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Measurements of K0
S meson production via its π+π− decay mode in inelastic p+p interac-

tions at incident projectile momenta of 31, 40 and 80 GeV/c (
√

sNN = 7.7,8.8 and 12.3 GeV,
respectively) are presented. The data were recorded by the NA61/SHINE spectrometer at the
CERN Super Proton Synchrotron. Double-differential distributions were obtained in trans-
verse momentum and rapidity. The mean multiplicities of K0

S mesons were determined to be
(5.95±0.19(stat)±0.22(sys))×10−2 at 31 GeV/c, (7.61±0.13(stat)±0.31(sys))×10−2

at 40 GeV/c and (11.58± 0.12(stat)± 0.37(sys))× 10−2 at 80 GeV/c. The results on K0
S

production are compared with model calculations (EPOS1.99, SMASH 2.0 and PHSD) as
well as with published data from other experiments.
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1 Introduction

The measurement of hadron production in proton-proton interactions plays a key role in understanding
nucleus-nucleus collisions. In particular, it can shed some light on the creation process of Quark Gluon
Plasma (QGP), on its properties, and on the characterization of the phase transition between hadronic
matter and the QGP. One of the key signals of QGP creation is the enhanced production of s and s̄ quarks,
carried mostly by kaons [1]. The experimental results indicate that the creation of the QGP starts in
nucleus-nucleus collisions at centre of mass energies from 10 to 20 GeV [2], which is the realm of the
NA61/SHINE experiment at CERN. To explore this region systematically NA61/SHINE studies observ-
ables indicative of the QGP by a two-dimensional scan in collision energy and nuclear mass number of
the colliding nuclei. Since 2009, NA61/SHINE has collected data on p+p, p+Pb, Be+Be, Ar+Sc, Xe+La
and Pb+Pb interactions in the beam momentum range from 13A to 158A GeV/c [3]. Results on neutral
kaon spectra in p+p at 158 GeV/c can be found in Ref. [4], while results on charged kaon spectra in p+p
at 31, 40, 80 and 158 GeV/c can be found in Ref. [5]. In this paper, we present the results of K0

S production
in p+p collisions at 31, 40, and 80 GeV/c, which will be compared with K0

S production at 158 GeV/c [4]
and constitute the baseline for the interpretation of results obtained in heavier systems collected with the
NA61/SHINE detector. Thanks to high statistics, large acceptance, and good momentum resolution the
results presented here have, in general, higher precision than previously published measurements at SPS
energies.

The paper is organised as follows. In Sec. 2, details of the NA61/SHINE detector system are presented.
Section 3 is devoted to describing the analysis method. The results are shown in Sec. 4. In Sec. 5, they
are compared to published world data and model calculations. Section 6 closes the paper with a summary
and outlook.

The following units, variables and definitions are used in this paper. The particle mass and energy are
presented in GeV, while particle momentum is shown in GeV/c. The particle rapidity y is calculated in
the proton-proton collision center of mass system (cms), y = 0.5 · ln[(E + cpL)/(E − cpL)], where E and
pL are the particle energy and longitudinal momentum. The transverse component of the momentum
is denoted as pT . The momentum in the laboratory frame is denoted plab and the collision energy per
nucleon pair in the centre of mass by

√
sNN .

1 No longer affiliated with the NA61/SHINE collaboration
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2 Experimental setup

The NA61/SHINE collaboration uses a large acceptance spectrometer located in the CERN North Area.
The schematic layout of the NA61/SHINE detector during the p+p data-taking is shown in Fig. 1. A
detailed description of the experimental setup can be found in Ref. [6], while the details on the simulation
in describing the detector performance across different kinematic variables as well as its inefficiencies
can be found in Ref. [7].

~13 m
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Figure 1: (Color online) The schematic layout of the NA61/SHINE experiment at the CERN SPS during p+p data
taking (horizontal cut, not to scale). The beam and trigger detector configuration used for data taking in 2009 is
shown in the inset (see Refs. [6–8] for a detailed description). The chosen coordinate system is drawn on the lower
left: its origin lies in the middle of the VTPC-2 on the beam axis.

The main components of the NA61/SHINE spectrometer are four large-volume Time Projection Cham-
bers (TPCs). Two of them, the vertex TPCs (VTPC-1 and VTPC-2), are located in the magnetic fields
of two super-conducting dipole magnets with a maximum combined bending power of 9 Tm, which
corresponds to about 1.5 T and 1.1 T in the upstream and downstream magnets, respectively. This field
strength was used for data taking at 158 GeV/c and scaled down in proportion to the lower beam momenta
to obtain similar y− pT acceptance at all beam momenta. Two large main TPCs (MTPC-L and MTPC-R)
and two walls of pixel Time-of-Flight (ToF-L/R) detectors are positioned symmetrically to the beamline
downstream of the magnets. A GAP-TPC (GTPC) is placed between VTPC-1 and VTPC-2 directly on
the beamline. It closes the gap between the beam axis and the sensitive volumes of the other TPCs. The
TPCs are filled with Ar and CO2 gas mixtures in proportions 90:10 for the VTPCs and 95:5 for the MT-
PCs. Particle identification in the TPCs is based on measurements of the specific energy loss (dE/dx)
in the chamber gas. Typical values for the momentum resolution are σ(p)/p2 = 7× 10−4 (GeV/c)−1

for low-momentum tracks measured only in VTPC-1 (p ≤ 8 GeV/c) and 3× 10−3 (GeV/c)−1 for tracks
traversing the full detector up to and including the MTPCs (p ≥ 8 GeV/c).

Secondary beams of positively charged hadrons at momenta of 31, 40 and 80 GeV/c were used to collect
the data for the analysis presented in this paper. These beams were produced from a 400 GeV/c proton
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beam extracted from the SPS in a slow extraction mode with a flat-top of 10 seconds. The beam mo-
mentum and intensity were adjusted by appropriate settings of the H2 beam line magnet currents and
collimators. Protons from the secondary hadron beam are identified by two Cherenkov counters, C1 [9]
and C2 (THC). The C1 counter, using a coincidence of six out of the eight photomultipliers placed radi-
ally along the Cherenkov ring, provides identification of protons, while the THC, operated at a pressure
lower than the proton threshold, is used in anti-coincidence in the trigger logic. A selection based on
the signals from the Cherenkov counters allowed to identify beam protons with a purity of about 99%,
as demonstrated by a measurement of the specific ionization energy loss dE/dx of the beam particles by
bending the 31 GeV/c beam into the TPCs using the full magnetic field strength [10]. A set of scintillation
(S1, S2 and V0, V1) and beam position detectors (BPDs) upstream of the spectrometer provide timing
reference, and position measurements of incoming beam particles. The trigger scintillation counter S4
placed downstream of the target has a diameter of 2 cm. It is used to trigger the readout whenever an
incoming beam particle, which is registered upstream of the target, does not hit S4, which indicates that
an interaction occurred in the target area.

A cylindrical target vessel of 20.29 cm length and 3 cm diameter was placed upstream of the entrance
window of VTPC-1 (center of the target is at z = -581 cm in the NA61/SHINE coordinate system).
The vessel was filled with liquid hydrogen corresponding to an interaction length of 2.8%. The liquid
hydrogen had a density of approximately 0.07 g/cm3. Data were taken with the vessel filled with liquid
hydrogen and being empty. Here, only events recorded with the target vessel filled with hydrogen were
analyzed.

3 Analysis

3.1 Data sets

The presented results on K0
S production in inelastic p+p interactions at pbeam = 31,40 and 80 GeV/c

are based on data recorded in 2009. Table 1 summarizes basic information about data sets used in the
analysis, the number of events selected by interaction trigger and the number of events after analysis cuts.
The event numbers recorded with the interaction trigger were 2.85M, 4.37M and 3.80M, respectively.
The drop in event numbers after cuts is caused mainly by BPD reconstruction inefficiencies and off-target
interactions accepted by the trigger logic.

pbeam (GeV/c)
√

sNN (GeV) Number of recorded events Number of events after
with interaction trigger selection criteria

31 7.7 2.85 ×106 0.83 ×106

40 8.8 4.37 ×106 1.24 ×106

80 12.3 3.80 ×106 1.48 ×106

Table 1: Data sets used for the analysis of K0
S production. The beam momentum is denoted by pbeam, whereas

√
sNN

is the energy available in the center-of-mass system for the nucleon pair. The events selection criteria are described
in Sec. 3.3.
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3.2 Analysis method

The event vertex and the produced particle tracks were reconstructed using the standard NA61/SHINE
software. Details of the track and vertex reconstruction procedures can be found in Refs. [7, 8, 11].
Detector parameters were optimized by a data-based calibration procedure, which also considered their
time dependence; for details, see Refs. [5,12]. The following section enumerates the criteria for selecting
events, tracks and the K0

S decay topology. Then, the simulation-based correction procedure is described
and used to quantify the losses due to reconstruction inefficiencies and limited geometrical acceptance.

3.3 Event selection

The criteria for selection of inelastic p+p interactions are the following:

(i) An event was accepted by the trigger logic (see Refs. [7, 8]) as an interaction candidate event.

(ii) No off-time beam particle was detected within a time window of ±2 µs around the trigger particle.

(iii) Beam particle trajectory was measured in at least three planes out of four of BPD-1 and BPD-2 and
in both planes of BPD-3.

(iv) The primary interaction vertex fit converged.

(v) The z position of the interaction vertex (fitted using the beam trajectory and TPC tracks) not farther
away than 9 cm from the center of the target vessel.

(vi) Events with a single, well-measured, positively charged track with absolute momentum close to the
beam momentum (p > pbeam −1 GeV/c) were rejected.

The background due to elastic interactions was removed via cuts (iv) and (vi). The contribution from
off-target interactions was reduced by cut (v). The simulations corrected the losses of inelastic p+p
interactions due to the event selection procedure.

The numbers of events left after the selection criteria described in the text above are given in Table 1.

3.4 Track and topology selection

Neutral strange particles are detected and measured using their weak decay into charged particles. The
K0

S decays into π++π− with a branching ratio of 69.2% [13] are used here. The decay particles form the
so-called V 0 topology. K0

S decay candidates (V 0s) are obtained by pairing all positively with all negatively
charged pion candidates. The tracks of the decay pions and the V 0 topology are subject to the following
additional selection criteria:

(i) For each candidate track, the minimum number of measured clusters in VTPC-1 and VTPC-2 must
be 15.

(ii) All pion tracks must have a measured specific energy loss (dE/dx) in the TPCs within ±3σ around
the nominal Bethe-Bloch value for charged pions. Here, σ represents the typical standard deviation
of a Gaussian fitted to the dE/dx distribution of pions. Since only small variations of σ were
observed for different bins and beam momenta, a constant value σ = 0.052 is used [14]. This
selection criterion applies only to experimental data, not MC-simulated events (see below).
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(iii) The distance |∆z| between the z-coordinates of the primary production and the K0
S decay vertices is

required to lie in the rapidity dependent range: |∆z| > ea+b·ylab , with ylab the rapidity in the laboratory
and a and b constants which amount to 1.91 and 0.99 for the pbeam = 31 GeV/c, 1.71 and 0.95 for
pbeam = 40 GeV/c, and 1.85 and 0.90 for pbeam = 80 GeV/c data sets, respectively.

(iv) The distance of closest approach (DCA) in the x and y directions of the straight line given by the
K0

S momentum vector in the laboratory and the primary vertex must be smaller than 0.25 cm, with

DCA given by
√

(bx/2)2 +by
2.

(v) The cosine of the angle between the V 0 and π+ momentum vectors in the K0
S rest frame has to be

in the range: −0.97 < cosΘ∗ < 0.85.

The quality of the aforementioned track and topology selection criteria is illustrated in Fig. 2. The
population of K0

S decay candidates is shown as a function of the two Armenteros-Podolansky variables
pArm

T and αArm [15] and after all track and topology selection criteria. The quantity pArm
T is the trans-

verse momentum of the decay particles with respect to the direction of motion of the V 0 candidate and
αArm = (p+L − p−L )/(p+L + p−L ), where p+L and p−L are the longitudinal momenta of the positively and
negatively charged V 0 daughter particles, measured with respect to the V 0’s direction of motion. From
the plots (see Fig. 2) one can see that contributions of Λ and Λ̄ hyperons are removed by the topological
selection criteria.

Figure 2: Armenteros-Podolanski plots of V 0 candidates after all track and topology selection criteria for pbeam =
31,40 and 80 GeV/c from left to right. The boundaries on the plots’ left and right sides result from using the cosΘ∗

cut, while the upper and lower boundaries are shaped by selecting a certain invariant mass range.

3.5 Raw K0
S yields

The double differential uncorrected yields of K0
S are determined by studying the invariant mass distribu-

tions of the accepted pion pairs in bins of rapidity and transverse momentum (examples are presented in
Fig. 3). The K0

S decays will appear as a peak over a smooth combinatorial background. The K0
S yield

was determined in each bin using a fit function that describes both the signal and the background. A
Lorentzian function was used for the signal:

L(m) = A
1
π

1
2 Γ

(m−m0)2 +(1
2 Γ)2

, (1)

where A is the normalization factor, Γ is the full width at half maximum of the signal peak, and m0 is
the mass parameter. The background contribution is described by a polynomial function of 2nd order.
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Figure 3 shows examples of π+π− invariant mass distributions obtained from the pbeam = 40 GeV/c data
set after all V 0 selection cuts for real data (left) and for simulated events (right).
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Figure 3: The invariant mass distribution of K0
S candidates for experimental data (left) and MC (right) for the

pbeam = 40 GeV/c data set for −0.25 ≤ y < 0.25 and 0.2 ≤ pT < 0.4 after all selection criteria. The dashed-blue
vertical lines indicate the regions where the K0

S signal was integrated. The signal data points are black, the fitted
background is orange, the fitted signal is blue, and the total fit results are red. Mass resolutions obtained from the
fits are: σ = (0.00925±0.00064) GeV for the experimental data and σ = (0.00946±0.00017) GeV for the MC.

The procedure of fitting the histograms proceeds in three steps. In the first step, the background outside
the signal peak ([0.475-0.525] GeV) is fitted with a polynomial of 2nd order. This step is necessary to
obtain starting values for the parameters of the background function. In the next step, a full invariant
mass spectrum fit is performed with the sum of the Lorentzian and the background function. The initial
parameter values for the background function are taken from the previous step, the mass parameter is
fixed to the PDG value of m0 = 0.497614(24) GeV [13], and the width is allowed to vary between 0.005
and 0.03 GeV. Finally, in the last step, all parameters are free, and the fitting region is [0.35-0.65] GeV.
The orange and blue curves in Fig. 3 show the fitted polynomial background and the Lorentzian signal
function. To minimize the sensitivity of the K0

S yield to the integration window, the uncorrected number
of K0

S was calculated by subtracting bin-by-bin the fitted background (B) and summing the background-
subtracted signal in the mass window m0 ± 3Γ (dashed vertical lines), where m0 is the fitted mass of
the K0

S . Figure 3 shows that the simulation reproduces the central value of the K0
S mass distribution and

its width agree with the data within uncertainties. The Γ parameter fitted to the simulation was used to
calculate the signal from the simulation. Thus, a possible bias due to differences between the data and the
simulation is reduced; see Sec. 3.8.

The uncorrected bin-by-bin K0
S multiplicities and their statistical uncertainties are shown in Fig. 4.

3.6 Correction factors

A correction for interactions of the incident protons with the target vessel is not needed, because the
distributions of the primary vertex coordinates show no sign of such events after the event and track se-
lection cuts. A detailed Monte Carlo simulation was performed to compute the corrections for losses due
to the trigger bias, geometrical acceptance, reconstruction efficiency, and the selection criteria applied in
the analysis. The correction factors are based on 20× 106 inelastic p+p events at each beam momenta
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Figure 4: Uncorrected bin-by-bin multiplicities of K0
S with their statistical uncertainties for pbeam = 31 GeV/c (left),

pbeam = 40 GeV/c (right) and pbeam = 80 GeV/c (bottom).

pbeam = 31,40 and 80 GeV/c produced by the EPOS1.99 event generator [16, 17]. Particles in the gen-
erated events were tracked through the NA61/SHINE apparatus using the GEANT3 package [18]. The
TPC response was simulated by dedicated software packages that account for known detector effects. The
simulated events were reconstructed with the same software as the real events, and the same selection cuts
were applied. However, dE/dx identification was replaced by matching reconstructed tracks to simulated
ones. The branching ratio of K0

S decays is taken into account in the GEANT3 software package. For each
y and pT bin, the correction factor cMC(y, pT ) was calculated as:

cMC(y, pT ) =
ngen

MC(y, pT )

Ngen
MC

/
nacc

MC(y, pT )

Nacc
MC

, (2)

where:

- ngen
MC(y, pT ) is the number of K0

S generated in a given (y, pT ) bin,

- nacc
MC(y, pT ) is the number of reconstructed K0

S in a given (y, pT ) bin.

- Ngen
MC is the number of generated inelastic p+p interactions (20×106),

- Nacc
MC is the number of accepted p+p events (about 13.5×106 for all three beam momenta).
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The loss of the K0
S mesons due to the dE/dx cut is corrected with an additional factor:

cdE/dx =
1
ε2 = 1.005 , (3)

where ε = 0.9973 is the probability for the pions to be detected within ±3σ around the nominal Bethe-
Bloch value.

The double-differential yield of K0
S per inelastic event in bins of (y, pT ) is calculated as follows:

d2n
dyd pT

(y, pT ) =
cdE/dx · cMC(y, pT )

∆y∆pT
·

nK0
S
(y, pT )

Nevents
, (4)

where:

- cdE/dx, cMC(y, pT ) are the correction factors described above,

- ∆y and ∆pT are the bin widths,

- nK0
S
(y, pT ) is the uncorrected number of K0

S , obtained by the signal extraction procedure described
in Sec. 3.5. The corresponding values are presented in Fig. 4,

- Nevents is the number of events left in the sample after selection criteria.

3.7 Statistical uncertainties

The statistical uncertainties of the corrected double-differential yields (see Eq. 4) receive contributions
from the statistical uncertainty of the correction factor cMC(y, pT ) and the statistical uncertainty of the
uncorrected number of K0

S (∆NK0
S
(y, pT )). The statistical uncertainty of the former receives two contribu-

tions, the first, α , caused by the loss of inelastic interactions due to the event selection and the second, β ,
connected with the loss of K0

S candidates due to the V 0 selection:

cMC(y, pT ) =
ngen

MC(y, pT )

Ngen
MC

/
nacc

MC(y, pT )

Nacc
MC

=
Nacc

MC

Ngen
MC

/
nacc

MC(y, pT )

ngen
MC(y, pT )

=
α

β (y, pT )
, (5)

The error of α is calculated assuming a binomial distribution:

∆α =

√
α(1−α)

Ngen
MC

, (6)

The error of β is calculated according to the formula:

∆β (y, pT ) =

√(
∆nacc

MC(y, pT )

ngen
MC(y, pT )

)2

+

(
nacc

MC(y, pT ) ·∆ngen
MC(y, pT )

(ngen
MC(y, pT ))2

)2

, (7)

where ∆nacc
MC(y, pT )=

√
S+B see Sec. 3.5, and ∆ngen

MC(y, pT )=
√

ngen
MC(y, pT ). The equation for ∆cMC(y, pT )

can be written as:
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∆cMC(y, pT ) =

√(
∆α

β

)2

+

(
−α ·∆β

β 2

)2

. (8)
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Figure 5: Monte-Carlo correction factors (see Eq. 2) with their statistical uncertainties (see Eq. 8) in each (y, pT )
bin for pbeam = 31 GeV/c (left), pbeam = 40 GeV/c (right) and pbeam = 80 GeV/c (bottom).

Finally, the statistical uncertainties ∆nK0
S
(y, pT ) of the corrected number of K0

S are:

∆
d2n

dyd pT
(y, pT ) =

√√√√(cdE/dx · cMC(y, pT )

Nevents ∆y∆pT

)2

∆n2
K0

S
(y, pT )+

(
cdE/dx ·nK0

S
(y, pT )

Nevents ∆y∆pT

)2

∆c2
MC(y, pT ) . (9)

3.8 Systematic uncertainties

Three possible contributions to the systematic uncertainties related to the event selection criteria, the track
and V 0 selection criteria and the signal extraction procedure were considered.

(i) The uncertainties related to the event selection criteria (see Sec. 3.3) were estimated by performing
the analysis with the following changes:
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– Simulations were done with and without the S4 trigger condition for all inelastic p+p inter-
actions. One-half of the difference between these two results was taken as the contribution to
the systematic uncertainty, which amounts to up to 3%.

– The allowed range of the vertex z position was changed from -590 < z (cm) < -572 to -588 <
z (cm) < -574 and -592 < z (cm) < -570. The uncertainty due to the variation of the selection
window amounts to up to 4%.

(ii) The uncertainties related to the track and V 0 selection criteria were estimated by performing the
analysis with the following changes compared to the original values (see Sec. 3.4):

– the minimum required number of clusters in both VTPCs for V 0 daughters was changed from
15 to 12 and 18, indicating a possible bias of up to 2%,

– the standard dE/dx cut used for identification of V 0 daughters was changed from ±3σ to
±2.5σ and ±3.5σ from the nominal Bethe-Bloch value indicating a possible bias of up to
3%,

– the ∆z cut was changed by varying the parameters a and b from 1.91 to 2.01 and 1.81 for
parameter a and from 0.99 to 0.98 and 1.00 for parameter b for pbeam = 31 GeV/c, from
1.71 to 1.91 and 1.51 for parameter a and from 0.95 to 0.93 and 0.97 for parameter b for
pbeam = 40 GeV/c and from 1.85 to 2.05 and 1.65 for parameter a and from 0.90 to 0.88 and
0.92 for parameter b for pbeam = 80 GeV/c, indicating a possible bias of up to 2%,

– the allowed distance of closest approach of the K0
S trajectory to the primary vertex was varied

from 0.25 to 0.20 and 0.30 cm, indicating a possible bias of up to 3%,

– the cosΘ∗ range for accepted candidates was changed from −0.97< cosΘ∗ < 0.85 to −0.99<
cosΘ∗ < 0.87 and −0.95 < cosΘ∗ < 0.83 indicating a possible bias of up to 3%.

(iii) The uncertainty due to the signal extraction procedure (see Sec. 3.5) was estimated by:

– changing the background fit function from a 2nd order to a 3rd order polynomial indicating a
possible bias of up to 4%,

– changing the invariant mass range over which the uncorrected number of K0
S was integrated

from m0 ±3Γ to m0 ±2.5Γ and m0 ±3.5Γ indicating a possible bias of up to 2%,

– calculating the uncorrected number of K0
S as the sum of entries after background fit subtraction

instead of the integral of the Lorentzian signal function indicating a possible bias of up to 2%,

– changing the region of the fit from [0.35-0.65] GeV/c2 to [0.38-0.62] GeV/c2 indicating a
possible bias of up to 2%.

The maximum deviations are determined separately for each group of contributions to the systematic
uncertainty. The systematic uncertainty was calculated as the square root of the sum of squares of the
maximum deviations. This procedure was used to estimate systematic uncertainties of all final quantities
presented in this paper: yields in (y, pT ) bins, inverse slope parameters of transverse momentum spectra,
yields in rapidity bins, and mean multiplicities.
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3.9 Mean lifetime measurements

The reliability of the K0
S reconstruction and the correction procedure was validated by studying the life-

time distribution of the analyzed K0
S . The lifetime (cτ) of each identified K0

S was calculated from the V 0

path length and its velocity. The corrected number of K0
S was then determined in bins of cτ/cτPDG, and

for the five rapidity bins of the pbeam = 40 GeV/c and 80 GeV/c data sets and in the whole rapidity range
(−0.75 < y < 1.75) of the pbeam = 31 GeV/c data set (see Fig. 6). The straight lines in Fig. 6 represent the
results of exponential fits, which provide mean lifetime values (normalized to the known PDG value [13])
as a function of rapidity. The thus determined mean lifetimes are shown in Fig. 7 as a function of rapidity.
The measured mean K0

S lifetimes agree within uncertainties with the PDG value and thus confirm the
quality of the analysis.
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Figure 6: (Color online) Corrected lifetime distributions for K0
S mesons produced in inelastic p+p interactions at

beam energies of pbeam = 31 GeV/c (top left), pbeam = 40 GeV/c (top right), and pbeam = 80 GeV/c (bottom). The
straight lines show the results of exponential fits used to obtain the mean lifetimes (normalized to the PDG value)
in rapidity bins. Statistical uncertainties are smaller than the marker size and are not visible on the plots.
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Figure 7: (Color online) Mean K0
S lifetimes (normalized to the PDG value) obtained from fits to the lifetime distri-

butions of Fig. 6 for the pbeam = 40 GeV/c (left) and pbeam = 80 GeV/c (right) data sets versus the rapidity y. The
error bars indicate the statistical uncertainties.

4 Results

This section presents new NA61/SHINE results on inclusive K0
S meson production from inelastic p+p

interactions at beam momenta of 31, 40 and 80 GeV/c. Transverse momentum and rapidity spectra are
obtained from the analysis of the weak decays of K0

S mesons into two charged pions.

4.1 Transverse momentum spectra

Double differential K0
S yields listed in Table 2 represent the main result of this paper. Yields are deter-

mined in five consecutive rapidity bins in the interval −0.75 < y < 1.75 and six transverse momentum
bins in the interval 0.0 < pT (GeV/c) < 1.2. The transverse momentum distributions at mid-rapidity
(y ≈ 0) are shown in Fig. 8.

An exponential function was fitted to the transverse momentum spectra. It reads:

f (pT ) = A · pT · exp


√

p2
T +m2

0

T

 , (10)

where m0 is the mass of the K0
S and T is the inverse slope parameter. The resulting values of T in each

rapidity bin are listed in Table 3.

4.2 Rapidity distributions and mean multiplicities

Kaon yields in each rapidity bin were obtained from the measured transverse momentum distributions.
The small fraction of K0

S at high pT outside of the acceptance was determined using Eq. 10. The resulting
dn
dy spectra of K0

S mesons produced in inelastic p+p interactions at 31, 40 and 80 GeV/c are presented in
Fig. 9 together with the previous NA61/SHINE results obtained for p+p interactions at 158 GeV/c [4].
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Momentum Results d2n
dyd pT

×103

pbeam = 31 GeV/c

y
pT (GeV/c)

(0.0;0.2) (0.2;0.4) (0.4;0.6)

(-0.75;-0.25) 19.2 ± 5.1 ± 6.6 44.6 ± 8.8 ± 7.0 35.9 ± 8.0 ± 11.7
(-0.25;0.25) 24.5 ± 3.4 ± 4.4 56.1 ± 4.6 ± 3.9 40.7 ± 3.4 ± 2.6
(0.25;0.75) 20.4 ± 2.5 ± 1.7 40.5 ± 3.2 ± 2.0 33.0 ± 2.6 ± 2.4
(0.75;1.25) 15.7 ± 2.4 ± 4.6 21.7 ± 2.5 ± 1.9 21.7 ± 2.3 ± 2.1
(1.25;1.75) 6.3 ± 1.4 ± 2.5 9.1 ± 1.7 ± 1.2 4.1 ± 1.3 ± 1.0

y
pT (GeV/c)

(0.6;0.8) (0.8;1.0) (1.0;1.2)

(-0.75;-0.25) 13.3 ± 3.6 ± 3.8 - -
(-0.25;0.25) 18.7 ± 2.0 ± 1.6 10.2 ± 1.2 ± 1.6 4.2 ± 0.8 ± 0.7
(0.25;0.75) 17.0 ± 1.6 ± 1.3 5.4 ± 0.8 ± 0.6 2.7 ± 0.5 ± 0.4
(0.75;1.25) 7.6 ± 1.2 ± 0.5 2.3 ± 0.6 ± 0.7 1.2 ± 0.4 ± 0.2
(1.25;1.75) 1.0 ± 0.6 ± 0.3 - -

pbeam = 40 GeV/c

y
pT (GeV/c)

(0.0;0.2) (0.2;0.4) (0.4;0.6)

(-0.75;-0.25) 24.8 ± 3.5 ± 7.3 54.3 ± 5.6 ± 7.6 34.9 ± 4.3 ± 4.3
(-0.25;0.25) 28.6 ± 2.6 ± 1.6 60.0 ± 3.3 ± 2.9 46.0 ± 2.4 ± 1.4
(0.25;0.75) 26.5 ± 2.0 ± 2.4 51.1 ± 2.7 ± 2.8 38.1 ± 2.2 ± 2.6
(0.75;1.25) 16.6 ± 1.6 ± 0.7 33.5 ± 2.4 ± 3.0 23.4 ± 1.9 ± 1.5
(1.25;1.75) 9.4 ± 1.2 ± 1.1 13.6 ± 1.9 ± 2.6 8.7 ± 1.5 ± 1.3

y
pT (GeV/c)

(0.6;0.8) (0.8;1.0) (1.0;1.2)

(-0.75;-0.25) 19.6 ± 2.3 ± 2.1 10.2 ± 1.4 ± 1.7 3.9 ± 0.8 ± 0.8
(-0.25;0.25) 23.2 ± 1.6 ± 1.6 11.2 ± 1.0 ± 0.9 5.4 ± 0.7 ± 0.6
(0.25;0.75) 22.1 ± 1.4 ± 1.8 8.7 ± 0.9 ± 1.2 3.2 ± 0.5 ± 0.4
(0.75;1.25) 11.1 ± 1.2 ± 1.0 4.1 ± 0.7 ± 0.5 1.4 ± 0.4 ± 0.3
(1.25;1.75) 5.2 ± 1.2 ± 2.3 0.9 ± 0.5 ± 0.2 0.3 ± 0.2 ± 0.1

pbeam = 80 GeV/c

y
pT (GeV/c)

(0.0;0.2) (0.2;0.4) (0.4;0.6)

(-0.75;-0.25) 35.2 ± 2.5 ± 3.5 64.2 ± 2.9 ± 2.6 51.8 ± 2.4 ± 2.9
(-0.25;0.25) 35.0 ± 2.0 ± 2.1 68.6 ± 2.5 ± 2.0 63.8 ± 2.2 ± 1.9
(0.25;0.75) 33.0 ± 1.6 ± 0.9 67.6 ± 2.3 ± 1.7 49.7 ± 2.2 ± 3.0
(0.75;1.25) 23.6 ± 1.3 ± 1.0 50.8 ± 2.0 ± 1.6 35.3 ± 2.1 ± 1.7
(1.25;1.75) 15.5 ± 1.2 ± 0.6 30.8 ± 1.7 ± 1.4 20.5 ± 1.9 ± 1.6

y
pT (GeV/c)

(0.6;0.8) (0.8;1.0) (1.0;1.2)

(-0.75;-0.25) 28.0 ± 1.6 ± 1.7 13.4 ± 1.0 ± 0.6 5.6 ± 0.7 ± 0.5
(-0.25;0.25) 31.6 ± 1.5 ± 1.9 15.4 ± 1.0 ± 1.1 6.4 ± 0.6 ± 0.5
(0.25;0.75) 29.3 ± 1.7 ± 1.6 14.7 ± 1.2 ± 1.0 5.4 ± 0.7 ± 0.4
(0.75;1.25) 22.0 ± 2.0 ± 1.3 7.4 ± 1.3 ± 0.9 3.4 ± 0.9 ± 0.3
(1.25;1.75) 8.5 ± 1.6 ± 1.5 4.6 ± 1.2 ± 1.3 0.8 ± 0.6 ± 0.2

Table 2: Double differential K0
S yields in bins of (y, pT ). The first uncertainty is statistical, while the second one is

systematic.

The mean multiplicities of K0
S mesons were calculated as the sum of the measured data points in Fig. 9

scaled by the ratio between measured and unmeasured regions obtained from the Monte-Carlo simulation.
The statistical uncertainties of ⟨K0

S ⟩ were calculated as the square root of the sum of the squares of the
statistical uncertainties of the contributing bins. The systematic uncertainties were calculated as the square
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Figure 8: (Color online) Double-differential K0
S spectra in inelastic p+p interaction at 31 GeV/c (left), 40 GeV/c

(middle) and 80 GeV/c (right) at mid-rapidity (y ≈ 0) calculated according to Eq. 4. Measured points are shown
as blue full triangles up (for pbeam = 31 GeV/c), green full triangles down (for pbeam = 40 GeV/c) and orange
full squares (for pbeam = 80 GeV/c). The solid curves are fitted to the data points using the exponential function
(Eq. 10). Vertical bars indicate statistical uncertainties (for some points smaller than the symbol size). Shaded
boxes show systematic uncertainties. Only statistical uncertainties are taken into account in the fit, because the
systematic uncertainties do not depend on pT . The numerical values of the data points are listed in Table 2.

pbeam = 31 GeV/c

y T (MeV) dn
dy ×103

(-0.75;-0.25) 149.4 ± 18.7 ± 21.8 24.6 ± 2.8 ± 3.1
(-0.25;0.25) 160.5 ± 5.9 ± 5.7 31.3 ± 1.5 ± 1.7
(0.25;0.75) 152.5 ± 4.9 ± 3.7 24.1 ± 1.1 ± 1.0
(0.75;1.25) 137.0 ± 6.2 ± 8.1 14.1 ± 0.9 ± 0.8
(1.25;1.75) 93.5 ± 11.7 ± 11.2 4.2 ± 0.6 ± 0.8

pbeam = 40 GeV/c

y T (MeV) dn
dy ×103

(-0.75;-0.25) 162.6 ± 6.8 ± 9.7 30.0 ± 1.7 ± 2.6
(-0.25;0.25) 164.8 ± 4.2 ± 1.9 35.5 ± 1.0 ± 1.4
(0.25;0.75) 157.4 ± 3.7 ± 4.0 30.4 ± 0.9 ± 1.8
(0.75;1.25) 143.6 ± 4.5 ± 2.6 18.2 ± 0.8 ± 1.0
(1.25;1.75) 122.2 ± 7.6 ± 6.2 7.6 ± 0.6 ± 0.7

pbeam = 80 GeV/c

y T (MeV) dn
dy ×103

(-0.75;-0.25) 165.8 ± 3.6 ± 2.3 40.3 ± 1.0 ± 1.6
(-0.25;0.25) 171.0 ± 3.0 ± 1.7 45.1 ± 0.9 ± 1.5
(0.25;0.75) 168.0 ± 3.4 ± 2.4 40.7 ± 0.8 ± 1.2
(0.75;1.25) 159.9 ± 4.7 ± 4.0 28.9 ± 0.8 ± 0.7
(1.25;1.75) 140.6 ± 6.2 ± 3.9 16.2 ± 0.7 ± 0.7

Table 3: Numerical values of T and dn/dy for K0
S mesons produced in p+p interactions at 31, 40 and 80 GeV/c.

The first column indicates the data set. The second column shows the rapidity range. The values of the inverse
slope parameter are listed in the third column, along with their statistical and systematic uncertainties. The last
column shows the numerical values of the pT -integrated yields presented in Fig. 9 with statistical and systematic
uncertainties.
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uncertainties are shown by vertical bars (often smaller than the marker size), while shaded boxes indicate systematic
uncertainties. The curves indicate the result of the Gaussian fit to the measured points. Points for p+p at

√
sNN =

17.3 GeV are taken from [4].

root of squares of systematic uncertainties described in Sec. 3.8. To estimate the systematic uncertainties
of the method used to determine the mean multiplicities of K0

S , the rapidity distributions were also fitted
using a single Gaussian or two Gaussians symmetrically displaced from mid-rapidity. The deviations
of the results of these fits from ⟨K0

S ⟩ are included as an additional contribution to the final systematic
uncertainty. The mean multiplicities of K0

S mesons in inelastic p+p collisions were found to be 0.0595±
0.0019(stat)±0.0022(sys) at 31 GeV/c, 0.0761±0.0013(stat)±0.0031(sys) at 40 GeV/c and 0.1158±
0.0012(stat)±0.0037(sys) at 80 GeV/c.

5 Comparison with published world data and model calculations

This section compares the new NA61/SHINE measurements of K0
S production in inelastic p+p interac-

tions at 31, 40 and 80 GeV/c with world data as well as with microscopic model calculations (EPOS1.99 [16,
17], SMASH 2.0 [19] and PHSD [20, 21]). The K0

S rapidity spectra from NA61/SHINE are compared in
Fig. 10 to the results from Blobel et al. [22] as well as with results from Ammosov et al. [23]. The
results from Blobel et al. at 24 GeV/c are significantly below the NA61/SHINE 31 GeV/c data in the
central rapidity part. The results from Ammosov et al. at 69 GeV/c are located between the measured
NA61/SHINE points of the 40 and 80 GeV/c data sets, as expected.

Recently NA61/SHINE reported an excess of charged over neutral kaon production in Ar+Sc collisions
at 75A GeV/c [24]. The precise and detailed results on K0

S production in p+p interactions reported here,
together with the corresponding results on charged kaons [5], may contribute to the understanding of this
puzzle. To this end the rapidity distributions of K0

S are compared with two predictions derived from K+

and K− yields obtained from the same data sets [5]. The first prediction is based on valence- and sea-quark
counting arguments [25] and leads to the equation NK0

S
= 1

4(NK+ +3 ·NK−). This relation was used in the
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Figure 10: (Color online) dn/dy as a function of scaled rapidity y/ybeam of K0
S mesons in inelastic p+p interactions at

31, 40 and 80 GeV/c. Measured points are shown as blue full triangles up (for pbeam = 31 GeV/c), green full triangles
down (for pbeam = 40 GeV/c) and orange full squares (for pbeam = 80 GeV/c). Results from other experiments are
shown as azure-colored diamonds (for Blobel et al. at 24 GeV/c) and yellow-colored diamonds (for Ammosov et
al. at 69 GeV/c). Vertical bars indicate statistical uncertainties (for some points smaller than the symbol size).

past to estimate the neutral kaon flux in the fragmentation region for K0 beam studies [26]. The second
prediction assumes isospin symmetry of the different charge states of the kaon: NK0

S
= 1

2(NK+ +NK−).
The K0

S rapidity distributions are compared to these two predictions in Fig. 11. The prediction based on
valence quark counting describes the K0

S rapidity distributions significantly better than the one assuming
isospin symmetry.

Figure 12 compares the NA61/SHINE measurements with model calculations from EPOS1.99, PHSD
and SMASH 2.0. EPOS1.99 overpredicts the experimental data at all three data beam momenta. PHSD
overpredicts the measured pbeam = 80 GeV/c data, while for the remaining two data sets it shows fair
agreement. SMASH 2.0 describes the experimental pbeam = 80 GeV/c data very well but underpredicts the
remaining two data sets. All models exhibit the same shape of the rapidity distribution as the experimental
data. The energy dependence of K0

S production seems to be well reproduced by EPOS1.99, whereas PHSD
and SMASH 2.0 both exhibit a stronger rise than observed in the data.

The mean multiplicity of K0
S mesons in p+p collisions at

√
sNN = 7.7, 8.8, 12.3 GeV, reported here, and

the published result at
√

sNN = 17.3 GeV [4] are compared in Fig. 13 with the world data in the range
from 3 - 32 GeV. The measured values are seen to rise linearly with collision energy

√
sNN .
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6 Summary

This paper presents the new NA61/SHINE measurement of K0
S mesons via their π+π− decay mode in

inelastic p+p collisions at beam momenta of 31, 40 and 80 GeV/c (
√

sNN = 7.7,8.8 and 17.3 GeV). Spec-
tra of transverse momentum (up to 1.2 GeV/c), as well as a distributions of rapidity (from -0.75 to 1.75),
are presented. The mean multiplicities, obtained from pT -integrated spectra and extrapolated rapidity
distributions, are (5.95±0.19±0.22)×10−2 at 31 GeV/c, (7.61±0.13±0.31)×10−2 at 40 GeV/c and
(11.58± 0.12± 0.37)× 10−2 at 80 GeV/c, where the first uncertainty is statistical and the second sys-
tematic. The measured K0

S lifetime agrees within uncertainties with the PDG value and thus confirms
the quality of the analysis. The mean multiplicities from model calculations deviate by up to 10% from
the measurements. The SMASH 2.0 model provides the best results for pbeam = 31 and 80 GeV/c, while
the PHSD model has the best agreement with measured data for pbeam = 40 GeV/c. The results of K0

S
production in proton-proton interactions presented in this paper significantly improve, with their high
statistical precision, the knowledge of strangeness production in elementary interactions and will serve as
a reference for studies of strange hadron production in nucleus-nucleus collisions.
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