

RD53C interprets the protocol in three phases (which will be transparent to the user): Initial-1010

ization 8.3, Data Transmission 8.4 and Decoding 8.5. The decoding timing and exception handling
are covered in Sec. 8.6

3All these properties could have been obtained with 8b/10b encoding, but the 10-bit frame length of 8b/10b would
have required 200 Mbps link speed in order to maintain an integer number of bunch crossings per frame, as needed for
synchronous triggering. The 160 Mbps bitrate of the RD53C custom protocol makes for better transmission on low mass
cables and can be directly driven from GBT e-links.

– 46 –

Command Encoding (T)ag, (A)ddress or (D)ata 5-bit content
Sync 1000_0001 0111_1110

PLLlock 1010_1010 1010_1010
Trigger tttt_tttt Tag[0..53]
Clear 0101_1010 ID<4:0>

Global Pulse 0101_1100 ID<4:0>
Cal 0110_0011 ID<4:0> D<19:15> D<14:10> D<9:5> D<4:0>

WrReg(0) 0110_0110 ID<4:0> 0,A<8:5> A<4:0> D<15:11> D<10:6> D<5:1> D<0>,0000
WrReg(1) 0110_0110 ID<4:0> 1,xxxx xxxxx N×(D<9:5> D<4:0>)

RdReg 0110_0101 ID<4:0> 0,A<8:5> A<4:0>
Read_trigger(*) 0110_1001 ID<4:0> 00,T<7:5> T<4:0>

Table 6: List of protocol commands/frames and address or data fields associated with each. Unused
padding bits are indicated by “0”. Double vertical lines denote frame boundaries. tttt_tttt is one
of 15 trigger commands (Table 7). The before-encoded bit content of chip ID, Address or Data
is shown. These are all encoded as 8-bit data symbols (Table 32). (*) Read_trigger is a legacy
command and should not be used in RD53C, as the trigger mode requiring it has been deprecated.

8.2.1 Short Commands

PLL_LOCK (broadcast only):
This command allows a clock pattern to be sent to the chip without any action being executed1015

by the command decoder. The clock pattern is needed to efficiently lock the Phase Locked
Loop (PLL) to the correct frequency at start of operation (Sec. 14). Once locked, the PLL
no longer needs a perfect clock pattern and regular commands and sync frames can be sent.
This command can also be used as an idle when there is nothing to be sent during normal
operation. This is equivalent to a No Operation (NOOP) command in many processors, but1020

we do not use that terminology here. It repeats the same 8-bit symbol twice to produce a
clock pattern (Table 6).

Sync (broadcast only):
The Sync is the only command where the two 8-bit symbols used are not themselves DC
balanced (both together the 16 bits are DC balanced). This is what makes it unique and1025

allows it to be recognized for frame alignment.

Clear:
Clears the entire data path. All pending triggers and stored hits will be erased. This command
can be used when every chip receiving it has dedicated readout link(s). However, when using
data merging to read out multiple chips on a single link, the command should not be used1030

and should instead be replaced by a Global Pulse command. See Sec. 15.

Global Pulse:
The global pulse command sends a single pulse with a duration of N bunch crossings, where
N is the value of the 9-bit register GlobalPulseWidth (Table 22). The value N = 0 is treated
like N = 1. The global pulse can be routed to different places of the chip and has many1035

– 47 –

uses. It can provide reset signals, control the ring oscillators, the ADC, etc. The global pulse
routing table is 24.

Trigger (broadcast only):
Because one 16-bit frame spans 4 LHC bunch crossings, the trigger command must specify
a 4-bit map indicating which of the 4 bunch crossings are actually triggered; hence 15 trigger1040

patterns. The triggering is synchronous, and therefore trigger frames must be sent at specific
times. The second symbol in a trigger frame can be any legal symbol and is interpreted as
one of 54 possible 6-bit tag bases to identify the trigger(s) in later readout (see Sec. 9.2).
The mapping from symbol to tag base number is given in Table 34. The trigger tag will be
returned with the data corresponding to that trigger (See Sec. 10).1045

Symbol Name Encoding Trigger Pattern Symbol Name Encoding Trigger Pattern
Trigger_08 0011_1010 T000

Trigger_01 0010_1011 000T Trigger_09 0011_1100 T00T
Trigger_02 0010_1101 00T0 Trigger_10 0100_1011 T0T0
Trigger_03 0010_1110 00TT Trigger_11 0100_1101 T0TT
Trigger_04 0011_0011 0T00 Trigger_12 0100_1110 TT00
Trigger_05 0011_0101 0T0T Trigger_13 0101_0011 TT0T
Trigger_06 0011_0110 0TT0 Trigger_14 0101_0101 TTT0
Trigger_07 0011_1001 0TTT Trigger_15 0101_0110 TTTT

Table 7: List of trigger symbols used to encode the 15 possible trigger patterns spanning four
bunch crossings. Note there is no 0000 pattern as that is the absence of an trigger. The Trigger_01
(000T) means that the first bunch crossing of the trigger window is meant to be readout, and the
extended tag returned will have 00 following the supplied tag base.

8.2.2 Long Commands

Cal (Calibration Injection):
The same command is used for both analog and digital injection. Whether injection will be
analog or digital is decided by global configuration register CalibrationConfig, but the Cal
command produces the same output regardless. To understand the Cal command it is neces-1050

sary to understand how the calibration injection circuit works. Therefore, the description of
the command was given in Sec. 6.

WrReg(0) (Write Register, single):
The WrReg command has two modes: single write and multiple writes to register 0. The
command frame is the same and the distinction between single and multiple is made by1055

the first bit of the payload (0=single, 1=multiple). The WrReg(0) or single has 9 bits of
Address and 16 bits of Data. Up to 512 16-bit wide registers can be addressed, but not all
512 possible register addresses are used. If an attempt is made to write to an unused address,
the command will do nothing and no warning will be generated. The register memory map
is given in Table 22. This command does not produce any output from the chip.1060

– 48 –

WrReg(1) (Write Register, multiple):
The WrReg command has two modes: single write and multiple writes to register 0. The
command frame is the same and the distinction between single and multiple is made by the
first bit of the payload (0=single, 1=multiple). The WrReg(1) or multiple must have the ad-
dress value set to 0. It can only be used to initiate multiple writing to register 0. Register 0 is1065

a virtual register called PIX_PORTAL, used to write and read pixel configuration (Sec. 8.8).

Following a WrReg(1) command, one may send data frames to the chip (as many as desired)
without any preceding command. All these data frames will be written to the PIX_PORTAL
(register 0). This must be done in conjunction with auto-increment (see Sec. 8.8). This
permits very efficient transfer of data to the PIX_PORTAL. The write multiple mode remains1070

in effect until a new long command is received (short commands will be executed and not end
the WrReg(1) command mode). Note that the chips not addressed by the WrReg(1) command
will still recognize the multiple write mode and will therefore not issue “unexpected data
frame” warnings, but they will not write the data to their register 0. The placement of the 10
bits from each data frame into the 16 bits of register 0 is described in Sec. 8.81075

RdReg (Read Register):
This command has 9 bits of address and no data. It initiates the readout of the addressed
register. Address 0 is special: it is the the pixel register as described in Sec. 8.8. The 16-bit
register value is returned in the data stream as described in Sec. 10. Not all 512 possible
register addresses are used. If readback of an unused address is requested, the data value1080

returned will be 0, the address returned will be the requested (non-existent) one, without any
warning generated. The register assignment list is given in Table 22.

RdTrig (Read Trigger):
This command has an 8-bit extended tag value. In two-trigger mode, it selects a previously
received tag for readout. It is not useful in single trigger mode. See Sec. 9 for details.1085

8.3 Command Protocol Initialization

Until the PLL is locked and produces a stable chip clock, the command decoder will be in its reset
state. During this period, PLL_LOCK frames should be sent to the chip. The transitions in the
string of PLL_LOCK frames will allow the clock recovery circuit to lock to the correct 160 MHz
frequency. The user does not know when the PLL has locked, but simply sends PLL_LOCK frames1090

for a long enough time that the lock cycle is surely completed (see Sec. 14). For debugging, the
PLL lock condition can be observed in the recovered CMD output of the general purpose LVDS,
which is a default output (see Sec. 13.1). At this point the protocol initialization begins. Before any
command decoding, the input bitstream is processed by the Channel Synchronizer circuit (Fig.51),
and the initialization correctly sets up this circuit.1095

The sync pattern (Table 6) can not be produced through any combination of TTC frames
and therefore can be searched for to lock the correct frame boundaries (the search procedure is
explained in the next paragraph). Sync frames must be sent at the start of operation so that the
framing can be locked (this different from PLL lock!). It is mandatory to send one sync frame
in every 32 frames or so in order to maintain lock or allow the command decoder to re-lock if1100

– 49 –

lock was lost. If no sync frames are received in a long time frame lock will be declared lost and
the command decoder will stop interpreting commands until a new lock is acquired. Typically
at the start of operation (power up) there are no commands or triggers to immediately send, and
so sending a large number of sync frames to ensure initial lock is not a problem. The channel
synchronizer lock is available in the chip status CMOS output (Sec. 13.1).1105

Using the 160 MHz recovered clock, the channel synchronizer will search for sync symbols
and count each valid appearance of this pattern in 16 separate channels (one channel for each possi-
ble frame alignment). When the count for one of the channels, i, reaches a threshold Nlock, sync lock
is declared as acquired, channel i is adopted as the correct channel, and the count of the remaining
15 channels is reset. The value Nlock has default value of 16 and can be changed in configuration1110

register ChSyncConf (Table 22). At the start of transmission the command decoder will not inter-
pret any commands until it has received Nlock Sync commands. Thus one should begin transmission
by sending at least Nlock Sync commands. The 40 MHz bunch crossing clock is generated as the
bit pattern 1100110011001100 aligned to channel i. Thus there are 4 bunch crossings with a fixed
phase relationship to the sync frame, which can be labeled BXa..BXd. The counting of sync se-1115

quences continues in all the channels, but every new sync sequence detected on the lock channel i
resets the count for all the other channels. If the count for a channel that is not the lock channel ever
reaches a threshold of Nlock/2, lock is declared lost, and a new sync lock is acquired on the first
channel that reaches the locking threshold Nlock. This allows for continuous channel monitoring
and automatic sync lock as long as enough sync symbols are transmitted. Additionally, if zero sync1120

frames are received in the lock channel within 64 frames (regardless of other channels), lock will
be declared lost and no further commands will be decoded until a new lock is acquired. This value
is hard-wired and cannot be changed. This is useful to prevent prolonged, random input due to an
upstream exception from corrupting the chip operation, but makes it mandatory to regularly send
Sync symbols.1125

8.4 Command Protocol Transmission

During transmission a correct sequence of commands is sent to control the chip. Trigger frames are
sent at specific times, and the “space between trigger frames" is filled with commands (including
the required Syncs). Long commands are decoded regardless of intervening short commands. The
PLL_LOCK command can be used as an idle frame, as it has the most transitions and will therefore1130

best maintain PLL operation. Sync commands can also be used as idles, since they must be sent
periodically anyway, but they have the fewest transitions, so are not ideal for maintaining PLL lock.
The best approach is therefore to always send Syncs every 32 frames and PLL_LOCK commands
in between if and when there is nothing else to send.

8.5 Command Protocol Decoding1135

The data bits recovered from the locked channel are fed to the Command Decoder as shown in
Fig. 51. In the absence of a sync lock, nothing is fed to the command decoder, so until a lock
happens no commands will be interpreted. The locked condition guarantees that the bits fed to the
command decoder are correctly aligned with the 40 MHz bunch crossing clock. Protocol consis-
tency is ensured by checking that the decoded frames are valid and also that they match what is1140

expected (analogous to checking both spelling and grammar). The 16 bits are fed to the command

– 50 –

decoder with a parallel bus. In case of correct detection, the indicated action is performed accord-
ing to the command type and Chip ID. All symbols are always checked and decoded, even if they
follow a Chip ID that does not match the wire bonded ID. However, the Command Decoder will
act on the rest of the chip only if the command is a trigger, if decoded Chip ID matches the wire1145

bonded ID, or if the decoded broadcast bit is 1 (the PLL_LOCK command is not addressed, but
has no internal action- no operation). The detection of an invalid symbol is handled differently
depending on the frame and expectation (current state). The handling of exceptions is shown in
Table 8.

8

6

etag

BX triggered

etag

read etag

BX triggered

8

8

8

CMD clock
(10MHz)

1st
symbol

2nd
symbol

160MHz
clock

CMD
bitstream

Channel
synchronizer

Command
decoder

40MHz
BX clock

other
outputs

Self
trigger
tag

Self
trigger
enable

Input
bitsream
from
LVDS
receiver

CDR

6
delay
setting

delay

delayPLL

Figure 51: Clock and command recovery and decoding path from chip input to internal signals,
showing trigger pluses and tags in particular. Other outputs of the command decoder, such as
global register address and write signal, not shown. 16-bit Command patterns are successively
loaded into the Command Decoder with the correct frame alignment as determined by the Channel
Synchronizer.

8.6 Command Protocol Timing1150

The decoded commands are executed 25 ns after the end of the last frame of the command data.
“Executed” means that the outputs of the Command Decoder block in Fig. 51 change state, which
happens on a rising edge of the beam clock. In many cases the execution is instantaneous (outputs
change state and that’s it), but the Trigger, Cal and Global Pulse commands have a delay and
duration. The trigger command sends 1 to 4 pulses in 4 consecutive beam clock cycles, and thus1155

is completely finished before a new command can be completely received (since 1 frame is 4
beam clock cycles). The Cal and Global pulse commands can occupy their respective output lines
(CAL_edge, CAL_aux, and Global_pulse) for many clock cycles. A new Cal or Global pulse
command should not be sent before the prior such command is complete (up to the DAQ to ensure
this), but any other command can be sent and will be executed normally.1160

8.7 Global Configuration

The global configuration is stored in 16-bit registers which are accessed like a RAM with the
write and read register commands of Table 6. Each register has a default value that is provided as

– 51 –

Frame received Frame Expected Error/Action
invalid, data data Aborted command
data, invalid data Aborted command
invalid, invalid data Aborted command
invalid, data not data Lost trigger
invalid, invalid not data Corrupted frame
invalid, sync any Corrupted sync
sync, invalid any Corrupted sync
invalid, command any Execute with warning
command, invalid any Execute with warning
trigger, bit-flip (*) any Execute w/tag base 54
trigger, invalid (*) any Execute w/tag base 55
command, command data Ignored command

Table 8: Command Decoder response to invalid or unexpected symbols. (*) bit-flip refers to an
8-bit pattern produced from flipping a single bit in a valid symbol, while invalid references to any
other invalid 8-bit pattern.

explained in Sec. 3.1.1. The main table of register names, content, and default values is given in
Sec. 16.2.1165

8.8 Pixel Configuration

Each pixel has 8 bits of local configuration as detailed in Table. 23. From the point of view of the
write and read register commands, each pixel is seen as one half of one configuration data register.
All pixels are paired as shown in Sec. 7.5.

The 8 pixel bits are divided into 5 TDAC bits (threshold tuning bits) and 3 enable bits (also1170

known as mask bits). These two types of bits can be written together or independently (always for
two pixels at a time). Thus one can choose to write all 8 bits at once, only the 5 TDAC bits, or only
the 3 enable bits. The single write register command (WrReg(0)) of Table 6 always writes al 8 bits
of both pixels, where the 16 bit data frame is subdivided as follows:

Single Write: left-pixel(TDAC[15:11]HitBus[10]InjEn[9]Enable[8]),
right-pixel(TDAC[7:3]HitBus[2]InjEn[1]Enable[0])1175

The multiple write register command (WrReg(1)) instead writes the mask bits or the TDAC bits
depending on the Mask or TDAC bit of global configuration register PIX_MODE. The mapping
from 10-bit data frame to two pixel TDAC or mask bits is as follows:

PIX_MODE[1] = 0: unused[9:8], right-pixel-mask[7:5], unused[4:3], left-pixel-mask[2:0]
PIX_MODE[1] = 1: right-pixel-TDAC[9:5], left-pixel-TDAC[4:0]1180

Internally, the writing and reading of configuration values from the pixels uses an addressed
bus to every 2×1 pixel pair. All reading and writing is done two pixels at a time in a given column
of 4-pixel regions. (See Sec. 7.5 for address encoding). However, multiple core columns can be

– 52 –

written in parallel, while readback can only take place from one pixel-pair column at a time. There
are thus two write modes, single pixel-pair and broadcast, while read is always single pixel-pair.1185

The write and read operations are controlled by three global registers, the REGION_COL, RE-
GION_ROW, and PIX_MODE configuration registers. The pixel data is written into or retrieved
from global register 0 (PIX_PORTAL) with the normal write and read register commands (see
Sec. 8.2). This is a virtual register acting as a portal to whatever pixel pair is pointed to by the col-
umn and row config registers (called PIX_PORTAL). The row register has a special feature called1190

auto increment (Auto Row), which reduces the number of commands needed to fully configure the
chip. This mode is enabled by a configuration bit and increments the row register value after every
write or read operation to PIX_PORTAL.

The typical pixel matrix configuration write sequence, using the write single register com-
mand, is given in Table 9. Note that this takes 77200 (73008) commands for ATLAS (CMS) chips1195

to accomplish. These numbers should be multiplied times 4 to obtain number of frames, and each
frame takes 100 ns to transmit. If one is only configuring a chip, it will therefore take about 30 ms.
For the case of configuring during data taking (called trickle configuration), much of the command
bandwidth will be taken up by trigger commands, and configuration will therefore take longer. The
worst case is two-level trigger operation with 4 MHz L0 + 1 MHz L1 trigger operation. This will1200

use up 60% of the command bandwidth. We should also remember that 6% of the command band-
width must be used to send periodic Sync commands. with only 34% of the command bandwidth
available, 77200 Write Register commands will take 88 ms instead of 30 ms. With some DAQ over-
heads we assume 100 ms. So for a 4-chip module trickle configuration in the worst case will take
400 ms. (If more chips share the same command line it will take proportionally longer). Writing1205

a uniform (all pixels the same) configuration is 50 (54) times faster for ATLAS (CMS), because
each Write Pixel command can write to all core columns Table 10. Alternatively, using the mul-
tiple instead of single Write Register command means one frame instead of 40 frames per write,
which will reduce the above 88 ms to 22 ms (100 ms for a 4-chip module in worst case of trickle
configuration). The readback of the pixel configuration for the whole matrix can proceed exactly1210

as shown in Table 9, substituting the Read Register command instead of Write Register. This can
be carried out in broadcast mode to any number of chips in parallel, so will always take 50 ms (half
as much as writing a single chip because the read register command is two frames instead of four).

Writing or reading an individual, arbitrary pixel pair follows steps 1-3 of Table 9. For cal-
ibration operations it is often required to write only the mask bits many times to shift a pattern1215

through the matrix, leaving the TDAC bits alone. This can be done with broadcasted commands
(same mask for all chips even though the TDACs are different), and it must use the write multiple
command as the write single command always writes all the 8 configuration bits per pixel. Writing
masks to a single pixel at-a-time will take 77200 write operations as in Table 9, but one frame per
pixel write instead of four (still four frames per write for steps 1 and 2), resulting in 78400 frames,1220

which takes 8.3ms if all the command bandwidth (minus 6% for Syncs) is used, or 23 ms in the
worst case of trickle calibration. Writing one row at a time will take 1/50 of this per mask, regard-
less of the number of chips, as it is done in column broadcast mode using broadcasted commands.
It can even be faster if not all rows need a new mask each time.

When used in a radiation environment it is possible to write to an non-existing pixel address at1225

the end of a configuration operation. This will make pixel configuration less sensitive to accidental

– 53 –

Step Command Address Explanation
1 Write_Register column and mode config set columns 0-1 and auto row mode
2 Write_Register row config set row 0
3 Write_Register 0 config first 2 pixels
4 Write_Register 0 config for next row 2 pixels

386 Write_Register 0 config for last row 2 pixels in cols 0-1
387 Write_Register column and mode config set columns 2-3 and auto row mode
388 Write_Register row config set row 0
389 Write_Register 0 config for next row 2 pixels

77200 Write_Register 0 config last 2 pixels in chip

Table 9: Sequence to write an arbitrary pixel configuration to ATLAS size chip using write register
single commands. Each column pair takes 386 commands, times 200 column pairs leads to 77200
commands. For readback replace Write_Register 0 with Read_Register 0 commands.

Step Command Address Explanation
1 Write_Register column and mode config set broadcast, cols. 0-1, and auto row mode
2 Write_Register row config set row 0
3 Write_Register 0 config all pixels, first row in cols 0-1
4 Write_Register 0 config all pixels, second row

386 Write_Register 0 config all pixels, last row
387 Write_Register column and mode config set broadcast, cols. 0-1, and auto row mode
388 Write_Register row config set row 0
389 Write_Register 0 config all pixels, first row in cols 2-3

1544 Write_Register 0 config last 2 pixels in cols 6-7

Table 10: Sequence to write a default (all pixels the same) configuration for ATLAS size chip.
Only the first core column (columns 0-7) are written because all core columns will be “CC-ed” in
parallel.

SEU/SET caused overwriting a pixel register.

– 54 –

9. Trigger Processing, Tags, and Data Flow

While the RD53C design contains two trigger modes for historical reasons, known as single level
and two-level, the two-level trigger function has been deprecated, has not been fully verified, and1230

should not be used. Only the single level trigger, which is the default and is fully verified, is
described here. For a description of two-level trigger refer to the RD53B manual.

A simplified description of the chip triggered readout is as follows.

1. A trigger command is received, including an identifier called tag,

2. The tag (see Sec. 9.2) is stored in a trigger table (Sec. 9.3). and the hits from the appropriate1235

bunch crossing are associated with this tag (but left in the pixel matrix),

3. The hits are read from all core columns in parallel, and then assembled into whole events at
the chip bottom, along with the tag. Whole events (tagged) are placed in streams and sent to
the Aurora encoder for output.

4. The processed tag is erased from storage and is now available to be used again for another1240

trigger.

Trigger command

start readout

data out

TR TW TR/O

Figure 52: Timing of trigger to data readout.

Fig. 52 shows the timing from a trigger to the completion of data readout. The time to start
of read (TR) is a fixed delay from processing the trigger command. This is followed by a variable
delay before data for that trigger come out of the chip, TW , because the trigger must wait its turn
behind prior triggers. This is a simple queuing wait time. The event readout time TR/O, scales with1245

the hit occupancy (see Sec. 9.1).
The hit data flow can be understood as a three stage process. The core column readout, the

aggregation of data for each event from multiple core columns, and the Aurora encoding, serializa-
tion and output. Each stage pulls data from the previous stage when it needs it. Thus buffers are
generally not empty. When buffers are empty idles are inserted into the output stream.1250

Each core column works as a self-contained unit with a small amount of storage at the bottom
of the column. Its job is to pull data from the pixels to try to fill its bottom of column buffer (it
pauses when buffer is full), regardless of whatever else is going on in the chip. All core columns do
this in parallel and independently. Each core column has its own ordered list of triggered BCIDs
to read out. Even if at T=0 all these column lists are identical, that will not be the case for long, as1255

each column will work through its list at its own pace given by what hits it contains. The encoding

– 55 –

of hit maps and ToT is done in the column readout. Thus, the bottom of column buffers contain
encoded bits, not individual hits.

The event building proceeds one triggered and selected-for-readout BCID at a time. It pulls the
data for that BCID from the column buffers that contain any. Many columns may not contain any1260

hits for that BCID and are skipped. The event building BCID will always be the first one present
for columns that have hits, because columns and event building process triggers in the same order.
The column numbers for a given event do not have to come out in numerical order- it depends
on which column is ready first. A given column address could also appear more than once if it
contains many hits. The event tag, and stream markers are added by the event building stage. The1265

built event data are placed in a buffer to make them available to the Aurora encoder. More details
are given in Sec. 9.5.

The Aurora encoder pulls data from the event buffer, performs the Aurora formatting, idle
insertion, etc. The contents are serialized onto the output lanes. Data merging modifies how this
stage works. The following subsections give a more detailed description of the trigger processing1270

and book-keeping. Technical details of the bottom of chip data flow are given in Sec. 9.5.

9.1 Pixel Matrix Processing and Wait Time

The pixel matrix operates in steps of the 40 MHz beam crossing clock (BX). Within the matrix each
BX is triggered or not triggered based on the state of a trigger signal (high is triggered, low is not).
Thus a trigger is a one BX long pulse on this trigger signal. Trigger pulses are normally issued by1275

the command decoder in response to commands received. The trigger command path, from chip
input to internal trigger pulses, is shown Fig. 51. Note that the internal BX clock is generated by
the channel synchronizer based on the frame alignment of the input control stream (see Sec. 8.3).
An individual chip phase adjustment, in 1/(1.28 MHz) steps, is introduced by the clock and data
recovery circuit (CDR). Thus, each chip can be individually “timed in” to the bunch crossings.1280

Each of the 15 trigger commands of Table 7 generates a different pattern of pulses spanning
four BX’s. Trigger pulses can also be generated by the internal self trigger source (Sec. 9.4). The
command decoder arbitrates the trigger sources, with trigger commands always having priority.

In the matrix, each trigger pulse marks data as triggered and associates it with a trigger identi-
fier (ID), but does not initiate readout. The readout of data marked by a trigger ID is initiated later,1285

after most of TW in Fig. 52. In addition to queuing wait time, TW Contains fixed delays, including
the 3 BX token transit to retrieve data from the pixel matrix, another 3 BX for column hit data en-
coding, the Aurora encoding, etc. The sum of all these fixed delays defines the minimum possible
TW and is 31 BX. The readout time (TR/O) is given by the number of bits being sent out times the
output multi-lane bit rate, which can be up to 5.12 Gbps (4 lanes at 1.28 Gbps each). At a given1290

trigger rate, the average TR/O must be less than the mean trigger period (λ), and significantly less
to avoid long queuing wait time. The whole chip can be analyzed as a single server queue, which
means that the wait time plus readout time TW +TR/O will have a distribution like Eq. 9.1,

P(W > t) =
TR/O

λ
e−(λ−TR/O)t (9.1)

It is clear from Eq. 9.1 that as TR/O approaches λ the total wait time diverges. The condition
TR/O = λ roughly corresponds to 100% data link occupancy.1295

– 56 –

9.2 Tags

The term tag is overloaded with two meanings. In the command protocol tag refers to the 6-bit
code received with each trigger command (more correctly called tag base). The tag base can only
take on 54 values, which is the total number of DC-balanced symbols. Inside the chip and in the
output data tag refers to an 8-bit extended tag. The two additional bits indicate which of the four1300

BX’s spanned by a trigger command the data correspond to. For example, command Trigger_04 in
Table 7 with tag base value abcdef will result in one extended tag: abcdef01, while Trigger_05 will
result in two extended tags: abcdef01 and abcdef11 (along with two trigger pulses).

While there are only 54 tag bases, which can lead to at most 4×54 = 216 extended tags, the
extended tag space in the chip spans all 256 8-bit codes. The extra codes that cannot be generated1305

from one of the 54 tag bases are used to label self-triggered events or to signal detected error
conditions, as indicated in Table 11. In RD53C the main use of special tags is to label self-triggered
events. Since self-triggers are generated internally in the chip, they are not constrained to the 54 tag
bases, and so they are labeled with extended tags that could never result from a trigger command.

Tag values (decimal) Meaning
0-215 extended tags from trigger command

216-219 Single bit-flip detected in tag symbol of a trig. command
220-223 Unrecognized tag symbol
224-255 Self-trigger tag values

Table 11: Possible extended tag values and their meaning.

The number of tag bases available is large compared to the number of triggers expected to be1310

pending at any given time, giving the DAQ flexibility for selecting and managing the tag base value
sent with each trigger to make sure an extended tag value that is already in use is never requested.
Requesting an extended tag value already in use will result in the chip skipping the trigger (and
incrementing the skipped trigger error counter). The simplest approach the DAQ can take is to as-
sign a new tag base value (eg. by incrementing a counter) to each new trigger command, regardless1315

of the command. This is “wasteful” in the sense that two different single trigger commands could
share the same tag base without resulting in duplicate extended tags, and statistically most trigger
commands will be single trigger commands at 1 MHz trigger rate. However, since the number of
available tag bases is large, the DAQ can afford this luxury. This is because the worst case wait
time for a trigger to be fully read out is simulated to be about 25 µs [5] and the Poisson probability1320

of a random process with mean 25 (number of triggers in 25 µs at 1 MHz trigger rate) to fluctuate
up to 54 or more is negligible. Therefore, the DAQ tag base counter will never come around to the
same value while a given trigger is still waiting to be read out. If higher trigger rate is desired for
some applications, more complex tag base selection schemes can be used.

9.3 Trigger Table1325

RD53C keeps track of pending and in progress triggers using a main table holding all triggers
plus one dedicated table in each core column listing those triggers staged for readout, as shown in
Fig. 53. The main table has 256 rows and so can hold every possible extended tag at once. The row

– 57 –

number is used as a trigger ID to label triggered hits in the pixel matrix. At any give time, there is
a 1-to-1 correspondence between a trigger ID value and a trigger tag stored in the main table, but1330

tags are arbitrary and user selected while trigger IDs are sequential and assigned by the chip. The
trigger ID is internally Gray coded so that only one bit ever changes from one ID to the next in
the pixel matrix bus distribution bus. Each trigger table row contains (1) the extended tag received
with the trigger command, which is not used in the matrix, but simply stored in the main table so
that it can be returned with the event data, and (2) a state for this row.1335

New trigger Read to all cols

Main Trigger Table
Core column trigger tables

Clear this row

Tag to event building

In
te

rn
al

 t
rig

ge
r

ID

Figure 53: Conceptual diagram of trigger tables in RD53C. The row number is used as the trigger
ID in the pixel matrix. The tables are circular buffers filled and emptied as explained in the text.

The column tables also have 256 rows and can be regarded as extra columns added to the main
table, but their processing advances asynchronously. When a trigger arrives, it is assigned to the
next Empty row in the main table and the trigger ID (row number) is sent to the pixel matrix to
label the corresponding hits (see Sec. 7.4 for how the hits are time-stamped and selected in the
pixel matrix). The tag is saved and row state is changed to Triggered/Read in the main table. As1340

more triggers arrive others rows will change state to Triggered, but they will not affect this row.
The new row state is now propagated to all the column tables and changes from Empty to Read
in all core column tables at the same time. While all the column tables are filled in parallel this
way, they are emptied independently. Each core column has it’s own state machine and processing,
whose job is to change rows back to Empty as fast as possible, regardless of what other columns1345

are doing. Starting from the top down, the first non Empty row will be processed, by transitioning
first from To-Read to To-Clear and then from To-Clear to Empty. The state is changed as soon
as the readout or clear operations are performed on the all the hits labeled with the corresponding
trigger ID (row number). Because they dispatch their non-Empty states independently from one
another, each column can have a different number of rows in a given state, as illustrated in Fig. 53.1350

Independent processing of all columns in parallel is necessary, because each core column takes at
least 3 bunch crossing clock cycles to read between 1 and 8 hits (depending on hit pattern), whereas
the full chip output bandwidth can only be as high as 15 hits per single clock cycle (5.12 Gbps and
10 bits per hit case).

– 58 –

In the main table, the state of each row with a to-Read state will change back to Empty when1355

the event is fed to Aurora encoder. The stored tag value will be retrieved and returned in hit data
stream (Sec. 10.3). Only after this point can the same tag be reused by the DAQ. Exceptions
can happen, for example if a trigger arrives with a tag value that is already stored in the main table.
Special tag values are reserved to mark such exceptions as covered in Sec. 9.2. It could also happen
that row number is not arriving at the Aurora encoder for a very long time, preventing the row state1360

from returning to Empty and also preventing processing of subsequent rows. To protect against
this, a time-out has been implemented that keeps track of how long a row has been in the To-Read
state (this uses a BCID register and comparator for every row, not shown in the figure). The timeout
value is programmable (register TruncationTimeoutConf in Table 22). When the timeout is reached
before the row state becomes Empty, the state is changed to To-Clear in all columns that have not1365

yet processed the event and the state in the main table is changed to Empty.

9.4 Self Trigger Source

The self trigger functionality is a stand alone block that, if enabled, can store triggers to be pro-
cessed in the trigger table. The self trigger can operate in parallel to the normal single level trigger
operation from the Command Decoder, but command decoder always has priority over the self1370

trigger. The self trigger can not operate in two level trigger mode.
The block diagram of the self trigger processing pipeline is shown in Fig. 54. The mapping

of the registers found in the drawing to global configuration can be found in Table 12. In a core
column there are 4 HitOr lanes to which ORs the discriminator output of the pixels (Sec. 13.4).
There is a configuration bit (in the pixel register) for each pixel to activate the pixel for the HitOr.1375

At the end of the core column each HitOr lane can be enabled or disabled via the global register
HITOR_MASK_1/2/3/4.

There is one digital threshold block for each lane for each core column. The digital threshold
can be disabled via HitOrDigThrEn which will also bypass any synchronization of the HitOr signal
to the 40 MHz clock. Enabling the digital threshold will synchronize the HitOr signal to the 40MHz1380

bunch crossing clock and the required threshold length can be set from 1 clock cycle up to 14 clock
cycles. If a HitOr signal passes the threshold is will produce a single clock cycle pulse.

After each lane of the all core columns are ORed and fed into a large lookup table. Each entry
in the table describes a unique state of all possible HitOr lane combinations. As the HitOrs are laid
out in such a way that a coincidence on specific lanes corresponds to a multi pixel cluster hit in a1385

specific direction (depends on sensor geometry).
The Pattern LUT generates a single pulse, which can be delayed up to 511 clock cycles to

match it with the L0 latency. Multiple trigger pulses can enter this delay shift register. The single
pulse from the pattern LUT can be elongated (multiplied) to up to 31 bunch crossings The self
trigger tags are full 8-bit tags picked sequentially in the range given in Table 11, not constructed1390

from a tag base plus two bits. The self trigger tag counter is reset by the DataPathReset signal of
the Global Pulse.

9.5 Data Flow

The starting point of the data flow is hit data stored in pixel regions waiting to be read out. Such

– 59 –

Register Name Bits Field Name Description
SelfTriggerConfig_1 [3 : 0] HitOrDigThr If digital threshold enabled this is the length in clock

cycles the HitOr has to be active. Values 0 and 15 are
allowed, but will render the self trigger unusable.

[4] HitOrDigThrEn Enables digital threshold, if disabled analog (not syn-
chronized) signal

[5] SelfTriggerEn Enables (gates) output of self trigger block
SelfTriggerConfig_0 [4 : 0] SelfTriggerMultiplier A single trigger pulse can be elongated to cover up to

31 bunch crossings. Value 0 is valid but will render the
self0trigger unusable.

[14 : 5] SelfTriggerDelay Delay applied to the HitOr pulse, has to match the con-
figured Latency such that the resulting pulse triggers the
right bunch crossing. The Self trigger pipeline has in in-
ternal delay of around 12BC (depends on digital thresh-
old).

HitOrPatternLUT [15 : 0] Each bit represents a unique combination of the four Hi-
tOr, this enables to only trigger of coincidence of mul-
tiple (specific) HitOrs. Note that the LSB should never
be high, as it represents all HitOrs being low. 0xFFFE
represents an Or of all possible combination.

Table 12: Selection of inputs to global OR operation feeding the self trigger generation.

stored hit data are labeled with a trigger ID. That labeling was carried out when the trigger arrived1395

and all regions with hits from the BCID corresponding to that trigger were flagged (see Sec. 7).

Fig. 55 shows how data flows out of the regions and though the chip. Each core column has
its own list of pending triggers (as was shown in Fig. 53) and processes that list as fast as possible,
independent of all other columns. The processing pauses whenever the pending list is empty or the
End Of Column buffer (EOC) is full. The hit data are retrieved one 4-pixel region at-a-time using a1400

token that finds those region buffers matching the requested trigger. By default it takes 3 BX clocks
to retrieve and encode the data from one region, but this can be increased by configuration as may
be needed after logic slows down due to radiation damage. The data from 4 regions (16 pixels total)
are accumulated and passed through a pipelined encoder that generates (and optionally binary tree
encodes) the 16 bit hit map and discards empty ToT values. It also adds the row address, neighbor,1405

and last hit flags. These data are placed in one row of an input EOC buffer that is wide enough to
accept the maximum possible number of bits from one encoded 16-pixel region. Each row of this
buffer will necessarily contain many empty bits (the max number of bits occurs very rarely). These
data are then barrel shifted and packed to remove the empty bits into the output EOC buffer. The
aggregation of data from different core columns can now begin.1410

Every 8 core columns are combined into one Data Concentrator (DC). There are 7 Data Con-
centrators, but the last one contains fewer than 8 core columns because the number of core columns
is not a multiple of 8. Each DC runs in parallel, independently of the others. It aggregates data
as fast as possible, pausing when the input buffers are empty or the output buffers are full. It pro-
cesses one trigger at a time. As in the EOC, there are input and output FIFOs with a barrel shifter1415

in between, in order to combine data from multiple columns without empty space. Data for a given

– 60 –

H
itO

rP
a

tt
e

rn
L

u
t[

1
5

..
0

]

HitOrColEn

P
a

tt
e

rn
 S

e
le

ct
io

n

HitDigThrEn
HitDigThr[3..0]

FE
HitOrEn

FE
HitOrEn

FE
HitOrEn

FE
HitOrEn

… ro
w

s

…
cols

SelfTrigger
Delay[8..0]

Delay

SelfTrigger
Multiplier[4..0]

Multiplier

SelfTriggerEn

To
trigger
logic

C
o

re
 c

o
lu

m
n

Figure 54: Block diagram of the self trigger pipeline from pixel discriminator output (HitOr) to
connection to the trigger logic table.

event are pulled from one core column at a time until no more data from that event is present.
Occasionally it may happen that a column has so many hits from a given event that they do not all
fit into the EOC FIFOs. In this case the DC processing will visit that column more than once, and
data from that EOC will appear in two different places in the same event, correctly labeled with1420

its column number (see Sec. 10.4). Note that there is also a programmable truncation limit on the
column readout (see Sec. 9.3).

In the final stage, data from the eight Data Concentrators, one at time for a given event, are
pulled into the Chip Data Concentrator (CDC). This is where stream building takes place, as this
is the first time that all hits from a given event are collected in the same FIFO. The tag and any1425

other event-level information (Table 18) are added here. The total storage in the chip bottom
(everything shown in Fig. 55) is 204 Kbits. As the number of bits used per hit pixel in detector
readout simulations ranges between 9 and 15 (depending on occupancy and cluster distributions),
that means the bottom of chip memory can hold between 14K and 20K hits. In contrast, the pixel
matrix has storage for 8 hits per pixel, or 1.2M hits, so almost 100 times more (while the silicon1430

area of the pixel matrix is only 10 times greater than the periphery).

– 61 –

Scan
token

encoder

Read
token

encoder

Read
token

encoder

Read
token

encoder

Read
token

EOC-in:
(104+17)b x 16

EOC buffers

 EOC-out:
 (128+8)b x 8

16b/(N clks)

<= 104b/clk

out: 249b x 8

<=136 b/clk

Scan
token

(240+17)b x 64

256b/clk

...

Read
token

Read
token

Read
token

Read
token

...

64b words to AURORA. Rate depends on number of lanes

(*)

(*)
If all hits from one event don’t fit in EOC buffer,
this column will appear twice in the stream.

Blue event being retrieved from columns.
Green event retrieval will begin when no
blue hits are left in column buffers.

...

...
... ...

Barrel shifterBarrel shifter

in: 145b x 8

(#)(#)

(#)(#)
There are 7 of
these in the chip.
Each serves 8
core columns
(7th serves fewer)

encoder encoder encoder encoder

Stream builder

258b x 32

40MHz clock domain

AURORA clock domain

Evt padding

DC buffers

CDC buffers

Hit-map
created
here

Core-col
address
added

Tag added
here

Figure 55: Schematic diagram of the data flow from the core columns to the Aurora output.

– 62 –

10. Data Output

The RD53C data output consists of tagged events, which enables the readout to automatically
recover from transmission errors without any action from the DAQ. While tagged data would permit
event building to be performed off chip if desired, RD53C builds events on-chip, such that a full1435

event is output before sending any data for the next event. The characteristics of the physical data
output ports are described in Sec. 10.1. The transmission protocol used is a subset of the Aurora
64b66b protocol [3], as detailed in Sec. 10.2. This provides industry standard frame alignment, DC
balance and multi-lane serial transmission suitable for high speed data, but does not define the data
content. The Aurora protocol can be thought of as a “wrapper” placed around the RD53C data.1440

Before the Aurora wrapper, the hit data are packaged in streams, not fixed frames. A stream is a
self-contained, variable length data container beginning with a tag (8 bits) and followed by a mix of
hit data and possibly other tags (called internal tags, which are 11 bits). Streams and their contents
are described in Sec. 10.3 to 10.9. This variable length format is approximately 25% more efficient
(fewer bits per hit) than the fixed frame format previously used in RD53A.1445

There are two encoding modes: single chip and multi-chip. Multi-chip encoding must be used
when performing data aggregation. The encoding description in Sec. 10.4 is given for single chip
mode, and the effect of multi-chip mode is described in Sec. 10.7. The use of multi-chip mode for
data aggregation is described in Sec. 11.

The output is highly configurable and must be correctly set up to perform as required. The1450

basic configuration for single chip operation was described in Sec. 3. Control of event size and
data filtering options are covered in Sec. 10.8. Use of pre-emphasis for operation with lossy cables
is included in Sec. 10.1. Use of test modes, for example for bit error rate studies, is covered in
Sec.13. Technical details of clock and data recovery and serialization are given in Sec.14.

10.1 Data Output Drivers1455

RD53B contains four current mode logic (CML) differential output drivers (Fig. 56) with pro-
grammable pre-emphasis. Between 1 and 4 of these drivers will actually be used depending on the
Aurora configuration (Sec. 10.2). Each driver is fed by a dedicated serializer circuit that produces
the high speed bitstream. The default bitrate is 1.28 Gbps, but it can be reduced in factors of two
down to 160 Mbps (and will be the same for all drivers). Serializer details are given in Sec. ??.1460

TXDATA_N
TXDATA_P

CML output configuration
• EN
• TAP0_BIAS[9:0]
• TAP1_BIAS[9:0]
• TAP2_BIAS[9:0]

0

SER_DATA

SER_CLK
0

INV_TAP1 EN_TAP1 INV_TAP2 EN_TAP2

 Tap configuration

ITAP0

50

50

pre-
driver

ITAP1
ITAP2

TAP1

Output stage

TAP0

TAP2

EN

TAP configuration
• INV_TAP[2:1]
• EN_TAP[2:1]

TAP0
TAP1

TAP2

Figure 56: Detailed CML driver functional block diagram including TAP circuit

– 63 –

These differential drivers use back-termination with a 50 Ω pull-up resistor to VDD_CML
on each wire to minimize back-reflections and thus improve the signal integrity with non-ideal
transmission lines. Each driver can provide pre-emphasis via three current mode switches in par-
allel (so-called TAPs), which can be programmed to compensate for the high frequency damping
of lossy transmission lines using the En. TAP 2,1 and Inv. TAP 2,1 fields of configuration reg-1465

ister CML_CONFIG (Table 22). The maximum current for each TAP is approximately 14 mA
and the LSB is approximately 14 µA. The TAP configuration (Fig. 56, left) controls the type of
pre-emphasis to be used:

• Single TAP: no pre-emphasis
• 2-TAP: programmable overshoot during transitions1470

• 3-TAP pre-main-post: programmable under-shoot followed by a programmable overshoot
during transitions
• 3-TAP main-post1-post2: two levels of overshoot after the transition

The duration of the over/undershoot pulse is fixed by the SER_CLK period, while the amplitude of
the output levels can be programmed via the three configuration registers: DAC_CML_BIAS_0 to1475

DAC_CML_BIAS_2. Table 13 shows the configuration settings for the pre-emphasis modes with
recommended bias settings. Note that the inversion of TAP 1 is propagated to TAP 2 (Fig. 56).

Pre-emphasis Inv. TAP[2:1] En. TAP[2:1] TAP 0 Bias TAP 1 Bias TAP 2 Bias
off xx 0 700 0 0
2-TAP (main-post) x1 1 500 200 0
3-TAP (main-post1-post2) 1 11 500 100 100
3-TAP (pre-main-post) 11 11 100 400 200

Table 13: Configuration settings for the pre-emphasis modes with recommended bias settings.
Bias values are register settings (decimal).

Ver 0.3

+A0+A1

+A0‐A1

‐A0+A1

‐A0‐A1

‐A0+A1+A2

‐A0+A1‐A2

+A0‐A1+A2

+A0‐A1‐A2

+A0+A1‐A2

‐A0‐A1+A2

0 0 1 1 0 0 0 1 0

+A0+A1+A2

‐A0‐A1‐A2

0 0 1 1 0 0 0 1 01 11 1

2‐TAP pre‐emphasis (main-post) 3‐TAP pre‐emphasis (pre-main-post)

Figure 57: Output waveform with active pre-emphasis in 2-TAP (left) and 3-TAP pre-main-post
mode (right). The amplitudes A0, A1, and A2 are controlled by the bias settings of Table 13.

The effect of the pre-emphasis is shown in Fig. 57. In 2-TAP mode, a programmable overshoot
is added to every transition to compensate for the high frequency attenuation of the transmission
line. The pre-main-post 3-TAP mode adds an additional undershoot in front of each transition1480

which would compensate a higher order low-pass filter transfer function. Tests have shown that 2-
TAP pre-emphasis mode gives the best results with the ATLAS prototype cables (6 m long custom
twinax cables). Using the bias settings given in the table the 2-TAP pre-emphasis achieves a boost

– 64 –

of 10 dB at 640 MHz (1.28 Gbps). Note that the maximum output amplitude is not limited by
the pre-emphasis mode but limited to 700 mV full swing by the saturation voltage of the NMOS1485

current sinks. Thus, the same maximum amplitude is reached with the bias settings shown with
pre-emphasis off, as with 2-TAP mode.

10.2 Aurora and RD53C Data

N data blocks N data blocks N data blocks
1 service block 1 service block

10b address 16b valueK-Word

0-511 are global registers
512-895 are offset pixel row numbers

63b of stream data

2b ID

OR

... ...

OR

10

 ID

01

2b stat. 10b address 16b value

ES

61b of stream data01 ES

AURORA code0x7810 48b unused

Figure 58: Schematic diagram of output data highest level format, consisting of N data or idle
blocks followed by one RD53 service block. Each block consists of an Aurora 2-bit header that
can only be 01 or 10, plus 64 scrambled bits. The diagram shows the content of the 64 bits before
scrambling. The gray shaded 8-bit fields with values given in hex have a meaning defined in the
Aurora protocol. The possible Aurora K-Block values are given in Table 14. ES stands for End
Stream bit and ID for the two least significant bits of the chip ID.

Aurora K-Word code (hex) Meaning
0xB4 both register fields are of type AutoRead
0x55 first frame is AutoRead, second is from a read register command
0x99 first is from a read register command, second frame is AutoRead
0xD2 both register fields are from read register commands
0xCC Indicates an error. Fields are meaningless

Table 14: Meaning of Aurora K-Word code (zz) in the periodic service blocks. This table is a
companion to Fig. 58

At the highest level, the RD53C output is encoded with a subset of the Aurora 64b66b proto-
col [3] (see App. A). RD53C implements a simplex channel configuration over 1 to 4 lanes using1490

the Strict Alignment feature of the protocol. Pixel hit data are sent in one single infinite length Au-

– 65 –

rora Data Frame (binary 01 header), while service data (such as configuration register readback)
are sent using Aurora User K-Blocks (binary 10 header).

GTX Out DataMergingMux bits Value (dec) Internal lane selected
GTX0 [1:0] 0 0
GTX1 [3:2] 1 1
GTX2 [5:4] 2 2
GTX3 [7:6] 3 3

Table 15: Output switch matrix configuration using register DataMergingMux of Table 22. The
right side table indicates which GTX output is connected to the internal Aurora lane based on the
programmed 2-bit value.

The ability to configure 1 to 4 output lanes can accommodate different wiring configurations
in actual chip usage. It is possible to route any of these four lanes to any of the available output1495

GTX channels of Sec. 10.1. This routing is done configuring the output switch matrix according to
table 15. The default value is to route lane 0 to GTX0, lane 1 to GTX1, lane 2 to GTX2 and lane 3
to GTX3.

Aurora blocks consist of 66-bits (Fig. 58). Each block has a 2-bit sync header (01=Aurora
Data type, 10=Aurora K-Block or K-Words), followed by 64 scrambled bits. Because the header is1500

not scrambled, it permits frame alignment of the received data. Frame alignment identifies where
each 66 bit block starts.

RD53C takes advantage of the differentiation provided by Aurora between Data and K-Blocks
to implement two independent output “channels”, hit data and service data, as depicted in Fig. 58.
These two channels are effectively time-multiplexed onto the serial output. The Aurora encoded1505

output basic unit (which repeats forever) consists of ND Data or Idle blocks plus one service User
K-Block, where ND is programmable (range 1-256) and has default value 50 (ServiceDataConf
register in Table 22). A fraction 1/(ND+1) of the output bandwidth is thus permanently reserved
for service information and unavailable for hit data. Conversely, ND/(ND+1) is reserved for hit data
and cannot be used for service information. If there are no hit data this fraction of the bandwidth1510

will have Aurora idle blocks.
Service blocks will not be sent except in their allocated turn every N data or idle blocks. The

interval N is used on every lane regardless of how many lanes are active. For example, with the
default ND=50, 2% of the output bandwidth is permanently unavailable for hit data (in addition
to the 3% consumed by the 2-bit 64b/66b header). At 4×1.28 Gbps output bandwidth this 2% is1515

sufficient for the maximum possible register readback of 64 Mbps, since 2% of 5 Gbps = 100 Mbps
(See Sec. 8.8). In the service blocks, an 8-bit code follows the sync header, as specified by the
64b/66b protocol, leaving 56 bits available for user information These 56 bits are allocated as a
2-bit chip ID plus two 26 bit registers (10-bit extended address plus 16-bit value = 26 bits) plus 2
status bits, specified in Table 16.1520

ID[2 bits] 2x([e-address (10 bits)] [value (16 bits)]) [status (2 bits)]

Because of the chip ID, the service block is always compatible with multi-chip mode. The 10-
bit extended addresses (e-address) in the service block are: MSB=0, followed by the 9-bit global

– 66 –

register address, or MSB=1, followed by the 9-bit pixel row address in case of reading global
register 0 (the pixel configuration portal register). The separation of the output into two time-
multiplexed channels guarantees a certain bandwidth for both data and register information without1525

the need for a complex priority arbitration containing safeguards against all possible pathologies.
The periodic service block coming out every ND data frames is filled automatically, even with-

out there having been a read register command. The possible Aurora K-Words in Fig. 58 are given
in Table 14. The two 16-bit registers are denoted Ai and Bi, where i is the lane number (0 to 3). The
automatic filling of the Ai and Bi registers is controlled by eight configuration registers Auto-Ai1530

and Auto-Bi, which have default values, but which the user is free to change. The auto-fill register
addresses are specific to each lane. Thus if only lane 0 is used then only Auto-A0 and Auto-B0
are functional. RdReg commands will queue the registers specified by the command for output on
lane 0 only, with priority over auto fill. Lanes 1 to 3 are unaffected by the RdReg command and
only output their assigned auto-fill registers. If only one RdReg command has been received, then1535

the A0 register will be auto-filled while the B0 register will contain the requested register. If more
than one was received then both registers will be requested registers and auto-fill will wait. If read
register commands are sent too fast for the reserved output bandwidth, the FIFO holding pending
read registers may fill up, and any read register commands received while the FIFO is full will be
ignored. All service block FIFOs have a depth of 16. The readout of registers staged in the FIFO1540

may also happen out of order.

Status Code (decimal) Meaning
0 Ready
1 There has been an error since the last register frame
2 There has been a warning since the last register frame
3 Both 1 and 2

Table 16: Meaning of 2-bit status code

10.3 Aurora and streams

The Aurora protocol transmits data in fixed length blocks with 64 scrambled bits preceded by a
2-bit header. The RD53C encoding does not use fixed length words, but variable length “streams”.
To fit such variable length streams into fixed length blocks, the first of the 64 bits in an Aurora1545

block, before scrambling, is used as an “End Stream bit” (ES), leaving only 63 bits for actual data.
If ES=1, this indicates that the final 63 bits of a stream follow, and the next Aurora block will be
the beginning of a new stream. If ES=0, this indicates that the stream continues in the next Aurora
block (ie the stream has more than 63 bits to go).

Fig. 59 shows a continuous bit stream as would be seen after Aurora decoding. The position of1550

the ES bits in this bitstream are known (red and blue), thanks to Aurora having taken care of frame
alignment. The figure also shows three RD53C streams, which are self-contained, variable length
data packets. The last Aurora block of each stream is flagged by ES=1 (red), while ES=0 (blue)
only appears in streams that span more than one Aurora block (ie are more than 63 bits long). Note
the second stream fits in only one block.1555

– 67 –

Figure 59: Continuous bitstream after Aurora decoding (top) showing the ES bit positions (which
correspond to Aurora block boundaries). ES=1 bits are shown in red, ES=0 in blue, and orphan
bits are shown hatched. The three contained streams are shown below, each with its ES=1 bit and
orphan bits.

Streams only contain hit and exception data. Configuration readback and monitoring data are
not included in streams, but are sent in the periodically inserted Aurora service blocks.

A Stream contains NE events, where NE is programmable from 1 to 64. For short or empty
events (as will occur in outer layers), single event streams will be inefficient, because the so-called
orphan bits at the end of a stream (hatched in Fig. 59) are wasted. For long events (as in the inner1560

layer) single event streams only waste a few percent of bandwidth on orphan bits. The default
setting is NE = 16 (in register DataConcentratorConf). Note that single event streams are obtained
by programming NE = 0. Even when NE is programmed >0 single event streams will still occur if
the trigger rate is low, as a stream must end when there is no more data to be sent, regardless of NE .

A new stream always begins with a tag (8 bits) and is followed by a mix hit data and if1565

NE > 0, other tags (called internal tags, which are 11 bits). A tag is always output for every trigger
received, even if the event is empty. The possible tag values are given in Table 11. The hit data are
compressed and zero-suppressed, and therefore, variable length (number of bits per hit varies).

In addition to the ES bit, the end of a stream can be recognized by a six or more consecutive
zeros, which can be neither a valid ccol address nor a valid internal tag (see Sec. 10.4). Orphan bits1570

are always padded with zero. An End of Stream marker function (EoS) forces there to be at least
six zeros by adding an entire 64-bit block of all zeros in case a stream happens to end fewer than
six bits from the 64-bit boundary. The EoS Marker function can be disabled by zeroing the “EoS
marker” configuration bit of register DataConcentratorConf (Table 22).

10.4 Hit data encoding1575

Within a stream, hit data encoding uses a hierarchical address of core-column (ccol), quarter-core
row (qrow) within that column, and 2 pixel x 8 pixel quarter-core hit map, compressed or not
as explained later (hit map compression can be disabled in CoreColEncoderConf configuration
register). Following the quarter-core hit map are the ToT values for all hit pixels in the quarter-core
(which can suppressed by setting bit “Drop ToT” of CoreColEncoderConf register in Table 22.1580

Suppressing ToT will reduce data volume by about 30% at small radius). The order of the ToT
values is top row first, from left to right, and bottom row second, from left to right (note that the row
number increases from top down). The qrow address field begins with two flag bits called islast and
isneighbor. The islast bit is set if this is the last qrow address in the ccol and zero otherwise, while
the isneighbor bit is set if the previous address was qrow-1 and zero otherwise. When isneighbor1585

is set, the qrow address is omitted, as it is known to be the previous address+1. (This is a form of

– 68 –

Huffman coding: since the most frequently occurring qrow address is the previous address+1, due
to the clustered nature of hits, a single bit is used to encode this address, while for all other cases a
0 followed by the full qrow address is used.)

Fig. 60 shows the bit content of various hypothetical short streams, without showing Aurora1590

block boundaries. Each of these streams could span one or more Aurora blocks and the ES bits
are not shown. These examples illustrate the encoding hierarchy, where the different fields appear
depending on the data content, and the functioning of the islast and isneighbor bits. Placing all
ToT’s in one block after the quarter-core map makes it simpler to drop ToT, should that be needed,
but the default encoding contains the 4-bit ToT values.1595

Figure 60: Examples of encoded stream data with no Aurora block boundaries shown and cor-
responding ES bits suppressed: (a) one hit quarter-core each in two ccols (note last hit bit is set
for both), (b) two separated quarter-cores hit in same ccol (last hit set only for second), (c) two
neighbor quarter-cores hit in same ccol, (d) one hit quarter-core each in two different events, (e)
an empty event followed by an event with one hit quarter-core, followed by another event. A color
key to the field types is shown at the bottom. The number of bits in each field is shown in square
brackets.

The ccol address is not compressed. The allowed range is 1-55. The value 0 is reserved for the
end of stream marker mentioned earlier. Since all valid ccol values are < 56 (binary 111000), an
address 111xxx is interpreted as the first bits of an internal tag instead of a ccol. The full internal
tag is thus 111xxx xxxxx (see Fig.60d,e). The qrow address begins with the two flag bits islast and
isneighbor as explained before. There is only compression in the case of isneighbor=1, which is1600

significant, as this condition is common for clustered hits.

Typically all the data for one ccol will appear together, followed by all the data for another
ccol, and so on. But this is not a rule of the encoding. Occasionally, depending on the number
of hits and the timing of their extraction from a core column, it may happen that only some of
the data for ccoli appears and is followed by ccol j, after which more data for ccoli appears. This1605

is perfectly valid and has important implication for the DAQ. The DAQ must store separately for
every ccol the latest qrow value processed (latest qrow must be an array indexed by ccol, not a
single variable). This way the DAQ will know where to continue when a ccol value appears more
than once. Normally isneighbor will be zero for the first qrow address of a ccol, but when that ccol
appears a second time in an event readout, it is possible for isneighbor of the first qrow to be 1,1610

since the qrow addresses are simply continuing from the first installment of that ccol’s readout.

– 69 –

10.5 Stream construction and efficiency

The stream builder (Fig. 55) must decide when to end a stream and start a new one. The builder
does not know in advance when a stream will end; the data will determine that. A stream will end
when (1) NE events have been added, or (2) there is no more data to be sent.1615

For both of the conditions that end a stream, there will typically be a remainder of orphan bits
between the end of the stream and end of the last Aurora block. These bits could in principle be
used for something, but in RD53C they are padded with zeros. The DAQ should ignore orphan
bits. For easy identification of orphan fragments the core column addresses start at 1 instead of 0.
Thus, 000000 effectively marks the end of a stream, whether the end of stream marker is enabled1620

or not. If the end of stream marker is disabled the number of orphan bits can be fewer than 6, even
none, while if end of stream is enabled there will always be 6 or more orphan bits. For example if
a stream would have 4 orphan bits (0000) with end of stream marker disabled, a new block would
be added, increasing the number of orphan + end of stream marker bits to 67. Fig. 61 shows the bit
content of a hypothetical stream extending across two Aurora blocks.1625

Figure 61: Encoded output for one hit quarter-core in one core column, and two adjacent hit
quarter-cores in another core column, spanning two Aurora blocks. The end stream bit (red) is
zero for the first Aurora block (top) and one for the second, indicating that the stream ends within
the second Aurora block. Orphan bits set to zero (dark red) at the end of the stream in the second
Aurora block.

The fraction of bandwidth wasted on orphan bits (inefficiency) can be easily estimated from the
stream length. Taking the stream length as an approximately random variable, the average number
of orphan (+ end of stream) bits per stream is 31 (37) if end of stream marker is off (on). This, in
order to achieve a small fraction of wasted bandwidth, for example <2%, the average stream length
must be >1550 (>1850) bits. So one should program NE = 1550/WE , where WE is the number of1630

bits per event.

10.6 Hit map construction

A 16-bit hit map of the quarter core indicates which of the 16 ToT values are not 1111. The ToT
1111 means “no hit”. If the pixel ToT value was 1111, then the corresponding bit in the hit map is
zero and otherwise it is one. The default action is to compress the quarter-core 16-bit hit map to use1635

fewer than 16 bits on average. This compression can be turned off in CoreColEncoderConf config-
uration register (Sec. 16.2). if compression is off, then the hit map will always be exactly 16 bits.
In order to compress the hit map, it is (A) encoded using a binary tree and (B) the resulting code
is then reduced with a bit code substitution. This section explains the encoding in an algorithmic
way that is easy to understand, but does not reflect how it implemented in the chip.1640

– 70 –

(A) Binary tree construction This is done recursively in 3 steps (for the 16 pixel quarter-core)
as follows

1. divide the quarter-core in top and bottom rows and label each row with 1 if it contains any
hits and 0 if it does not. The top row is the first bit and bottom row is the second bit.

2. Divide each row of 8 pixels into a left half (first bit) and right half (second bit). The bit is 11645

if any of the 4 pixels are hit and 0 if not.
3. Divide each half-row of 4 pixels into a left pixel pair (first bit) and right pixel pair (second

bit). The bit is 1 if the pixel pair has a hit and 0 if not.

Figure 62: Depiction of binary trees for two example quarter-core maps. The bottom tier of the
trees consists of 2-pixel hit maps.

After these 3 steps one has identified all pixel pairs with at least one hit. The 2-bit map for
each hit pixel pair is saved (this a 4th step in the chip implementation). The results of the encoding1650

are: 2 bits for step 1, from 2 to 4 bits for step 2, from 2 to 8 bits for step 3, plus the 2-bit maps of all
the hit pairs. A quarter-core hit map with a single hit will have an 8-bit binary tree representation.
A quarter-core with exactly 2 hits will have a binary tree with between 8 and 14 bits, etc. The
maximum number of bits a compressed hitmap with up to 16 hit pixels can use is 30 (2 + 2×2 +
4×2 + 8 2-bit maps). These numbers will all be potentially further reduced by action B.1655

One necessary ingredient for constructing a tree is a definition of the core subdivisions at each
step, as specified in the steps 1-3 above (top-bottom for step 1 and left-right for steps 2 and 3).
The trees for two example hit maps are depicted in Fig. 62. Additionally, one must specify in what
order the values from Fig. 62 are to be listed. In RD53B the values are listed as follows: The step 1
result (top line Fig. 62) is listed first. This is followed by one step 2 result (the left one if there are1660

two). Then all the step 3 results for this step 2 are listed (can be one or two), followed by all the
2-bit maps associated with those step 3’s (can be one to four). A tree will therefore always begin
like that: step 1, step 2, step 3. What follows can be another step 3 if there is one, and then the
2-bit maps. If there is another step 2 it will come after the last map for the first step 2. This is
summarized as:1665

s1, s2, s3, [s3], map, [3x[map]], [s2, s3, [s3], map, [3x[map]]]

The right side of Fig. 62 only contains the minimal number of elements:

s1, s2, s3, map

01 01 01 10

– 71 –

while the left side contains additional branches:1670

s1, s2, s3, map, s2, s3, s3, map, map

11 10 01 11 11 01 10 01 10

(B) Bit code replacement. It should be clear from Fig. 62that the bit code 00 never appears, since
only maps with at least one hit are being encoded. As there are only three used 2-bit codes, one
of them can be replaced with a 1-bit code. The substitution 01→ 0 is made everywhere. This is a1675

minimal case of Huffman coding. The encoded maps for Fig. 62 thus become:

• 11 10 01 11 11 01 10 01 10→ 11 10 0 11 11 0 10 0 10 (15 bits instead of 18)

• 01 01 01 10→ 0 0 0 10 (5 bits instead of 8)

Note that the choice 01→ 0 instead of 10→ 0 is arbitrary and makes no difference in the data
volume for the given choice of subdivisions, as they are symmetric.1680

The binary tree encoding is elegant because it has an algorithmic form (as described above).
However, in the chip it was implemented with an 8-bit lookup table where each binary value is
mapped to its encoded value. Had this implementation choice been known in advance, a Huffman
encoding could have been used and would have resulted in slightly higher efficiency.

10.7 Multi-chip encoding1685

Figure 63: Example of encoded and merged data outputs from two chips with ID LSBs 10 and
11. Six Aurora blocks are shown (a-f), four belonging to chip 01 and two to chip 11 (blocks b and
e). The ES bits are not shown, but stream boundaries are shown instead: the start of streams is
indicated with the ’»’ symbol and the end with a dot. Chip 10 has two streams containing 3 events.
Event 1 starts in (a) and end in (d). It has two hit Ccols with one hit Qrow in the first and two
in the second. Event 2 shares the same stream with event 1. It starts and ends in (d) with only
only hit qrow and qcol and is followed by orphan bits. Event 3 starts and ends in (f) in its own
one-block stream. Chip 11 has one event with three hit Qrows in the first hit Ccol, the second Qrow
being a neighbor of the first. There may also have been Aurora idles or non-data words (such as
register readback), which would have been removed or split off by the decoder and are not part of
the streams.

– 72 –

Data merging combines data from multiple chips onto a single Aurora output. In this mode
each chip still produces streams, but the merged data contains Aurora data blocks from multiple
chips. Each 66-bit Aurora block still contains data from only one chip, but blocks from different
chips are interleaved. To reconstruct the streams from a given chip, the DAQ must be able to
determine which Aurora block belongs to which chip. This is possible thanks two chip ID bits1690

immediately after the ES bit at the start of every Aurora 64 bit block (before scrambling). The
presence of these chip ID bits is enabled by default and can be disabled by zeroing bit “Ch. ID”
of the DataMerging configuration register in Table 22. Thus, instead of 1/64 overhead from the ES
bit, one has 3/64 overhead (ES bit plus 2 ID bits). These two ID bits are the least significant bits of
the wire bonded chip ID. All other aspects of the stream encoding remain the same. Fig. 63 shows1695

the bit content of a hypothetical merged data output containing two streams, one from chip ID=10
and another from chip ID=11, extending across multiple Aurora blocks.

Because the stream protocol respects Aurora blocks, the decoder just needs to combine all
blocks with the same ID in order to reconstruct the streams from that chip. Multi-chip encoding
is the default setting, as the presence of ID bits upon power up will be a nice diagnostic tool even1700

when not using data merging. For maximum data transmission efficiency, single-chip encoding
would be selected upon configuring the chip.

10.8 Event size limit and data filtering

Unphysically large events due to exception conditions can cause readout problems and it may
be desirable to suppress them. Two levels of truncation are available, applied prior to Aurora1705

encoding, such that unwanted data are discarded as early as possible. The first is at the core-
column level, where a maximum number of hits (in multiples of 4) allowed for any single core
column can be programmed in the MaxHits[3:0] field of the CoreColEncoderConf configuration
register (Table 22).

This feature can be enabled independently for each core column with the EnHitsRemoval_i1710

registers. When enabled, hits in excess of MaxHits will be discarded prior to encoding and the
unphysical qrow number 207 will be added with the islast bit set, to tell the DAQ that column
truncation has taken place. A hitmap and a single ToT value will be included in qrow number 207
to comply with the encoding format even though they are meaningless. The added compressed
hitmap will be binary 0000 and ToT also 0000. This protects against global occupancy extremes,1715

but not against uniform high (but not extreme) occupancy everywhere.
The second truncation mechanism is a readout timeout for each event. If the time elapsed since

the readout of an event started reaches a programmed threshold, any further data in that event will
be cleared and the event readout will be ended. When this happens, the unphysical qrow number
207 will be added with the islast bit set, to signal to the DAQ that timeout truncation has taken1720

place.
In addition to truncating events too large to be meaningful, it can be desirable to filter out

hits known to be backgrounds. A configurable filter is implemented using isolation and/or ToT.
However, this feature has a known bug and should not be used. For a description of this function
refer to the RD53B manual. The feature is disabled by default.1725

The order of hit truncation and filtering is as follows. First column hit truncation is performed
(if the option is enabled). Then Isolated Hit Removal would be applied on the remaining hits

– 73 –

if enabled (but is should not be enabled), All Hits that survive the filtering process will then be
encoded. Hit Removal, based on global timeout, is instead performed while building an event, so
after those steps are performed.1730

Figure 64: Bump pattern for one core bump bonded to a 25x100 pixel sensor. Column numbers
are shown along the bottom. The red (blue) square bump pads are connected to the pink (light
blue) pixels. Two pixels/bump pads are highlighted in lime/yellow and the 16 pixels identified by
the 16-bit neighbor mask for each are numbered. The up,down,left,right neighbors (hatched) of the
upper yellow pixel are selected by setting mask bits 6, 8, and 13; while for the lower yellow pixel
by setting 2, 7, and 9. The companion pixel in the same column pair (not numbered) is always set
as a neighbor regardless of the mask.

10.9 Precision ToT data

A Precision ToT (PToT) block (Sec. 13.7) is present in every core column and generates four times
16 bits of data, one for each HitOr bus in the core column. These data are stored and triggered
the same way as normal hit data, except that the timing can vary: because the HitOr can have a
relatively long delay, PToT data can be recorded in the different bunch crossing than the regular1735

hits. The 16 PToT bits consist of 5 Time of Arrival (ToA) bits and 11 ToT bits, as explained in
Sec. 13.7.

For the purposes of readout, the 16 bits are considered as a set of four 4-bit fragments. Thus
there are sixteen 4-bit fragments. In this way the data can be encoded for readout exactly the same
way as a pixel quarter core containing 16 pixels, each with its 4-bit ToT. After encoding there will1740

be a hit map (compressed or not), which is not actually mapping hits but simply indicating which
of the 4-bit fragments are not 1111 (since 1111 is the ToT code for no-hit), followed by all the
non-1111 4-bit fragments. For example, if the 16-4-bit fragments (expressed in Hex) were 0 0 0 0
5 C F 3 0 0 2 F 0 1 9 2, this will result in the hit map (in binary) 1111 1101 1110 1111 followed by
the 4-bit codes (in Hex) 0 0 0 0 5 C 3 0 0 2 0 1 9 2. Only the two F’s are missing, and two 0’s in the1745

hit map indicate where they belonged. For any given event, some of the four HitOrs may not have
fired at all, which is the same as a quarter core without any hits and entirely suppressed from the

– 74 –

readout. Within each 16-bit fragment corresponding to one HitOr bus, the bit assignment is shown
in Table 17.

Bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Decoding PToT [3:0] PToT [7:4] PToA [0:0] PToT [10:8] PToA [4:1]

Table 17: Bit assignments for the 11-bit precision ToT and 5-bit precision ToA data within the
16-bit fragment corresponding to one HitOr bus.

The ToA and ToT functions are independently enabled with the PToA and PToT bits of the1750

ToTConfig configuration register (Table 22). The 9-Bit field “PToT Latency” of ToTConfig defines
a dedicated trigger latency for the PToT block, analogous to the Latency value in TriggerConfig
register for regular pixel readout. Additionally, each core column has a dedicated enable bit for its
PToT block in registers PrecisionToTEnable_0 to _3. Setting the column-specific PToT enable bit
to zero will completely disable the module for that core column, regardless of the PToA/T enable1755

bit values. Moreover, ToT information is dropped from the data output format (Drop ToT bit in
Table 18), the PToT data will be also suppressed regardless of the above enable bits. Therefore, it
is not possible to combine binary readout with precision ToT.

10.10 Format Options

Option Register Default Description Section
En. Chip ID 68 on Include Chip ID[1:0] after ES bit 10.7
EoS marker 74 on 000000 w/enable bit 10.5
En. BCID 74 off Insert BCID[10:0] after Chip ID.
En. Trig ID 74 off Insert trigger ID[7:0] after Chip ID.
Raw map 75 off Don’t compress hit maps. Map is always 16 bits 10.4
Drop ToT 75 off No ToT values- hit/no hit information only 10.4

Table 18: Optional elements that can be enabled/disabled and affect stream efficiency. The Reg-
ister column lists the global register number of Table 22 where the relevant enable bit resides.

The stream format described in so far and exemplified in Fig. 60 is designed for maximum1760

lossless efficiency in bandwidth utilization. More information can be added for debugging or for
other functionality when such high efficiency is not needed, or conversely when lower bandwidth
utilization must be obtained. Table 18 collects the available options. They can be used in any
combination.

– 75 –

11. Multi-Chip Data Aggregation1765

The RD53C has four differential receivers (Sec. 11.1) that allow one chip (called primary) to aggre-
gate serial data from one or more other chips (called secondaries) and merge it with its own output.
The receivers are compatible with the differential data outputs (Sec. 10.1) of other chips. Fig. 65
shows the block-level schematic of the data merging path. The data receivers are designed to work
at 320 Mbps, and so the secondary chip outputs must be configured to operate at 320 Mbps, instead1770

of 1.28 Gbps. On the other hand, the primary chip output must be configured high enough to carry
all inputs plus its own data. So either 640 Mbps for a single secondary input or 1.28 Gbps for mul-
tiple inputs. On an experimental basis the data inputs can be configured to operate at 640 Mbps, in
which case the primary chip output must be configured for 1.28 Gbps for a single secondary input
or two lanes at 1.28 Gbps each for multiple inputs.1775

Figure 65: Block level schematic of the data merging path.

11.1 Data Receivers

11.2 Setup and Operation

Lane DataMergingMux bits Value (dec) Input selected
0 [9:8] 0 DATA_IN0
1 [11:10] 1 DATA_IN1
2 [13:12] 2 DATA_IN2
3 [15:14] 3 DATA_IN3

Table 19: Input switch matrix configuration using register DataMergingMux of Table 22. The
right side table indicates which input is connected to the lane based on the programmed 2-bit
value.

The first block in the data path shown in Fig. 65 is the input selection matrix. With this switch
matrix it is possible to select which external serial input is connected to which internal serial lane.
This provides flexibility to operate single chip modules in different output modes via configuration,1780

allowing the use of identical modules in different regions of a detector. This configuration is done
from the point of view of the internal serial lane: using register DataMergingMux according
to table 19, each internal lane is fed from a specified data receiver. No sanity check is present to
enforce that the selection of inputs is mutually exclusive, or that all connected receivers are used.

– 76 –

Register bit field Description
[0] Enable two-lanes Aurora channel using internal lanes 0 and 1
[1] Enable single-lane Aurora channel using internal lane 0
[2] Enable single-lane Aurora channel using internal lane 1
[3] Enable single-lane Aurora channel using internal lane 2
[4] Enable single-lane Aurora channel using internal lane 3

Table 20: Aurora decoder channels enables using register DataMerging of Table 22. Internal lanes
are routed as configured according to Table 19.

All configurations, including unreasonable ones, are possible. For example, one can feed multiple1785

input lanes from a single data receiver, which will lead to duplicate data blocks in the final output.
The internal lanes are then routed to Aurora decoder channels. Lanes 0 and 1 are routed to

one two-lane Aurora channel, which interprets these two lanes as a single serial stream from a chip
using two output lanes. In parallel, all lanes (0-3) are routed to four single-lane Aurora channels.
Each Aurora channel can be separately enabled using the register DataMerging of table 20. As1790

before no sanity check is performed and it is possible to enable an unreasonable combination of
Aurora channels. Normally either the two-lane channel, or up to three single-lane channels will be
enabled- never both. The enable bit provides clock to the channel so that it can function.

For example, one can read three chips on a single output link, by configuring one chip as pri-
mary (connected to the output link) and two as secondaries, each with their active output connected1795

to one of the primary’s data receivers. Assuming these receivers are DATA_IN0 and DATA_IN2,
the primary chip would be configured with DataMergingMux[15:8] = binary xx.xx.10.00, which
means internal lane 0 is fed from receiver 00, while internal lane 1 is fed from receiver 10 (little-
endian for 1). The values for internal lanes 2 and 3 do not matter (xx), because these lanes will be
disabled. Register DataMerging[5:2] is set to binary 0011, which enables the single-lane Aurora1800

channels for internal lanes 0 and 1. Note that in this particular configuration the 1.28 Gbps primary
output can never be saturated, as it is fed from three 320 Mbps lanes.

In the case of two chip sharing one 1.28 Gbps output link, there will be one primary chip and a
single secondary chip with two outputs connected to two primary chip inputs. Assuming these are
DATA_IN3 and DATA_IN1, The primary chip must be configured with DataMergingMux[15:8]1805

= binary xx.xx.01.11 and DataMerging[4:0] = binary 00001 (which selects the two-lane Aurora
channel). The data receivers must be routed to lanes 0 and 1 as they are the only lanes used by
the two-lane channel. Additionally, the order of lanes matters in the two-lane configuration: output
lane 0 of the secondary chip must be connected to the internal lane 0 of the primary chip.

The Aurora input channels are decoded and separated into two data buffers: one for hit data1810

and the other for monitoring. This prepares the incoming data to look just like the internal data
from the primary chip before Aurora encoding. Incoming idles, channel bonding blocks or any
other Aurora protocol blocks are discarded and not buffered.

Every input lane plus the internal data from the primary chip are then routed to two round-
robin arbiters, one for data and the other for monitor. The arbiter will select data from the next1815

non-empty input according to the order: single-lane channel 0, 1, 2, 3, two-lanes channel, internal
data path. Note that inputs that are not enabled are guaranteed to be empty, since their clock is

– 77 –

gated off and therefore they cannot be filled. The outputs of the arbiters are fed in input to the
primary chip’s Aurora encoder block, that at this stage doesn’t distinguish the origin of the data
(from secondary chips or primary) and transmits a single stream as configured, inserting idles and1820

other Aurora markers as needed. Consider for example a three-chip system with one primary
and two secondaries. If all chips are full of data, the final output will have a round robin mix of
Aurora blocks: secondary0, secondary1, primary, secondary0, secondary1, primary..., with Aurora
markers inserted as needed. However, If only the primary chip has data and the secondary chips
do not, the final output will contain all Aurora blocks from the primary chip (primary, primary,1825

primary, primary,...), with Aurora idles inserted only when the primary chip runs out of ready
data, as opposed to a fixed time-domain division of the output link giving idle, idle, primary, idle,
idle, primary... This is an important consideration when building systems. In particular, it makes
it possible for the link sharing to work with different data rates on different chips, as the output
will always be filled with whatever input has data. For example if the primary chip produces data1830

at 640 Mbps while two secondaries produce data at 320 Mbps each, half of the 1.28 Gbps output
bandwidth will be taken by the primary chip and only one quarter by each of the secondaries.

11.3 Data flow, alignment, and idles

– 78 –

12. Sensing and Monitoring Functions

The Monitoring block in RD53C enables digitization and readout of internal parameters, such as1835

the temperature, the total ionizing dose, and voltages or currents from different parts of the chip
and even external ones. Monitoring can be performed at any time, including during data-taking.
Monitoring data are transmitted via the normal data output links, time-multiplexed with event hit
data (Sec. 10.2). The monitoring procedure entails first selecting what to monitor by routing the
given signal to the chip’s internal ADC (Tables 26 and 27 show all the available signals), then1840

triggering the digitization action so that the ADC digitizes the signal (Sec. 12.2.5), and finally
reading out the digitized value via service data blocks using Read_Register commands or the auto-
read function (Sec. 10.2). Temperature and radiation sensors that feed the Monitoring block are
distributed as shown in Sec. 2 and described in Sec. 12.3 and 12.4.

The Monitoring block is depicted by the Fig. 66 and contains two sub-blocks:1845

• An analog current multiplexer followed by an analog voltage multiplexer (MUX)

• A 12 bit Analog to Digital Converter (ADC)

The output of the current multiplexer has a dedicated wire bond pad (I_mux pad), which can be
measured externally or turned into a voltage through connection of an external resistor to ground,
RIMUX (see Sec. 16.5). The voltage at the I_mux pad is then one of the inputs to the voltage MUX.1850

Another dedicated wire bond pad sources a known current defined by a 10-bit DAC (I_NTC DAC)
that can be sent to an external device to ground, nominally an NTC for silicon detector temperature
measurement, and so is called NTC_pad. The voltage at NTC_pad is another input to the voltage
MUX. The voltage MUX output feeds the ADC, and also has its own dedicated wire bond pad
(V_mux pad) for optional external measurement and calibration of the ADC.1855

Figure 66: Diagram of monitoring block with current and voltage MUXes feeding the input of the
ADC.

– 79 –

12.1 Analog Multiplexer (MUX)

The analog multiplexer has a set of CMOS transmission gates used to connect the analog inputs to
a common output. This multiplexer is controlled through selection bits and only one transmission
gate is set in the ON state at any given time. Each transmission gate is built with a parallel com-
bination of NMOS and PMOS transistors driven by a complementary gate. When all the selection1860

bits are set to all 1, the multiplexer output is at the high-Z state and the ADC can be calibrated with
an external voltage source through the V_mux pad.

12.1.1 Multiplexer Configuration

Global configuration register MonitorConfig is used to enable and select the routing of the mul-
tiplexers (See Table 22). The IMUX and VMUX have both a 6 bit selection value. Each value1865

selects a different input, but not all 64 values may used. The list of inputs is given in Tables 26 and
27 of the Reference Sec. 16. Each Mux can be disabled with the output in a high-Z state using the
setting corresponding to 63 (all ones).

Examples:

• For monitoring the voltage of the TEMPSENS placed near the analog SLDO (see Sec. 2),1870

channel 14 of the V_mux should be selected (Table 27), so the MonitorConfig configuration
register is set to binary 1000000001110 (decimal 4110)
• For Monitoring the NTC current bias, the channel number 9 of the I_mux (Table 26) and

the channel number 1 of the V_mux (Table 27) should be selected. The MonitorConfig
configuration register is set to binary 1001001000001 (decimal 4673).1875

• For temperature measurement with an external NTC, the channel number 2 of the V_mux
(Table 27) should be selected (after the above has been done, which provided a measurement
of the actual current sent to the NTC). The MonitorConfig configuration register is set to
binary 1000000000010 (decimal 4098).

12.2 General Purpose ADC1880

Fig. 67 shows the main circuit elements of the monitoring block:

• The 12 bit General Purpose ADC proper, including the clock divider and the start of conver-
sion signal generation circuit
• The reference voltage selection and buffering
• The input stage analog multiplexer as described earlier1885

The 12-bit ADC is based on a Successive-Approximation Register (SAR) architecture. It is
the most popular architecture for data-acquisition applications, especially when multiple channels
require input multiplexing. The circuit takes the chip bunch crossing clock, nominally 40 MHz,
and divides it down with a 1024:1 frequency divider to generate the internal clock driving the ADC
at 39 kHz. The SAR ADC consists of three main circuits (Fig. 68):1890

• A 12-bit DAC based on a capacitance network supplied through the reference voltage (Vref_ADC)
to generate the voltage scaling

– 80 –

Figure 67: Monitoring block diagram showing
ADC.

Figure 68: Block diagram of 12-bit SAR
ADC.

• A high sensitivity comparator
• A SAR logic block including the frequency divider mentioned above

The ADC digitized output depends on the input and references voltages:1895

ADCout = A× Vin

Vref_ADC
+B+nonlinear terms (12.1)

where A is the conversion factor, B is an offset and the nonlinear terms are ideally of order of the
LSB or less. Both A and B can be determined from calibration. Prototype measurements with
Vref_ADC = 0.9 V have shown a differential nonlinearity of less than ±1 LSB (200 µV) and an
integral nonlinearity less than ±2 LSB.

12.2.1 12-bit DAC1900

Figure 69: 12-Bit capacitive DAC.

The precision and the linearity of the SAR ADC rely mainly on the capacitive DAC. Two
main DAC structures are in general used in SAR ADCs: Binary-weighted and bridge structures.

– 81 –

The bridge structure shown by the Fig. 69 was adopted for this design, as it leads to larger unit
capacitance, allowing better element matching and thus higher resolution. However, it suffers
nonlinearity caused by mismatch of the bridge capacitance, CS, and by parasitic capacitance in1905

the DAC array. Since this capacitance is insensitive to temperature variation, it can be calibrated
to compensate the non-linearity. Six trimming bits are a part of the global register MON_ADC,
allowing to adjust the capacitor Cadj between 2C and C/2 in order to compensate the non-linearity
from CS and the parasitic capacitance.

The unit integrated capacitance, C, is chosen to keep the mismatch as low as possible and to1910

achieve a very low noise for high accuracy and good linearity. The ratio of output voltage to the
reference voltage of the DAC is determined by a capacitance ratio, which makes this stage very
tolerant to the radiation damage.

12.2.2 ADC comparator

Figure 70: Schematic of ADC comparator.

Fig. 70 shows the 3-stage comparator implemented in the 12-bit ADC design. Two differential1915

operational transconductance amplifiers (OTAs) with diode and current source loads are followed
by a dynamic latch comparator.

The first stage input transistors M11-M12 sizes are critical for the linearity and the accuracy.
A large transistor area reduces the offset and makes the performance less sensitive to radiation
damage, but the gate-source capacitance of a large transistor, which is dependent on the input1920

voltage, would increase non-linearity. A compromise has been found keep low non-linearity with
good tolerance to irradiation. There is no switch or reset transistor in the preamplifier stage, and
since the voltage gain of the first stage is moderate (10), this keeps the voltage swing at the drain

– 82 –

of the input transistor is kept small. This makes for very small kick-back noise at the input nodes.
The dynamic latch comparator has a two phase of operation. When the clock signal is low, the1925

comparator is reset and both the output nodes (outn and outp) are set to 0 V. When clock goes high,
a regeneration phase starts and the cross coupled inverter pushes one output to ground and the other
to VDD, which goes high and which low depending on the state of the input voltage of M31 and
M32.

12.2.3 ADC conversion timing1930

The timing diagram for the SAR ADC is shown in Fig. 71. Each new conversion cycle is initiated
by a Start of Conversion pulse (SOC), which is generated inside the monitoring block. This leads
to an ADC start pulse (ADC SOC) with the low frequency ADC_CLK. The ADC_EOC_B flag is
asserted when the conversion is completed, indicating that the result can be readout from the ADC
data register.1935

Figure 71: SAR ADC timing diagram.

12.2.4 ADC Configuration

The MON_ADC global register holds the configuration of ADC. The 6 least significant bits hold
the capacitor trimming value discussed in Sec. 12.2.1. As these bits primarily compensate for
parasitic capacitance and not process, the value is not expected to vary much chip to chip. The 3
most significant bits of the MON_ADC register select one of three reference voltage options. The1940

default value is the Vref_ADC pad voltage, generated by a replica of the main reference current to
an external resistor. The 2 other values should be enabled when digitizing the voltages from the
resistive temperature sensors (one for each sensor), as shown in Fig. 67.

Since the temperature measurement is a critical function of the monitoring block, the Vref_ADC
voltage must be stable in the range -40◦C to +60◦C. Since another critical function is radiation dose1945

measurement, the Vref_ADC voltage must also be stable vs. radiation dose. This is achieved by
using a replica of the main reference current, designed to have such stability, together with an ex-
ternal resistor with negligible temperature coefficient. The external resistance value is chosen to

– 83 –

set the reference voltage around 850 mV. This determines the range and therefore the LSB of the
12-bit ADC.1950

12.2.5 ADC Control Sequence

The monitoring block is disabled most of the time (MonitorConfig[12] = 0, the default value). The
command sequence required to make one conversion is as follows:

• Configure the ADC (see Sec. 12.2.4),
• Write the the MonitorConfig register: set MonitorConfig[12] to 1 to enable monitoring and1955

set MonitorConfig[11:0] to select the channel to be monitored,
• Prepare to start the conversion: write the GlobalPulseConf Register to send the ADC StartOf-

Conversion pulse,
• Wait long enough for ADC_EOC_B to go low. For debugging purposes, the ADC_EOC_B

signal can be seen on the general purpose CMOS or LVDS outputs.1960

• Read the ADC result register MonitoringDataADC.
• Disable the monitoring, if no other conversion is to be done.

The conversion time is 14 times the ADC clock period: 358.4 µs. The same conversion result
will be read-back by every MonitoringDataADC read command until a new conversion is carried
out. The read command itself does not trigger a new conversion (whatever the result was of the1965

most recent conversion will be read back over and over). In case the auto-read register is configured
to be the ADC value in order to automatically monitor some value vs. time, one will need to trigger
a new conversion periodically in order to be able to see any time variation.

12.3 Transistor-based Temperature and Radiation Sensors

Sensors can be made with any device that exhibits a reproducible temperature dependence. This1970

includes resistors, MOS transistors, diodes, bipolar transistors, delay lines or delay of the logic
gates. Most of the commercial temperature sensors are based on the bipolar transistors because the
difference in base-emitter voltage is very reproducible as function of temperature. (The bulk CMOS
process of RD53B provides parasitic Bipolar Junction Transistors BJTs.) However, these BJTs
have been found to be very sensitive to both ionizing dose and displacement damage. Therefore,1975

in RD53B BJTs are used as radiation sensors and diode-connected CMOS transistors are used as
temperature sensors. Both cases use the same design of a single device with two switchable bias
currents (Sec. 12.3.2) as shown in Fig. 72. This eliminates mismatch on the sensor itself assuming
that the temperature and radiation dose are slowly varying.

The sensors have a voltage output that is an input to the VMUX (Sec. 12.1) so they can be1980

digitized by the ADC (Sec. 12.2). The location of the sensors can be found in Sec. 2. Sec. 12.3.1
gives the theory of operation of the sensors.

12.3.1 Transistor Sensor Theory

The voltage VD across a diode shows a Complementary-To-Absolute Temperature (CTAT) varia-
tion. If two biases are applied, Ibias and R× Ibias, the voltage difference will be given by:1985

∆VD =VD(R× Ibias)−VD(Ibias) = N f ×
kBT

q
× ln(R) (12.2)

– 84 –

Figure 72: Diagram of BJT radiation sensor (left) and MOS temperature sensor (right) with switch-
able biases.

where N f is an ideality factor (1 for an ideal diode), kB is Boltzmann’s constant, T is absolute
temperature, and q the fundamental charge. The difference ∆VD is a Proportional-To-Absolute-
Temperature (PTAT). Eq. 12.2 can be rewritten to extract absolute temperature from measured ∆VD

and known R:
T = ∆VD×

q
N f × kB× ln(R)

(12.3)

Formula 12.3 is also valid for a BJT with ideality factor close to 1.0, and for a MOS device1990

biased in the sub-threshold region with ideality factor in the range 1.2 to 1.4. Although the tem-
perature measurement depends logarithmically on R, to have a 1◦C precision at 300 K requires a
0.3% precision on ∆VD and sub-percent precision on R. N f must also be known precisely, but it is
a constant that can be determined from calibration.

12.3.2 Precision Biases1995

Generation of bias currents with a ratio R is implemented with current mirrors having a ratio R.
Despite all the precautions that can be taken at the layout level, it is not possible to achieve an
accuracy better than 1% in this ratio. To reduce the error related to the current mirror mismatch,
Dynamic Element Matching (DEM) is used. DEM consists of interchanging the unit transistor
using a switch array. In the implemented design shown in the Fig. 73: 16 equal current sources2000

generate a 1:15 current ratio, and up to 16 different values of ∆VD can be measured. The average
value is determined offline and the error related to R ratio can be significantly reduced.

12.3.3 Measurement Approaches

Direct For this approach simply measure VD at the two different bias currents with ratio R and
use Eq. 12.3. The digitized ∆VD is given by ADCout(R× Ibias) - ADCout(Ibias). As can be seen from2005

Eq. 12.1, the offset B cancels in this difference, leaving the conversion factor A and Vref_ADC
as sources or error. The A nonlinearity is an order 0.2% error. Although Vref_ADC is based on a
bandgap circuit, measurements of prototypes showed of order of 3 mV change in the range of -40◦C
to 40◦C. This results in a temperature error of less than one degree, so similar to the A nonlinearity.
However, irradiation of prototypes at room temperature showed a shift of -17 mV at 550 Mrad,2010

which is a 2% or 6◦C error on temperature.

– 85 –

Figure 73: Schematic of Dynamic Element Matching (DEM) circuit to generate precision biases.

Indirect For greater accuracy a self-compensating measurement can be made, using bandgap
voltage principle.

12.4 Resistive Temperature Sensors

Figure 74: Diagram of polysilicon resistor temperature sensor. To make a differential measurement
both an input and a reference voltage are provided to the ADC.

RD53B has two temperature sensors based on polysilicon resistors as indicated in Fig. 4.2015

They are designed to measure the temperature difference between the top and bottom edges of
the chip. The small height of these devices allows one to be placed in the very limited available
space at the top of the chip. The CMOS process contains various resistor types with different
temperature coefficients, allowing sensors to be implemented by comparing the resistance of two
resistor types. The simple design for this differential measurement is shown in Fig. 74. Two2020

copies of the same current are passed through two different types of resistor, and the the difference
between the voltages across them is measured. Their different temperature coefficients will cause
the voltage difference to change in a known way as the temperature changes. The effect is small,
so a trick is used to get maximum precision with the ADC. The trick is to use the voltage across
one resistor as Vref_ADC and the voltage across the other as the value to be measured. This2025

results in the full 12 bits being available to measure the small difference in the two voltages (see
Sec. 12.2.4). The nominal values are 16 K for the resistor connected Vref_ADC and 10 K for

– 86 –

Bits Field name Description
MON_SENS_SLDO

[11] MON_SENS_SLDOD_EN 336 Enable sensor on digital SLDO
[10-7] MON_SENS_SLDOD_DEM Dynamic element matching bits

[6] MON_SENS_SLDOD_SEL_BIAS Bias selection switch
[5] MON_SENS_SLDOA_EN 336 Enable sensor on analog SLDO

[4-1] MON_SENS_SLDOA_DEM Dynamic element matching bits
[0] MON_SENS_SLDOA_SEL_BIAS Bias selection switch

MON_SENS_ACB
[5] MON_SENS_SLDOA_EN 336 Enable sensor on analog SLDO

[4-1] MON_SENS_SLDOA_DEM Dynamic element matching bits
[0] MON_SENS_SLDOA_SEL_BIAS Bias selection switch

Table 21: Transistor sensor configuration.

the one connected to the ADC input (V_sens). The nominal bias current is 32 µA. With this the
condition Vref_ADC>V_sens over the full temperature range for the all process corners.

These resistive sensors can precisely measure temperature changes, but not absolute tempera-2030

ture. Thus, they are ideal to measure the temperature difference across the chip. The ADC value
is directly proportional to the relative temperature plus a fixed offset. Measurements on prototypes
show good linearity in the range -40◦C to 50◦C, with a resolution that can reach 5 LSB/◦C.

12.5 Sensor Configuration

RD53B has three pairs of active temperature and radiation transistor sensors and two resistance2035

temperature sensors. Their locations were given in Sec. 2. Two 12-bit registers (MON_SENS_SLDO
and MON_SENS_ACB) are dedicated to the transistor sensor configuration as shown in Table 21.
These control the sensors on the SLDO regulators and chip bottom center, respectively. To perform
the measurement:

• Set the sensor enable bit,2040

• Set the bias switch to 0 (Ibias),
• Cycle through all the DEM values and measure the voltage for each value. Average all the

measurements,
• Set the bias switch to 1 (15×Ibias),
• Cycle through all the DEM values and measure the voltage for each value. Average all the2045

measurements.

The resistor temperature sensors do not have any configuration bits. However, the ADC must
be specially configured in differential mode as explained in Sec. 12.2.4.

– 87 –

13. Test and Miscellaneous Functions

13.1 General purpose LVDS and CMOS outputs2050

RD53C contains four LVDS differential outputs and one CMOS output mainly for testing. During
detector operation these outputs enable command link sharing, which means one chip can be used
as a repeater for the command serial link towards downstream chips (Sec. 3.1). These outputs also
provide early diagnostics (default setting). They can be configured away from default to “spy” on
a number of internal signals as detailed in Table 28.2055

13.2 Bypass mode

Bypass mode allows to control the chip without the internal PLL Clock and Data recovery function.
This mode can only be selected by driving a wire bond pad to high. It is available only for expert
use to characterize performance of internal blocks.

13.3 Scan Chains2060

RD53C includes Design For Test (DFT) methodology in the digital flow. This allows structural
testing of the bottom of chip logic and also much of the pixel matrix core logic. The General
purpose LVDS I/O as well as data merging inputs are used for DFT "scan chain" testing, which
is intended to be done at the wafer probing stage. A detailed (technical) description of the DFT
functionality is given in App. ??.2065

13.4 Hit OR

Within each RD53C core column there are four independent Hit OR nets, each one fed by one
quarter of the pixels. Fig. 75 shows graphically how the 64 pixels in one core are grouped into the
4 OR networks. The figure also indicates two possible sensor formats of 50 µm × 50 µm (50x50)
or 25 µm× 100 µm (25x100) pixels. It can be seen that in the 50x50 case, a given pixel in network2070

1 has its two up-down neighbors on network 3, and its left-right neighbors on 2 and 4. Conversely,
a given 25x100 pixel on network has has its left-right neighbors in network 3 and its up-down
neighbors on 2 and 4.

Each net forms the logical OR of all individual pixel outputs that have been enabled by the
HitOr mask bit (one bit per pixel). Because the signals travel in an OR network, there will be a2075

different delay depending on which pixel core the signal comes from: the difference between top
and bottom of chip is around 6 ns in unirradiated chips at nominal 1.2 V digital voltage. The delay
varies linearly with pixel row.

13.5 Heartbeat and test patterns

13.6 Ring Oscillators2080

RD53C contains a large variety of ring oscillators mainly intended to allow characterization of
logic cell radiation tolerance, but which also allow other measurements, such variation of the pixel
injection capacitance value. The ring oscillators are located in two banks in the chip bottom:
ROSCA and ROSCB, as specified in Sec. 2. Bank A (ROSCA) is a copy of the ring oscillator bank
in the RD53A chip, so that a direct comparison with RD53A test results can be made. The two2085

– 88 –

Figure 75: The four Hit Or nets in a 64 pixel core.

banks with their control signals are shown in Fig. 77, while a single oscillator diagram is shown in
Fig. 76.

Figure 76: Diagram of a ring oscillator block. Different numbers and types of logic cells are used
as specified in Tables 37, 38.

Figure 77: The two banks of ring oscillators with their control signals.

Each ring oscillator is a chain made of different logic cells (Tables 37, 38). The number of cells
in each ring was chosen to have approximately the same frequency, as given in the tables. Each
oscillator drives a 12-bit counter, while a 4-bit counter is used to count the number of start/stop2090

– 89 –

pulses received. The counters will count while start/stop pulse is high as long as the Enable bit
is high. The start/stop pulses are supplied using the Global Pulse command while Enable and
Clear are static configuration bits. The 16-bit counter values from each oscillators are assigned to a
read-only global configuration register for readout. There is one register serving the bank A (119:
RING_OSC_A_OUT) and one serving bank B (120: RING_OSC_A_OUT).2095

When Enable is Low the counters hold their values. For bank B only, the clear state also
causes the gates to be continually clocked at 40 MHz (not shown in the diagrams). This allows
irradiation while the gates are being clocked rather than in a static value. The oscillators within a
bank share some control signals and their 16-bit outputs are multiplexed. Bank A contains only 8
oscillators which have individual enable signals and common clear and start/stop. Bank B contains2100

4 groups of oscillators and each group has its own enable signal, common to all the oscillators in
the group (see Table 38), while the clear and start/stop signals are common to the whole bank. The
total number of oscillators in bank B is 34. All select and clear bits for both banks are contained
in configuration register RingOscConfig (number 117). The A and B start/stop pulses are separate
Global Pulse channels (Sec. ??). Which register is connected to each bank’s output is selected with2105

global register RingOscRoute (118), using the oscillator numbers from Tables 37, 38.

13.7 Precision ToT module

PTOT PTOT PTOT PTOT PTOT PTOT

HitOr[3:0]

Pixel Array

PixelArrayReadOut

DigitalChipBottom

RD53B

...

...

...

C
o

re
 c

o
lu

m
n

C
o

re
 c

o
lu

m
n

C
o

re
 c

o
lu

m
n

C
o

re
 c

o
lu

m
n

C
o

re
 c

o
lu

m
n

C
o

re
 c

o
lu

m
n

Figure 78: PTOT modules, one per core column.

The Precision ToT (PTOT) module makes measurements on the HitOR signals (13.4) coming
out of each core column. There is one PTOT per core column as shown in Fig. 78. Two quantities
are measured:2110

• ToT, just like in the pixels, but with an 11 bit counter counting as 640 MHz rate,

• Time of Arrival (ToA) of the leading edge, as a phase difference from the previous BX clock
rising edge to the HitOr leading edge, with a 5 bit counter counting at 640 MHz rate.

These quantities are stored in memories just like the pixel region memories, associated to
latency buffers that keep track of time just as in the pixel regions. A diagram the PTOT module2115

– 90 –

is shown in Fig. 79. The latency buffer depth and logic are the same as in the pixel regions. The
readout of the PTOT data is trigger based, exactly as for regular pixels, and the data are included
in normal data path as described in Sec. 10.9.

PrecisionTOT_slice<0>

PrecisionTOT
HitOr[3:0]

PixelLatencyMem
PrecisionTOTLogic

<1>
<2>
<3>
<4>
<5>
<6>
<7>

State Machine

State Machine

PixelLatencyMemCell<0>

TOTMemCell<0>
<1>
<2>
<3>
<4>
<5>
<6>
<7>

5bit Counter

16 bits

HitOr

LE

WrAddr.

DataOut[15:0]

HitOr[3]

HitOr[2]

HitOr[1]

HitOr[0]

11 bit Counter

RdAddr.

PrecisionTOT_slice<0>
PrecisionTOT_slice<0>

PrecisionTOT_slice<0>

Ctr_ClockBx_ClockTrigBCID, BCID_req, TrigID, TrigID_req Token

Token

Figure 79: Single PTOT module diagram. The elements outlined in blue are copies (same code)
of the pixel region logic.

13.8 Capmeasure circuit

The capacitance measurement circuit (capmeasure, Fig. 80) allows the determination of the as-2120

built front-end injection capacitor Cin j. It is integrated into the calibration block in the Analog
Chip Bottom. The circuit consists of two sections: the capmeasure and parasitic capmeasure. The
capmeasure circuit is connected to a parallel array of 100 capacitors, each identical to the injection
capacitors, but connected differently than in the pixel (see Fig. 81) for use as a charge pump rather
than a single charge injector. Also, in order to make an array, routing metal is needed, which adds2125

a parasitic capacitance. The total capacitance measured by this circuit is then,

Cmeas = 100(Cpix +Cshld)+Cpar (13.1)

where Cpix is the mutual capacitance between input and output terminals as seen by a pixel, Cshld is
the added capacitance between input terminal and the shield layer underneath due to the different
connection illustrated in Fig. 81, and Cpar is the parasitic capacitance due to array metal routing.

An identical array but with 50 capacitors having the two main terminals connected together as2130

in the right scheme of Fig. 81 and 50 capacitors left unconnected is therefore also provided in order
to measure the shield and parasitic capacitance:

Cmeas2 = 50(2xCshld)+Cpar (13.2)

From the two measurements, the injection capacitance can be obtained:

Cpix = (Cmeas−Cmeas2)/100 (13.3)

– 91 –

V_mux
 pad

Imux_Out

GADC

RIMUX

Figure 80: Capacitance measurement circuit diagram. Ctest is an array of 100 injection capacitors.
Control of the switches Mon_Injcap, Mon_Injcap_Par, and Imux_Out, as well as operation of the
GADC generic ADC are described in Sec. 12.2.

As for reference, the extracted value from the chip layout is Cpix = 8.02 fF.

Figure 81: The pixel injected charge is defined by the mutual capacitance between the two main
terminals of the injection capacitor (left). However, the capacitor has a third terminal which con-
nects to a shield layer underneath (a poly layer usually connected to GND). Both main terminals
exhibit a parasitic capacitance to this node. The capmeasure circuit charges this shield capacitance
in addition to the capacitance between the two main terminals (center). In the parasitic measure-
ment circuit, the capacitor has the two main terminals connected together (right)

The capmeasure circuit is based on a charge pump with PMOS and NMOS transistors con-2135

trolled by non-overlapping clocks. These clocks run at 1/4 of the bunch crossing clock (which
is nominally 40 MHz). They are generated by combinatorial logic from the bunch crossing clock
and are disabled by default. The En_injcap_meas and En_injcap_par configuration bits (there are
actually two control circuits, one for the array of the replica capacitors and one for the empty array
to measure Cpar).2140

– 92 –

In a simulation of the circuit as shown in Fig. 80 with RIMUX = 5 K and C_ext = 22 nF, the
average current flowing in VDDA of the capmeasure circuit is 11 µA for the 10 MHz nominal
clock frequency, while the average current flowing in VDDA of the parasitic circuit is 1 µA. This
can be sensed by measuring the voltage across the external resistor with the generic ADC. The
22 nF capacitor in parallel will keep the output voltage constant for the GADC measurement (it is2145

possible that the measurement will still be accurate without it- to be checked in bench tests).
The measurements of Cmeas and Cpar are made separately. The capmeasure circuit should be

reset before making a measurement. This is a achieved by selecting capmeasure in the global pulse
routing and issuing a global pulse with a 3 clock width (this is longer than the default width of 1
clock). For Cmeas (Cpar), first enable the clock by setting En_injcap_meas = 1 (En_injcap_par =2150

1) and selecting the IMUX channel Mon_injcap (Mon_injcap_par). One must wait at least 0.5 ms
for the output to settle (with the nominal 5 K and 22 nF external components). At this point the
voltage at the Imux_Pad can be measured either with an external instrument or the GADC. To use
the GADC select input channel Imux_Out and follow the procedure from Sec. 12.2.

In terms of the measurements, the injection capacitance is given by Eq. 13.4,2155

Cpix =
1

100

(
Vmeas/RIMUX

f × (V DDA−Vmeas)
− Vmeas2/RIMUX

f × (V DDA−Vmeas2)

)
(13.4)

where Vmeas and Vmeas2 are the measured GADC voltages for the capmeas and parasitic circuits,
respectively, RIMUX is the external resistor used to convert IMUX output current into voltage, and
f is the charge pump frequency of 10 MHz.

– 93 –

14. Clock Generation and Data Recovery Technical Details

– 94 –

15. Known Issues2160

This appendix collects information about known bugs or strange features in the design. None of the
items in section prevent full operation meeting all requirements. However, the DAQ system must
be aware of these issues to properly operate the chip. Boldface items require specific DAQ action
and cannot just be ignored.

• Isolated hit removal. Under high hit load fails to remove hits or removes too many hits. This2165

feature should not be used. It is off by default.

• Suppressed read register. Read register command may be ignored when a previous read
pixel register is being processed. This is a feature of how the commands work. The DAQ
must allow time for read pixel commands to finish before reading something else.

• Chip stuck when filter removes all hits. When a core column has triggered hits, the data2170

concentrators that are the first step in event building will be expecting hits from that core
column. Therefore, if no hits come out of the column, the chip may become stuck. A clear
command or equivalent will restore normal operation. For example, the isolated hit removal
function (which should not be used in any case; see above) could remove all hits that were
present in the column. A single event upset could also occasionally remove a hit. The2175

vulnerability to this type of SEU has been greatly reduced in RD53C, so it should be very
rare.

• Aurora clock compensation CCWAIT. This parameter does not function properly and causes
Xilinx Aurora receivers to have errors for the default value of CCWAIT. This has no impact
on operation because the clock compensation feature of the Aurora protocol is not used2180

by RD53C. Custom receiver firmware, such a implemented in YARR and required in the
experiment DAQ systems will not have any sensitivity to this issue.

• Aurora channel bonding CBWAIT. This parameter’s default value will cause errors in
channel bonding for multilane chip readout (inner layers). Channel bonding is a used part
of the protocol. The solution is to write a different value of CBWAIT than the default. The2185

correct value to be determined by systems testing.

• Clear command reset too short. The CLEAR command clears the data path and resets
the Aurora protocol. However, the reset is only held for one clock cycle, and this is not
sufficient to correctly lock timing in different clock domains. This is mainly an issue when
data merging is used, and not for single chip operation. The solution is for the DAQ to issue2190

global pulse commands in place of CLEAR commands, with the pulse duration set longer
(eg. 8 clock cycles). The same resets as actuated by CLEAR can be selected by global pulse
configuration, so the functionality is exactly equivalent, other than the length of the reset
pulse.

• Data merger failure to decode secondary chip data. For a primary chip to correctly receive2195

the data from a secondary chip it must first find the Aurora frame alignment of the incoming
data. The standard method is used of looking for the 2-bit Aurora headers and locking the

– 95 –

phase where all headers are valid. A 64-bit search window was incorrectly implemented for
this search, which is too short because the headers happen every 66 bits. This bug means that,
given arbitrary frame alignment, the primary chip will fail to lock to the correct secondary2200

chip phase 1/33 of the time. This work-around is to force a non-arbitrary frame alignment by
always resetting all chips in a data merging group at the same time, which is trivial because
they share the command link. One can either rest all chips in broadcast mode or ensure
a deterministic time difference between the reset. Never reset an individual chip in a data
merging group. Note that because the primary must always be reset, this will introduce a2205

20 µs dead time upon reset, while the primary resyncs.

– 96 –

16. Reference Tables (pinouts, configuration, etc.)

16.1 Wire Bonding Pinout

The pinout is provided in a full page figure (next page, no figure number). The 198 pads are shown
in two halves just to fit the page. All pads are shown and power and ground pads are color coded2210

while all other pads are shown as open rectangles. Note that every 5th pad is numbered on the actual
chip as shown in Fig. 7. Figures 7 and 8 are reproduced here for convenience (note the original
figure numbers have been kept).

0

0 100
-87.5

-75.5

200

25

1732.5

CL

25

2150020599
21597.5

Pixel 0,0

 Pixel
431,335

21300899200

Figure 7: Detail of CMS chip bottom with dimensions (rounded to nearest micron). The pinout
follows on the next page, rotated clockwise 90◦ relative to this figure (pin 1 is at the bottom left
of this figure). The location of the first and last pixel bump bonds on the matrix is also indicated.
There are 4 bump bond pads below the full matrix on each of left and right sides to contact sensor
bias/guard rings.

Figure 8: Organization of wire bond pad frame and generic bonding scheme. All wire bonds are
shown, including connections for testing (not used on detector modules). the number of fanned-out
signal bonds is written in each box, while the power supply bonds run parallel (not fanned out).
The red arrows indicate the four unused pads. Full pinout follows on next page.

– 97 –

1

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

DET_GRD0
NTC

VREF_ADC
GNDA_REF
VMUX_OUT
IMUX_OUT

N/C
VSUB
GNDA
GNDA
GNDA
GNDA
GNDA
VDDA
VDDA
VDDA
VDDA
VDDA
VINA
VINA
VINA
VINA
VINA
VIND
VIND
VIND
VIND
VIND

VDDD
VDDD
VDDD
VDDD
VDDD
GNDD
GNDD
GNDD
GNDD
GNDD

BYPASS_MODE
TEST_MODE

SCAN_EN
GPO_CMOS

CHIP_ID0
CHIP_ID1
CHIP_ID2
CHIP_ID3

IREF_TRIM0
IREF_TRIM1
IREF_TRIM2
IREF_TRIM3

VDD_PRE
GNDA_REF

R_IREF
VREFA
REXTA

VOFS_OUT
VOFS_LP
VOFS_IN

LP_EN_AC
space
GNDA
GNDA
GNDA
GNDA
GNDA
VDDA
VDDA
VDDA
VDDA
VDDA
VINA
VINA
VINA
VINA
VINA
VIND
VIND
VIND
VIND
VIND

VDDD
VDDD
VDDD
VDDD
VDDD
GNDD
GNDD
GNDD
GNDD
GNDD
VSUB

PLL_VCTRL_RST
CMD_P
CMD_N

VDD_PLL
GND_PLL

97

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

198

VDD_CML
GND_CML

GTX0_N
GTX0_P

GND_CML
GTX1_N
GTX1_P

GND_CML
GTX2_N
GTX2_P

GND_CML
GTX3_N
GTX03P

GND_CML
VDD_CML

N/C
GNDA
GNDA
GNDA
GNDA
GNDA
VDDA
VDDA
VDDA
VDDA
VDDA
VINA
VINA
VINA
VINA
VINA
VIND
VIND
VIND
VIND
VIND

VDDD
VDDD
VDDD
VDDD
VDDD
GNDD
GNDD
GNDD
GNDD
GNDD

VREF_OVP
VREFD

GNDD_REF
REXTD

VDD_SHUNT
EXT_POR_CAP

DATA_IN0_P
DATA_IN0_N
DATA_IN1_P
DATA_IN1_N
DATA_IN2_P
DATA_IN2_N
DATA_IN3_P
DATA_IN3_N

GPO_LVDS0_P
GPO_LVDS0_N
GPO_LVDS1_P
GPO_LVDS1_N
GPO_LVDS2_P
GPO_LVDS2_N
GPO_LVDS3_P
GPO_LVDS3_N

N/C
GNDA
GNDA
GNDA
GNDA
GNDA
VDDA
VDDA
VDDA
VDDA
VDDA
VINA
VINA
VINA
VINA
VINA
VIND
VIND
VIND
VIND
VIND

VDDD
VDDD
VDDD
VDDD
VDDD
GNDD
GNDD
GNDD
GNDD
GNDD
VSUB

VDD_EFUSE
DET_GRD1

feed-thru to sensor bias bump pads
connection to external NTC
To ADC VREF setting resistor
GND reference for voltage setting resistors
output from voltage multiplexer
output from current multiplexer to RIMUX

global substrate and VSS (ESD bus)

analog ground

analog internal rail (to bypass C)

voltage/current input for analog regulator

voltage/current input for digital regulator

digital internal rail (to bypass C)

digital ground

Enable bypass of CDR w/internal pull-down
Enable test mode w/internal pull-down
Enable boundary scan chain w/internal pull-down
Multipurpose CMOS debug output
chip ID bit 0 w/internal pull-up to VDDD & test (*)
chip ID bit 1 w/internal pull-up to VDDD
chip ID bit 2 w/internal pull-up to VDDD
chip ID bit 3 w/internal pull-up to VDDD
Current ref. trim bit 0 w/int. pull-up to VDD_PRE
Current ref. trim bit 1 w/int. pull-up to VDD_PRE
Current ref. trim bit 2 w/int. pull-up to VDD_PRE
Current ref. trim bit 3 w/int. pull-up to VDD_PRE
Pre-regulator supply voltage
GND reference for voltage setting resistors
IREF circuit precision resistor
VDDA voltage reference (to decoupling C)
To analog shunt current setting R
To main offset setting R
Additional offset R for low power mode
input to VOFS buffer
A/C signal to activate low power mode

analog ground

analog internal rail (to bypass C)

voltage/current input for analog regulator

voltage/current input for digital regulator

digital internal rail (to bypass C)

digital ground

global substrate and VSS (ESD bus)
active low, forces PLL VCTRL to ~800mV
command input to CDR
command bar input to CDR
PLL power supply
PLL ground

Unregulated power <2V

Regulated analog ~ 1.2V

Regulated digital ~ 1.2V

Substrate contact (0V)

Ground

CML driver power rail
CML driver ground rail
AURORA data lane 0
AURORA data lane 0
CML driver ground rail
AURORA data lane 1
AURORA data lane 1
CML driver ground rail
AURORA data lane 2
AURORA data lane 2
CML driver ground rail
AURORA data lane 3
AURORA data lane 3
CML driver ground rail
CML drive power rail

analog ground

analog internal rail (to bypass C)

voltage/current input for analog regulator

voltage/current input for digital regulator

digital internal rail (to bypass C)

digital ground

OVP threshold/3 override (600mV dflt)
VDDD voltage reference (to decoupling C)
GND reference for voltage setting resistors
To digital shunt current setting R
power to both Ana. and Dig. shunt circuits
Pwr-on-RST for testing (not used in RD53C)
 SCAN_IN0_P, Bypass_CDR_P
 Inputs for data SCAN_IN0_N, Bypass_CDR_N
 merging. They SCAN_IN1_P, EXT_CMD_CLK_P
 have alternate SCAN_IN1_N, EXT_CMD_CLK_N
 functions as TESTCLK40_P, EXT_SER_CLK_P
 shown in TESTCLK40_N, EXT_SER_CLK_N
 BYPASS, TEST TESTCLK160_P, EXT_RESET_B_P
 modes. TESTCLK160_N, EXT_RESET_B_N
gerneral LVDS output (or SCAN_OUT0_P)
gerneral LVDS output (or SCAN_OUT0_N)
gerneral LVDS output (or SCAN_OUT1_P)
gerneral LVDS output (or SCAN_OUT1_N)
gerneral LVDS output
gerneral LVDS output
gerneral LVDS output
gerneral LVDS output

analog ground

analog internal rail (to bypass C)

voltage/current input for analog regulator

voltage/current input for digital regulator

digital internal rail (to bypass C)

digital ground

global substrate and VSS (ESD bus)
E-fuse programming voltage (GND if unused)
feed-thru to sensor bias bump pads

Bottom left corner

(*) CHIP_ID0 (pin 43) becomes PIXEL_MATRIX_TEST_MODE when scan mode is active 98

16.2 Global Configuration2215

Table 22: Global configuration register main table. (*) indicates further details are given follow-
ing the table. Section references are given in (). The Size column may list multiple fields by their
size in bits. The rightmost value is always the field starting at register bit [0] (i.e. all words are
little-endian). Thus, the numbers “1,3,2” in the Size column would indicate a word with 3 fields:
[5],[4:2],[1:0]. n/u Stands for not used in ATLAS chip.

Addr. Name Size (bits) Description
CMS

Default
* 0 PIX_PORTAL 16 Pixel portal: virtual reg. to access pix config (8.8) 0

1 REGION_COL 8 Pixel column pair connected to pixel portal (8.8) 0
2 REGION_ROW 9 Pixel row connected to pixel portal (8.8) 0

* 3 PIX_MODE 5,1,1,1,1,1 n/u, n/u, Broadcast, Wr_cfg, Auto Row (8.8) 0,1,0,1,0
* 4 PIX_DEFAULT_CONFIG 16 Key 1 of 2: hex 9CE2 to exit pix default config. 0
* 5 PIX_DEFAULT_CONFIG_B 16 Key 2 of 2: hex 631D to exit pix default config. 0
* 6 GCR_DEFAULT_CONFIG 16 Key 1 of 2: hex AC75 to exit glob default config. 0
* 7 GCR_DEFAULT_CONFIG_B 16 Key 2 of 2. hex 538A to exit glob default config. 0

Analog Front End (5)
8 DAC_PREAMP_L_DIFF 10 not used in RD53C _CMS 50
9 DAC_PREAMP_R_DIFF 10 not used in RD53C _CMS 50

10 DAC_PREAMP_TL_DIFF 10 not used in RD53C _CMS 50
11 DAC_PREAMP_TR_DIFF 10 not used in RD53C _CMS 50
12 DAC_PREAMP_T_DIFF 10 not used in RD53C _CMS 50
13 DAC_PREAMP_M_DIFF 10 not used in RD53C _CMS 50
14 DAC_PRECOMP_DIFF 10 not used in RD53C _CMS 50
15 DAC_COMP_DIFF 10 not used in RD53C _CMS 50
16 DAC_VFF_DIFF 10 not used in RD53C _CMS 100
17 DAC_TH1_L_DIFF 10 not used in RD53C _CMS 100
18 DAC_TH1_R_DIFF 10 not used in RD53C _CMS 100
19 DAC_TH1_M_DIFF 10 not used in RD53C _CMS 100
20 DAC_TH2_DIFF 10 not used in RD53C _CMS 0
21 DAC_LCC_DIFF 10 not used in RD53C _CMS 100
22 DAC_PREAMP_L_LIN 10 Input transistor bias for left 2 columns 150
23 DAC_PREAMP_R_LIN 10 Input transistor bias for right 2 columns 150
24 DAC_PREAMP_TL_LIN 10 Input transistor bias for top left 2x2 150
25 DAC_PREAMP_TR_LIN 10 Input transistor bias for top right 2x2 150
26 DAC_PREAMP_T_LIN 10 Input transistor bias for top 2 rows 150
27 DAC_PREAMP_M_LIN 10 Input transistor bias for all other pixels 150
28 DAC_FC_LIN 10 Folded cascode branch current 20
29 DAC_KRUM_CURR_LIN 10 Krummenaker feedback current (return to baseline) 70
30 DAC_REF_KRUM_LIN 10 Krummenacher reference voltage 360
31 DAC_COMP_LIN 10 Comparator current 80
32 DAC_COMP_TA_LIN 10 Comparator output stage current 900
33 DAC_GDAC_L_LIN 10 Global threshold for left 2 columns 900
34 DAC_GDAC_R_LIN 10 Global threshold for right 2 columns 900
35 DAC_GDAC_M_LIN 10 Global threshold for all other pixels 900
36 DAC_LDAC_LIN 10 Local threshold current 130

* 37 LEAKAGE_FEEDBACK 1,1 not used in RD53C _CMS 0,0
Internal Power (4)

38 VOLTAGE_TRIM 1,1,4,4 Regulator: En. Undershunt A, D; Ana. V trim, Dig. V trim 0,0,8,8

– 99 –

Table 22: Global configuration register main table. (*) indicates further details are given follow-
ing the table. Section references are given in (). The Size column may list multiple fields by their
size in bits. The rightmost value is always the field starting at register bit [0] (i.e. all words are
little-endian). Thus, the numbers “1,3,2” in the Size column would indicate a word with 3 fields:
[5],[4:2],[1:0]. n/u Stands for not used in ATLAS chip.

Addr. Name Size (bits) Description
CMS

Default
Pixel Matrix Control

39 EnCoreCol_3 6×1 Enable Core Columns 53:48 0,1,0,0,1,0
40 EnCoreCol_2 16×1 Enable Core Columns 47:32 0,5x(1,0,0)
41 EnCoreCol_1 16×1 Enable Core Columns 31:16 5x(1,0,0),1
42 EnCoreCol_0 16×1 Enable Core Columns 15:0 5x(0,0,1),0

* 43 EnCoreColumnReset_3 6×1 Enable Reset for core cols. 53:48 0
* 44 EnCoreColumnReset_2 16×1 Enable Reset for core cols. 47:32 0
* 45 EnCoreColumnReset_1 16×1 Enable Reset for core cols. 31:16 0
* 46 EnCoreColumnReset_0 16×1 Enable Reset for core cols. 15:0 0

Funtions: (T)rigger and timing, (I)nput/ouput, (C)alibration, (M)asking, () Other
T 47 TriggerConfig 1,9 Trigger mode, Latency (9) 0,500
T 48 SelfTriggerConfig_1 1,1,4 Self Trig.: En., ToT thresh.: En., value (9.4) 0,1,1
T 49 SelfTriggerConfig_0 10,5 Self Trig.: delay, multiplier (9.4) 100,1
T 50 SelfTriggerDeadTime 16 inhibit after each trig. (BXs 0=off) 0
T 51 HitOrPatternLUT 16 Self Trig. HitOR logic program (9.4) 0
T * 52 ReadTriggerConfig 2,12 Col. Read delay, Read Trig. Decision time (BXs) 0,1000
T 53 TruncationTimeoutConf 12 Event truncation timeout (BXs, 0=off) 0
C * 54 CalibrationConfig 1,1,6 Cal injection: Ana/Dig (0/1), Ana mode, fine delay 0,1,0
T 55 CLK_DATA_FINE_DELAY 6,6 Fine delays for Clock, Data (14) 0,0
C 56 VCAL_HIGH 12 VCAL high level 500
C 57 VCAL_MED 12 VCAL medium level 300
C * 58 MEAS_CAP 1,1,1 Cap Meas: En. Par, En.; VCAL range bit 0,0,0
I 59 CdrConf 1,3 CDR: phase det sel., CLK sel. (14) 0,0,0
I 60 ClkTriplConf 3,3,3,3 Trpl. En: 40MHz, 160MHz, Data Merger, Aurora 8,8,8,8
I 61 ChSyncConf 5 Chan. Synch. Lock Thresh. (unlock is ×2) 16

* 62 GlobalPulseConf 16×1 Global pulse routing 0
63 GlobalPulseWidth 9 Global Pulse Width (in BX, 0=1) 1

I 64 ServiceDataConf 1,8 Service block En., Periodicity ND (10.2) 0,50
65 ToTConfig 1,1,1,1,9 En: PToT, PToA, 80MHz, 6b to 4b; PToT Latency 0,0,0,0,0

M 66 PrecisionToTEnable_3 6×1 Enable PToT for core cols. 53:48 0
M 67 PrecisionToTEnable_2 16×1 Enable PToT for core cols. 47:32 0
M 68 PrecisionToTEnable_1 16×1 Enable PToT for core cols. 31:16 0
M 69 PrecisionToTEnable_0 16×1 Enable PToT for core cols. 15:0 0
I * 70 DataMerging 4,1,1,1,4,1,1 Invert(4), Ch.ID, 1.28CK gate, CK sel, En.(4), Ch.bond, GPO sel. 0,1,1,0,0,0,1
I 71 DataMergingMux 8×2 Input and Output Lane mapping 3,2,1,0,3,2,1,0
M 72 EnCoreColumnCalibration_3 6×1 CAL enable for core cols. 53:48 6×1
M 73 EnCoreColumnCalibration_2 16×1 CAL enable for core cols. 47:32 16×1
M 74 EnCoreColumnCalibration_1 16×1 CAL enable for core cols. 31:16 16×1
M 75 EnCoreColumnCalibration_0 16×1 CAL enable for core cols. 15:0 16×1
I 76 DataConcentratorConf 1,1,1,8 n/u: CRC, BCID, L1ID; evts/stream-1 0,0,0,0
I * 77 CoreColEncoderConf 1,1,9,3,1,1 Drop ToT, raw map, MaxHits, MaxToT, A, B 0,0,0,0,0,1
I 78 EnMaxHitsLimit 6×1 Drop hits above MaxHits for cols. 53:48 6×0
I 79 EnMaxHitsLimit 16×1 Drop hits above MaxHits for cols. 47:32 16×0

– 100 –

Table 22: Global configuration register main table. (*) indicates further details are given follow-
ing the table. Section references are given in (). The Size column may list multiple fields by their
size in bits. The rightmost value is always the field starting at register bit [0] (i.e. all words are
little-endian). Thus, the numbers “1,3,2” in the Size column would indicate a word with 3 fields:
[5],[4:2],[1:0]. n/u Stands for not used in ATLAS chip.

Addr. Name Size (bits) Description
CMS

Default
I 80 EnMaxHitsLimit 16×1 Drop hits above MaxHits for cols. 31:16 16×0
I 81 EnMaxHitsLimit 16×1 Drop hits above MaxHits for cols. 15:0 16×0
I 82 EnIHR 6×1 Drop isolated hits below MaxTOT for cols. 53:48 6×0
I 83 EnIHR 16×1 Drop isolated hits below MaxTOT for cols. 47:32 16×0
I 84 EnIHR 16×1 Drop isolated hits below MaxTOT for cols. 31:16 16×0
I 85 EnIHR 16×1 Drop isolated hits below MaxTOT for cols. 15:0 16×0
I 86 EvenMask 16 Isolated hit filter mask: Even cols. 0
I 87 OddMask 16 Isolated hit filter mask: Odd cols. 0

88 EfusesConfig 16 Efuses En. (to Read set 0F0F, to Write set F0F0) 0
89 EfusesWriteData1 16 Data to be written to Efuses (1 of 2) 0
90 EfusesWriteData0 16 Data to be written to Efuses (2 of 2) 0

I 91 PhaseDetectorConfig 1,4,8 DataMerg phase manual override, mode(4), choice(8) 0,0,0
I 92 AuroraConfig 1,4,6,2 AURORA: Alt. Out, En. PRBS, En. Lanes, CCWait, CCSend 0,0,15,25,3
I 93 AURORA_CB_CONFIG1 8 Aurora Chann. Bonding Wait [19:12] 255
I 94 AURORA_CB_CONFIG0 12,4 Aurora Chann. Bond Wait [11:0], CBSend 4095,0
I 95 AURORA_INIT_WAIT 11 Aurora Initialization Delay 32
I 96 AURORA_ALT_OUT1 4 Aurora alt. output reg. 1 0
I 97 AURORA_ALT_OUT0 16 Aurora alt. output reg. 0 0
I 98 OUTPUT_PAD_CONFIG 4,1,1,4,3 GP_CMOS: pattern, En, DS, GP_LVDS: Enables, strength 5,1,0,15,7
I 99 GP_CMOS_ROUTE 6 GP_CMOS MUX select (16.4) 13
I 100 GP_LVDS_ROUTE_1 6,6 GP_LVDS(3), GP_LVDS(2) MUX select (16.4) 14,10
I 101 GP_LVDS_ROUTE_0 6,6 GP_LVDS(1), GP_LVDS(0) MUX select (16.4) 2,0
I 102 DAC_CP_CDR 10 CDR CP Bias (values <15 are set to 15) 40
I 103 DAC_CP_FD_CDR 10 CDR FD CP bias (values <100 are set to 100) 400
I 104 DAC_CP_BUFF_CDR 10 CDR unity gain buffer bias 200
I 105 DAC_VCO_CDR 10 CDR VCO bias (values <700 are set to 700) 1023
I 106 DAC_VCOBUFF_CDR 10 CDR VCO buffer bias (values <200 are set to 200) 500
I 107 SER_SEL_OUT 4×2 CML 3-0 content. 0=CK/2, 1=AURORA, 2=PRBS7, 3=0 1,1,1,1
I 108 CML_CONFIG 2,2,4 CML out: Inv. Tap 2,1; En. Tap 2,1; En. Lane 3,2,1,0 0,0,4x1
I 109 DAC_CML_BIAS_2 10 CML drivers tap 2 amplitude (pre-emph) 0
I 110 DAC_CML_BIAS_1 10 CML drivers tap 1 amplitude (pre-emph) 200
I 111 DAC_CML_BIAS_0 10 CML drivers tap 0 amplitude (main) 900

Monitoring and Test
112 MonitorConfig 1,6,6 Monitor pin: En., I. MUX sel., V. MUX sel. 0,63,63
113 ErrWngMask 8×1 Error and Warning Message disable Mask 0
114 MON_SENS_SLDO 1,4,1,1,4,1 Tsense LDO: En.A, DEM, Bias, En.D, DEM, Bias (12.5) 0,0,0,0,0,0
115 MON_SENS_ACB 1,4,1 Tsense center: En., DEM, Bias (12.5) 0,0,0
116 MON_ADC 1,1,1,6 Vref for Rsense: bot., top.; Vref in; ADC trim bits 0,0,1,0
117 DAC_NTC 10 Current output DAC for the external NTC 100

M 118 HITOR_MASK_3 6×1 HitOR disable for core cols. 53:48 0
M 119 HITOR_MASK_2 16×1 HitOR disable for core cols. 47:32 0
M 120 HITOR_MASK_1 16×1 HitOR disable for core cols. 31:16 0
M 121 HITOR_MASK_0 16×1 HitOR disable for core cols. 15:0 0

– 101 –

Table 22: Global configuration register main table. (*) indicates further details are given follow-
ing the table. Section references are given in (). The Size column may list multiple fields by their
size in bits. The rightmost value is always the field starting at register bit [0] (i.e. all words are
little-endian). Thus, the numbers “1,3,2” in the Size column would indicate a word with 3 fields:
[5],[4:2],[1:0]. n/u Stands for not used in ATLAS chip.

Addr. Name Size (bits) Description
CMS

Default
I 122 AutoRead0 9 Auto-Read register address A for lane 0 134
I 123 AutoRead1 9 Auto-Read register address B for lane 0 135
I 124 AutoRead2 9 Auto-Read register address A for lane 1 137
I 125 AutoRead3 9 Auto-Read register address B for lane 1 138
I 126 AutoRead4 9 Auto-Read register address A for lane 2 140
I 127 AutoRead5 9 Auto-Read register address B for lane 2 151
I 128 AutoRead6 9 Auto-Read register address A for lane 3 152
I 129 AutoRead7 9 Auto-Read register address B for lane 3 156

* 130 RingOscConfig 15×1 Ring oscillator enable bits (13.6) 1,5×0,1,8×0
131 RingOscRoute 3,6 Select which RO to read from block A, B (13.6) 0,0
132 RING_OSC_A_OUT 16 Ring oscillator block A output (rd. only) (13.6) n/a
133 RING_OSC_B_OUT 16 Ring oscillator block B output (rd. only) (13.6) n/a
134 BCIDCnt 16 Bunch counter (rd. only) n/a
135 TrigCnt 16 Received trigger counter (rd. only) n/a
136 ReadTrigCnt 16 Received or internal ReadTrigger ctr (rd. only) n/a
137 LockLossCnt 16 Channel Sync lost lock counter (rd. only) n/a
138 BitFlipWngCnt 16 Bit Flip Warning counter (rd. only) n/a
139 BitFlipErrCnt 16 Bit Flip Error counter (rd. only) n/a
140 CmdErrCnt 16 Command Decoder error message ctr (rd. only) n/a
141 RdWrFifoErrorCount 16 Writes and Reads when fifo was full ctr (rd. only) n/a
142 AI_REGION_ROW 9 Auto Increment current row value (rd. only) n/a
143 HitOr_3_Cnt 16 HitOr_3 Counter (rd. only) n/a
144 HitOr_2_Cnt 16 HitOr_2 Counter (rd. only) n/a
145 HitOr_1_Cnt 16 HitOr_1 Counter (rd. only) n/a
146 HitOr_0_Cnt 16 HitOr_0 Counter (rd. only) n/a
147 GatedHitOr_Cnt_1 8,8 Counters for gated HitOr’s (rd. only) n/a
148 GatedHitOr_Cnt_0 8,8 Counters for gated HitOr’s (rd. only) n/a
149 Pixel_SEU_Cnt 16 Counts pixel reg. bit flips (rd. only) n/a
150 GlobalConfig_SEUCnt 4,12 Counters for global config single bit flips (rd. only) n/a
151 SkippedTriggerCnt 16 Skipped Trigger counter (rd. only) n/a

* 152 DataDecodingVals 16 Encodes selected data output format options (rd. only) n/a
153 EfusesReadData1 16 Readback of efuses 1 of 2 (rd only) n/a
154 EfusesReadData0 16 Readback of efuses 2 of 2 (rd only) n/a

* 155 MonitoringDataADC 12 ADC value (rd. only) n/a
156 PadReadout 4,4 Wire bond pad values: Chip ID, Iref Trim (rd only) n/a

157-159 SEU00-SEU02 16 GR dummies for SEU meas. Full protection 0
160-191 SEU_nodelxx (xx=0-31) 16 GR dummies for SEU meas without 3-phase clocks 0
192-255 SEU_noTMR (xx=0-63) 16 Dummies for SEU meas without triple redundancy 0

– 102 –

* 0 PIX_PORTAL: The pixel portal allows access the the registers within any pixel. Every pixel
has 8 configuration bits:

Bits Name Description
[0] Enable Include the pixel in the DAQ data path
[1] Cal Enable Turn on charge injection (*)
[2] HitOr Enable Add the pixel to its wired OR core col. hit line

[3:6] TDAC value Value for in-pixel theshold trim DAC
[7] TDAC sign Selects differential branch set to TDAC value

Table 23: ATLAS pixel configurations bits. (*) Whether charge injection is digital or analog is
controlled by global configuration register CalibrationConfig. The 5-bit pixel TDAC is made up of
a 4-bit value and a sign bit.

* 3 PIX_MODE: Consisis of: EnSEUCount to enable counting of SEU events in pixel registers,
HitSampleMode bit to sample pixel outputs asnchronlusly (0) or synchronously (1), Broadcast
enable bit, the ConfWrConfig bit, and the AutoRow enable bit. The Broadcat enable bit causes2220

the column pair value of Reg. 1 to be ignored and all pixel in the same row to be written with the
given value. The ConfWrConfig bit is only active when using the Write Multiple mode of the write
register command. In this mode only 10 bits are available in for two pixels in each write cycle, and
they are assigned according to this bit. ConfWrConfig = 1 writes the Pixel Config (5-bits per pixel)
and ConfWrConfig = 0 writes FrontEnd Config (3-bits per pixel). The bits that are not written will2225

remain unchanged. Auto Row mode is described in Sec. 8.8.

* 4,5 PIX_DEFAULT: A special pair of registers that control the multiplexers for pixel configura-
tion. When the correct value is programmed in both registers the programmed configuration (which
must first be written) will be used. Until then the hard-wired default configuration will be active.
Any single bit flip in the correct value of each register will still be interpreted as the correct value.2230

* 6,7 GCR_DEFAULT: A special pair of registers that control the multiplexers for global configu-
ration. When the correct value is programmed in both registers the programmed configuration will
be used. Until then the hard-wired default configuration will be active. Any single bit flip in the
correct value of each register will still be interpreted as the correct value. In this case the default
configuration will also be present in the registers soon after the chip clock is present, so the user2235

need not program anything before switching (See 3).

* 37 LEAKAGE_FEEDBACK: Despite its address after Lin FE biases, it enables the Diff. FE
leakage current compensation (bit 0) and a second feedback capacitance to reduce the gain (bit 1).

* 43-46 EnCoreColumnReset: In the pixel matrix the clocks are gated unless there is hit activ-
ity. However, upon power up, the gating state is arbitrary and enabling the clock to the the columns2240

can result in significant power consumption (up to double normal power). Therefore, a reset is pro-
vided to that columns can be reset to their full clock gated state as they have their clock enabled.
The EnCoreColumnReset registers gate the reset signals to the columns, so that only a limited
number of columns can be reset at the same time, to avoid a large current spike. It is recommended
to set enable EnCoreCol and EnCoreColumnReset equal to each other, and at start of operation2245

cycle though selecting a small group of core columns at a time and issuing a reset signal for each

– 103 –

group. The reset signal is issued by the Clear command (Sec. 8.2.1). After this initialization all
core columns can be enabled.

* 52 ReadTriggerConfig: The column read delay is the number of BX clocks allowed for the
read token to propagate and data valid to appear at the bottom of column. The default (0) allows2250

two clocks. This should normally not be changed but gives the option to allow more time in case
of slower than expected propagation, especially after irradiation. The read trigger decision time is
only relevant in 2-trigger mode. It is effectively the L0 to L1 latency. It is the number of bunch
clocks allowed after a L0 trigger before readout or clear action is taken. A read trigger command
must arrive before this delay for a readout action to be taken (See 9).2255

* 54 CalibrationConfig: Injection can be either analog or digital, selected by bit [7]. Bit [6]
selects the mode of analog injection, which can be regular (same for every pixel, default) or alter-
nating (see Sec. 6)

* 58 MEAS_CAP: Contains the enable bits for the capmeasure circuit (see Sec. 13.8), as well as
the VCAL range bit (see Sec. 6). If VCAL range is zero the injection voltage full scale is from 02260

to Vref_ADC/2, if 1 it is from 0V to Vref_ADC. Note Vref_ADC is used as a reference for the
calibration injection voltage as well as the Generic ADC.

* 62 GlobalPulseConf: The global pulse allows to toggle internal signals within the chip.

Bit Route to: Bit Route to:
0 Reset Channel Synchronizer 8 Reset Data Serializers
1 Reset Command Decoder 9 Reset ADC
2 Reset Global Configuration 10 Reset e-fuses
3 Reset Aurora only 11 Send Cal Reset pulse
4 Reset Data Path (not Aurora) 12 ADC StartOfConversion
5 CLEAR also resets Aurora 13 Send Start Signal to Ring Oscillators block A
6 Reset BCID, LV1ID and ReadTrigger cntrs 14 Send Start Signal to Ring Oscillators block B
7 CLEAR also resets above cntrs 15 Send Start Signal to EfusesProgrammer

Table 24: Global pulse routing choices. Any number of bits can be selected simultaneously.

* 70 DataMerging: Switch actions are: Invert the polarity of input signals to DataMerger ,
Enable sending Chip ID in output data, Enable Gating of 1280 MHz Data Merge clock (0 enables2265

deserializer, 1 disables it), Select which clock to use for data merging (0=640 Mz 1=1280 MHz),
Select which of the Data Mergers are enabled, selects if first two inputs are channel bonded (to
merge one secondary chip at 640 Mbps), The final bit (GPOsel) is a detalied debugging feature for
testing only. Set to 1 it sends to the General Purpose Output (GPO) the deserialised data at the
output of the phase detector for channel 0. Set to 0 it sends instead the output coming from the2270

deserialiser in the pll block (also for channel 0). As this block outputs 16 bits of data sampled 4
times, bits 12,8,4 and 0 will appear on the GPO, which correspoind to one of the phases of the
phase detector.* 77 Data Encoder Config: The last two bits, labeled A and B, are place holders for isolated hit
removal functionality that was not implemented. They are included becasue they offset the position2275

of the remaining bits. Raw map turns off compression, so that every hit map is exactly 16 bits. Max
Hits sets the column readout truncation threshold, where the value 0 deisables truncation.

– 104 –

* 130 RingOscConfig: Enable bits for: Ring Osc. B Clear, Ring Osc. B Enable BL, Ring Osc.
B Enable BR, Ring Osc. B Enable CAPA, Ring Osc. B Enable FF, Ring Osc. B Enable LVT, Ring
Osc. A Clear, Ring Osc. A Enable[7:0].2280

* 152 DataDecodingVals: This register provides summary information to decode the output
data.

Bit Meaning Reg. Bit Meaning Reg. Bit Meaning Reg.
15 Sample mode (n/u) 3 9 Include LV1 ID (n/u) 76 4 En Service Data 64
14 ToT 80MHz Count 65 8 Drop TOT (binary read) 77 3 En Prec. ToA 65
13 ToT 6 to 4 Mapping 65 7 Raw bit map 77 2 En Prec. ToT 65
12 Include Chip ID 70 6 Events per Stream -1 76 1 En col hits limit 78-81
11 Add CRC bits (n/u) 76 5 Self Trigger 48 0 En Iso Hit removal 82-85
10 Include BCID (n/u) 76

Table 25: Bits of data ouptut format decoding register. Reading this register the DAQ/offline can
always find out exactly what endoding options were used. This information is needed in order to
decode the data. It can also be obtained from the chip configuration used, but this puts it all in
one place. Features not used in ATLAS chip are marked n/u, but the bits still will be set or not
according to the configuration registers for those features.

* 155 MonitoringDataADC: This value is updated every time the ADC performs a conversion,
which is triggered by a global pulse. Reading the register multiple times between ADC conversions
will return the same value. Reading the register does not trigger a conversion.2285

– 105 –

16.3 IMUX and VMUX selection values

Setting Selected Input Setting Selected Input Setting Selected Input
0 IREF main ref. current 11 Capmeasure parasitic 22 DIFF FE Preamp Top-Left
1 CDR VCO main bias 12 DIFF FE Preamp Main array 23 DIFF FE VTH1 Right
2 CDR VCO buffer bias 13 DIFF FE PreComp 24 DIFF FE Preamp Top
3 CDR CP current 14 DIFF FE Comparator 25 DIFF FE Preamp Top-Right
4 CDR FD current 15 DIFF FE VTH2 26 not used
5 CDR buffer bias 16 DIFF FE VTH1 Main array 27 not used
6 CML driver tap 2 bias 17 DIFF FE LCC 28 Ana. input current/21000
7 CML driver tap 1 bias 18 DIFF FE Feedback 29 Ana. shunt current/21600
8 CML driver main bias 19 DIFF FE Preamp Left 30 Dig. input current/21000
9 NTC_pad current 20 DIFF FE VTH1 Left 31 Dig. shunt current/21600
10 Capmeasure circuit 21 DIFF FE Preamp Right 32-62 not used

63 high Z

Table 26: Current multiplexer (I_mux) assignments for ATLAS chip.

Setting Selected Input Setting Selected Input Setting Selected Input
0 Vref_ADC (GADC) 10 DIFF FE VTH1 Main array 31 Vref_CORE
1 I_mux pad voltage 11 DIFF FE VTH1 Left 32 Vref_PRE
2 NTC_pad voltage 12 DIFF FE VTH1 Right 33 VINA / 4
3 VCAL_DAC / 2 (Sec. 6.3) 13 RADSENS Ana. SLDO 34 VDDA / 2
4 VDDA / 2 from capmeasure 14 TEMPSENS Ana. SLDO 35 VrefA
5 Poly TEMPSENS top 15 RADSENS Dig. SLDO 36 VOFS / 4
6 Poly TEMPSENS bottom 16 TEMPSENS Dig. SLDO 37 VIND / 4
7 VCAL_HI 17 RADSENS center 38 VDDD / 2
8 VCAL_MED 18 TEMPSENS center 39 VrefD
9 DIFF FE VTH2 19-30 Ana. GND 40-62 not used

63 high Z

Table 27: Voltage multiplexer (V_mux) assignments for ATLAS chip.

– 106 –

16.4 General Purpose LVDS and CMOS Output Assignments

The same selection codes apply to all outputs. Each output has a dedicated multiplexer and there is
no issue selecting the same signal for multiple outputs.

Selected Signal Def # Selected Signal
0 Command input to chip (after LVDS receiver) LVDS0 32 Logic combination of HitOr’s from SelfTrigger
1 Inverted Command input ot chip 33 CalEdge output from Command Decoder
2 Recovered command data before applyng delay LVDS1 34 CalAux output from Command Decoder (CMD)
3 Inverted Recovered command data before delay 35 GlobalPulse output from Command Decoder
4 Recovered command data after applyng delay 36 skipped trigger Warning from CMD
5 Inverted Recovered command data after delay 37 Error signal from Command Decoder
6 recovered 160 MHz clock before applying delay 38 Error counter increment from CMD
7 recovered 160 MHz clock after applying delay 39 SEU Error signal from Command Decoder
8 40MHz Clock to Pixel Matrix 40 SEU Error counter increment from CMD
9 640MHz Clock to Precision ToT 41 SEU Warning from Command Decoder
10 Power on Reset signal LVDS2 42 SEU Warning counter increment from CMD
11 CMD Idle. Goes low if no transitions detected 43 Channel Synchronizer Lock Lost signal

on CMD input, which causes a reset (*)
12 Same as 11 but synchronized to clock 44 GlobalConfiguration SEU_full counter incr.
13 Channel Synchronizer Lock signal CMOS 45 GlobalConfiguration SEU_single counter incr.
14 PLL Lock signal LVDS3 46 Bit 3 from pattern in OUTPUT_PAD_CONFIG (reg. 98)
15 Spies on CDR/PLL up signal 47 Bit 2 from pattern in OUTPUT_PAD_CONFIG (reg. 98)
16 Spies on CDR/PLL down signal 48 Bit 1 from pattern in OUTPUT_PAD_CONFIG (reg. 98)
17 Spies on CDR/PLL up_fd signal 49 Bit 0 from pattern in OUTPUT_PAD_CONFIG (reg. 98)
18 Spies on CDR/PLL down_fd signal 50 End of ADC conversion flag
19 Data arriving at Data Merger input 3 51 LaneUp signal from Aurora Ch. 0
20 Data arriving at Data Merger input 2 52 OR of all Lane Up signals before the switch matrix
21 Data arriving at Data Merger input 1 53 OR of all DeserializedValid signals of LaneUnit
22 Data arriving at Data Merger input 0 54 OR of all SyncDataValid signals of LaneUnit
23 Low power mode indicator (low = low pwr) 55 ChannelUp signal from DeserializerAuroraBonder
24 Trigger signal from Command Decoder 56 Fifo empty sig. in DesData block of ch.0
25 ReadTrigger signal from Command Decoder 57 Fifo empty in DesMonitor of ch.0
26 Trigger pulse from Self Trigger block to CMD 58 Bit 3 of GpoSelected word
27 Read Trigger pulse from Self Trigger to CMD 59 Bit 2 of GpoSelected word
28 HitOr number 3 60 Bit 1 of GpoSelected word
29 HitOr number 2 61 Bit 0 of GpoSelected word
30 HitOr number 1 62 FoundTrans signal from LaneUnit of ch.0
31 HitOr number 0 63 “ChosenâĂŹâĂŹ signal from LaneUnit of ch.0

Table 28: Signal source selection for GP_LVDS and GP_CMOS outputs. Each of the 4 LVDS and
single CMOS outputs is indpendently assigned a source. The default column shows which of the
outputs has that source as its default. (*) The synchronized CMD idle signal (12) resets the chip.
Thus, idling the command input can be used as a hard reset with no need to power cycle.

– 107 –

16.5 Internal and External Component Nominal Values2290

Component Type Value Tolerance Reference
Injection capacitor MOM 8.02 fF ±10% Fig. 32
Diff FE feedback cap (high gain) parasitic 3.73 fF n/a Fig. ??
Diff FE feedback cap (low gain) parasitic 3.28 fF n/a Fig. ??
Resistive temp. sensor p+ Poly w/silicide 10 K ±30% Sec. 12.4
Resistive temp. reference p+ Poly w/o silicide 16 K ±12.5% Sec. 12.4
Internal receiver terminations Poly 100 Ω ±12.5% Sec. 8.1
Chip ID pull up resistors Poly 40 k ±12.5% to VDDD
IREF trim pull up resistors Poly 40 k ±12.5% to VDD_PRE

Table 29: Internal passive component types and values.

Component Function Value Reference Notes
RIref Current reference resistor 22.6 K Fig. 15 VBGR = 450 mV makes Iref = 20 µA
RVrefA Sets analog regulator ref. V. 30 K Fig. 15 VrefA = 0.6 V baseline
RVrefD Sets analog regulator ref. V. 30 K Fig. 15 VrefD = 0.6 V baseline
RshuntA Sets shunt slope 400 Ω Figs. 13, 14 VIN=1.4 V at 1 A
RshuntD Sets shunt slope 400 Ω Figs. 13, 14 VIN=1.4 V at 1 A
ROFS1 Sets the shunt offset V. 24.9 K Figs. 13, 15 VOFS/2 = 0.5 V baseline
ROFS2 Sets the low power offset V. 10 K Fig. 15 VOFS/2 = 0.7 V for low power
RIMUX Converts monitoring I output to a voltage 4.99 K
RVrefADC Sets the ADC reference voltage 84.5 K VREF_ADC = 845 mV baseline
RCMD termination resistor 100 Ω

CVDDA Regulator output bypass ≥0.55 µF Fig. 8 4 instances (2.2 µF total)
CVDDD Regulator output bypass ≥0.55 µF Fig. 8 4 instances (2.2 µF total)
CVPRE Pre-regulator output bypass ≥0.45 µF
CVDD_PLL Phase locked loop bypass 2.2 µF
CVDD_CML Output driver bypass 2.2 µF 2 instances
CVINA Regulator input cap ≥6.8 µF Fig. 8 TBD by SP chain operation
CVIND Regulator input cap ≥6.8 µF Fig. 8 TBD by SP chain operation
CVrefA Vref bypass 100 nF
CVrefD Vref bypass 100 nF
CIREF Iref bypass 100 nF
CVrefADC Vref bypass 100 nF
CIMUX filter for current mux 22 nF only for wafer probing
CIVMUX filter for voltage mux 22 nF optional
CCMD command A/C coupling 10-100 nF 2 instances
CLP_EN_AC Low power mode enable A/C coupling 100 nF Fig. 19 1 instance

Table 30: External passive component types and values.

– 108 –

16.6 Command and Trigger Encoding

Command Encoding (T)ag, (A)ddress or (D)ata 5-bit content
Sync 1000_0001 0111_1110

PLLlock 1010_1010 1010_1010
Trigger tttt_tttt Tag[0..53]
Clear 0101_1010 ID<4:0>

Global Pulse 0101_1100 ID<4:0>
Cal 0110_0011 ID<4:0> D<19:15> D<14:10> D<9:5> D<4:0>

WrReg(0) 0110_0110 ID<4:0> 0,A<8:5> A<4:0> D<15:11> D<10:6> D<5:1> D<0>,0000
WrReg(1) 0110_0110 ID<4:0> 1,xxxx xxxxx N×(D<9:5> D<4:0>)

RdReg 0110_0101 ID<4:0> 0,A<8:5> A<4:0>
Read_trigger(*) 0110_1001 ID<4:0> 00,T<7:5> T<4:0>

Table 31: This is a duplicate of Table 6. List of protocol commands/frames and address or data
fields associated with each. Unused padding bits are indicated by “0”. Double vertical lines denote
frame boundaries. tttt_tttt is one of 15 trigger commands (Table 7). The before-encoded bit content
of chip ID, Address or Data is shown. These are all encoded as 8-bit data symbols (Table 32). (*)
Read_trigger is a legacy command and should not be used in RD53C, as the trigger mode requiring
it has been deprecated.

Symbol Name Encoding Data Value Symbol Name Encoding Data Value
Data_00 0110_1010 5’b00000 Data_16 1010_0110 5’b10000
Data_01 0110_1100 5’b00001 Data_17 1010_1001 5’b10001
Data_02 0111_0001 5’b00010 Data_18 0101_1001 5’b10010
Data_03 0111_0010 5’b00011 Data_19 1010_1100 5’b10011
Data_04 0111_0100 5’b00100 Data_20 1011_0001 5’b10100
Data_05 1000_1011 5’b00101 Data_21 1011_0010 5’b10101
Data_06 1000_1101 5’b00110 Data_22 1011_0100 5’b10110
Data_07 1000_1110 5’b00111 Data_23 1100_0011 5’b10111
Data_08 1001_0011 5’b01000 Data_24 1100_0101 5’b11000
Data_09 1001_0101 5’b01001 Data_25 1100_0110 5’b11001
Data_10 1001_0110 5’b01010 Data_26 1100_1001 5’b11010
Data_11 1001_1001 5’b01011 Data_27 1100_1010 5’b11011
Data_12 1001_1010 5’b01100 Data_28 1100_1100 5’b11100
Data_13 1001_1100 5’b01101 Data_29 1101_0001 5’b11101
Data_14 1010_0011 5’b01110 Data_30 1101_0010 5’b11110
Data_15 1010_0101 5’b01111 Data_31 1101_0100 5’b11111

Table 32: List of command symbols used to encode data values. All symbols are the same as in
RD53A except for Data_18, which is shown in italics. The RD53A Data_18 symbol is now the
PLLlock command.

– 109 –

Symbol Name Encoding Trigger Pattern Symbol Name Encoding Trigger Pattern
Trigger_08 0011_1010 T000

Trigger_01 0010_1011 000T Trigger_09 0011_1100 T00T
Trigger_02 0010_1101 00T0 Trigger_10 0100_1011 T0T0
Trigger_03 0010_1110 00TT Trigger_11 0100_1101 T0TT
Trigger_04 0011_0011 0T00 Trigger_12 0100_1110 TT00
Trigger_05 0011_0101 0T0T Trigger_13 0101_0011 TT0T
Trigger_06 0011_0110 0TT0 Trigger_14 0101_0101 TTT0
Trigger_07 0011_1001 0TTT Trigger_15 0101_0110 TTTT

Table 33: This is a duplicate of Table 7. List of trigger symbols used to encode the 15 possible
trigger patterns spanning four bunch crossings. Note there is no 0000 pattern as that is the absence
of an trigger. The Trigger_01 (000T) means that the first bunch crossing of the trigger window is
meant to be readout, and the extended tag returned will have 00 following the supplied tag base.

Tag Extended Symbol Symbol Tag Extended Symbol Symbol
base tag range code name base tag range code name

0 0-3 0110_1010 Data_00 27 108-111 1100_1010 Data_27
1 4-7 0110_1100 Data_01 28 112-115 1100_1100 Data_28
2 8-11 0111_0001 Data_02 29 116-119 1101_0001 Data_29
3 12-15 0111_0010 Data_03 30 120-123 1101_0010 Data_30
4 16-19 0111_0100 Data_04 31 124-127 1101_0100 Data_31
5 20-23 1000_1011 Data_05 32 128-131 0110_0011 Cal
6 24-27 1000_1101 Data_06 33 132-135 0101_1010 Clear
7 28-31 1000_1110 Data_07 34 136-139 0101_1100 GlobalPulse
8 32-35 1001_0011 Data_08 35 140-143 1010_1010 PllLock
9 36-39 1001_0101 Data_09 36 144-147 0110_0101 ReadReg

10 40-43 1001_0110 Data_10 37 148-151 0110_1001 ReadTrigger
11 44-47 1001_1001 Data_11 38 152-155 0010_1011 Trigger_01
12 48-51 1001_1010 Data_12 39 156-159 0010_1101 Trigger_02
13 52-55 1001_1100 Data_13 40 160-163 0010_1110 Trigger_03
14 56-59 1010_0011 Data_14 41 164-167 0011_0011 Trigger_04
15 60-63 1010_0101 Data_15 42 168-171 0011_0101 Trigger_05
16 64-67 1010_0110 Data_16 43 172-175 0011_0110 Trigger_06
17 68-71 1010_1001 Data_17 44 176-179 0011_1001 Trigger_07
18 72-75 0101_1001 Data_18 45 180-183 0011_1010 Trigger_08
19 76-79 1010_1100 Data_19 46 184-187 0011_1100 Trigger_09
20 80-83 1011_0001 Data_20 47 188-191 0100_1011 Trigger_10
21 84-87 1011_0010 Data_21 48 192-195 0100_1101 Trigger_11
22 88-91 1011_0100 Data_22 49 196-199 0100_1110 Trigger_12
23 92-95 1100_0011 Data_23 50 200-203 0101_0011 Trigger_13
24 96-99 1100_0101 Data_24 51 204-207 0101_0101 Trigger_14
25 100-103 1100_0110 Data_25 52 208-211 0101_0110 Trigger_15
26 104-107 1100_1001 Data_26 53 212-215 0110_0110 WrReg

Table 34: Tag base codes. All 8-bit symbols are re-used to provide the maximum number of tag
bases.

– 110 –

16.7 Output Tags

Tag values (decimal) Meaning
0-215 extended tags from trigger command

216-219 Single bit-flip detected in tag symbol of a trig. command
220-223 Unrecognized tag symbol
224-255 Self-trigger tag values

Table 35: This is a copy of Table 11. Possible extended tag values and their meaning.

16.8 ToT Table

Output True ToT bin (low edge) [BX]
4-bit 40 MHz speed 80 MHz speed
code 4-bit (DEF) 6-to-4 bit 4-bit 6-to-4 bit

0 0 0 0 0
1 1 1 0.5 0.5
2 2 2 1 1
3 3 3 1.5 1.5
4 4 4 2 2
5 5 5 2.5 2.5
6 6 6 3 3
7 7 7 3.5 3.5
8 8 8 4 4
9 9 12 4.5 6

10 10 16 5 8
11 11 20 5.5 10
12 12 24 6 12
13 13 28 6.5 14
14 ≥14 ≥32 ≥7 ≥16

Table 36: This is a copy of Table 5. True ToT value in bunch crossing (BX = 25 ns units) for each
output ToT 4-bit code, depending on speed (40 or 80 MHz) and compression (4 bit or 6-to-4 bit)
settings. Always the low edge of the true ToT bin is shown. For example code 3 having a true ToT
low edge of 3 means the true ToT was at least 3 bunch crossings and at most x, where x is the true
ToT low edge of the next code (4 in this case). The last bin (code 14) has no high edge and includes
all overflows. Code 15 means “no hit” and should never be seen because unhit pixels are internally
suppressed.

– 111 –

16.9 Ring Oscillator Assignments

ROSC Nbr. Type Len. ROSC Nbr. Type Len.
0 Strgth. 0 inv. clk. drvr. 55 4 Strgth. 0 4-input NAND 19
1 Strgth. 4 inv. clk. drvr. 51 5 Strgth. 4 4-input NAND 19
2 Strgth. 0 inverter 55 6 Strgth. 0 4-input NOR 19
3 Strgth. 4 inverter 51 7 Strgth. 4 4-input NOR 19

Table 37: Bank A ring oscillator types and lengths (in number of gates). The given lengths result
in a typical frequency of about 600 MHz before irradiation. Each oscillator has its own Enable bit.

ROSC Nbrs. Type Eff. Len. Group
0 & 1 Strgth. 0 inv. clk. driver 38.2 B-left, B-right
2 & 3 Strgth. 4 inv. clk. driver 44.5 B-left, B-right
4 & 5 Strgth. 0 inverter 38.1 B-left, B-right
6 & 7 Strgth. 4 inverter 44.3 B-left, B-right
8 & 9 Strgth. 0 4-input NAND 12.6 B-left, B-right

10 & 11 Strgth. 4 4-input NAND 16 B-left, B-right
12 & 13 Strgth. 0 4-input NOR 14.5 B-left, B-right
14 & 15 Strgth. 4 4-input NOR 14.5 B-left, B-right
16 & 17 Strgth. 0 scan D-flip-flop 6.1 FF
18 & 19 Strgth. 1 D-flip-flop 6.2 FF
20 & 21 Strgth. 1 Neg. edge D-flip-flop 5 FF

22 Strgth. 0 LVT inverter 40.6 LVT
23 Strgth. 4 LVT inverter 56 LVT
24 Strgth. 0 LVT 4-input NAND 16.5 LVT
25 Strgth. 4 LVT 4-input NAND 22.8 LVT

26-33 Strgth. 4 inj-cap-loaded 4-input NAND 16.8 CAPA

Table 38: Bank B ring oscillator types and lengths (in number of equivalent gates). The lengths
given result in a typical frequency of about 800 MHz before irradiation. The oscillators are con-
nected in separately enabled groups (there are no individual enable bits for each oscillator)

– 112 –

A. Aurora 64b66b Technical Reference2295

References

[1] RD53 Collaboration, “The RD53A Integrated Circuit,” CERN-RD53-PUB-17-001 (2017).

[2] RD53 Collaboration, “RD53B Design Requirements,” CERN-RD53-PUB-19-001 (2019).

[3] Xilinx, “Aurora 64B/66B Protocol Specification,” SP011 (v1.3) October 1, 2014.

[4] M. Karagouins et. al, “An Integrated Shunt-LDO Regulator for Serial Powered Systems,” in Proc. of2300

IEEE ESSCIRC ’09, (2009).

[5] A. ur Rehman et. al, “Performance simulations and characterization of RD53 pixel chips for ATLAS
and CMS HL-LHC upgrades ,” in TWEPP 2021 (2021)
https://indico.cern.ch/event/1019078/contributions/4443947/.

[6] J. Christiansen, “RD53B users guide: Introduction to RD53B pixel chip architecture, features and2305

recommendations for use in pixel detector systems.” CERN-RD53-PUB-21-001 (2021)

– 113 –

