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Abstract: We perform a model-exhaustive analysis of all possible beyond Standard
Model (BSM) solutions to the (g − 2)µ anomaly to study production of the associated
new states at future muon colliders, and formulate a no-lose theorem for the discovery
of new physics if the anomaly is confirmed and weakly coupled solutions below the GeV
scale are excluded. Our goal is to find the highest possible mass scale of new physics
subject only to perturbative unitarity, and optionally the requirements of minimum flavour
violation (MFV) and/or naturalness. We prove that a 3 TeV muon collider is guaranteed to
discover all BSM scenarios in which ∆aµ is generated by SM singlets with masses above ∼
GeV; lighter singlets will be discovered by upcoming low-energy experiments. If new states
with electroweak quantum numbers contribute to (g − 2)µ, the minimal requirements of
perturbative unitarity guarantee new charged states below O(100 TeV), but this is strongly
disfavoured by stringent constraints on charged lepton flavour violating (CLFV) decays.
Reasonable BSM theories that satisfy CLFV bounds by obeying Minimal Flavour Violation
(MFV) and avoid generating two new hierarchy problems require the existence of at least
one new charged state below ∼ 10 TeV. This strongly motivates the construction of high-
energy muon colliders, which are guaranteed to discover new physics: either by producing
these new charged states directly, or by setting a strong lower bound on their mass, which
would empirically prove that the universe is fine-tuned and violates the assumptions of
MFV while somehow not generating large CLFVs. The former case is obviously the desired
outcome, but the latter scenario would perhaps teach us even more about the universe by
profoundly revising our understanding of naturalness, cosmological vacuum selection, and
the SM flavour puzzle.
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1 Introduction and Executive Summary

The magnetic moments of leptons have spurred the development of quantum field theory
(QFT) and provided the most precise comparison between theory and experiment in the his-
tory of science. While the measured anomalous magnetic moment of the electron, (g − 2)e,
agrees with the Standard Model (SM) prediction to better than one part per billion [1]1 the
analogous quantity for the muon, (g − 2)µ, has been discrepant between theory and exper-
iment at a statistically significant level for nearly two decades [7]. Since the muon mass is
much closer to the QCD scale than the electron mass, hadronic contributions to (g−2)µ are
an important part of the calculation, and a recent tour-de-force effort [8] combining lattice
calculations with quantities extracted from experimental data [9–28] has recently confirmed
the discrepancy to be

∆aobs
µ = aexp

µ − atheory
µ = (2.79± 0.76)× 10−9 , (1.1)

with a statistical significance of 3.7σ.2 The Muon g − 2 experiment at Fermilab [33] is
expected to surpass the statistics of the previous Brookhaven experiment in the coming
months, which would further reduce the uncertainty on the experimental result. If the
discrepancy persists after this measurement (and if it is also confirmed by JPARC [34]) it
would be the first terrestrial discovery of physics beyond the Standard Model (BSM).

Whenever a discrepancy is found in a low-energy precision measurement, it is imperative
to understand the implications for other experiments, both to confirm the anomaly and
because such a discrepancy could point to the existence of new particles at higher but
accessible energy scales. Direct production and observation of new states is, after all, the
gold standard for discovering new physics. In the long history of the (g − 2)µ anomaly,
many such studies were performed. Examples include investigations of complete theories
like supersymmetry [35–37]; minimal low-energy scenarios involving only very light states
[38, 39]; or various simplified model approaches to study the generation of (g − 2)µ at
higher energy scales [40–43], which can include additional considerations like the existence
of a viable dark matter (DM) candidate [44–50].

However, in all these past investigations, a simple question was left unanswered: What
is the highest mass that new particles could have while still generating the measured BSM
contribution to (g − 2)µ? In this paper, we answer that crucial question in a precise yet
model-exhaustive way, relying only on gauge invariance and perturbative unitarity, and
optionally on well-defined tuning or flavour considerations, without making any detailed
assumptions about the complete underlying theory.

1While there is a ∼ −2.5σ(+1.6σ) discrepancy between the theoretical prediction of (g − 2)e [1] and
the experimental measurement [2] ([3]) (with the difference between the two measurements arising from
a discrepancy in the measurement of the fine-structure constant), in this paper we proceed under the
assumption that this is not evidence of new physics. See e.g. Refs. [4–6] for a discussion of possible BSM
implications.

2Some lattice calculations [29] find no discrepancy with the measured (g − 2)µ, but are discrepant with
R-ratio measurements. The source of this tension may lie in electroweak precision observables [30–32],
preserving the (g − 2)µ anomaly.
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We provide a detailed description of our model-exhaustive approach in Section 2, but it
can be briefly summarized as follows. We assume that one-loop effects involving BSM states
are responsible for the anomaly,3 since scenarios where new contributions only appear at
higher loop order require a lower BSM mass scale to generate the required new contribution.
We can, thus, organize all possible one-loop BSM contributions to ∆aµ into two classes:

• Singlet Scenarios: in which each BSM (g − 2)µ contribution only involves a muon
and a new SM singlet boson that couples to the muon (analyzed in Section 3);

• Electroweak (EW) Scenarios: in which new states with EW quantum numbers
contribute to (g − 2)µ (analyzed in Section 4).

Singlet Scenarios generate ∆aµ contributions proportional to mµyµv/M
2
BSM, where yµ ∼

10−3 is the small SM muon Yukawa coupling. Electroweak Scenarios can generate the largest
possible (g − 2)µ contributions without the additional yµ suppression. In particular, we
carefully study two simplified models denoted SSF and FFS with new scalars and fermions
that yield the largest possible BSM mass scale able to account for the anomaly. Careful
analysis of these two EW Scenarios allows us to derive our model-exhaustive upper bound
on BSM particle masses for scenarios that resolve the (g−2)µ anomaly. We also account for
the possibility of many new states contributing to ∆aµ by considering NBSM ≥ 1 copies of
each BSMmodel being present simultaneously, allowing us to understand how the maximum
possible BSM mass scales with BSM state multiplicity in each case.

We find that if ∆aobs
µ is generated in a Singlet Scenario, the maximum mass of the

BSM singlet particle(s) is 3 TeV regardless of BSM multiplicity NBSM. For EW Scenarios,
we find that there must always be at least one new charged state lighter than the following
upper bound:

Mmax,X
BSM,charged ≈

(
2.8× 10−9

∆aobs
µ

) 1
2

×



(100 TeV) N
1/2
BSM for X = (unitarity*)

(20 TeV) N
1/2
BSM for X = (unitarity+MFV)

(20 TeV) N
1/6
BSM for X = (unitarity+naturalness*)

(9 TeV) N
1/6
BSM for X = (unitarity+naturalness+MFV)

(1.2)
where this upper bound is evaluated under four assumptions that the BSM solution to the
(g − 2)µ anomaly must satisfy: perturbative unitarity only; unitarity + Minimal Flavour
Violation (see e.g. [52, 53]); unitarity + naturalness (specifically, avoiding two new hierarchy
problems); and unitarity + naturalness + MFV. The unitarity-only bound represents the
very upper limit of what is possible within QFT, but realizing such high masses requires

3We work under the assumption that the (g−2)µ anomaly is due to new physics which genuinely affects
the value of gµ in vacuum, rather than its measurement being sensitive to other BSM effects on the muon
spin, for example ultralight scalar dark matter [51]. The latter case is also eminently testable in upcoming
experiments.
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severe alignment tuning or another unknown mechanism to avoid stringent constraints from
charged lepton flavour-violating (CLFV) decays [54, 55]. We have therefore marked every
scenario without MFV with a star (*) above, to indicate additional tuning or unknown
flavour mechanisms that have to also be present.

Our results have profound implications for the physics motivation of future muon collid-
ers (MuC), which have recently garnered renewed attention as an appealing possibility for
the future of the high energy physics program [56–63]. Muon colliders still face significant
technical challenges [58], but are in many ways ideal BSM discovery machines: compared to
electron colliders, the suppressed synchrotron radiation loss might make it easier to reach
high energies in excess of 10 TeV; unlike in proton collisions, the entire center-of-mass energy
is available for the pair-production of new charged particles with masses up to m ∼ √s/2
[58]; and finally they collide the actual particles that exhibit the (g − 2)µ anomaly.

These features enable us to formulate a no-lose theorem for a future muon collider
program. We presented our first investigation of this issue in [64]. Here, we supply impor-
tant additional details, perform detailed muon collider studies, and generalize our original
derivation to include crucial flavour considerations and present all possible EW Scenar-
ios that maximize BSM masses, all of which reinforce the robustness of our conclusions.
Since our original study appeared, there have also been additional investigations of indirect
probes of (g − 2)µ at future muon colliders [62, 65]. The results of these studies, despite
their different technical approach, agree with our overall conclusions and strengthen them
in important ways, as we explain below.

We give a detailed description of this no-lose theorem in Section 5, but its most impor-
tant final points are as follows, broken down in chronological progression:

1. Present day confirmation:

Assume the (g − 2)µ anomaly is real.

2. Discover or falsify low-scale Singlet Scenarios . GeV:

If Singlet Scenarios with BSM masses below ∼ GeV generate the required ∆aobs
µ

contribution [38], multiple fixed-target and B-factory experiments are projected to
discover new physics in the coming decade [39, 66–73].

3. Discover or falsify all Singlet Scenarios . TeV:

If fixed-target experiments do not discover new BSM singlets that account for ∆aobs
µ ,

a 3 TeV muon collider with 1 ab−1 would be guaranteed to directly discover these
singlets if they are heavier than ∼ 10 GeV.

Even a lower-energy machine can be useful: a 215 GeV muon collider with 0.4 ab−1

could directly observe singlets as light as 2 GeV under the conservative assumptions
of our inclusive analysis, while indirectly observing the effects of the singlets for all
allowed masses via Bhabha scattering.

Importantly, for singlet solutions to the (g − 2)µ anomaly, only the muon collider is
guaranteed to discover these signals since the only required new coupling is to the
muon.
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4. Discover non-pathological Electroweak Scenarios (. 10 TeV):

If TeV-scale muon colliders do not discover new physics, the (g − 2)µ anomaly must
be generated by EW Scenarios. In that case, all of our results indicate that in most
reasonably motivated scenarios, the mass of new charged states cannot be higher
than few × 10 TeV. However, such high masses are only realized by the most extreme
boundary cases we consider. Therefore, a muon collider with

√
s ∼ 10 TeV is highly

motivated, since it will have excellent coverage for EW Scenarios in most of their
reasonable parameter space.

A very strong statement can be made for future muon colliders with
√
s ∼ 30 TeV:

such a machine can discover via pair production of heavy new charged states all EW
Scenarios that avoid CLFV bounds by satisfying MFV and avoid generating two new
hierarchy problems, with NBSM . 10.

5. Unitarity Ceiling (. 100 TeV):

Even if such a high energy muon collider does not produce new BSM states directly,
the recent investigations by [62, 65] show that a 30 TeV machine would detect devia-
tions in µ+µ− → hγ, which probes the same effective operator generating (g− 2)µ at
lower energies. This would provide high-energy confirmation of the presence of new
physics.

In that case, our results guarantee the presence of new states below ∼ 100 TeV by
perturbative unitarity, and the lack of direct BSM particle production at

√
s ∼ 30 TeV

will prove that the universe violates MFV and/or is highly fine-tuned to stabilize the
Higgs mass and muon mass, all while suppressing CLFV processes.

Even the most pessimistic final case would profoundly reshape our understanding of the uni-
verse by providing new information about the nature of fine-tuning, flavour and cosmological
vacuum selection. If no new states are discovered at 30 TeV, the renewed confirmation of
the (g − 2)µ anomaly at these higher energies and the associated guaranteed presence of
new states below the unitarity bound with deep implications for naturalness and flavour
means finding the solution to all these puzzles will surely provide impetus for pushing our
knowledge of the energy frontier to even greater heights.

If the (g − 2)µ anomaly is confirmed, our analysis and the results of [62, 65] show
that finding the origin of this anomaly should be regarded as one of the most important
physics motivations for an entire muon collider program. Indeed, a series of colliders with
energies from the test-bed-scale O(100 GeV) to the far more ambitious but still imaginable
O(10 TeV) scale and beyond has excellent prospects to discover the new particles necessary
to explain this mystery. Regardless of what these direct searches find, each will make
invaluable contributions to allow us to understand the precise nature of the new physics
that must be present. Therefore, this truly is a no-lose theorem for the discovery of new
physics, the greatest imaginable motivation for a heroic undertaking like the construction
of a revolutionary new type of particle collider.4

4While we argue in this work that muon colliders are sufficient for discovery, they are not the only such
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We now present the details necessary to fill out this argument. Our model-exhaustive
approach is explained in Section 2; Singlet Scenarios and EW Scenarios are analyzed in
detail in Sections 3 and 4; the implications for a future muon collider program and the
no-lose theorem for discovery of new physics is fully outlined in Section 5.

2 Model-Exhaustive Approach

In this paper, we aim to address a simple question: how could we discover all possible BSM
solutions to the (g−2)µ anomaly? Specifically, how could we directly discover at least some
of the BSM particles that play a role in generating ∆aobs

µ ? The bewildering plethora of
possible BSM solutions to the anomaly make answering this question very challenging; by
construction, our answer cannot depend on the particular choice of BSM model.

Very light, weakly coupled solutions to (g − 2)µ near or below the scale of the muon
mass will be exhaustively tested by low energy experiments, and we focus on all other
BSM possibilities. In that case, at the low energies at which the (g − 2)µ measurement is
performed, we can parameterize the deviation from the SM expectation as a BSM contribu-
tion to the anomalous magnetic moment operator. Taking into account electroweak gauge
invariance, in two-component fermion notation this is

Leff = Ceff
v

M2
(µLσ

νρµc)Fνρ + h.c. , (2.1)

where µL and µc are the two-component muon fields, v = 246 GeV is the SM Higgs vacuum
expectation value (VEV), and Ceff is a constant. The factor of v arises from the fact that
coupling left- and right-handed muon fields requires a Higgs insertion, so the electroweak-
symmetric operator is dimension-6, H†LσνρµcFνρ, and thus must be suppressed by two
powers of a mass scale 1/M2. Unfortunately, such model-independent EFT analyses are
limited to indirect signatures of the new physics, making this approach unsuitable to answer
the question of how to directly discover the new states.

To study high-energy direct signatures of new physics, we instead adopt a “model-
exhaustive” approach. As illustrated in Figure 1, this simply involves adding the assumption
that the new physics is perturbative, which resolves the new (g − 2)µ contributions into
individual loop diagrams involving various possible BSM particles in different SM gauge
representations. In principle, if all possibilities were considered, one could study direct
signatures of new physics in the same full generality that model-independent EFT analyses
afford for indirect signatures.5

probe: proton-proton colliders, electron linear colliders, and even photon colliders have strong potential for
observing new TeV-scale EW states. That said, muon-specific singlets will likely be challenging to observe
at any collider not utilizing muon beams, and discovering EW-charged states at the 10 TeV scale may not
be as straightforward with a 100 TeV pp collider due to PDF factors and a noisier detector environment [57],
while reaching such energies could be challenging in an electron machine. Of course, all these cases deserve
a dedicated analysis.

5While our analysis is formally limited to perturbative BSM solutions of the (g−2)µ anomaly, our results
nonetheless end up parametrically covering the case of strongly coupled BSM scenarios as well, as we argue
in Section 2.4.
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Assumptions  gauge invariance
Δaμ = aobs

μ
U(1)em SM gauge invariance

Δaμ = aobs
μ

SM gauge invariance
Perturbativity

Δaμ = aobs
μ

Model-Independent “Model-Exhaustive”

1
M2 H†(Lσνρμc)Fνρ

1
M

(μLσνρμc)Fνρ
Specific choices of BSM particles and 

their SM quantum numbers in loop

 
diagram
(g − 2)μ

How to predict 
new signatures

Figure 1: The philosophy of our “model-exhaustive” analysis. Traditional model-independent anal-
yses express the new physics contribution to (g−2)µ as a non-renormalizable operator, either in the
low-energy theory after EW symmetry breaking (left) or in the full SM gauge invariant formulation
(middle). This makes no assumptions about the new physics but is limited to indirect signatures
of the new physics produced by the same operator. Since we want to probe direct signatures of the
BSM physics which solves the (g − 2)µ anomaly, we add the single assumption of perturbativity to
the traditional model-independent analysis, which resolves the new ∆aµ contributions into explicit
loop diagrams of new states {ψi} carrying specific SM quantum numbers (right). If the Higgs inser-
tion lies on the external muon, ∆aµ is suppressed by yµ, while ∆aµ can be significantly enhanced
if the Higgs couples to new particles in the loop. By exhaustively analyzing all possible choices of
new states, we can derive predictions for direct signatures that are as universal as the traditional
model-independent predictions for indirect signatures.

The idea of a model-exhaustive analysis is not, of course, a new one. However, the
challenge lies in systematically covering all possibilities of BSM particles, or at least those
possibilities relevant to answering a specific phenomenological question. We now explain
how to perform this analysis for the (g−2)µ anomaly, with an eye towards direct signatures
at future muon colliders.6

We limit ourselves to those perturbative BSM scenarios where the required ∆aµ is
generated at one-loop order. There are certainly many possibilities for BSM physics that
solves the (g− 2)µ puzzle by generating only new higher-loop contributions [4, 75, 76] (e.g.
from Z2 preserving interactions with the muon), but such models necessarily require lower
mass scales, which must be accessible via pair production at the collider energies we consider
here. We therefore omit a detailed discussion of these scenarios without loss of generality.
However, we note that even if such signals were to be ultimately elusive to direct searches
due to complicated, high-background decay channels, a future muon collider would still
detect their presence through enhanced µµ → γh production [56] and µµ → µµ Bhabha
scattering [64].

6For a philosophically similar approach to the Hierarchy Problem, see [74].
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Space of BSM Theories
that generate Δaμ = aobs

μ

Boundary of perturbative unitarity

Singlet Scenarios Electroweak Scenarios

New particles in  loops:
only SM singlets

(g − 2)μ New particles in  loops:
not only SM singlets

(g − 2)μ

Signature: direct production of
SM singlet states

Signature: direct production of
new charged states

Discovery: requires inclusive
search for singlet, with g ∝ m

Discovery: discoverable at lepton 
collider for “all” m ≲ s /2

Figure 2: Schematic representation of the model-exhaustive space of BSM theories that can solve
the (g − 2)µ anomaly, and our mutually exclusive and collectively exhaustive categorization into
Singlet Scenarios and Electroweak Scenarios. For these two classes of theories, the phenomenological
questions are distinct. To understand how to discover Singlet Scenarios, we have to not only find
the heaviest possible mass of the singlet(s), but also how to discover this singlet for all possible
masses, since its phenomenology depends on its stability and decay mode, and lighter singlets have
weaker coupling. Electroweak Scenarios predict new charged states, and since those have to produce
visible final states in a collider and are efficiently produced at lepton colliders for m .

√
s/2, we

only have to find the maximum mass the lightest new charged state in the BSM theory can have.
(We limit ourselves to scenarios that generate ∆aobsµ at one-loop, since higher-loop solutions have
lower BSM mass scales.)

Our exhaustive coverage of candidate BSM theories for (g − 2)µ is informed by the
characteristic experimental signatures available in each class of scenarios. For this reason,
we divide up the space of possibilities into two classes, illustrated schematically in Figure 2:

1. Singlet Scenarios: defined as BSM solutions to the (g − 2)µ anomaly in which the
only new particles in the (g − 2)µ loop are SM gauge singlets. This selects the first
type of diagram in Figure 1 (right box) with the Higgs VEV insertion on the external
muon leg, such that the chirality flip and the Higgs coupling both come from the
muon, and hence ∆aµ ∝ mµyµv/M

2
BSM. Their singlet nature means these particles

could be very light (. GeV) while evading present constraints [38], but they could
also be much heavier.

For Singlet Scenarios, our task is to find the largest possible mass these singlets could
have, and determine how a muon collider could produce and observe them for all
possible masses, regardless of how or if they decay in the detector.

2. Electroweak (EW) Scenarios: defined as all BSM solutions that are not Singlet
Scenarios. This necessarily implies that (g − 2)µ receives contributions from loops
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involving BSM states with EW quantum numbers, which in turn implies the existence
of new heavy charged states with masses & 100 GeV to evade LEP bounds. These
charged particles could contribute to (g − 2)µ directly, or be new states that must
exist due to gauge invariance. The new charged states will be our focus, since any
lepton collider with

√
s & 2m can directly pair-produce such states of mass m, and

as they have to either be detector-stable or decay into charged final states, they
should be discoverable in a clean detector environment regardless of their detailed
phenomenology. For EW Scenarios, our task is therefore to find the largest possible
mass that the new charged states could have.

EW Scenarios can generate diagrams of both types shown in Figure 1 (right). Of
particular interest is the second type where the Higgs insertion and chirality flip belong
to BSM particles in the loop, which would give ∆aµ ∝ mµgBSMv/M

2
BSM without the

suppression of the small muon Yukawa. This can result in much heavier BSM mass
scales than Singlet Scenarios.

If we examine both of these possibilities exhaustively, we will have completed our model-
exhaustive analysis.

Singlet Scenarios are relatively straightforward to analyze. In the next Section 2.1
we define simplified models that cover all possibilities for this singlet. These models have
few parameters, and the parameter space can be explored in full generality. Electroweak
Scenarios present more of a challenge. To find the minimum muon collider energy that
would guarantee direct production and discovery of at least one BSM charged state, we
have to find the heaviest possible charged state consistent with resolving the anomaly. This
amounts to finding the following quantity:

Mmax
BSM,charged ≡ max

BSM theory space

∆aµ=∆aobsµ

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
. (2.2)

This can be understood in the following algorithmic way. The outer maximization scans
over all possible BSM theories and possible values of their parameters that give ∆aµ = ∆aobs

µ

while satisfying the constraints of perturbative unitarity. For each specific theory and given
values of its parameters, we find the lightest new charged state (inner bracket) and add
it to a list. The outer maximization then picks the maximum value from this list, giving
the heaviest possible mass of the lightest new charged state that must exist to resolve the
(g− 2)µ anomaly, and therefore the minimum energy of a muon collider that is guaranteed
to produce these particles. The difficulty obviously arises in performing the first theory
space maximization. In Section 2.2 we explain how this maximization can be performed,
allowing our model-exhaustive analysis to determine the heaviest possible masses of new
charged states with the generality of a traditional model-independent analysis.

2.1 Singlet Scenarios

In this case, SM singlets that could be below the GeV scale (or much heavier) generate
the new one-loop contributions to (g − 2)µ. The singlet could either be a scalar, vector,
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Figure 3: Representative 1-loop contributions to (g − 2)µ in the simplified models we consider.
Top row: Singlet Scenarios with a SM neutral vector V or scalar S that couple to the muon. Note
that the Higgs VEV on the muon line gives both the chirality flip and the EW breaking insertions
in these models. Bottom left: EW Scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW Scenario of FFS type, with one BSM
scalar and two BSM fermions that mix via a Higgs insertion.

or fermion. Our focus will be the case of a new real scalar S or vector V . The relevant
Lagrangian terms for the real scalar case are

LS ⊃ − (gSSµLµ
c + h.c.)− 1

2
m2
SS

2 . (2.3)

Note that the Yukawa coupling of the real scalar to muons gS is not gauge invariant. This
implies that either the interaction arises from the non-renormalizable operator 1

ΛcSµLµ
cHS,

in which case gS ∝ v/(
√

2Λ), or the interaction comes from a singlet-Higgs mixing, in which
case gS ∼ yµ sin θ, where θ is the mixing angle. We briefly discuss the consequences of
consistent embedding in the full electroweak theory in Section 3. For the vector case, the
relevant Lagrangian terms are

LV ⊃ gV Vα(µ†Lσ̄
αµL + µc †σ̄αµc) +

m2
V

2
VαV

α . (2.4)

These two scenarios are representative of muophilic new gauge forces or scalars that have
been extensively studied in the literature [39, 77–79] and their contributions to (g− 2)µ are
shown in Figure 3.
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As discussed in Section 3, the only viable anomaly-free vector model is gauged Lµ−Lτ ,
which can still resolve (g − 2)µ for mV ∈ (10 MeV, 2mµ) [80, 81]. Bounds on muon-philic
singlet scalars are more model dependent and can, in principle, resolve (g − 2)µ with any
mass between the MeV scale and the perturbative unitarity limit ∼ few TeV. For both
scalars and vectors, the lower limit is set by cosmological constraints, most importantly
bounds on ∆Neff , the effective number of relativistic species at big bang nucleosynthesis
[81, 82]. Thus, the scalar Singlet Scenario will be of most interest to us, but we keep the
vector case in our discussions for completeness since the analyses are very similar.

These Singlet Scenarios are the most minimal BSM solutions to the (g − 2)µ anomaly,
featuring new particles required only to couple to the muon and no other SM particles.
Consequently, muon colliders and muon-beam fixed-target experiments might be the only
guaranteed way to probe all Singlet Scenarios. Given that fixed-target experiments and
B-factories will exhaustively probe Singlet Scenarios with masses below ∼ GeV [39, 66–73],
we will particularly focus on Singlet Scenarios above the GeV scale in our muon collider
physics analyses.

Of course, it is possible that more than one new degree of freedom contributes to (g−2)µ.
We account for this possibility by considering NBSM ≥ 1 copies of each SM Singlet Scenario
in Eqns. (2.3) or (2.4), and analyzing how the various higher-energy signatures scale with
BSM multiplicity. Note that the assumption that all NBSM copies of the simplified model
have equal masses and couplings is the most pessimistic one with regards to high-energy
signatures, since non-degenerate masses and couplings always lead to larger signatures
due to the non-linearity of the associated cross sections and amplitudes. If couplings or
masses are highly unequal, the phenomenology will be dominated by just a few new states.
Considering degenerateNBSM ≥ 1 copies therefore covers the signature space of possibilities.

Finally we note that, in principle, one could also consider the case of a neutral fermion
N contributing to (g−2)µ. This would essentially be a right-handed-neutrino-type scenario
(see e.g. [83] for a review), where the new (g − 2)µ contribution consists of a loop of a W
boson and the neutral N that mixes with the muon neutrino. However, in the presence of a
unitary neutrino mixing matrix, such contributions would cancel up to corrections of order
∼ (mν/mW )2, which are inadequate to explain ∆aobs

µ . We therefore restrict our focus to
scalar and vector singlets.

2.2 Electroweak Scenarios

We now move on to discuss the most general class of BSM solutions to the (g−2)µ anomaly,
Electroweak Scenarios. This includes an overwhelmingly large number of possibilities, but
fortunately, we do not need to study all of them. To perform the maximization over all of
BSM theory space in Eqn. (2.2), we merely need to study those models which are guaranteed
to give the largest possible BSM mass scales. This will be sufficient to model-exhaustively
determine the heaviest possible mass for new charged states.

Which EW Scenarios maximize the BSM mass scale? Consider the most general new
one-loop diagrams that could contribute to (g− 2)µ. To make sure the relevant masses and
couplings are maximally unconstrained, we consider the cases where all fields in the loop
are BSM fields. Furthermore, the chirality flip and the Higgs VEV insertion necessary to
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generate Eq. (2.1) should both come from these BSM fields to avoid additional suppression
by the small muon Yukawa. The minimal ingredients are therefore:

1. at least 3 BSM fields, either two bosons and one fermion or one boson and two
fermions;

2. a pair of these fields undergo mass-mixing with each other via a Higgs coupling after
electroweak symmetry breaking (EWSB);

3. all new fermions are vector-like under the SM to maximize allowed masses and avoid
constraints on new 4th generation fermions [84];

4. no VEVs for any new scalars with EW charge. Since we are primarily interested in
BSM states above the TeV scale, any new VEVs that break electroweak symmetry
will exceed the measured value v ≈ 246 GeV for perturbative scalar self couplings.

As in our analysis for Singlet Scenarios, our default focus is on the most experimentally
pessimistic case in which these new BSM states only couple to the SM through their muonic
(and gauge) interactions. We find that scenarios with new vectors generate smaller ∆aµ
contributions than the analogous scenario with a new scalar, and likewise for Majorana
fermions or real scalars. Since this results in a lower BSM mass scale that would be easier
to probe, we focus on EW Scenarios with new complex scalars and vector-like fermions only.
This leaves just two classes of models, which we label SSF and FFS by their field content.

The SSF simplified model is defined by two complex scalars ΦA,ΦB in SU(2)L
representations RA, RB with hypercharges Y A, Y B and a single vector-like fermion pair
F (F c) in SU(2)L representation R (R̄) with hypercharge Y (−Y ):

LSSF ⊃ −y1F
cL(µ)Φ

∗
A − y2Fµ

cΦB − κHΦ∗AΦB

−m2
A|ΦA|2 −m2

B|ΦB|2 −mFFF
c + h.c. . (2.5)

Here y1, y2 are new Yukawa couplings and κ is a trilinear coupling with dimensions of mass.
L(µ) = (νL, µL) and µc are the two 2-component second-generation SM lepton fields, and
H is the Higgs doublet. A typical SSF contribution to (g − 2)µ is shown in Figure 3 (b).
Note that the chirality flip comes from the heavy vector-like fermion F while the Higgs
VEV insertion arises due to mixing of the new scalars.

The FFS simplified model is analogously defined but reverses the role of fermions and
scalars, featuring two vector-like fermion pairs FA, FB (F cA, F

c
B) in SU(2)L representations

RA, RB (R̄A, R̄A) with hypercharges Y A, Y B (−YA,−YB) and a single complex scalar S in
SU(2)L representation R with hypercharge Y :

LFFS ⊃ −y1F
c
AL(µ)Φ

∗ − y2FBµ
cΦ− y12HF

c
AFB − y′12H

†FAF
c
B

−mAFAF
c
A −mBFBF

c
B −m2

S |Φ|2 + h.c. (2.6)

There are now two renormalizable Yukawa couplings y12, y
′
12 which control the mixing of

the A and B fermions via the Higgs. A typical FFS contribution to (g − 2)µ is shown in
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Figure 3 (c). The chirality flip and Higgs VEV insertion both arise in the loop due to the
Higgs couplings of the new fermions.

These two simplified models generate the largest possible BSM particle masses that
could account for ∆aobs

µ . Therefore, the maximization over theory space in Eqn. (2.2) can
be replaced by a maximization over the SSF and FFS parameter spaces:

Mmax
BSM,charged ≡ max

SSF, FFS models

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
. (2.7)

Note that one could in principle consider extensions of the SM Higgs sector with additional
scalar contributing to EWSB. In that case, the κ and y1,2 terms in the above Lagrangians
could arise from coupling to these new scalars rather than a SM-like Higgs doublet, which
might change the allowed EW representations of the BSM states. However, current con-
straints already dictate that most of the observed EWSB arises from the VEV of a single
doublet [85, 86], which means that relying only on BSM scalars to generate the required
EWSB insertions in the above Lagrangians would lead to smaller effective mixings and
hence smaller ∆aµ and BSM masses. We therefore do not have to consider such extended
scenarios to perform the maximization of the lightest new charged particle mass over BSM
theory space.

In both SSF and FFS models, the choices of representations must satisfy

1 ⊂ RA ⊗R⊗ 2 (2.8)

RB = R̄

Y A = −1

2
− Y

Y B = −1− Y,

with Y chosen to make the electric charges integer-valued. We will explore all choices of
representations involving SU(2)L singlets, doublets and triplets, and all choices of Y that
ensure that all electric charges satisfy |Q| ≤ 2. As we discuss, this is sufficient to perform
the above maximization. The possibility of a high multiplicity of new BSM states is again
taken into account by considering the trivial generalizations where there are NBSM identical
copies of the above fields contributing to ∆aµ.

The Lagrangians in Eq. (2.5) and Eq. (2.6) only show the interactions necessary to
form new one-loop contributions to (g − 2)µ. Depending on the choice of SU(2)L ⊗ U(1)Y
representations, additional couplings between the new fermions/scalars and the muon or
Higgs may be allowed by gauge invariance. However, these couplings will not contribute
to (g − 2)µ at leading order, at most supplying a small correction to the leading terms
generated by the couplings in Eqns. (2.5) and (2.6), or slightly modifying the mass spectrum
of the fermions/scalars that couple to the Higgs after EWSB by . TeV, which does not
meaningfully affect our results or discussion. We can therefore neglect these additional
couplings in our analysis. We also assume that the new BSM states do not couple to
any other SM fermions (except when discussing leptonic flavour violation bounds). Both of
these assumptions are conservative in that they minimize additional experimental signatures
arising from the new physics responsible for the (g − 2)µ anomaly.
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Depending on the choice of representations, some of the EW Scenarios we consider
were previously studied in Refs. [45–48, 87–89]. There have also been previous attempts
to define simplified model dictionaries for generating ∆aobs

µ [41, 42, 45, 47, 48, 90–93], but
none took our completely model-exhaustive approach and none aimed to find the highest
possible mass of new BSM charged states that could account for ∆aobs

µ . We also make no
assumptions about e.g. the existence of a viable DM candidate, or any couplings of the new
degrees of freedom (dof’s) that are not required for resolving the (g− 2)µ anomaly (except
optionally considering flavour). Other possible simplified models for (g−2)µ, such as adding
fewer than 3 new BSM particles with non-trivial EW representations (see e.g. [41]), require
smaller masses for the new charged particles than the SSF and FFS models, and their
inclusion does not affect the outcome of the maximization over theory space of Eqn. (2.2).
We demonstrate this explicitly in Section 4.8.

2.3 Upper Bounds on BSM Couplings

The size of the (g − 2)µ contribution is controlled by BSM couplings and masses, and the
largest possible BSM masses that can account for the anomaly depend on the largest pos-
sible BSM couplings. In Section 2.3.1 we describe first how perturbative unitarity supplies
an absolute upper bound on the new couplings. This will inform our baseline analysis, but
more careful consideration of how these simplified models must arise as part of a more com-
plete BSM theory suggests that an upper bound based on unitarity alone is likely far too
conservative, especially in light of stringent CLFV bounds. In Sections 2.3.2 and 2.3.3 we
therefore consider the additional constraints on the new muon couplings arising by assum-
ing either Minimal Flavour Violation (MFV) or requiring the absence of large, explicitly
calculable new tunings.

2.3.1 Unitarity

To define the boundaries of parameter space in our simplified models we appeal to tree-level
partial-wave unitarity, expressed in terms of helicity amplitudes so that we can apply the
constraints to fermions as well as bosons [94]. (See e.g. [95–100] for more recent studies.) We
begin from the partial-wave expansion of the (azimuthally symmetric) scattering amplitude
for the 2→ 2 process i→ f ≡{a, b} → {c, d}:

Mi→f (θ) = 8π
∞∑
j=0

(2j + 1)T ji→fd
j
λfλi

(θ), (2.9)

where djλfλi(θ) are the Wigner d-functions, T ji→f is the j-th partial wave of the tree-level
scattering amplitude, λi = λa − λb and λf = λc − λd are the helicities of the initial and
final states, and j is the eigenvalue of the total angular momentum. The coefficients T ji→f
can be found by using the orthogonality condition of the d-functions

1

16π

∫
Mi→f (θ)djλfλi(θ)d(cos θ) = T ji→f . (2.10)

From the optical theorem one can get the partial-wave unitarity condition of an inelastic
process for each j

βiβf |T ji→f |2 ≤ 1, (2.11)
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Scalar-Scalar T j=0
0→0 d0

00(θ) = 1

Scalar-Fermion
T
j=1/2
+→+ d

1/2
1
2

1
2

(θ) = cos(θ/2)

T
j=1/2
+→− d

1/2
1
2
− 1

2

(θ) = sin(θ/2)

Fermion-Fermion
T j=0

++→±± d0
00(θ) = 1

T j=1
+−→±± d1

01(θ) = −
√

2 sin(θ/2) cos(θ/2)

T j=1
+−→+− d1

11(θ) = cos2(θ/2)

Table 1: The Wigner d-functions used in our partial-wave unitarity calculations.

where the phase space factors for states of mass m1 and m2 are

β(m1,m2) =
1

s

√
[s− (m1 +m2)2][s− (m1 −m2)2], (2.12)

and s is the squared center of mass energy. For a given set of mass eigenstates which
appear in our theory, we will require that the lowest partial-wave tree-level 2-to-2 scattering
amplitudes between initial states i and final states f satisfy the unitarity condition (2.11).
We will consider boson-boson (j = 0), boson-fermion (j = ±1/2), and fermion-fermion (j =

0, 1) scattering; fermion-vector scattering (j = 1/2) will always lead to weaker constraints
for large NBSM. The relevant Wigner d-functions are given in Table 1.

Note that the partial wave decomposition in Eq. (2.9) requires specifying the angular
momenta of the initial and final states, so in principle the different helicity amplitudes for
j = 1/2 can give independent constraints. Note also that these partial-wave constraints are
valid at any kinematically allowed value of s, as the phase space factors vanish at kinematic
thresholds and enforce physical kinematics.

The constraints obtained from (2.11) amount to the requirement that loop contribu-
tions to scattering amplitudes are smaller than tree-level contributions at scales up to a
factor of a few above mmax, where mmax is the largest mass eigenvalue in the model under
consideration.7 The violation of these constraints would require nonperturbative physics to
appear at an energy scale close to mmax to unitarize the theory, so restricting to parameter
space which satisfies tree-level unitarity amounts to the following statement: either a theory
with masses up to mmax is perturbatively calculable, or new physics appears at the scale
smax.

In some processes, we may encounter singularities either in the scattering amplitude
itself in the form of s-channel poles, or after integrating the amplitude as demanded by Eqn.
(2.11). The latter appear in t- and u-channel diagrams. In Ref. [97], these singularities are
treated by removing values of the CM energy

√
s around the singularities. We avoid such a

complication by studying processes where t- and u-channel amplitudes do not appear, and
where s-channel singularities correspond to poles at energies below the threshold where
the cross section is nonvanishing. This will become clear when we discuss the perturbative
unitarity constraints for specific processes in the sections below.

7Specifically, in some processes we take the s → ∞ limit to obtain our constraint, but numerically the
constraint asymptotes rapidly for energies a factor of a few times above threshold.
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Note that somewhat stronger constraints could be achieved by considering a coupled-
channel analysis where the full scattering matrix between all initial and final states is
diagonalized, by considering higher partial waves, and/or by relaxing the constraints on
poles; our constraints are thus conservative, but will suffice for the statement of our no-lose
theorem.

2.3.2 Unitarity and Minimal Flavour Violation

Proposing new scalars with Yukawa couplings to the muon prompts us to ask how these new
degrees of freedom couple to the other lepton generations. The physics which solves the (g−
2)µ anomaly would have to be embedded in whichever UV-complete framework explains the
flavour structure of the SM fermions. From a bottom-up perspective, this is most relevant
since flavour-changing neutral currents (FCNCs) in the lepton sector, most importantly
charged-lepton flavour violating (CLFV) decays `i → `jγ, are tightly constrained [54, 55]:

Br(µ→ eγ) < 4.2× 10−13 (2.13)

Br(τ → µγ) < 4.4× 10−8 (2.14)

Br(τ → eγ) < 3.3× 10−8 (2.15)

It is well known that CLFV constraints impose stringent requirements on BSM solutions
to the (g − 2)µ anomaly (see e.g. [41, 90]). We can demonstrate this by considering a
flavour-anarchic version of the scalar Singlet Scenario:

−L ⊃ S(geeS eLe
c + gµµS µLµ

c + gττS τLτ
c + geµS µLe

c + gµeS eLµ
c . . .) . (2.16)

where “. . . ” indicates the additional off-diagonal terms. This would generate flavour-
violating versions of the low-energy operator Eqn. (2.1)

Leff = C
(ij)
eff

v

M2
(`

(j)
L σνρ`(i)

c
)Fνρ + h.c. , (2.17)

where i, j are lepton generation indices. The assumption that the above scalar Singlet
Scenario resolves the (g − 2)µ anomaly fixes the Cµµeff Wilson coefficient. Assuming for
simplicity that Cµµeff is fully determined by gµµS , this determines all the other operators up
to ratios of gijS couplings:

Cijeff ≈
max(m`i ,m`j )

mµ

∑
k

gikS
gµµS

gkjS
gµµS

, (2.18)

where we have set gijS = gjiS , again for simplicity. It is straightforward to obtain CLFV
branching ratios from this low-energy description, which can be used to constrain ratios of
the singlet scalar couplings to different fermion generations:

∑
`

gµ`S
gµµS

g`eS
gµµS

. 1× 10−5 ,
∑
`

gτ`S
gµµS

g`µS
gµµS

. 7× 10−3 ,
∑
`

gτ`S
gµµS

g`eS
gµµS

. 6× 10−3, (2.19)

from µ → eγ , τ → µγ and τ → eγ decays respectively. We emphasize that these bounds
assume that gµµS is fixed to generate ∆aobs

µ . Clearly, flavour-universal couplings of the
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singlet scalar are excluded, and flavour-anarchic couplings are severely disfavoured by CLFV
bounds.

The situation is similar for EW Scenarios. Consider flavour anarchic versions of the
SSF and FFS models:

−LSSF ⊃ yi1F
cLiΦ

∗
A + yi2F`

c
iΦB + κHΦ∗AΦB (2.20)

−LFFS ⊃ yi1F
c
ALiS

∗ + yi2FB`
c
iS + y12HFAF

c
B . (2.21)

Again, in this anarchic ansatz, the same new fermions and scalars that account for the (g−
2)µ anomaly generate the flavour violating operators in Eqn. (2.17), and Cijeff is determined
by ∆aobs

µ up to coupling ratios:

Cijeff ≈
giS
gµS

gjS
gµS

, (2.22)

where we again assumed for simplicity that yi1 = yi2 and that Cµµeff is fully determined by
yµ1,2. The only difference to scalar Singlet Scenarios is the absence of the lepton mass ratio
in Eqn. (2.18), since for FFS and SSF models, the chirality flip and Higgs coupling insertion
now lie on the propagators of the BSM particles in the loop. Repeating the estimates for
CLFV decay branching ratios, we obtain the following bounds on the lepton coupling ratios:

ye1,2
yµ1,2

. 10−5 ,
yτ1,2
yµ1,2

. 10−1 ,
yτ1,2
yµ1,2

ye1,2
yµ1,2

. 10−1 , (2.23)

from µ → eγ , τ → µγ and τ → eγ decays respectively if yµ1,2 is fixed by resolving the
(g − 2)µ anomaly.

Clearly CLFV constraints, in particular µ → eγ, exclude flavour-universal BSM solu-
tions to the (g − 2)µ anomaly (that involve new scalars), and severely constrain flavour-
anarchic ones. It is of course possible that a flavour anarchic model evade the above con-
straints by some coincidence (perhaps all the more unlikely given that the above coupling
ratio constraints have to be satisfied in the lepton mass basis after PMNS diagonalization,
not the lepton gauge basis). However, it seems much more reasonable to take the absence of
observed CLFVs as evidence of some protection against FCNCs in whatever UV-complete
theory solves the SM flavour puzzle, and that the physics of (g − 2)µ has to respect that
protection.

A robust model-independent framework that encompasses many possible flavour em-
beddings and provides strong protection against FCNCs is the Minimal Flavour Violation
(MFV) ansatz (see e.g. [52, 53]). In MFV, the SM Higgs Yukawa matrices couplings are
assumed to be the only spurions of global U(3)L×U(3)`c → U(1)lepton flavour breaking, so
that all BSM flavour violation is aligned with the SM Yuwakas. Such a structure naturally
emerges if the SM Yukawa matrices arise as the VEVs of heavy UV fields responsible for
breaking a larger flavour group.

The MFV ansatz does not specify the representations of BSM fields under the flavour
group, but it does require all Lagrangian terms to be flavour-singlets (with the Yukawa
matrices as spurions). This would, for example, forbid off-diagonal terms in Eqn. (2.16),
avoiding large CLVFs while still providing a viable explanation for (g−2)µ over a wide range
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of scalar masses [101]. For EW Scenarios, the muon-scalar-fermion index has to involve a
Yukawa coupling factor and the scalar and fermion together have to contract into triplets
of U(3)L or U(3)`c . This automatically forbids interactions of the form Eqn. (2.20) since
there would have to be at least one separate BSM fermion (or scalar) for each lepton flavour
and the CLFV diagrams are not generated.8

Imposing MFV has several important consequences. First, non-trivial flavour repre-
sentations of BSM fields in EW Scenarios can give rise to more than one set of BSM states
coupling to the muon and contributing to (g−2)µ. In effect, this corresponds to NBSM > 1,
which is covered by our analysis. Second, MFV requires that some of the muonic BSM
couplings in the scalar singlet, SSF and FFS models have a tau-like equivalent that is at
least a factor mτ/mµ ≈ 17 larger. This larger tau-like coupling will therefore have to satisfy
the bounds of perturbative unitarity, effectively lowering the upper bound from unitarity
on the relevant muonic coupling that generates ∆aobs

µ by a factor of ≈ 17. This leads
to a dramatic reduction in the maximum allowed BSM mass scale compared to imposing
unitarity alone (and implicitly assuming that CLFV decays are suppressed by accidentally
small flavour-anarchic BSM couplings in the lepton mass basis).

Precisely which muonic BSM couplings have a tau-equivalent can depend on the U(3)L×
U(3)`c → U(1)lepton representation of the BSM fields. The situation is simple for the scalar
Singlet Scenario, since the gS coupling must be in the same representation as the SM
Yukawas, and therefore gµS/g

τ
S = mµ/mτ . For EW Scenarios there is more ambiguity. An

example of a minimal choice for the flavour representation of the BSM fields in the SSF
model (the discussion is similar for FFS) is

F ∼ (3, 1) , F c ∼ (3̄, 1) , SA,B ∼ (1, 1) (2.24)

Since L ∼ (3, 1) and ec ∼ (1, 3̄) this implies that y2 must transform like the SM electron
Yukawa while y1 can be a flavour singlet:

y2 ∼ ye ∼ (3̄, 3) , y1 ∼ (1, 1) (2.25)

Therefore, the MFV assumption implies yµ2 /y
τ
2 = mµ/mτ and the yµ2 coupling effectively

has a smaller perturbativity bound, while the upper bound for y1 is unaffected since that
coupling is flavour-universal. Other minimal choices can make y2 a flavour singlet and y1

a bifundamental, but at least one of the two muonic y1,2 couplings has its perturbativity
bound reduced by mµ/mτ . Non-minimal flavour representations for the BSM fields may
introduce additional coupling ratios and hence even tighter perturbativity bounds, but for
the purposes of our conservative estimates, we only make the minimal assumption.

8This statement is strictly true only for massless neutrinos, in which case the lepton Yukawa matrices are
spurions of U(3)L × U(3)`c → U(1)e × U(1)µ × U(1)τ flavor breaking and lepton flavors are are separately
conserved. However, for nonzero neutrino masses, there will still be some CLFV contributions from these
models, but they involve diagrams with virtualW exchange and are further suppressed by powers ofmν/mW

relative to the leading diagrams that resolve (g − 2)µ, so we do not consider them here.
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2.3.3 Unitarity and Naturalness in Electroweak Scenarios

The hierarchy problem in the SM is often formulated using an estimate of loop corrections
to the Higgs mass regulated with a finite momentum cutoff ΛUV:

∆m2
H ∼

y2
t

4π2
Λ2

UV , (2.26)

where yt is the SM top Yukawa, which dominates this estimate. Avoiding fine tuning
of the Higgs mass parameter in the Lagrangian requires either cancellation of the above
quadratically divergent correction (SUSY) or new physics far below the Planck or GUT scale
(i.e. a low UV cutoff). This is simple and intuitive, appealing to the physical interpretation
of unknown physics at some high scale in a Wilsonian picture. The cutoff argument is also
“morally correct” in that it accurately indicates the quadratic sensitivity of the Higgs mass
to UV corrections, whatever they may be. However, without knowledge of what the new
physics is, one could argue that the specific cutoff-dependent quantity in Eqn. (2.26) has
no physical meaning. While it might seem unlikely or even absurd that quantum gravity
corrections at the Planck scale contribute nothing to ∆m2

H , without explicit knowledge of
(1) new physics between the weak scale and the Planck scale, and (2) the precise nature of
quantum gravity, one cannot be absolutely sure that the hierarchy problem does, in fact,
refer to a real tuning of our universe’s parameters.

The situation is entirely different when explicit new states with high mass and sizeable
couplings to the Higgs are introduced, as is the case for the EW Scenarios we examine.
These models have been engineered to account for the (g − 2)µ anomaly with the high-
est possible BSM particle masses in order to perform the theory-space maximization of
Eqn. (2.2) and identify the experimental worst-case scenario and the minimum energy of
future colliders required for discovery. Realizing these high-mass scenarios requires un-
avoidably large couplings to the Higgs, which in turn leads to large but finite and calculable
corrections to the Higgs mass; this makes the hierarchy problem explicit.

Specifically, we can calculate the one-loop contributions of the new S, F fields to the
Higgs mass using dimensional regularization (DR) as a regulator in theMS renormalization
scheme. This gives contributions of the schematic form

∆m2
H ∼

1

4π2

(
c1M

2
BSM + c2M

2
BSM log

µ2
R

M2
BSM

)
, (2.27)

where in this instance MBSM stands for various combinations of BSM masses in each term,
and µR is the renormalization scale. The quadratic UV sensitivity of the Higgs mass is
illustrated by the first term, with the size of the correction given by the scale of new
physics as expected.

Naively, one might worry that the dependence of the second term on the renormalization
scale invalidates such a straightforward physical interpretation. One might in principle
choose µR to set the above correction to zero. However, this would not be physically
meaningful, since for such a choice of µR, the perturbative expansion would be invalid.
Restoration of perturbativity by inclusion of higher-loop diagrams would restore the large
size of ∆mH . Therefore, the most reasonable physical interpretation of this correction is
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obtained setting µR to optimize the validity of the perturbative expansion, in which case
the above one-loop result is the best possible approximation for the total size of the Higgs
mass correction to all orders. This is why one typically choose µR ∼ m in MS calculations
that are dominated by physics at scale m. In that case, the µR dependence becomes minor
and simply corresponds to the fact that in a truncated perturbative expansion, there are
unknown higher-order terms that could slightly modify the one-loop result.

With this in mind, we fix µR ∼ O(MBSM ) to the value that sets the log terms to zero.
This gives the following expressions for the Higgs mass corrections in SSF and FFS models:

∆m2
H = C1NBSM

κ2

16π2
(SSF) (2.28)

∆m2
H = C2NBSM

1

8π2

(
(y2

12 + y′12
2
)(m2

A +m2
B) + 2y12y

′
12mAmB

)
(FFS) (2.29)

where C1,2 ∼ O(1) depend on the gauge representations of the new scalars and fermions
in the SSF/FFS model. The required presence of such corrections in BSM theories that
solve the (g − 2)µ anomaly with the highest possible BSM mass scale makes the hierarchy
problem explicit.

What is more surprising, if not entirely unfamiliar [5, 64, 88], is that these same theories
actually lead to a second hierarchy problem for the muon mass. Fermion masses are usually
technically natural, but the required muon coupling to new heavy fermions F means their
chiral symmetry is shared in the limit where both are massless. Corrections to the muon
mass therefore no longer scale with the muon Yukawa yµ.9 Following the same procedure
as the calculation of Higgs mass corrections we obtain corrections to the muon Yukawa due
to loops of heavy fermions and scalars in EW Scenarios:

∆yµ ∼ NBSM
y1y2

16π2

κmF

M2
BSM

(SSF) (2.30)

∆yµ ∼ NBSM
y1y2y

(′)
12

4π2
(FFS) (2.31)

For large BSM couplings and masses, |∆yµ| � yµ, necessitating tuning of the Lagrangian
parameters. This hierarchy problem of the muon Yukawa arises due to large, calculable
corrections from new states present in the theory, making it just as explicit as the Higgs
hierarchy problem above.

It is therefore reasonable to consider BSM scenarios that avoid adding two explicit
hierarchy problems to the SM by keeping such a dual-fine-tuning to a reasonable minimum,
e.g. 1% each for the muon and Higgs mass. Similar to the MFV ansatz, this shrinks the
viable parameter space by reducing the maximum allowed size of BSM couplings, thereby
reducing the maximum BSM mass scale.10

2.4 Upper Bound on the BSM Mass Scale

The analysis of Singlet and EW Scenarios is discussed in detail in Sections 3 and 4. In
each scenario, the viable parameter space of BSM masses and couplings is compact, since

9Indeed, if the new physics is not so heavy it can modify the muon Yukawa [102].
10Any lower-scale new physics that somehow cancels this fine-tuning would lead to new experimental

signatures and hence also lead to a discovery.
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we require the new states to explain the (g−2)µ anomaly, and the couplings cannot exceed
the limit set by perturbative unitarity, or unitarity + MFV, or unitarity + naturalness.
Therefore, each scenario has well-defined maximum BSM particle masses for a given BSM
multiplicity NBSM. We then analyze the signatures of these models at future muon colliders.
The details are slightly different for Singlet and EW Scenarios due to their different collider
signatures.

Singlet Scenarios feature new SM singlets which can be invisible. Lighter singlets are
more weakly coupled to account for the (g−2)µ anomaly, so the scenarios with the heaviest
BSM particles are not necessarily the hardest to discover. Furthermore, the sensitivity of
collider searches can depend on whether the new singlets are stable or how they decay. We
therefore have to map out the complete parameter space of the simplified Singlet Scenarios.
Fortunately, with the muon coupling gS,V determined by the requirement of accounting for
the observed ∆aobs

µ , the model has just two parameters, singlet mass mS,V and multiplicity
NBSM (as well as the choice of singlet being a scalar or vector). As a function of mass
and multiplicity we then analyze the sensitivity of a completely inclusive search for the
production of the BSM singlets at muon colliders regardless of their decays. We also analyze
the reach of an indirect search based on deviations in Bhabha scattering to explore the
physics potential of a muon collider Higgs factory. We find that the singlet BSM states
cannot be heavier than about 3 TeV, and can be directly discovered at a 3 TeV muon
collider with 1 ab−1 for masses & 10 GeV in singlet + photon production processes. A 215
GeV muon collider that might be used as a Higgs factory can directly discover singlets as
light as 2 GeV in our conservative inclusive analysis with 0.4 ab−1 of luminosity. Heavier
singlets up to the 3 TeV maximum can be probed with Bhabha scattering.

The parameter space of the SSF and FFS simplified models that allow us to perform
the EW Scenario theory space maximization of BSM charged particle mass in Eqn. (2.2) is
much more complex, featuring three masses, several BSM couplings, the number of BSM
flavours NBSM, and the choice of EW gauge representations for the BSM states. However,
since we only need to find the heaviest possible BSM masses, for each SSF/FFS model with
a given choice of NBSM and EW gauge representation we can simply find the boundaries of
the parameter space defined by the maximum possible BSM masses that still allow BSM
couplings below the unitarity (or unitarity + MFV/naturalness) limit to account for the
(g − 2)µ anomaly.

For EW Scenarios we find that requiring only perturbative unitarity allows the lightest
charged states to sit at the 100 TeV scale, but this assumption is disfavoured by CLFV
bounds. Requiring either consistency with MFV to avoid CLFVs, or avoiding two explicit
new tunings worse than 1%, predicts new charged states at the 10 TeV scale or below.
Encouragingly, these states are in reach of some muon collider proposals.

It is worth noting that at the very boundaries of the BSM parameter spaces we explore,
with couplings set at the upper limit set by perturbative unitarity, the theory itself strictly
speaking has already lost predictivity, by definition. If the couplings actually had this value,
we would have to regard the theory as a strongly coupled one, requiring different analysis
tools. This is suitable for deriving upper bounds on the BSM mass scale, but it is interesting
to note these bounds could actually be saturated by strongly coupled BSM solutions to the
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(g − 2)µ anomaly (which would still have to feature new states with EW gauge charges).
One feature of composite theories is a large multiplicity of states, which we include by
considering NBSM > 1, with NBSM = 10 serving as a “high-multiplicity benchmark” for our
analyses. Therefore, while our quantitative predictions are unlikely to apply precisely to
strongly coupled BSM solutions of the (g − 2)µ anomaly, by including couplings up to the
unitarity limit and considering large numbers of BSM flavours we parametrically include
the signature space swept out by these strongly coupled theories. The statements we make
about the discoverability of new physics should, broadly speaking, apply to those scenarios
as well. That being said, it would be interesting to undertake a dedicated investigation of
high-scale composite BSM solutions to the (g − 2)µ anomaly within our framework. We
leave this for future work.

While CLFV constraints strongly favour the existence of some kind of flavour protection
mechanism, the degree to which the precise assumptions of MFV would have to be satisfied
is obviously up for debate. Similarly, the precise degree of tuning depends on the tuning
measure, and it is difficult to define exactly at what point a theory becomes “un-natural” in
a meaningful sense. However, our model-exhaustive approach has the advantage of throwing
these issues into stark relief: Solving the (g − 2)µ anomaly with BSM masses up to ∼ 10
TeV is apparently relatively “easy”, while pushing the masses of new states to the maximum
100 TeV scale limited only by unitarity appears to require some extreme form of tuning and
violation of MFV while somehow suppressing CLFV decays.

In particular, if the 10 TeV scale were exhaustively probed without direct detection
of new states while the (g − 2)µ anomaly is confirmed, this would confirm empirically
that nature is fine-tuned11 and does not obey the assumptions of the MFV ansatz but
still suppresses CLFV decays in some way. An analogy would be the discovery of split
supersymmetry [104, 105], where the lightest new physics states are heavy and couple to
the Higgs; in our case, the situation is even more severe since heavy states in EW Scenarios
make the muon mass radiatively unstable as well, and very heavy BSM states also preclude
MFV solutions to the SM flavour puzzle.

Our analysis generalizes and reinforces our earlier results in [64] by including a more
complete basis for the relevant EW Scenarios, considering consistent electroweak embed-
dings of Singlet Scenarios, addressing flavour physics considerations, and supplying impor-
tant technical details. Subsequent studies have employed an effective field theory (EFT)
approach to explore indirect signatures of the new physics causing the (g− 2)µ anomaly at
muon colliders [62, 65]. While this EFT approach would not allow us to ask detailed ques-
tions about the BSM physics – like studying direct particle production, tuning, and flavour
considerations – it is nonetheless extremely useful due to its maximal model-independence
and simplicity. As we discuss in Section 5, the results of these analyses are highly comple-
mentary to our own and help flesh out the muon collider no-lose theorem.

11A similar observation was made in connection with electron EDM measurements [5] and in [88]. On
a similar ground, see [103] for the implications of tuning in the context of models with radiative leptonic
mass generation.
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3 Analysis of Singlet Scenarios

3.1 (g − 2)µ in Singlet Scenarios

As defined in Eqns. (2.3) and (2.4), if BSM singlet scalars or vectors are responsible for the
(g − 2)µ anomaly, the relevant muonic interactions are

(gSµLµ
cS + h.c.) , gV Vα(µ†Lσ̄

αµL + µc †σ̄αµc) . (3.1)

The contribution of NBSM scalar singlets to (g − 2)µ is

∆aSµ = NBSM
g2
S

16π2

∫ 1

0
dz
m2
µ(1− z)(1− z2)

m2
µ(1− z)2 +m2

S z
≈ 2× 10−9NBSM g2

S

(
700 GeV

mS

)2

, (3.2)

where in the last step we have taken the mS � mµ limit. For vectors, the corresponding
(g − 2)µ contribution is

∆aVµ = NBSM
g2
V

4π2

∫ 1

0
dz

m2
µz(1− z)2

m2
µ(1− z)2 +m2

V z
≈ 2× 10−9NBSM g2

V

(
200 GeV

mV

)2

, (3.3)

where again we have taken the mV � mµ limit. It is known in the literature that pseudo-
scalar or pseudo-vector contributions to (g−2)µ have the wrong sign to explain the anomaly
[41], so we do not consider these scenarios here. Note also that in both cases ∆aµ ∝ m2

µ,
which implies a low (. TeV) mass scale for any choice of perturbative couplings that yield
∆aµ ∼ 10−9 required to explain the anomaly (see discussion in Sec. 3.2). Therefore, any
TeV-scale collider with sufficient luminosity will produce the S or V states on shell via
µ+µ− → γS/V . Our challenge in the remainder of this section is not just to identify the
highest singlet masses of interest, but rather to demonstrate that a plausible muon collider
would unambiguously discover the signatures associated with these states regardless of their
mass or how they decay.

3.2 Constraining the BSM mass scale with Perturbative Unitarity

In our analysis, we first calculate the perturbative unitarity constraints on singlet couplings
gS and gV that arise from the amplitude µ−µ+ → µ−µ+ with an intermediate S or V . We
then calculate how the singlet mass is determined by the coupling to explain (g−2)µ, up to
the maximum allowed values of these couplings. This will give a maximum possible mass
for the singlet(s).

The amplitude for the process µ−(p1)µ+(p2)→ S/V → µ−(p3)µ+(p4) is given by (note
that we have temporarily switched to 4-component fermion notation for convenience)

MS = ū3(−igS)v4
i

s−m2
s

v̄2(−igS)u1 − ū3(−igS)u1
i

t−m2
s

v̄2(−igS)v4, (3.4)

MV = ū3(−igV γα)v4
i

s−m2
V

[
−gαβ +

(p1 + p2)α(p1 + p2)β
m2
V

]
v̄2(−igV γβ)u1

− ū3(−igV γα)u1
i

t−m2
V

[
−gαβ +

(p1 − p3)α(p1 − p3)β
m2
V

]
v̄2(−igV γβ)v4. (3.5)

– 23 –



Figure 4: The coupling of the singlet scalar (gS) and vector (gV ) required to account for the (g−2)µ
anomaly as a function of its mass mS,V and multiplicity. For NBSM = 1, perturbative unitarity
imposes gS ≤ 3.5 and gV ≤ 6.1, which implies an upper bound on the masses needed for (g − 2)µ
of ms ≤ 2.7 TeV and mV ≤ 1.1 TeV, respectively. If one imposes MFV in the scalar couplings, the
upper bounds for scalars become (gS ,ms) ≤ (0.2, 155 GeV). Note that the NBSM-dependence of
the singlet mass drops out by requiring ∆aµ = ∆aobsµ .

We calculated the constraints on the scalar and vector singlets by calculating Eqn. 2.11 for
different j. For scalars, the strongest constraint was obtained from the process µ−(λ+)µ+(λ+)

→ µ−(λ−)µ+(λ−), where λ± represents positive/negative helicities. For vectors, the strongest
constrain was obtained for the process µ−(λ+)µ+(λ−)→ µ−(λ−)µ+(λ+). Using the proce-
dures outlined in Section 2.3.1 we get the following constraints:

g2
S ≤

4π

NBSM
, g2

V ≤
12π

NBSM
, (3.6)

where NBSM is the number of singlets with common masses and couplings in the theory.
For NBSM = 1(10) the upper bound on the scalar singlet coupling is gS ≤ 3.54 (1.12) and
on the vector singlet coupling is gV ≤ 6.14 (1.94).12

In Figure 4 we show the singlet scalar or vector coupling required for a given mass to
account for the (g− 2)µ anomaly. The upper bounds are ms ≤ 2.7 TeV and mV ≤ 1.1 TeV,
for scalar and vector singlets respectively. Even though the upper bound on the singlet
couplings decreases as the number of BSM flavours increases, the upper bound on the singlet
masses does not change, since the NBSM dependence drops out by imposing ∆aµ = ∆aobs

µ .

3.3 Flavour Considerations

As discussed in Section 2.3.2, CLFV constraints exclude flavour-universal couplings of the
scalar to leptons, and severely disfavour anarchic ones. This serves as strong motivation for
the MFV ansatz in scalar Singlet Scenarios, resulting in a lower maximum mass scale than

12The process µ−(λ+)V (λ+) → µ−(λ+)V (λ+) can provide stronger constraints for singlet vectors with
NBSM = 1. However, because this process is NBSM independent, for larger values of NBSM the strongest
constraint is provided by Eqn. 3.6. We omit this constraint from our analysis for simplicity since it does
not change our final result.
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unitarity alone. Figure 4 shows that the scalar should be no heavier than 200 GeV if MFV
is satisfied.

The vector interaction Vα(µ†Lσ̄
αµL + µc†σ̄αµc) must arise from a new U(1) gauge ex-

tension to the SM, which is spontaneously broken at low energies. If V is a “dark photon"
whose SM interactions arise from V -γ kinetic mixing, the parameter space for explaining
(g − 2)µ has been fully excluded for both visibly and invisibly decaying V [78, 106]; some
viable parameter space still exists for semi-visible cascade decays, but this will be tested in
with upcoming low energy experiments [72]. If, instead, V couples directly to muons, the
only13 anomaly free options for this gauge group are

U(1)B−L , U(1)Li−Lj , U(1)B−3Li , (3.7)

where B and L are baryon and lepton number respectively, and Li is a lepton flavour
with i = e, µ, τ . Importantly, all of these options require couplings to first generation SM
particles and are, therefore, excluded as explanations for (g− 2)µ by the same bounds that
rule out dark photons [78, 106], see also [109]. The sole exception is gauged Lµ−Lτ which
can still explain the anomaly for mV , but in that case the vector mass is constrained to
lie in the narrow range ∼ (1-200) MeV. This scenario will soon be tested with a variety of
low-energy and cosmological probes [80, 81, 110, 111]. Therefore, singlet vector scenarios
are less relevant to our discussion of high energy muon collider signatures, but we include
them since their phenomenology is nearly identical to that of singlet scalars.

3.4 Muon Collider Signatures

We now discuss the collider signatures of Singlet Scenario explanations for the (g − 2)µ
anomaly. In particular, here we focus on the region of masses above ∼ GeV, with the
understanding that low energy experiments will cover the lower mass region. The first
signal we discuss is direct production of the singlets in association with a photon. The
presence of a photon is important because we will consider the possibility that the singlets
decay invisibly, in which case the MuC can look for monophoton signatures. This γ + X

signal is particularly important for low masses. The second signal that we will discuss is
Bhabha scattering. The process µ−µ+ → µ−µ+ receives contributions via singlet exchange.
This process is particularly important for high singlet masses in a low-energy collider. An
important question that we want to address is at which luminosity a given signal can be
detected at 5σ significance for a given collider energy.

We consider two possible muon colliders: a high energy 3 TeV collider with 1 ab−1 of
integrated luminosity and a low energy 215 GeV collider (a potential Higgs factory) with
0.4 ab−1 of luminosity. These benchmark luminosities are discussed by the international
muon collider collaboration at CERN [112]. As opposed to conventional colliders, MuC has
the extra complication of Beam-Induced Background (BIB) due to muon decay-in-flight.
For this reason the detector design includes two tungsten shielding cones along the direction

13Other U(1) options may also be viable if additional electroweak charged BSM states are included to
cancel anomalies, but these models are phenomenologically similar for the purpose of our (g − 2)µ analysis
and are further subject to strong bounds at scales below the masses of these new particles [107, 108].
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µ− µ+

?

γ

S/V

Figure 5: Single production of the singlet in association with a photon at a muon collider. The
singlets can be stable and constitute missing energy, or decay to any SM final states. The search
is defined by the search for the recoiling photon, as well as any possible SM final states (including
missing energy) inside the singlet decay cone.

of the beam. The opening angle of these cones should be optimized as a function of the
energy of the MuC. In order to be conservative, our simulations assume that the detector
cannot reconstruct particles with angles to the beamline below 10◦ (20◦) for the higher
(lower) energy muon collider [113].

3.4.1 Inclusive Analysis of Singlet Direct Production

Here we focus on single production of the singlets in association with a photon. In principle,
to study direct production of the singlets one would need to make an assumption about
how they decay to optimally search for them at the collider. We want to avoid such a model
dependence by implementing an inclusive analysis for singlet + photon production with the
following signal topology for a given singlet mass mS , illustrated in Figure 5:

1. A nearly monochromatic photon with Eγ ∼
√
s/2 (with some mild dependence on

the singlet mass) in one half of the detector.

2. No other activity anywhere else in the detector, except inside of a “singlet decay cone”
of angular size φmax around the assumed singlet momentum vector ~pS = −~pγ .

3. For each singlet mass, φmax is defined as the opening angle within which ∼ 95% of
singlet decay products must lie, regardless of decay mode. This is determined from
simulation under the assumption that the singlet decays to two massless particles,
which gives the largest possible opening angle of any decay mode.

4. There are no requirements of any kind on what final states are found inside the singlet
decay cone. This gives near-unity signal acceptance for stable singlets (resulting in
missing energy) as well as all possible visible or semi-visible decay modes.

The veto on detector activity anywhere except the monochromatic photon and inside the
singlet decay cone would have to be adjusted for a realistic analysis due to the presence of
BIB and initial- and final-state radiation. However, the former is likely to be subtractable
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Mass
(GeV)

Eγ bin
(GeV)

∆Eγ
(Γsinglet)

∆Eγ
(ECAL)

Background
(fb)

Signal (fb)
Scalar Vector

10 (1492, 1508) 0.02 16.17 3.23 0.22 4.31
100 (1490, 1506) 2.0 16.15 3.65 14.1 391
500 (1433, 1483) 50 15.75 2.51 372 11,177
1000 (1233, 1433) 200 14.50 3.18 1,636 52,074

Muon Collider Energy: 3 TeV

Table 2: Photon energy bins as well as background and signal cross sections for different singlet
masses. The width of the energy bin corresponds to the maximum of the third and fourth columns
for a given row. Values in this table correspond to a MuC with

√
s = 3 TeV.

and the latter are small corrections at a lepton collider, not greatly reducing signal accep-
tance. We therefore ignore this complication with the understanding that a more complete
treatment would not significantly change our results.

This inclusive analysis allows us to remain as model-independent as possible, something
that is necessary when scanning over a large range of singlet masses with only the coupling to
the muon known, without paying any branching fraction penalty that would arise by perhaps
trying to exploit some minimum decay rate to muons. For instance, for mS & 200 GeV, the
muon coupling is > 1, making it natural for the dominant decay mode to yield two muons,
although other visible or invisible decay modes could be co-dominant. For smaller masses,
e.g. close to 1 GeV, the muon coupling is 2-3 orders of magnitude smaller, and the singlet
could decay to invisible particles, electrons, quarks, or photons.

Note that instead of searching for bumps in the invariant mass distribution of candidate
singlet decay products inside the decay cone, we analyze the photon energy distribution.
This takes advantage on the fact that producing an on-shell particle in association with a
photon forces the latter to be nearly monochromatic in a lepton collider. For a given singlet
mass, the photon energy is determined within a bin (∆Ebin

γ ) whose width is correlated with
the decay width of the singlet. We calculated ∆Ebin

γ assuming a decay width of 30%

around the mass of the singlet, which is near the upper bound from perturbative unitarity
and very conservative. For small singlet masses that result in a very narrow photon energy
distribution, we instead define the bin size ∆Ebin

γ to be equal to the energy resolution of the
electromagnetic calorimeter (ECAL). We assume an ECAL resolution similar to that of the
Large Hadron Collider (LHC) main detectors [114], again a very conservative assumption
that takes into account the most important detector effects. Tables 2 and 3 show the
assumed photon energy bins ∆Ebin

γ for a few values of the singlet mass at a 3 TeV and 215
GeV MuC.

We assume singlet production for each possible scalar or vector mass is determined
only by the coupling gS , gV to the muon, which is in turn fixed by ∆aµ = ∆aobs

µ . We then
calculated the production cross section by coding up the Singlet Scenarios as simplified
models in FeynRules [115] and generating tree-level signal events with MadGraph5_aMC@NLO
[116]. We confirmed that with the above cuts, signal acceptance for singlet decays is close to
1 regardless of decay mode. The background was calculated by simulating γ+ f̄f (including
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Mass
(GeV)

Eγ bin
(GeV)

∆Eγ
(Γsinglet)

∆Eγ
(ECAL)

Background
(fb)

Signal (fb)
Scalar Vector

1 (106, 108) 0.01 2.07 2.56 0.247 1.58
10 (106, 108) 0.28 2.07 9.14 10.86 147.4
50 ( 98, 105) 6.98 2.02 77.9 172.7 3356
100 ( 90, 96) 28 1.96 5.78 6.821 100.8

Muon Collider Energy: 215 GeV

Table 3: Similar to Table 2 but for a 215 GeV MuC.

neutrinos) and γ + γγ final states at tree-level and imposing the above cuts in an offline
analysis. Background contributions involving additional SM states would either fail one of
the vetos or cut on additional states outside of the decay cone, or supply small corrections
to the lowest-order background rates we calculate in our signal region. Our analysis should
therefore reliably estimate the sensitivity of a realistic inclusive singlet search. Table 2
shows the total background cross section after imposing analysis cuts for a few values of
the singlet mass and compares them to signal.

In the right panel of Fig. 6, dashed lines show that a 3 TeV MuC with 1 ab−1 of
luminosity will be able to probe singlet masses above 11 GeV for scalars and 2.4 GeV for
vectors through γ +X events. Note that these sensitivities do not depend on NBSM, since
signal rates at the MuC and ∆aµ both scale as NBSM g2

S,V .
In order to probe smaller masses, one could use a lower energy MuC. In the left panel

of Fig. 6 we see that a 215 GeV MuC with 0.4 ab−1 will probe masses above 1.4 GeV for
scalars and sub-GeV masses for vectors, owing to the larger production rate for light states
at lower collider energies. Such a lower-energy collider might be built as a MuC test-bed
or Higgs factory, and while it would not be able to directly produce singlets at the heaviest
possible masses allowed by unitarity, it would cover most of the scalar parameter space
allowed under the most motivated MFV assumption. Furthermore, as we show in the next
section, it will be able to indirectly discover the effects of the Singlet Scenarios by detecting
deviations in Bhabha scattering.

3.4.2 Bhabha Scattering

In the Standard Model, Bhabha scattering is mediated by s- and t-channel exchange of both
a photon and a Z boson (Fig. 7, top). New physics contributions from singlet scalars and
vectors have a similar topology (Fig. 7, bottom) and can produce measurable deviations.
When the energy of the collisions is close to the mass of the singlets, the distinctive signature
of Bhabha scattering is a resonance peak at the mass of the singlet. However, when the
energy of the collisions is lower, one could instead can look for deviations in the total cross
section of the process due to contributions from off-shell singlets. The potential problem
with this approach is that measurements of total rates for Bhabha scattering are sometimes
used to calibrate beams and measure instantaneous luminosity [117]. To avoid possible
complications in that regard, one can measure deviations in ratio variables similar to a
forward-backward asymmetry in parity-violating observables. Ratio variables also have
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Figure 6: Luminosity needed for 5σ discovery significance of inclusive Singlet Scenario searches at
a 215 GeV and 3 TeV muon collider for singlet scalars (green) and singlet vectors (orange). This
is shown for singlet masses up to the perturbativity limit calculated in Section 3.2. Dashed lines
(solid lines) show the results from the inclusive direct γ +X analysis (Bhabha scattering analysis).
Note that these sensitivities do not depend on NBSM.

the advantage of mitigating the effect of systematics. We therefore define the ratio of the
number of forward to backward µ+µ− → µ+µ− events:

rFB ≡

∫ cθ0

0

dσ

dcθ
dcθ∫ 0

−cθ0

dσ

dcθ
dcθ

, (3.8)

where cθ is the cosine of the muon scattering angle, dσ/dcθ is the differential cross section of
the process µ−µ+ → µ−µ+, and the minimum angle θ0 is given by the angular acceptance
of the MuC detector. The dependence of this variable on singlet mass is illustrated in
Fig. 8 for a 215 GeV (left) and 3 TeV (right) MuC. For a given mass, the singlet coupling is
determined by the value of (g− 2)µ. Note that this result again does not depend on NBSM

since it depends only on g2
S,VNBSM, which is fixed by ∆aµ = ∆aobs

µ .
In Figure 8, blue lines represent the SM result. As expected, the number of forward

events exceeds that of the backward events by orders of magnitude in the SM. This is
typical for Bhabha scattering due to t-channel enhancements. The contribution of singlets
interferes with the SM contribution and reshapes the angular distribution, resulting in
deviations from the SM expectation for rFB. In particular, near an s-channel resonance,
rFB → 1, as expected because the singlet-muon coupling is parity-conserving. To address
the question of how much luminosity is needed to discover deviations from the expected
SM behaviour of Bhabha scattering with 5σ statistical significance, we calculate rFB for
the background-only hypothesis rSM

FB and compare it with the background+signal hypothesis
rSM+NP

FB , obtaining the corresponding χ2,

χ2 =

(
rSM+NP

FB − rSM
FB

)2

(
∆rSM+NP

FB

)2
+
(
∆rSM

FB

)2 . (3.9)
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Figure 7: Feynman diagrams for Bhabha scattering in the SM (top) and contributions from
singlet scalars or vectors (bottom). (Note that the arrows in this diagram represent charge flow,
not helicity.)

SM
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Figure 8: Prediction for the forward-backward asymmetry variable rFB in Bhabha scattering for
Singlet Scenarios at a 215 GeV and 3 TeV MuC. This is independent of NBSM.

The uncertainties in the denominator arise from Poisson statistics in the number of forward
and backward events expected at each mass and luminosity.

In the right panel of Fig. 6, solid lines show that a 3 TeV (1 ab−1) MuC will be able
to probe singlet masses above 58 GeV for scalars and 14 GeV for vectors through Bhabha
scattering. More importantly, a 215 GeV (0.4 ab−1) MuC will probe masses above 17.5 GeV
for scalars and 5.5 GeV for vectors. The most important role of Bhabha scattering is in
enabling a lower-energy 215 GeV muon collider to discover the effects of Singlet Scenarios
that solve the (g − 2)µ anomaly over the entire allowed mass range of the singlets (in
combination with the inclusive direct search).
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3.5 UV Completion of Scalar Singlet Scenarios

We close this section by commenting on possible UV completions of Singlet Scenarios. It
is important to keep in mind that the scalar-muon coupling in the singlet scalar model
has to be generated by the non-renormalizable operator cS

Λ HµLµ
cS after electroweak sym-

metry breaking. There are only a few ways of generating this operator at tree-level using
renormalizable interactions.

The simplest possibility involves the SH†H operator, which introduces S-H mass mix-
ing after electroweak symmetry breaking. Diagonalizing away this mixing induces the
SµLµ

c operator which is proportional to both the SM muon Yukawa coupling and S-H
mixing angle. However, this scenario is experimentally excluded as a candidate explanation
for (g − 2)µ [118] and similar arguments sharply constrain models in which S mixes with
the scalar states in a two-Higgs doublet model.

The singlet-muon Yukawa interaction can also be induced in models where the singlet
S couples to a vector-like fourth generation of leptons ψi. If the ψi undergo mass mixing
with L and µc, the requisite operator SµLµc can arise upon diagonalizing the full leptonic
mass matrix after electroweak symmetry breaking. In such models, these states inherit
the flavour structure of their UV mixing interactions, whose form must be restricted (e.g.
by MFV) to ensure that FCNC bounds are not violated. If these additional ψi states are
sufficiently light (. few TeV), they may be accessible at future proton and electron colliders,
e.g. via established search strategies for heavy new vector-like leptons [84]. However, given
the multiple dimensionless and dimensionful couplings that these models allow (each with
potentially non-trivial flavour structure), it is also possible for these additional states to be
far heavier than the TeV scale, and therefore inaccessible at traditional colliders.

A detailed study of these UV completions is beyond the scope of this paper, but we
merely point out that the existence of charged states at or below the TeV scale is not strictly
necessary to realize the scalar Singlet Scenario. On the other hand, discovering these scalar
singlets at a muon collider only relies on the coupling gS that is determined by solving the
(g − 2)µ anomaly.

4 Analysis of Electroweak Scenarios

4.1 SSF and FFS Model Space

In Section 2.2, we defined the SSF and FFS simplified models, with Lagrangians given in
Eqns. (2.5) and (2.6), which we repeat here for convenience

LSSF ⊃ −y1F
cL(µ)Φ

∗
A − y2Fµ

cΦB − κHΦ∗AΦB

−m2
A|ΦA|2 −m2

B|ΦB|2 −mFFF
c + h.c. (4.1)

LFFS ⊃ −y1F
c
AL(µ)Φ

∗ − y2FBµ
cΦ− y12HF

c
AFB − y′12H

†FAF
c
B

−mAFAF
c
A −mBFBF

c
B −m2

S |Φ|2 + h.c. . (4.2)

For NBSM > 1, we simply consider multiple degenerate copies of the above field content. In
SSF (FFS) models, the fermion F (complex scalar S) is in SU(2)L representation R with hy-

– 31 –



percharge Y , while the two complex scalars ΦA,B (two fermions FA,B) are in representation
RA,B with hypercharges YA,B.

As we discussed in Section 2, these two simplified models include the most general
form of new one-loop contributions to (g − 2)µ, see Figure 3 (bottom). In particular, since
every particle in the loop is assumed to be a BSM field, the new couplings y1, y2, y12, y

′
12, κ

are experimentally unconstrained for BSM masses above a TeV or so, and can be chosen
to maximize ∆aµ subject only to perturbative unitarity (and optionally imposing MFV or
naturalness), which in turn allows ∆aobs

µ to be generated by the heaviest possible BSM
states under the assumption of perturbative unitarity and electroweak gauge invariance.
This allows us to perform the theory space maximization in Eqn. (2.2) by only performing
the maximization over the parameter space of all possible SSF and FFS models, as in
Eqn. (2.7). The possibilities not covered by these scenarios, like Majorana fermions or
real scalars, give smaller (g − 2)µ contributions and hence must feature lighter BSM states
than the SSF and FFS scenarios, which does not change the outcome of the theory space
maximization.

Analyzing these two SSF and FFS simplified model classes therefore allows us to find
the heaviest possible mass of the lightest new charged state in the theory. This dictates
the minimum center-of-mass energy a future collider must have to guarantee discovery of
new physics by direct Drell-Yan production and visible decay of heavy new states. In
particular, the discovery of charged states with mass m .

√
s/2 at lepton colliders is highly

robust [119], since they have sizeable production rates given by their gauge charge and have
to lead to visible final states in the detector. This is why our results allow us to formulate
a no-lose theorem for future muon colliders.

Each individual SSF or FFS model is defined by the choice of electroweak representa-
tions for the new scalars and fermions. In principle there are infinitely many possibilities
that satisfy the requirements in Eqn. (2.8), but theories with very large EW representations
lead to issues such as low-energy Landau poles (see Section 4.7) or multiply-charged stable
cosmological relics. We therefore restrict ourselves to models where all new particles have
electric charge |Q| ≤ 2. Table 4 shows a summary of all the EW Scenarios we explicitly
analyzed as part of our study, showing the SU(2)L ⊗ U(1)Y representation of the BSM
fields, which are all the unique possibilities with electric charges of 2 or below and represen-
tations up to and including triplets of SU(2)L. This table also lists the highest mass that
the lightest charged BSM state in the spectrum can have subject to unitarity, unitarity +
MFV, unitarity + naturalness and unitarity + naturalness + MFV constraints. For each
assumption, the last row contains Mmax

BSM,charged. This constitutes our main result, which we
explain in the sections below. Crucially, in some scenarios the lightest charged state does
not actually participate in the loop that generates ∆aobs

µ , but its existence is nonetheless
required by electroweak gauge invariance.

The requirement of |Q| ≤ 2 in principle allows for theories featuring SU(2)L representa-
tions up to and including the 5. However, we find that the largest possible BSM mass does
not appear to increase for higher-rank representations. Therefore, we believe our results for
Mmax

BSM,charged to be robust even though we do not explicitly analyze scenarios involving 4
and 5 representations.
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Highest possible mass (TeV)
of lightest charged BSM state

Unitarity Unitarity + Unitarity + Unitarity +
only MFV Naturalness Naturalness +

MFV
NBSM: NBSM: NBSM: NBSM:

Model R RA RB 1 10 1 10 1 10 1 10

SSF

1−1 21/2 10 65.2 241 12.9 47.1 11.5 11.5 6.54 10.1
1−2 23/2 11 85.9 321 18.1 64.8 19.2 19.2 8.41 12.3
10 2−1/2 1−1 46.2 176 9.41 34.1 15.6 17.5 5.93 8.56
11 2−3/2 1−2 81.8 302 17.1 63.7 19.3 19.3 8.38 12.1

2−1/2 30 2−1/2 21.4 107 4.2 15.5 7.47 8.99 3.23 5.0
2−3/2 31 21/2 83.7 308 16.6 60.7 13.4 13.4 7.06 10.6
21/2 3−1 2−3/2 95.5 356 18.3 67.8 15.6 15.6 7.75 11.3

2−1/2 10 2−1/2 65.2 241 12.9 47.1 11.5 11.5 6.54 10.1
2−3/2 11 21/2 85.9 321 18.1 64.8 19.2 19.2 8.41 12.3
21/2 1−1 2−3/2 44.8 155 8.8 32.3 10.9 10.9 5.64 8.56

3−1 21/2 30 95.4 359 19.4 73 20.1 30 7.75 11.5
30 2−1/2 3−1 39.4 144 7.82 28.6 10.8 15.1 4.14 6.08

FFS

1−1 21/2 10 37.3 118 8.87 28 12.3 18.7 4.6 7.04
1−2 23/2 11 67.3 213 15.8 50 13.5 18.8 4.86 6.93
10 2−1/2 1−1 59.1 187 13.2 41.8 12.4 17.2 4.02 6.28
11 2−3/2 1−2 73.2 231 17.4 55 13.9 19.7 5.04 7.25

2−1/2 30 2−1/2 40 126 9.38 29.7 8.0 11.5 2.88 4.34
2−3/2 31 21/2 56.3 178 13.6 42.9 11.8 16.2 4.26 6.1
21/2 3−1 2−3/2 82.3 260 19.2 60.6 13.6 19 4.93 7.0

2−1/2 10 2−1/2 37.3 118 8.87 28 12.3 18.7 4.6 7.04
2−3/2 11 21/2 67.3 213 15.8 50 13.5 18.8 4.86 6.93
21/2 1−1 2−3/2 46.2 146 11.2 35.4 9.83 13.8 3.49 5.18

3−1 21/2 30 71 225 17 53.6 13.1 18.1 4.04 6.97
30 2−1/2 3−1 23.4 75 5.29 16.9 7.3 7.69 2.73 4.03

Mmax
BSM,charged (max in each column) 95.5 359 19.4 73 20.1 30 8.41 12.3

Table 4: Summary of all the EW Scenarios we analyze as part of our study. In SSF models,
F ∼ R,ΦA,B ∼ RA,B . In FFS models, S ∼ R,FA,B ∼ RA,B , and the choices of representations
are shown in columns 2–4, which covers all unique possibilities satisfying |Q| ≤ 2 involving SU(2)L
representations up to and including triplets. Columns 5–6, 7–8, 9–10 and 11–12 show the highest
possible mass in TeV of the lightest BSM state in the spectrum, with the BSM couplings constrained
only by unitarity, unitarity + MFV, unitarity + naturalness and unitarity + naturalness + MFV
respectively. For illustration of the NBSM dependence, we show results for a single copy of the
BSM states NBSM = 1, or for NBSM = 10. The highest possible BSM mass scale for unitarity
and unitarity + MFV constrained couplings scales as ∼ N

1/2
BSM. Adding the naturalness constraint

of less than 1% tuning of both the Higgs and muon mass softens this dependence to ∼ N
1/6
BSM

(both with and without the MFV constraint). Note that in some scenarios, the lightest charged
state does not directly contribute to (g − 2)µ, but its existence is nonetheless a requirement of
EW gauge invariance. The largest possible mass of the lightest new charged state across all the
scenarios we examine is shown in the last row, which corresponds to the theory-space maximization
in Eqn. (2.7) and hence Eqn. (2.2). We do not expect the inclusion of higher SU(2)L representations
to meaningfully increase this upper bound.
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4.2 (g − 2)µ in Electroweak Scenarios

It is straightforward to compute the general BSM one-loop contribution to (g− 2)µ, repro-
ducing results from the literature [41, 45]. It is convenient to work in the low-energy theory
below the scale of electroweak symmetry breaking. Consider an effective Lagrangian with a
single new Dirac fermion ΨF with mass mF and charge QF , and a complex scalar ΦS with
mass mS and charge QS interacting with the muon as follows:

L ⊃ −Ψ̄F (aPL + bPR)µΦ∗S + h.c. (4.3)

Note we have temporarily switched to 4-fermion notation for this low-energy calculation; µ
is the muon spinor, and PL,R are the left- and right-chirality projectors. The contribution
of particles ΨF ,ΦS to (g − 2)µ is given by:

∆aµ(a, b,mF ,mS , QF , QS) = −mµmF

8π2m2
S

{
QF

[
Re(a∗b)IF (ε, x) + (|a|2 + |b|2)

mµ

mF
ĨF (ε, x)

]
−QS

[
Re(a∗b)IS(ε, x) + (|a|2 + |b|2)

mµ

mF
ĨS(ε, x)

]}
(4.4)

where ε = mµ/mS , x = m2
F /m

2
S and the loop integrals are:

IF (ε, x) =

∫ 1

0
dz

(1− z)2

(1− z)(x− zε2) + z
(4.5)

ĨF (ε, x) =
1

2

∫ 1

0
dz

z(1− z)2

(1− z)(x− zε2) + z
(4.6)

IS(ε, x) =

∫ 1

0
dz

z(1− z)
(1− z)(1− zε2) + zx

(4.7)

ĨS(ε, x) =
1

2

∫ 1

0
dz

z(1− z)2

(1− z)(1− zε2) + zx
(4.8)

Eqn. (4.4) makes it straightforward to calculate (g − 2)µ for all the EW Scenarios in
Table 4 (which may involve several scalar-fermion combinations coupling to the muon and
contributing to ∆aµ), after solving for the BSM spectrum after EWSB. In FFS models,

∆aµ ∼ NBSM y2
1,2

y
(′)
12v mµ

m2
BSM

, (4.9)

where mBSM is some combination of the BSM particle masses, while for FFS models,

∆aµ ∼ NBSM y2
1,2

κv mµ

m3
BSM

. (4.10)

Once upper bounds on the BSM couplings from unitarity or other considerations are deter-
mined, we can therefore find upper bounds on the BSM mass scale under the assumption
that ∆aµ = ∆aobs

µ .
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4.3 Constraining the BSM Mass Scale with Perturbative Unitarity

As discussed in Section 2.3.1, the BSM couplings in SSF and FFS theories have to sat-
isfy perturbative unitarity. Deriving the upper bounds for the new Yukawa couplings is
straightforward. We constrain the Yukawa couplings y1 and y2 in the SSF models from
the process µ−(λ±)F (λ∓) → µ−(λ±)F (λ∓). The same Yukawas in the FFS models were
constrained from processes µ−(λ±)S → µ−(λ±)S, whereas for the extra Yukawas y12 and
y′12 we used the processes fi(λ±)fj(λ±)→ fk(λ±)fl(λ±), where fi are the mass eigenstates
of the two fermions in the model after mixing. For scalar-fermion scattering, the inter-
mediate fermion propagator scales at large s as 1/

√
s for the + → + helicity-preserving

amplitude, and M/s for the helicity-violating + → − amplitude, where M is the mass of
the intermediate fermion. After taking into account the normalization of the initial-and
final-state spinors, we find that the +→ + amplitudes are independent of energy (and give
constraints y ' O(1) ×

√
4π where y is a Yukawa coupling), while the + → − amplitudes

are largest at small s. For the SSF and FFS model respectively, the constraints are:

|y1|, |y2| ≤
√

16π ≈ 7.09 (SSF unitarity bound) (4.11)

|y1|, |y2| ≤
√

8π ≈ 5.01 (FFS unitarity bound) (4.12)

|y12|, |y′12| ≤
√

4π ≈ 3.55

independent of NBSM.
Obtaining a unitarity bound for the dimensionful coupling κ in SSF models is slightly

more involved. It has to satisfy |κ| < κmax, where parametrically,

κmax = d(mA,mB,mF )
mAmB

v
. (4.13)

The dimensionless factor d is a function of BSM mass parameters with size d ∼ O(0.1− 1)

if there is large hierarchy between mA and mB, asymptoting to d� 1 as mA → mB. This
upper bound on the size of κ is far more restrictive than the requirement that none of the
new scalars acquire VEVs. The derivation is as follows. Scalar-scalar amplitudes are a
sum of 3-point and 4-point diagrams; the latter are independent of energy, but the former
scale as κ2/s. Thus the amplitude will be largest, and hence the strongest constraints
on κ will generally be obtained, at the smallest s which is kinematically accessible, which
in principle motivates focusing on the scattering channels with the smallest initial- and
final-state masses, namely hSi → hSj . However, these processes include cases where s-,
t-, and u-channel singularities appear. The s-channel poles appear due to the exchange of
a scalar Sk whose mass is above the threshold s = (mh + mSi)

2. We can avoid dealing
with such poles by considering the scattering of the lightest scalars Si through s- and t-
channel exchange of a Higgs boson. This way, neither of the s, t, u channel singularities
appear when calculating the constraints given by Eqn. (2.11). In this sense, our constraints
are conservative, but they avoid defining arbitrary ways to deal with singularities (a fully
correct treatment would be model-dependent), and is sufficient to find a conservative but
useful estimate of Mmax

BSM,charged.
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The scattering amplitude for the process SiSi → SiSi is given by

M = −4λeff − κ2
eff

(
1

s−m2
h

+
1

t−m2
h

)
, (4.14)

where the coefficients λeff and κeff are functions of mixing angles, self-quartics for the scalars
SA, SB, quartics between different scalars and/or the Higgs (indicated by subscripts):

λeff = cos θ4λA + cos θ2 sin θ2λAB + sin θ4λB, (4.15)

κeff = −
√

2 cos θ sin θκ+ cos θ2vλAH + sin θ2vλBH . (4.16)

From this process, the lowest-order partial wave is given by

a0 = − 1

32π


√

1−
4m2

Si

s

(
8λeff +

2κ2
eff

s−m2
h

)
+

2κ2
eff√

s(s− 4m2
Si

)
log

[
m2
h

m2
h + (s− 4m2

Si
)

] .

(4.17)

The unitarity bound on κ < κmax corresponds to the maximum value that for a given set
of parameters (couplings, masses, etc.), satisfies the condition

|Re(a0)| ≤ 1

2
, (4.18)

for large s, but since the constraint asymptotes rapidly above threshold, this corresponds
to requiring consistency of the theory close to (a factor of a few above) threshold s & 4m2

Si
.

To marginalize over the dependence of scalar quartic couplings, we maximized κmax with
respect to the unknown quartics, subject to these quartics themselves obeying perturbative
unitarity.

We can now find the upper bound on the BSM particle masses in each model, under
the assumption that ∆aµ = ∆aobs

µ . For each SSF (FFS) model in Table 4 the explicit steps
in the calculation are the following:

1. For a given choice of scalar (fermion) mass parameters mA,mB and coupling κ

(y12, y
′
12), find the masses and effective muon couplings of all the mass eigenstates.

The ∆aµ contribution can then be found using Eqn. (4.4).

2. Find largest fermion mass mF (scalar mass mS) that can still generate ∆aobs
µ , un-

der the assumption that the BSM couplings y1, y2, κ (y1, y2, y12, y
′
12) are chosen to

maximize ∆aµ subject only to the above unitarity bounds.

3. With the fermion (scalar) mass fixed to this maximum value and the couplings chosen
to maximize ∆aµ, the entire BSM spectrum of the theory is fully determined as a
function of just the two scalar (fermion) masses mA,mB. As expected, we find that
∆aobs

µ can be generated only in a compact region of the (mA,mB)-plane.

– 36 –



SSF, all BSM fields charged SSF, charged and neutral fields

U
ni
ta
ri
ty

on
ly

U
ni
ta
ri
ty

+
M
F
V

U
ni
ta
ri
ty

+
N
at
ur
al
ne

ss
U
ni
ta
ri
ty

+
N
at
ur
al
ne

ss
+

M
F
V

Figure 9: Contours show mass in TeV of lightest charged state in two representative SSF models
with NBSM = 1 as a function of scalar masses mA,mB . The largest possible fermion mass mF

was determined by ∆aBSM = ∆aobsµ , with the couplings y1, y2, κ chosen to maximize (g− 2)µ while
obeying the constraint from perturbative unitarity (1st row), unitarity + MFV (2nd row), unitarity
+ naturalness (3rd row) or unitarity + naturalness + MFV (4th row) On the left, (R,RA, RB) =

(1−2, 23/2, 11), and all fields contributing to (g − 2)µ are charged. On the right, (R,RA, RB) =

(1−1, 21/2, 10), and the scalars in the (g−2)µ loop are neutral but since ΦA is an EW doublet, there
is a charged scalar with mass mA.
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4. We can then ask at each point in this plane what the mass of the lightest charged
BSM state is. This is shown in Figure 9 (1st row) for two representative SSF models.
Importantly, in some theories, the lightest charged state does not contribute to (g −
2)µ, but its existence and mass is determined by gauge invariance in the given SSF
or FFS model.

5. Since the region of parameter space that can account for ∆aobs
µ is compact, we can

determine the highest possible mass of the lightest charged BSM state that is consistent
with this particular EW Scenario accounting for the (g − 2)µ anomaly.

In effect, this procedure allows us to explore the “maximum-BSM-mass boundary” of each
EW Scenario’s parameter space, subject to the requirement that ∆aµ = ∆aobs

µ and the BSM
couplings obey perturbative unitarity. The resulting highest possible mass of the lightest
BSM state in the spectrum for each EW Scenario we examine is listed in columns 5 and 6
of Table 4 for NBSM = 1 and 10 respectively.

Obviously, the result for a given model in Table 4 is not particularly illuminating, since
it is by definition model-dependent. However, obtaining this maximum allowed mass of the
lightest new charged state for different possible choices of EW gauge representations in both
SSF and FFS models allows us to perform the theory space maximization in Eqn. (2.7), and
hence obtain Mmax

BSM,charged for all possible perturbative solutions of the (g − 2)µ anomaly:

Mmax,unitarity
BSM,charged ≡ max

∆aµ=∆aobsµ , perturbative unitarity

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
(4.19)

where we have added the ‘unitarity’ superscript to distinguish this bound from subsequent
results with additional assumptions. We can perform this maximization by taking the
largest values from columns 5 and 6 in Table 4, which are shown in the last row. We
therefore present the final result of our perturbative unitarity analysis of EW Scenarios:

Mmax,unitarity
BSM,charged ≈

{
100 TeV for NBSM = 1

360 TeV for NBSM = 10

}
≈ (100 TeV) · N1/2

BSM . (4.20)

The NBSM scaling arises due to the linear dependence of ∆aµ on NBSM. For FFS models,
this is clearly seen from Eqn. (4.9), while for SSF models this relationship is obscured by
the detailed form of the unitarity bound on κ, but we verified the approximate

√
NBSM

scaling empirically. New charged states therefore have to appear at or below the 100 TeV
scale unless NBSM is truly enormous, a scenario which is disfavoured not just by theoretical
parsimony but also by avoiding Landau poles close to the BSM mass scale, see Section 4.7.

It is important to keep in mind that realizing this upper bound from unitarity would also
require extreme alignment of the non-muonic BSM couplings to avoid CLFV decay bounds,
see Section 2.3.2. This can be regarded as a severe form of tuning of the BSM lepton
couplings before mass diagonalization, which disfavours the unitarity-only assumption.

4.4 Constraining the BSM Mass Scale with Unitarity + MFV

As discussed in Section 2.3.2, the MFV assumption is motivated for EW Scenarios by
severe experimental bounds on CLFV decays. Adopting this “Unitarity + MFV” assump-
tion significantly reduces the maximum allowed BSM mass scale. We repeat verbatim the
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unitarity-only analysis from Section 4.3, with the additional step of lowering the pertur-
bativity bound on either y1 or y2 by mµ/mτ , whichever gives higher BSM masses at that
point in parameter space. (In practice there is almost no difference between these two
possibilities since ∆aµ ∝ y1y2 up to tiny corrections.) The resulting largest possible mass
of the lightest BSM charged state for two representative SSF models is shown in Figure 9
(2nd row), with the results for all EW Scenarios we examine summarized in columns 7 and
8 of Table 4 for NBSM = 1 and 10 respectively. We can therefore define, for all possible
perturbative solutions of the (g − 2)µ anomaly that obey MFV:

Mmax,MFV
BSM,charged ≡ max

∆aµ=∆aobsµ , unitarity , MFV

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
(4.21)

where the outer theory-space maximization is now constrained by unitarity as well as MFV,
and can again be performed by taking the largest values from columns 7 and 8 in Table 4,
which are shown in the last row. This gives:

Mmax,MFV
BSM,charged ≈

{
20 TeV for NBSM = 1

73 TeV for NBSM = 10

}
≈ (20 TeV) · N1/2

BSM . (4.22)

The reduction in BSM mass scale compared to the unitarity-only assumption is very sig-
nificant, and could be within reach of future muon collider proposals.

4.5 Constraining the BSM Mass Scale with Unitarity + Naturalness

The physical concreteness of the Higgs and muon mass corrections in EW Scenarios, see
Eqns. (2.28) - (2.31), means that confirmation of the (g − 2)µ anomaly and confirmed
non-existence of the required new charged states up to some scale Mexp means that these
states must exist at some scale MBSM > Mexp, which implies a certain amount of tuning
in the Lagrangian. Such an empirical confirmation of fine-tuning would have profound
consequence for our thinking about the hierarchy problem or cosmological vacuum selection.
It is therefore worth quantifying how heavy the new charged states could be without inducing
such physical fine-tuning.

We therefore define a very conservative “naturalness” criterion by requiring the tuning
in both the Higgs mass and the muon Yukawa coupling to not exceed 1%, which amounts
to imposing

∆ ≡ max

(
∆m2

H

m2
H

,
∆yµ
yµ

)
< 100 . (4.23)

We repeat verbatim the unitarity-only analysis from Section 4.3, with the above naturalness
bound applied in addition to the unitarity bound. In practice, this means that both the
Higgs and muon masses are tuned at the 1% level for the largest BSM masses we find, since
maximizing all couplings relevant for ∆aµ saturates both tuning bounds.

The largest possible mass of the lightest BSM charged state for two representative
SSF models under this “unitarity + naturalness” assumption is shown in Figure 9 (3rd
row), with the results for all EW Scenarios we examine summarized in columns 9 and 10
of Table 4 for NBSM = 1 and 10 respectively. We can therefore define, for all possible
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perturbative solutions of the (g − 2)µ anomaly that obey our conservative naturalness
requirement Eqn. (4.23), the largest possible mass of the lightest BSM states:

Mmax,naturalness
BSM,charged ≡ max

∆aµ=∆aobsµ , unitarity , ∆<100

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
(4.24)

where again the superscript indicates the additional naturalness constraint on the theory
space maximization, and we can perform this maximization by taking the largest values
from columns 9 and 10 in Table 4, which are shown in the last row. This gives:

Mmax,naturalness
BSM,charged ≈

{
20 TeV for NBSM = 1

30 TeV for NBSM = 10

}
≈ (20 TeV) · N1/6

BSM . (4.25)

The reduction in BSM mass scale compared to the unitarity-only analysis is even more
dramatic than for the MFV assumption. The unusual NBSM scaling was empirically de-
termined, but arises because unlike the unitarity constraint, the tuning constraint on the
couplings becomes more severe with increasing BSM multiplicity, which mostly cancels the
increased contribution to ∆aµ.14

4.6 Constraining the BSM Mass Scale with Unitarity + Naturalness + MFV

Given how strongly CLFV decay bounds motivate the MFV ansatz, it is reasonable to
ask how high the BSM mass scale could be if solutions to the (g − 2)µ anomaly have
to respect both naturalness and MFV. We investigate this by imposing both constraints
simultaneously in our analysis.15 The largest possible mass under this combined assumption
for two representative SSF models is shown in Figure 9 (4th row), with the results for all
EW Scenarios we examine summarized in columns 11 and 12 of Table 4 for NBSM = 1 and
10 respectively.

This allows us to define, for all possible perturbative, natural and MFV-respecting
solutions of the (g − 2)µ anomaly, the largest possible mass of the lightest BSM states:

Mmax,naturalness,MFV
BSM,charged ≡ max

∆aµ=∆aobsµ , unitarity , ∆<100, MFV

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
(4.26)

We can perform this maximization by taking the largest values from columns 11 and 12 in
Table 4, which are shown in the last row. This gives our strongest constraint:

Mmax,naturalness,MFV
BSM,charged ≈

{
9 TeV for NBSM = 1

12 TeV for NBSM = 10

}
≈ (9 TeV) · N1/6

BSM . (4.27)

14In fact, for many SSF models the maximum BSM mass is realized in regions of parameter space where
the maximum allowed value for all BSM couplings is set by the naturalness constraint. In that case the
NBSM dependence cancels exactly, but this does not affect the model-exhaustive upper bound, since it is
not the case for all SSF models, and is never the case for FFS models (which have an additional BSM
coupling, meaning that there is always a coupling combination that can saturate unitarity).

15Note that under the MFV assumption, there may be additional states generating contributions to the
Higgs mass or the other lepton Yukawas. Since these depend on the representations chosen under the flavour
group we do not include them in our tuning measure, making our analysis conservative.
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The NBSM scaling, similar to the Naturalness-only constraint, was empirically determined
and is obeyed to very good precision for NBSM . 100. This result strongly reinforces the
notion that any “theoretically reasonable” BSM solution to the (g− 2)µ anomaly must give
rise to charged states at or below the 10 TeV scale.

4.7 Electroweak Landau Poles

Apart from flavour and naturalness considerations, the parameter space for Electroweak
Scenarios may be restricted by imposing the requirement that the SU(2)L and U(1)Y gauge
couplings do not hit low-lying Landau poles. In this section, we demonstrate parametrically
that such considerations disfavour truly enormous values of the BSM multiplicity NBSM,
which is relevant since our upper bounds on the BSM scale increase with NBSM.

Since new matter of mass MBSM with electroweak charges only contributes to the
running of gauge couplings at scales µ > MBSM, a muon collider which is only barely
able to produce new states on-shell cannot easily probe the threshold corrections to the
gauge coupling. However, in the spirit of our flavour and naturalness discussions to find
the most “reasonably theoretically motivated” parts of parameter space, we will impose the
modest requirement that both of the electroweak gauge couplings remain finite up to a scale
Λ = 10MBSM, where MBSM here represents the largest mass of all the new states. For this
simple estimate, we set MBSM = 100 TeV, inspired by the upper bounds from unitarity.
We also consider the effect of avoiding Landau poles all the way up to the Planck scale.
This allows us to obtain approximate bounds on NBSM which depend on the electroweak
representations of the new states in SSF and FFS models.

The 1-loop SU(2)L and U(1)Y beta functions are βY,L = 1
16π2 bY,L g

3
Y,L, where

bY =
41

6
+

1

3

∑
S

Y 2
S +

2

3

∑
F

Y 2
F , (4.28)

bL = −19

6
+

1

3

∑
S

T (RS) +
2

3

∑
F

T (RF ). (4.29)

The first term in bY and bL represents the SM contribution, and the remaining terms
give the contributions from complex scalars S and 2-component fermions F , respectively.
In bL, T (R) is the index of the representation, equal to (d + 1)(d)(d − 1)/12 for the d-
dimensional representation of SU(2). A positive bL or bY indicates a coupling which grows
with increasing energy, hitting a Landau pole at the scale Λ when

ln

(
ΛY,L
µ

)
=

2π

αY,L(µ)bY,L
. (4.30)

Using the measured values of the couplings at µ = mZ , evolving them with the SM beta
functions up to µ = 100 TeV, and imposing the absence of a Landau pole at 1 PeV (Planck
scale MPl = 2.4× 1018 GeV) requires

bY < 249 (18.6), bL < 92 (6.9). (4.31)

Since the BSM states do not all have the same mass, these bounds are approximate but
sufficient for a useful estimate. Applying these constraints to the 24 models in Table 4,

– 41 –



Model R RA RB NBSM (U(1)Y ) NBSM (SU(2)L) NBSM (min)

SSF

1−1 21/2 10 170 (8) 571 (60) 170 (8)
1−2 23/2 11 37 (1) 571 (60) 37 (1)
10 2−1/2 1−1 580 (28) 571 (60) 571 (28)
11 2−3/2 1−2 70 (3) 571 (60) 70 (3)

2−1/2 10 2−1/2 580 (28) 114 (12) 114 (12)
2−3/2 11 21/2 70 (3) 114 (12) 70 (3)
21/2 1−1 2−3/2 170 (8) 114 (12) 114 (12)

2−1/2 30 2−1/2 580 (28) 63 (6) 63 (6)
2−3/2 31 21/2 70 (3) 63 (6) 63 (3)
21/2 3−1 2−3/2 170 (8) 63 (6) 63 (6)

3−1 21/2 30 170 (8) 27 (2) 27 (2)
30 2−1/2 3−1 580 (28) 27 (2) 27 (2)

FFS

1−1 21/2 10 362 (17) 142 (15) 142 (15)
1−2 23/2 11 42 (2) 142 (15) 42 (2)
10 2−1/2 1−1 145 (7) 142 (15) 142 (7)
11 2−3/2 1−2 27 (1) 142 (15) 27 (1)

2−1/2 10 2−1/2 580 (28) 114 (12) 114 (12)
2−3/2 11 21/2 100 (4) 114 (12) 100 (4)
21/2 1−1 2−3/2 54 (2) 114 (12) 54 (2)

2−1/2 30 2−1/2 580 (28) 27 (2) 27 (2)
2−3/2 31 21/2 100 (4) 27 (2) 27 (2)
21/2 3−1 2−3/2 54 (2) 27 (2) 27 (2)

3−1 21/2 30 362 (17) 23 (2) 23 (2)
30 2−1/2 3−1 145 (7) 23 (2) 23 (2)

Table 5: Approximate maximum values of NBSM for each of the models in Tab. 4, obtained using
Eqn. (4.31) by requiring that each model avoid a Landau pole below 1 PeV (or the Planck scale,
MPl = 2.4× 1018 GeV in parentheses) in the hypercharge (4th column) and SU(2)L (5th column)
gauge coupling. The last column is the minimum of the two NBSM values for the two EW gauge
groups.

we find the maximum values of NBSM shown in Table 5. The maximum allowed BSM
multiplicity decreases for larger electroweak representations, with the strongest constraint
being NBSM ≤ 27 (23) for the highest-representation SSF (FFS) models to avoid PeV-scale
Landau poles. Avoiding Planck-scale Landau poles requires NBSM ≤ 28 (15) for all models,
with the strongest constraint requiring some SSF or FFS models to have NBSM = 1.

Given the very modest scaling of our mass bounds with NBSM, and the severity of the
Planck-scale constraints, this suggests that

NBSM . O(10) (4.32)

represents the most reasonably motivated BSM parameter space. It also justifies our choice
to restrict our numerical model-exhaustive analysis of SSF/FFS models to representations
up to and including triplets. Models with larger representations hit Landau poles for much
lower BSM multiplicities, lowering the maximum possible BSM mass compared to models
that account for the (g − 2)µ anomaly with smaller EW representations.
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4.8 EW Scenarios with fewer than 3 new BSM states

The SSF and FFS scenarios we study are engineered to generate ∆aobs
µ with the maximum

possible masses for all the BSM particles in the (g− 2)µ loop, which justifies concentrating
on these simplified models to determine the largest possible BSM mass scale. However,
for the purposes of finding Mmax

BSM,charged, one could imagine the following loophole to our
argument: imagine replacing one of the charged BSM states by a SM particle, specifically
the Higgs or the muon. In that case, ∆aµ would be generated by new diagrams involving
one or more SM particles and two or fewer BSM particles in the loop. Since the charged SM
particle does not count as a new discoverable charged state despite its low mass, it might
be possible for the BSM charged states to be much heavier than our Mmax

BSM,charged upper
bound. In this section, we show that this is not the case.

Our exhaustive analysis of SSF and FFS scenarios covers all possible EW representa-
tions that could generate new ∆aµ contributions (up to and including triplets). We can
re-use this classification and identify scenarios where some of the BSM scalars/fermions
can be replaced by the Higgs/muon, subject to our assumption that no new significant
sources of electroweak symmetry breaking are introduced (which would give rise to other
experimental signatures). We categorize them as follows:

• FFH models, which are FFS models where S ∼ 2±1/2 is replaced by H or H̃, where
H̃i = εijH

∗j .

• µFS models, which are FFS models where F cA or FB ∼ 2−1/2 or 11 and is therefore
replaced by L(µ) or µc. In that case, no new FA (or F cB) field is added, and there is
no y′12-type interaction.

• HSF models, which are SSF models where SA or SB ∼ 2±1/2 is replaced by H/H̃.

Replacing the F in SSF models by a muon field would require introducing a vector partner
for the muon, which would introduce a new charged state at much lower masses than our
Mmax

BSM,charged upper bound. The above are therefore all the relevant modifications of the
SSF/FFS models where one BSM particle is replaced by a Higgs or a muon. Replacing two
BSM particles by SM fields is not relevant to our discussion, since there are no SSF (FFS)
scenarios where both scalars (fermions) have the correct EW representation to be replaced
by the Higgs doublet (muon spinors). One could consider replacing one BSM fermion and
one scalar by the Higgs and muon respectively in the FFS scenario, but this would identify
one of the y1,2 couplings with the small muon Yukawa, suppressing ∆aµ and guaranteeing a
small BSM mass scale. To ensure that our derivation ofMmax

BSM,charged is correct, we therefore
only have to consider the FFH, µFS and HSF cases.

We systematically explored the entire allowed parameter space of all 3 possible FFH
scenarios, 5 µFS scenarios and 5 HSF scenarios, for NBSM ≥ 1. None of them give rise
to larger charged particle masses than the full SSF/FFS scenarios, meaning they have no
bearing on the Mmax

BSM,charged upper bounds derived above. In most cases, it is easy to
understand why this is the case.

In µFS models, there are two new ∆aµ contributions: one with the muon-dominated
mass eigenstate in the loop, and one with the new heavy fermion in the loop. Only the
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latter is chirally enhanced by the large BSM fermion mass mF , but since there is no y′12

coupling, it is suppressed by a very small mixing ∼ vy12mµ/m
2
F , effectively reintroducing

the same parametric suppression by mµ as in Singlet Scenarios. Therefore, µFS models
that account for the (g − 2)µ anomaly and respect perturbative unitarity always require
new charged states below a few TeV.

HSF models are most easily analyzed in Feynman-t’Hooft gauge, where the charged and
neutral Higgs goldstone modes are kept in the spectrum with masses mW ,mZ respectively.
This allows our calculations of (g − 2)µ and radiative corrections to be applied almost
verbatim. The unitarity limit on the κ-type coupling, see Eqn. 4.13, now becomes κmax ∼
0.3mS , where mS is the mass of the BSM scalar.16 In HSF scenarios where the scalar is a
SM singlet, this ensures that the charged fermion cannot be made so heavy as to violate
our Mmax

BSM,charged upper bound: generating ∆aobs
µ with a very heavy charged fermion mass

would require a relatively light SM singlet scalar, but such low values of mS forbid the κ
couplings required to generate ∆aobs

µ . We therefore find that all HSF models require new
charged states below 25 TeV from perturbative unitarity alone, and much lower masses
once MFV assumptions are included. HSF models also contain additional large radiative
corrections to the Higgs mass ∼ y2

1m
2
F /8π

2. This makes naturalness constraints even more
severe than in regular SSF models, requiring new charged states far below our calculated
upper bound for all assumptions.

Finally, we discuss the FFH models, which introduce no parametric suppressions for
∆aµ. There are two cases where both vector-like BSM fermions carry EW charge: (FA, FB) ∼
(30, 2−1/2) or (1−1, 2−3/2). For unitarity-only or unitarity + MFV assumptions, we find that
the upper bound on the lighter charged particle mass is almost the same as for the corre-
sponding FFS model. On the other hand, any naturalness constraint leads to much lower
allowed charged masses, since like HSF models, FFH models include additional large finite
Higgs mass contributions (y2

1m
2
A + y2

2m
2
B)/8π2. Any such models obeying our naturalness

criterion hence require new charged states below a few TeV. Therefore, these FFH scenarios
can never violate our Mmax

BSM,charged upper bounds.
The one case that requires further discussion is the FFH model with (FA, FB) ∼

(10, 2−1/2). Because FA is a SM singlet, the only BSM charged state is FB. Imposing
the naturalness criterion for even just the Higgs mass still guarantees mB . O(TeV), well
within our upper bound. However, if we do not impose the naturalness constraint, it is
naively possible to generate ∆aobs

µ for a relatively light singlet FA, large y1, y1, y12 cou-
plings (y′12 does not contribute in this limit), and very heavy charged FB, driving up the
maximum allowed charged mass to O(1000) TeV and O(100) TeV for the unitarity and
unitarity + MFV assumptions respectively. Fortunately, such an extreme scenario violates
electroweak precision constraints. This FFH model contains the coupling

− y1F
c
AνµH

0 (4.33)

which does not contribute to (g − 2)µ directly but is a requirement of SU(2)L × U(1)Y
gauge invariance. This gives rise to a mixing between the active muon neutrino and the

16The κHHS-type coupling also leads to a tiny vev for the BSM scalar, but since its EWSB contribution
is aligned with the Higgs in cases where S carries EW charge, it does not meaningfully affect our discussion.
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heavy sterile FA fermion θνµA ∼ y1v/mA, generating deviations from SM predictions for
the Zνν coupling, see e.g. [120]. Imposing the constraints |VµN |2 . 10−3 for the unitarity
assumption and |VτN |2 . 10−2 for the unitarity + MFV assumption forbids the extreme
case of very light FA and very large y1 which would permit a very heavy charged FB
mass. Including electroweak precision constraints, the heaviest possible charged mass for
the unitarity (unitarity + MFV) assumption in this FFH model is smaller than 65 TeV (10
TeV) for NBSM = 1. Larger values of NBSM also do not violate our upper bound.

In summary, theMmax
BSM,charged upper bounds we calculate using the FFS and SSF simpli-

fied models also apply to scenarios with fewer BSM fields in non-trivial EW representations,
and hence to all possible EW scenarios in general.

4.9 Muon Collider Signatures

We focus on the simplest and most robust signature of EW Scenarios at muon collid-
ers: direct production of new heavy charged states. Such a state X would be pair-
produced in Drell-Yan processes independent of its direct couplings to muons, with a pair
production cross section similar to SM EW 2 → 2 processes above threshold, σXX ∼
fb (10 TeV /

√
s)2 [58], as long as

√
s > 2mX . At high energies far above a TeV, the same is

true of electrically neutral states carrying weak quantum numbers, which are also present
in EW Scenarios. However, charged states must either decay to visible SM final states, or
are themselves visible if they are detector-stable. As a result, conclusive discovery of such
heavy states should be possible in the clean environment and known center-of-mass-frame
of a lepton collider regardless of their detailed phenomenology.17

In the discussions of the next section, we can therefore simply assume a muon collider
will be able to discover any heavy BSM charged state with mX . 1

2

√
s. As we have seen,

for reasonable BSM solutions to the (g− 2)µ anomaly, this will call for an O(10 TeV) muon
collider (or an electron collider, if it could be built at such high energies).

The complications particular to a muon collider, like the shielding cone necessary to
reduce beam-induced background, do not affect this argument for heavy charged states. Of
course, it is always possible to imagine very unusual scenarios where details of the model
conspire to make discovery much harder than generically expected. However, such edge
cases do not invalidate a no-lose theorem. For example, while models that could hide the
Higgs boson at the LHC were certainly considered prior to its discovery (see e.g. [121]),
this did not invalidate the fact that the combination of EWSB and basic unitarity requires
the production of new states at the LHC. Indeed, if such a scenario had come to pass, the
no-lose theorem for the Higgs would have motivated herculean analysis efforts to tease the
hidden signals out of the data. (Furthermore, production and observation of new charged
states via gauge couplings is much more robust than production of neutral scalars.) Our
no-lose theorem serves a similar function: it motivates the construction of colliders that can
produce the predicted new charged states, and in case those states are not found right away,
it will hopefully provide similar emotional fortification for future experimentalists looking
to uncover the new physics behind the by then well-established (g − 2)µ anomaly.

17Note that the large Drell-Yan cross sections imply that a discovery is possible even at a considerably
lower luminosity than ab−1, which may provide some practical advantages.
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In some EW Scenarios there is an electrically neutral or even complete SM singlet state
that is lighter than the lightest charged state. As we discussed in our first study [64], this
can also be discovered in a mono-photon search if the new state escapes as missing energy,
where VBF-enhanced SM backgrounds can be effectively vetoed with a high-momentum-cut
on the recoiling photon. However, while this signature is interesting in its own right, it is
not our focus in this study. Across the whole space of possible EW Scenarios and hence all
theories that solve the (g − 2)µ anomaly, assuming that all kinematically accessible BSM
states can be discovered versus only assuming that charged states can be discovered does
not actually lower the resulting minimum required energy of the muon collider necessary to
guarantee discovery of new physics. We can therefore focus on charged BSM states without
being unduly conservative.

5 No-Lose Theorem for the Muon Collider Program

We now synthesize the results of our model-exhaustive analysis to understand the concrete
implications for a future muon collider program, and use them to derive our no-lose theorem
for the discovery of new physics.

One-loop perturbative solutions to the (g − 2)µ anomaly can be classified as either
Singlet Scenarios or EW Scenarios, based simply on whether the new physics contributions
in the loop are only SM singlets or if there are any particles with SM gauge quantum
numbers. Direct discovery of Singlet Scenarios requires observation of the SM singlet,
while EW Scenarios can be discovered by producing the lightest new charged state at
lepton colliders.

BSM theories that only generate (g−2)µ at higher-loop order necessarily feature lower
mass scales relative to those found in one-loop models and are thus easier to discover.
Furthermore, strongly coupled BSM scenarios involving composite new states in the (g−2)µ
loop are parametrically covered by our analysis, since we consider BSM multiplicity of states
NBSM > 1 and large couplings at the unitarity limit.18

If Singlet Scenarios explain the (g− 2)µ anomaly, the maximum possible mass of BSM
states based on perturbative unitarity only is 3 TeV, and only 200 GeV if we impose MFV,
as motivated by CLFV decay bounds. We performed a careful analysis of direct singlet
production at muon colliders via the same coupling that generates ∆aµ, which is completely
inclusive with respect to the singlet stability or decay mode. We find that a 3 TeV muon
collider with 1 ab−1 integrated luminosity would be able to discover all Singlet Scenarios
that solve the (g−2)µ anomaly, provided the mass of the singlet is larger than ∼ 10 GeV. A
215 GeV muon collider with 0.4 ab−1 would not be able to probe the highest possible singlet
masses, but could discover singlets heavier than 2 GeV. However, such a lower-energy muon
collider would also be able to observe deviations in Bhabha scattering µ+µ− → µ+µ− at
the 5σ level to indirectly discover the effects of these singlets with masses as high as the

18While we considered large BSM couplings that are borderline non-perturbative to derive upper bounds
on new particle masses, the existence and production of the new EW states at colliders is a consequence of
gauge invariance and only involves perturbative couplings, making our signal predictions robust.
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unitarity limit. These results are independent of NBSM because all observables scale with
gBSMNBSM, the same combination of parameters that determines ∆aµ.

On the other hand, EW Scenarios are the most general way to solve the (g − 2)µ
anomaly at one-loop, hence resulting in much higher possible BSM mass scales. We defined
the following highest possible mass for the lightest BSM charged state in the spectrum:

Mmax,X
BSM,charged ≡ max

∆aµ=∆aobsµ , X

{
min

i ∈ BSM spectrum

(
m

(i)
charged

) }
. (5.1)

The outer max represents a maximization over theory space subject to assumptions X,
where we examined four possibilities:

X =


perturbative unitarity*
unitarity + MFV
unitarity + naturalness*
unitarity + naturalness + MFV

. (5.2)

The last three assumptions include perturbative unitarity but are more restrictive. MFV
avoids CLFV decay bounds and assumes that the SM Yukawas are the only source of flavour
violation in whatever new physics solves the flavour puzzle, which lowers the unitarity bound
on some of the BSM muon couplings, since the corresponding BSM tau coupling must obey
perturbative unitarity. Naturalness is defined to require that both the muon and Higgs
mass, which both become technically unnatural in EW Scenarios due to calculable new loop
corrections, are tuned to no more than 1%. The star (*) indicates that assumptions without
MFV implicitly rely on some coincidence or unknown mechanism to suppress CLFVs while
allowing the muonic BSM couplings to be pushed up to the unitarity (or naturalness) limit.

We can perform this theory space maximization using our SSF and FFS simplified
models to obtain the highest possible mass of the lightest new charged state as a consequence
of resolving the (g − 2)µ anomaly:

Mmax,X
BSM,charged ≈

(
2.8× 10−9

∆aobs
µ

) 1
2

×



(100 TeV) N
1/2
BSM for X = (unitarity*)

(20 TeV) N
1/2
BSM for X = (unitarity+MFV)

(20 TeV) N
1/6
BSM for X = (unitarity+naturalness*)

(9 TeV) N
1/6
BSM for X = (unitarity+naturalness+MFV)

(5.3)
We include the scaling of these mass bounds with ∆aobs

µ so they can be easily adapted
to updated measurements of (g − 2)µ.19 The presence of required CLFV suppression is
again indicated with a star. In light of CLFV decay bounds, the two MFV results are
the most theoretically and experimentally motivated. Furthermore, avoiding relatively low-
lying Landau poles motivates NBSM . O(10).

19The dependence of the naturalness bounds on SM masses could make this scaling less than completely
trivial, but we have verified that it holds within a factor of a few of the BNL measurement Eqn. (1.1).
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Since charged states of mass m are efficiently produced by a lepton collider with
√
s &

2m and have to leave visible signals in the detector, we assume that any such BSM state
would be discovered at a sufficiently energetic muon collider. Specifically, a

√
s ∼ 30 TeV

muon collider would be able to discover any high-scale, MFV-respecting solution to the (g−
2)µ anomaly that avoids introducing two new hierarchy problems and has BSM multiplicity
up to NBSM . 10. Such a collider would also be able to indirectly confirm the existence of
the effective BSM operator responsible for generating ∆aµ via hγ measurements [62, 65].
This makes a 30 TeV muon collider a highly ambitious but highly motivated benchmark
goal for the discovery of new physics.

High-scale solutions to the (g−2)µ anomaly which evade discovery at a 30 TeV machine
are extremely strange: they would have to have a high BSM multiplicity, resulting in
possible Landau poles below the Planck or even the PeV scale; or violate the assumptions of
MFV while avoiding CLFV decay bounds; or be highly tuned in an explicitly calculable way.
Therefore, non-observation of new states at a 30 TeV muon collider (alongside confirmation
of the new BSM operator via hγ measurement) would force the (g − 2)µ solution into
theoretically extreme territory, which still has to satisfy the bounds of unitarity with charged
states below a few hundred TeV. Such a scenario would constitute empirical proof that
nature is fine-tuned, and/or refute the MFV ansatz for the solution of the flavour puzzle,
which would now be much more severe since unknown mechanisms have to suppress naively
large CLFV contributions. This in itself would be highly meaningful and new information
about the fundamental nature of our universe, the selection of its vacuum, and the origin
of flavour.

These results allow us to formulate the no-lose theorem for future muon colliders,
which we already stated in Section 1, but we repeat the chronological progression here for
completeness:

1. Present day confirmation:

Assume the (g − 2)µ anomaly is real.

2. Discover or falsify low-scale Singlet Scenarios . GeV:

If Singlet Scenarios with BSM masses below ∼ GeV generate the required ∆aobs
µ

contribution [38], multiple fixed-target and B-factory experiments are projected to
discover new physics in the coming decade [39, 66–73].

3. Discover or falsify all Singlet Scenarios . TeV:

If fixed-target experiments do not discover new BSM singlets that account for ∆aobs
µ ,

a 3 TeV muon collider with 1 ab−1 would be guaranteed to directly discover these
singlets if they are heavier than ∼ 10 GeV.

Even a lower-energy machine can be useful: a 215 GeV muon collider with 0.4 ab−1

could directly observe singlets as light as 2 GeV under the conservative assumptions
of our inclusive analysis, while indirectly observing the effects of the singlets for all
allowed masses via Bhabha scattering.
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Importantly, for singlet solutions to the (g − 2)µ anomaly, only the muon collider is
guaranteed to discover these signals since the only required new coupling is to the
muon.

4. Discover non-pathological Electroweak Scenarios (. 10 TeV):

If TeV-scale muon colliders do not discover new physics, the (g − 2)µ anomaly must
be generated by EW Scenarios. In that case, all of our results indicate that in most
reasonably motivated scenarios, the mass of new charged states cannot be higher
than few × 10 TeV. However, such high masses are only realized by the most extreme
boundary cases we consider. Therefore, a muon collider with

√
s ∼ 10 TeV is incredi-

bly motivated, since it will have excellent coverage for EW Scenarios in most of their
reasonable parameter space.

A very strong statement can be made for future muon colliders with
√
s ∼ 30 TeV:

such a machine can discover via pair production of heavy new charged states all EW
Scenarios that avoid CLFV bounds by satisfying MFV and avoid generating two new
hierarchy problems, with NBSM . 10.

5. Unitarity Ceiling (. 100 TeV):

Even if such a high energy muon collider does not produce new BSM states directly,
the recent investigations by [62, 65] show that a 30 TeV machine would detect devia-
tions in µ+µ− → hγ, which probes the same effective operator generating (g− 2)µ at
lower energies. This would provide high-energy confirmation of the presence of new
physics.

In that case, our results guarantee the presence of new states below ∼ 100 TeV by
perturbative unitarity, and the lack of direct BSM particle production at

√
s ∼ 30 TeV

will prove that the universe violates MFV and/or is highly fine-tuned to stabilize the
Higgs mass and muon mass, all while suppressing CLFV processes.

As we already argued in Section 1, if the (g−2)µ anomaly is confirmed, this should serve as
supremely powerful motivation for an ambitious muon collider program, from the test-bed
or Higgs-factory scale of O(100 GeV) to energies in excess of 10 TeV. It would of course
also be interesting to understand if and how proposed future hadron or electron colliders
could explore the same physics.
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