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Abstract

The Advanced SND project is an extension of the SND@LHC experiment, a
compact standalone experiment designed to perform measurements with
high-energy neutrinos in range 100 GeV–1 TeV produced at the LHC. A
possible extension consists in the introduction of a new magnetic
spectrometer (denoted as FAR detector) in the region 7.2 < η < 8.4 meant
to operate during LHC run 4. This note presents a performance analysis of
the new detector’s spectrometer, by mean of analytical and semianalytical
tools, well behaved for joint optimization in further electromagnetic design
phase. The model presented is validated via Montecarlo simulations using
GEANT4, and the momentum resolution is evaluated analytically as a
function of the detector geometry and magnetic field strength.
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1 Introduction

Spectrometers are fundamental components of particle detector used to measure the
particles momentum and charge. Using strong magnetic fields particle trajectory is
deflected, particular devices (hereafter called tracking stations or trackers) detect
the particle’s position when hit, and momentum is estimated using the reconstructed
trajectory.
The design optimization often involves the coupling of a physical and an engineering
analysis. The physical design defines the momentum resolution, giving the length
of the magnets, the magnetic fields and the position of the trackers, the engineering
design defines the power consumption and the construction cost, giving the coil
thickness, the iron yoke thickness and the magneto-motive force as main output
parameters.
Both analysis rely on numerical tools such as Monte Carlo simulation to evaluate
the momentum resolution and FEM or BEM analysis to evaluate the magneto-static
field, the temperature and the mechanical stress in the magnet.
However, numerical techniques do not allow to couple the two analysis, and optimization
processes are generally very time consuming. Analytical models play an important
role both for a coupled analysis involving physical and engineering requirements at
the same time and for the optimization procedure.
This work proposes a mathematical framework for the geometrical design of a
spectrometer based on analytical and semi-analytical models.
The study case concern the AdvSND experiment [1], an extension of the already
operative SND@LHC experiment, which includes two detectors located in two different
positions along the LHC accelerator covering two complementary angular regions:
the FAR and NEAR detectors. The analysis reported applies to the new proposed
spectrometer magnet of the FAR detector which is, in particular, operating in the
pseudorapidity region 7.2 < η < 8.4.
Due to the limited available space, the calorimeter of the FAR detector is magnetized
and it is used as part of the spectrometer, as shown in Figure 1, in order to reduce
the total length. The tracking station are placed at the end of the calorimeter
and around the magnet (tracking stations 2, 3 and 4 in Figure), and high precision
trackers are located inside the target are used to detect the position where the
particle is created.
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Figure 1: Scheme of the AdvSND FAR detector.

2 Mathematical Model

Every particle flight is characterized by a set of random variables and it can be
modeled as an event of a sample space. In particular, we have

Ω →

 P,X0, S0,Θ0,︸ ︷︷ ︸
Particle Initial State

∆1,∆2,∆3,∆4,︸ ︷︷ ︸
Measurement Errors

Θσ01, Sσ01, Θσ12, Sσ12, Θσ34, Sσ34︸ ︷︷ ︸
Scattering Effects

 (1)

where P is the particle momentum, S0, X0 and Θ0 are the initial position and angle
of the particle, ∆ is the set of measurement error on the tracking stations, and Θσ

and Sσ are the deviations and displacements due to the scattering in solids.
Consider the notation in Figure 2: the target, the calorimeter and the magnet are
represented by the rectangles, the tracking stations are placed on both side of each
magnet, and in the target (rectangle on the left). At each tracking station the state
of the particle is defined by the angle Θi and the vertical displacement Si (as shown
in the Figure 2 on the right), the vertical displacement is measured by the tracker,
while the angle is not directly measurable.
The particle dynamic is modeled using classical equation of motion in the small
angle approximation. Given the particle momentum P = p, the equations of motion
are

Displacement:



S4 − S3 = Θ3 x34 +
qB2

2p
x2
34 + Sσ34

S3 − S2 = Θ2 x23

S2 − S1 = Θ1x12 +
qB∗

1

2p
x2
12 + Sσ12

S1 − S0 = Θ0x01 + Sσ01

(2)
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Figure 2: Notation used for the geometrical quantities (lengths and angles). The
first rectangle from the left is the target, the second is the calorimeter and the third
is the magnet. The red curve is the particle trajectory, xi are used to denote the
lengths along the detector axis and si are used to denote the displacement from the
axis. On the right, is represented the angle θ between the particle trajectory and
the tracker plane.

Angle:


Θ3 = Θ2

Θ2 = Θ1 +
qB∗

1

p
x12 +Θσ12

Θ1 = Θ0 +Θσ01

(3)

where the superscript ∗ denote a corrected field to take into account the presence
of air gaps in the calorimeter, and the quantities with subscript σ are the effects of
the scattering and they are random variables.
Replacing the angle equations (3) in the displacement equations (2) it yields

S43 = S4 − S3 = Θ0 x34 +
qB∗

1

p
x12x34 +Θσ01x34 +Θσ12 x34 +

qB2

2p
x2
34 + Sσ34

S32 = S3 − S2 = Θ0 x23 +
qB∗

1

p
x12x23 +Θσ01x23 +Θσ12 x23

S20 = S2 − S0 = Θ0 (x12 + x01) +
qB∗

1

2p
x2
12 +Θσ01x12 + Sσ12 + Sσ01

(4)

2.1 Momentum Estimator

For the sake of simplicity, we look for a momentum estimator using a linear combination
of the measured particle displacements. Using the difference of displacement given
in (4) we have

αS43 + βS32 + γS20 = (Θ0 +Θσ01)(αx34 + βx23 + γx02) +
q

2p
B(α, β, γ) + Σ(α, β, γ)

(5)
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where α, β and γ are coefficients to be chosen and x02 = x01+x12, and Σ and B are
the effects of scattering and magnetic field respectively

B(α, β, γ) = (2αx34 + 2βx23 + γx12)B
∗
1x12 + αB2x

2
34 (6)

Σ(α, β, γ) = (αx34 + βx23)Θσ12 + γSσ12 + γ(Sσ01 − x01Θσ01) + αSσ34 (7)

Note that Σ and B also depend on the spacing between tracking stations xij although
it is not explicitly written in notation (6) and (7). Moreover, Σ is a random variable.
In order to remove the dependence of the momentum on the unknown initial angle
Θ0, the coefficients α, β and γ must satisfy the constraint

αx34 + βx23 + γx02 = 0 (8)

so that (6) and (7) are recast as functions of α and γ only

B(α, γ) = αB2x
2
34 − γB∗

1x12(x12 + 2x01) (9)

Σ(α, γ) = αSσ34 + γ(Sσ12 − x02Θσ12) + γ(Sσ01 − x01Θσ01) (10)

and the reciprocal of the momentum is given by

1

p
=

2

q

αS43 + βS32 + γS20 − Σ(α, γ)

B(α, γ)
(11)

The tracking station measurement is affected by error, modeled by defining the
measured displacement Si = Si+∆i, where ∆i is a random variable with zero mean
and standard deviation ε.
Using the displacements available from measurements (affected by error), we define
the estimator

Π̂(α, γ) =
2

q

α S4 + (β − α) S3 + (γ − β) S2 − γ S0

B(α, γ)
(12)

since the scattering error has zero average, the expected value of the estimator (12)
yields the reciprocal of the momentum

E
[
Π̂
∣∣∣P = p

]
=

1

p
(13)

where the operator E is the expected value and the random variables after the | sign
are given (conditioned probability).

2.2 Standard Deviation and Distortion

In order to evaluate the error, an estimate of the momentum standard deviation is
required. After some algebra, (12) and (11) give

σ
[
Π̂|P = p

]
=

2

q

√
ε2[α2 + (β − α)2 + (γ − β)2 + γ2] + σ2

Σ(α, γ)

|B(α, γ)|
(14)
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where σ is the standard deviation, and σ2
Σ is the variance due to scattering (derived

in the appendix)

σ2
Σ(α, γ) =

P 2
0

p2

[
γ2

3

(
x3
01

XW

+
x3
12 + 3x01x12x02

X∗
Fe

)
+

α2

3

x3
34

XFe

]
(15)

with P0 is an empirical constant, and XFe and XW are the radiation length of the
iron and tungsten respectively, the asterisk ∗ denotes that the radiation length must
include a correction to take into account the fact that the spectrometer has air gaps
between the iron slabs.
The momentum resolution (or momentum uncertainty) is defined as σ[P̂ |P = p ]/p.
in the following the condition P = p is omitted to keep the notation simple.
Assuming the standard deviation to be much smaller than the mean of Π̂, the
resolution on the momentum is obtained using the propagation of uncertainty, i.e.
truncating the Taylor expansion of P̂ = Π̂−1 at the first order around the expected
value. The resolution on the momentum is then approximated with the resolution
on its reciprocal

σ
[
P̂
]
≈

√(
d

dΠ̂
P̂

)2

∣∣∣∣∣∣
Π̂=E[Π̂]

σ[Π̂] = p2 σ[Π̂] =⇒ σ[P̂ ]

p
≈ p · σ[Π̂] (16)

This approximation usually holds for small values of the standard deviation, roughly
up to σ[P̂ ]/p ≈ 0.15, but it predicts better resolution than the real ones, especially
for higher values of σ[P̂ ]/p.
Higher order approximations provide better analytical results, however the analytical
formulation quickly become complex while the improvement is modest.
A better approach to evaluate σ[P̂ ] require the use of numerical integration. By
definition, the standard deviation of the momentum is given by

σ[P̂ ] =

∫ +∞

−∞

(∣∣∣∣1x
∣∣∣∣− P

)2

fΠ̂(x) dx with P =

∫ +∞

−∞

∣∣∣∣1x
∣∣∣∣ fΠ̂(x) dx (17)

where fΠ̂ is the probability density function of the random variable Π̂.
Although fΠ̂ is not known exactly, it is reasonable to assume a Gaussian distribution
whose mean and standard deviation are given by formulas (13) and (14), namely

fΠ̂(x) = C exp

(
−(x− µΠ̂)

2

2σ2
Π̂

)
(18)

where µΠ̂ = E
[
P̂
]
= p−1, σΠ̂ = σ[Π̂] is given by (14) and C is a constant such that∫ +∞

1/pmax

fΠ̂(x) dx = 1 (19)

Such assumption is exact if the trackers errors ∆i have Gaussian distribution, since
the scattering displacements are Gaussians and the sum of Gaussian distributions
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have a Gaussian distribution itself.
Note that P in (17) has a non integrable singularity (and σP is undefined as well).
This problem is solved by imposing a cut-off value for the particle momentum
pmax, and excluding from the sample all the measurement above this threshold.
The threshold value is chosen based on the maximum momentum expected for the
produced particles, momentum above pmax are considered as measurement errors
and are not included in the statistics. Equation (17) is recast as

σ
[
P̂
]2

=

∫ +∞

1/pmax

(∣∣∣∣1x
∣∣∣∣− P

)2

fΠ̂(x) dx with P =

∫ +∞

1/pmax

∣∣∣∣1x
∣∣∣∣ fΠ̂(x) dx

(20)
which is well-defined and integrable numerically. Remarkably, the singularity in
the expected momentum exists also when the uncertainty is small, however, the
probability of having samples close to the singularity is so small that they hardly
appear unless the statistical sample size is extremely high. This also implies that
the threshold σ[P̂ ]/p ≈ 0.15 may actually be smaller if the statistical sample size is
large enough and no cut-off is applied.
Equation (20) can be recast in an adimentional form as

σ2
[
P̂
]

p2
=

∫ +∞

T

(∣∣∣∣1x
∣∣∣∣− P

p

)2

f(x) dx with
P

p
=

∫ +∞

T

∣∣∣∣1x
∣∣∣∣ f(x) dx (21)

where

f(x) =

exp

(
−(x− 1)2

2R2

)
∫ +∞

T

exp

(
−(y − 1)2

2R2

)
dy

(22)

and R = σΠ̂/µΠ̂ is the resolution of the momentum reciprocal and T = p/pmax is
the ratio with the threshold momentum. Figure 3 and Figure 4 show σP̂/p and
(P − p)/p as function of R for several values of p/pmax. Two fundamental results
are visible from the plots and need special attentions:

• The momentum estimator is distorted, i.e. its expected value does not coincide
with the expected value of quantity to be estimated

• The first order approximation (16) results in a optimistic prediction for the
resolution, compared with the real spectrometer performance

The estimator distortion can be readily proved by mean of the Jensen’s inequality

φ is convex =⇒ φ(E[X]) ≤ E[φ(X)]

In order to have a quantitative result, the expected value of P̂ is recast as

E
[
P̂ |P = p

]
= p E

[
1

1 + E(α, β, γ)

]
(23)
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Figure 3: Average value of the relative error as function of the resolution of 1/p for
different values of the threshold pmax.
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Figure 4: Standard deviation of the relative error as function of the resolution of
1/p for different values of the threshold pmax. The gray dashed line represents the
identity function, i.e. the resolution predicted by the first order model.

where we used the fact that the scattering effects Σ and tracking errors ∆i are
independent, and the random variable E(α, β, γ) is

E(α, β, γ) = α∆4 + (β − α)∆3 + (γ − β)∆2 + γ∆0

αS43 + βS32 + γS20

(24)

and ∆i is the measurement error at the i-th tracking station.
If we consider a momentum p much smaller than the cut-off threshold pmax, we
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can assume that E is symmetric, namely E[E2n+1] = 0 for every natural number n.
Expanding the random variable in (23) in the variable E , it yields

E
[

1

1 + E(α, β, γ)

]
= E

[
1 +

∞∑
n=1

(−1)nEn

]
= 1 +

∞∑
n=1

E
[
E2n
]
> 1 (25)

The last equation proves that the estimator is distorted, the distortion depends on
the momentum and on the tracking error, and for small E , the systematic error has
a quadratic dependence on σ[Π̂]/p−1 if the scattering is negligible. For higher values
of p the cut-off mechanism comes into play and the systematic error decrease until
eventually becomes negative (see Figure 3).
Concerning the resolution, Figure 5 shows an example of comparison between (16)
and (20) for pmax = 2000 GeV/c and pmax = 3000 GeV/c. As anticipated, the
linear approximation prediction may result in a wrong design of the spectrometer,
which will not achieve the desired resolution. This discrepancy can be reduced with
a proper choice of the cut-off threshold pmax. According to the curves in Figures
3 and 4, T = 0.5 is reasonably close to the linear approximation with a relatively
small systematic error. If, for example, the maximum momentum expected is 1000
GeV/c, a convenient value for pmax should not exceed 2000 GeV/c.

0 100 200 300 400 500 600 700 800 900 1,000

0.14

0.16

0.18

0.20

0.22

0.24

0.26

momentum p GeV/c

m
om

en
tu
m

re
so
lu
ti
on

σ
[P̂

]/
p linear approximation (16)
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Figure 5: Comparison between the first order approximation (16) and the
semianalytical equation (20) for two different values of the cut-off threshold.

3 Design of the AdvSND Detector

Equations (14) and (21) can be used as design tool for spectrometers, both to
evaluate the resolution (or at least a first guess) and to minimize the uncertainty
through a proper choice of the geometry and the coefficient α, β and γ.



3 DESIGN OF THE ADVSND DETECTOR 9

Consider the AdvSND detector in Figure 1. The first part of the spectrometer
design consists in defining the coefficients α, β and γ, the magnetic field B, and the
geometry of the scheme in Figure 2, namely x12, x23 and x34. A second part of the
design, out of the scope of this work, will define also the geometry of the magnet
section, i.e. the coil thickness, the yoke thickness, the current density, etc. [2, 3].
In the following, we assume that the relation between momentum resolution σ[P̂ ]/p
and the reciprocal momentum resolution σ[Π̂]/p−1 is strictly monotonic, as visible
in Figure 4. Hence, the minimization of the momentum uncertainty is achieved by
minimizing the uncertainty of the reciprocal, whose expression is provided in (14).
Concerning the spectrometer geometry, the calorimeter length x12 and the total
length x12+x23+x34 are fixed, hence the optimization variables are the ratio between
x23 and x34, the magnetic fields B1 and B2 and the coefficients set (α, β, γ). We
assume the magnetic field B1 = B2 = 1.5 T, as this value is rather affordable for
iron core magnets and, due to the iron saturation, it stabilizes ∆B/B.
Due to the constraint (8), there is only one degree of freedom for the choice of α, β
and γ, as rescaling all the coefficients gives the same momentum estimator

P̂ =
q

2

B(α, γ)
α S4 + (β − α) S3 + (γ − β) S2 − γ S0

(26)

A parametrization which includes all the possible choices of coefficients is

α = sinφ , β = −αx34 + γx02

x23

, γ = cosφ (27)

The predicted resolution for the momentum reciprocal is represented in Figure 6 as
function of the length of the second magnet, for a given momentum p = 850 GeV/c
and total length x14 = 488 cm. In the figure, the solid lines represent the resolution
when the particle originates at the end of the target (x01 = 0 cm) while the dashed
lines represent the resolution when the particle originates at the front of the target
(x01 = 100 cm)
Among all the possible choices of coefficients, four of them are shown in Figure 6:

• the red line is the optimal coefficients that optimize the resolution at p =
850 GeV/c

• the blue line is a generalization of the standard approach (β = 0)

• the green line is the resolution achievable without the second magnet (α = 0)

• the violet line is the resolution achievable without magnetizing the calorimeter
(γ = 0).

Note that α = 0 and γ = 0 only require three tracking stations, the β = 0 is
considered a generalization of the standard approach[1, 4, 5] because in the case
x01 = 0 cm, it gives

P̂ =
q

2

B(f x12 + x34)

S4 − S3

x34

− S2 − S1

x12

= q
B(f x12 + x34)

∆θ
(28)
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Figure 6: Resolution of the momentum reciprocal as function of the second magnet
length, for momentum p = 850 GeV/c and total length x14 = 488. Different colors
are used for different sets of coefficients (α, β, γ) as described in the legend. Solid
lines are used for the case x01 = 0 cm (particle generated at the end of the target),
dashed lines are used for the case x01 = 100 cm (particle generated at the front of
the target).

where ∆θ is the angle variation of the particle, f is the filling factor of the calorimeter
(see Appendix) so that fx12 is the length of the path in the calorimeter field, and
the formula (28) is the one usually applied in the literature.
Due to safety reasons, the spectrometer of AdvSND needs at least x23 =90 cm of gap
between magnets to not obstruct the tunnel, the maximum size x34 for the magnet
is hence 180 cm (indicated with the vertical dashed grey line in Figure 6). The
maximum length also gives the best resolution, hence the magnet design will be the
one reported in the table 1.

x12 x23 x34 B1 B2

218 cm 90 cm 180 cm 1.5 T 1.5 T

Table 1: List of parameters of the design.

The same analysis can be done using a fixed x23 and variable x34, changing the total
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Figure 7: Schematic representation of the numeric computation of the error.

length of the spectrometer. The results of the analysis are again represented by the
curves in Figure 6, since the resolution does not depend on x23 when β = 0.

4 GEANT4 cross Validation

In this section the accuracy of the proposed analytical model is tested. The validation
is performed through comparison with Montecarlo simulation executed with GEANT4
[6]. A large number of muon neutrino charged current interactions are simulated
in the target region and both momentum and positions at each tracking station of
the outgoing muons are saved and used for the statistical analysis. The momentum
reconstructed from the particle position is compared with the Monte Carlo true
momentum of the particle to compute the average error and the detector resolution.
Numerical results are compared with the values predicted by the analytical model.
The momentum and position distribution of the generated muon is computed by
GEANT4 considering the flux of neutrinos coming from the LHC in the angular
region where the detector is placed, i.e. 7.2 < η < 8.4. The comparison procedure
is schematically represented Figure 7.

4.1 Validation without Scattering - Air Core Magnet

Consider an air core spectrometer based on the bending angle measurement[1, 4],
represented in Figure 8. Let the length of the magnet be ℓm = 2 m, the lever arms
(before and after the magnet) be ℓ = 1 m, and the trackers resolution is ε = 100 µm.

Using the notation and procedures presented in the previous sections, with x12 =
x34 = ℓ and x23 = ℓm, the momentum reciprocal estimator is

Π̂ =
qBℓm
2

α S4 + (β − α) S3 + (γ − β) S2 − γ S0

2αℓ+ βℓm
(29)

with the constraint ℓα + ℓmβ + ℓγ = 0. It is straightforward to prove that the
minimum standard deviation is obtained for α = 1, β = 0 and γ = −1, so that the
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Figure 8: Schematic representation of the configuration for the bending angle
measurement with air core magnet.

momentum estimator is

P̂ =
qB ℓ ℓm

S4 − S3 − S2 + S1

(30)

Remarkably, the resolution computed within the first order approximation is the
well known formula usually applied for the spectrometer design[1, 4]

∆p

p

∣∣∣∣
first order

=
2εp

qB ℓ ℓm
(31)

For the validation 489 · 103 events are simulated with GEANT4, gaussian noise is
added to the trackers measurement with zero mean and standard deviation ε and
the threshold momentum was set to 3 TeV/c. The simulated events are divided in
classes depending on the momentum of the particle generated in the simulation and,
we compute for each momentum class the momentum resolution and the average
relative error, namely

err = E

[
P̂ − p

p

]
= E

[
P̂

p

]
− 1 =

E
[
P̂
]
− p

p
(32)

The comparison between simulation and analytics is shown in Figure 9 and Figure
10 for the standard deviation and the mean relative error, respectively, as function
of the particle momentum p.
As expected, the first order approximation is accurate only for resolution up to
∆p/p ≈ 0.15, and it underestimate the uncertainty for higher values until the
cutoff effect become become prevalent.
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Figure 9: Momentum resolution as function of the particle momentum. Dots in blue
are the given blue the numerical simulations, solid lines are given by analytics.
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Figure 10: Average relative error as function of the particle momentum. Dots in
blue are the given blue the numerical simulations, solid lines are given by analytics.

The relative error plot can be divided in three regions:

• At low momentum, the momentum loss due to scattering in the iron is dominant
and the average measurement error is negative

• At intermediate momentum, the distortion of the estimator is dominant and
the average measurement error is positive
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• At high momentum, the cut-off effect is dominant and the average measurement
error is negative

4.2 Validation with Scattering - AdvSND FAR Detector

In this section, we consider the design of the AdvSND FAR detector proposed in
Table 1. Since the optimal set of coefficients (α, β, γ) depends on p, which is not
known, for the sake of simplicity we use the set with β = 0 which performs well for
the geometry chosen (see Figure 6). The momentum estimator is then

P̂ =
q

2

x02x34[x34B
′
2 + (x12 + 2x01)B

∗
1 ]

x02S4 − x02S3 − x34S2 + x34S0

(33)

where the field B′
2 include a multiplicative factor (see the Appendix) to take into

account the space between tracking station and magnet.
The field is assumed to be piecewise constant in the GEANT4 model. A sample of
59·103 events is simulated and a gaussian noise is added to the trackers measurement.
The cut-off threshold is set to pmax = 2000 GeV/c, reducing the valid sample size to
58 ·103. The comparison between semi-analytical model and simulation is presented
in Figure 11.
The statistics on the simulated events is in good agreement with the analytical
prediction, the discrepancy of the resolution for high values of the momentum is
mostly due to the fact that only a small number of particles have momentum over
1400 GeV/c (less than 103), hence the statistical sample size is too small to yield
an accurate statistics.
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Figure 11: Momentum resolution for the configuration in Figure 1 and data in Table
1 as function of the particle momentum. Dots are the numerical results, lines are
the semi-analytic results for particles generated at the target front or the target end
(see the legend).
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5 Conclusion

The work proposes a set of analytical and semi-analytical tools for the geometrical
design of a spectrometer for high energy physics experiments.
The proposed methods allow a simple analysis of the spectrometer performance, even
for non usual configurations in terms of geometry and magnetic field. Implementing
the model’s equation in a code, a fast optimization procedure can be executed.
Alternatively, the model can be coupled with analytical models for the engineering
design to perform a coupled design with a very low computational cost.
In this work, the model is applied to determine the geometry of the AvdSND
FAR magnet achieving the best momentum resolution compatible with external
constraints due to the available space and safety.
The results are validated via simulation with Monte Carlo simulation executed
with GEANT4. Comparison shows a very good agreement between analytics and
numerical for the in the range 0-1400 GeV/c for the momentum resolution, validating
the semi-analytical model.
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A Scattering Evaluation

The scattering contribution is based on the assumption that scattering angles behave
like a Wiener process[7] which is compatible with the small angle approximation.
According to the Molliere theory[5, 8], the variance of the scattering angle θσ of a
particle with momentum p, travelling in the matter for a distance X is

σ2[Θσ] =
P 2
0

p2
X

X0

. (34)

where P0 is a constant, X0 is the radiation length[5] of the medium. In this document
we use P0 = 15 MeV/c, while the radiation lengths for iron and tungsten are
XFe = 1.76 cm and XW = 0.35 cm, respectively.
The displacement due to scattering is obtained by integrating the angle along the
path length

σ2[Sσ] = E

[(∫ X

0

Θσ(x) dx

)2
]
=

∫∫
E[Θσ(x)Θσ(y)] dx dy

=
P 2
0

p2
1

XFe

∫∫
min(x, y) dx dy =

P 2
0

p2
2

X0

∫ X

0

dx

∫ x

0

y dy

=
P 2
0

p2
1

X0

∫ X

0

x2dx =
P 2
0

p2
X

X0

X2

3

(35)

Note that the scattering angle and displacement are correlated, the variance of a
generic combination of them is given by

σ2[Sσ + YΘσ] = E

[(∫ X

0

Θσ(x) dx+ YΘσ(X)

)2
]

=

∫∫
E[Θσ(x)Θσ(y)] dx dy + Y 2E[Θ2

σ(X)] + 2Y

∫
E[Θσ(x)Θσ(X)] dx

=
P 2
0

p2
X

X0

X2

3
+

P 2
0

p2
X

X0

Y 2 + 2
P 2
0

p2
Y

X0

∫ X

0

x dx

=
P 2
0

p2
X

X0

(
X2

3
+ Y 2 +XY

)
(36)

Finally, applying (35) and (36) to the terms in (11) we obtain (after some algebra)

σ2[Sσ34] =
P 2
0

p2
x34

XFe

x2
34

3
(37)

σ2[Sσ12 − x02Θσ12] =
P 2
0

p2
x12

X∗
Fe

(
x2
12

3
+ x01x02

)
(38)

σ2[Sσ01 − x01Θσ01] =
P 2
0

p2
x01

XW

x2
01

3
(39)

where the corrected radiation length X∗
Fe = XFe(∆x/∆xFe) is presented in the next

section.
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B Field and Scattering in the Calorimeter

The calorimeter is composed by several iron slabs separated by small air gap where
sensors are located. In this section the effects of scattering in the calorimeter are
analyzed. Let Si and Θi the displacement and the angle of the particle at the i-th
interface, we have 

Si+1 − Si = θi∆xi +
1

2

qBi

p
∆x2

i + Sσi

Θi+1 −Θi =
qBi

p
∆xi +Θσi

(40)

where Bi is the magnetic field, ∆x is the distance between interfaces, Sσ and Θσ

are the displacement and the angle deviation due to scattering, and the subscript
i is used to denote these quantities in the region between the i-th and the i + 1-th
interfaces.
In a calorimeter, all iron slabs and air gaps have thickness ∆xFe and ∆xair respectively.
Moreover, we can assume that the scattering effects and the magnetic field in the air
gaps are negligible. Combining the effects of an iron slab and an air gap, we have

Si+2 − Si = θi(∆xFe +∆xair) +
qBFe

p

(
1

2
∆xFe +∆xair

)
∆xFe + Sσi +Θσi∆xair

Θi+2 −Θi =
qBFe

p
∆xFe +Θσi

(41)
Finally, we consider N layer of iron slab - air gap to have the total deviation of the
particle in the calorimeter. After some algebra, it yields

S = S0 +Θ0N(∆xFe +∆xair)

+
qBFe

2p
[N(N − 1)(∆xFe +∆xair) +N (∆xFe + 2∆xair)]∆xFe

+
N∑
i=0

Sσi +Θσi[(N − i)∆xFe + (N − i+ 1)∆xair]

Θ = Θ0 +
qBFe

p
N∆xFe +

N∑
i=0

Θσi

(42)

where the i subscript now denotes the scattering in the i-th slab of iron.
From the last equation, the mean value and variance of the angle Θ are

E[Θ] = Θ0 +
qB′

Fe

p
fX , σ2[Θ] =

P 2
0

p2
fX

XFe

=
P 2
0

p2
X

X∗
Fe

(43)

where X = N(∆xFe +∆xair) is the total length of the spectrometer, f = ∆xFe

∆xFe+∆xair

is the filling factor of the calorimeter, X∗
Fe = XFe/f is an equivalent radiation length,

and B′
Fe = BFef is an equivalent magnetic field.

The expressions of the mean value and variance of the displacement S are relatively
complex, however a simple expression is obtained in the limit of high number of
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slabs. In the limit for high N it gives

S
N−→ S0 +Θ0X +

qB′
Fe

2p
X2 +

N∑
i=0

Sσi +Θσi(N − i)∆x (44)

where ∆x = (∆xFe +∆xair).
Finally, changing the summation index the variance of S gives in the limit of high
N

σ2[S] ≈ 1

3

P 2
0

p2
∆xFe

XFe

N∑
i=0

(
∆x2

Fe + 3i2∆x2 + 3i∆x∆xFe

) N−→ 1

3

P 2
0

p2
∆xFe

XFe

N3∆x2 =
1

3

P 2
0

p2
X

X∗
Fe

X2

(45)

C Tracker Space Correction

In this section, we take into account the distance between tracking stations and
magnet. The equation of motion are

{
Θ1 = Θ0

S1 = S0 +Θ0xa


Θ2 = Θ1 +

qB

p
xf +Θσ

S2 = S1 +Θ1xf +
qB

2p
x2
f + Sσ

{
Θ3 = Θ2

S3 = S2 +Θ2xa

(46)
where xa is the distance between tracking station and magnet.
Replacing S1 and S2 in the expression of S3 it yields
Θ3 = Θ0 +

qB

p
xFe +Θσ

S3 = S0 +Θ0X +
qB

2p
xFeX + Sσ + xaΘσ

=⇒


Θ3 = Θ0 +

qB′

p
X +Θσ

S3 = S0 +Θ0X +
qB′

2p
X2 + S ′

σ

(47)
where X = xf + 2xa is the total distance between trackers, B′ = B (xFe/X) is an
equivalent magnetic field, and S ′

σ = Sσ + xaΘσ is an equivalent scattering and its
variance can be computed with (36).

D Variable Magnetic Field

In this section, we consider a non piece-wise constant magnetic field in the spectrometer.
Consider a spectrometer with 4 tracking station and, to keep the math simple,
neglect the particle scattering. The effects of scattering is straightforward, but not
necessary for the scope of this section. The equations of motion for the displacement
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are

S4 − S3 = Θ3x34 +
q

p

∫ x14

x13

dx

∫ x

x13

B(y) dy

S3 − S2 = Θ2x23 +
q

p

∫ x13

x12

dx

∫ x

x12

B(y) dy

S2 − S1 = Θ1x12 +
q

p

∫ x12

0

dx

∫ x

0

B(y) dy

(48)

where x13 = x12 + x23 and x14 = x13 + x34, and for the angle they are

Θ3 = Θ2 +
q

p

∫ x13

x12

B(y) dy

Θ2 = Θ1 +
q

p

∫ x12

0

B(y) dy

(49)

The momentum reciprocal is then given by

1

p
=

1

q

αS4 + (β − α)S3 + (γ − β)S2 − γS1

αBi(x13, x14) + βBi(x12, x13) + γBi(0, x12)
(50)

where

Bi(xa, xb) = (xb − xa)

∫ xa

0

B(x) dx+

∫ xb

xa

dx

∫ x

xa

B(y)dy (51)

and the constraint αx34 + βx23 + γx12 = 0 is imposed.
In the general case, (50) must studied numerically, once the magnetic field is known,
either from measures or 3D FEM simulation, or possibly in a loop with the 3D
simulation.
As an example, consider again the configuration in Figure 8. Due to the symmetry of
the geometry (x12 = x34), we can assume the field is symmetric, namely B(xc+x) =
B(xc − x), where xc = x12 + x23/2. Using β = 0 and α = −γ, the momentum
reciprocal is

1

p
=

1

q

S4 − S3 − S2 + S1∫ x14

x13

dx

∫ x

x13

B(y) dy −
∫ x12

0

dx

∫ x

0

B(y) dy + x34

∫ x13

0

B(y) dy

(52)

After some algebra, using the symmetry condition, the two double integral are recast
as ∫ x12

0

dx

∫ x12

x

B(y) dy −
∫ x12

0

dx

∫ x

0

B(y) dy =∫ x12

0

∫ x12

0

sgn(y − x)B(y) dxdy =

∫ x12

0

(2x− x12)B(x) dx

(53)

Assuming the strongest field is in the magnet region, the denominator of (52) is
positive and the term (53) due to the field outside the magnet gives a positive
contribution. The field in the regions before the second tracker and after the third
tracker gives a smaller contribution to the bending power, nonetheless their effect
improves the resolution (althought it is very small) and introduces a systematic error
if not taken into account.
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