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17Tbilisi State University, 0186 Tbilisi, Georgia

18Illinois Center for Advanced Studies of the Universe, Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

19Natural Science Division, Pepperdine University, Malibu, CA 90263, USA
20Departamento de Estructura de la Materia, F́ısica Térmica y Electrónica and IPARCOS,
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Whether or not femto-scale droplets of quark-gluon plasma (QGP) are formed in so-called small
systems at high-energy colliders is a pressing question in the phenomenology of the strong inter-
action. For proton-proton or proton-nucleus collisions the answer is inconclusive due to the large
theoretical uncertainties plaguing the description of these processes. While upcoming data on col-
lisions of 16O nuclei may mitigate these uncertainties in the near future, here we demonstrate the
unique possibilities offered by complementing 16O16O data with collisions of 20Ne ions. We couple
both NLEFT and PGCM ab initio descriptions of the structure of 20Ne and 16O to hydrodynamic
simulations of 16O16O and 20Ne20Ne collisions at high energy. We isolate the imprints of the bowling-
pin shape of 20Ne on the collective flow of hadrons, which can be used to perform quantitative tests
of the hydrodynamic QGP paradigm. In particular, we predict that the elliptic flow of 20Ne20Ne
collisions is enhanced by as much as 1.170(8)stat.(30)syst. for NLEFT and 1.139(6)stat.(39)syst. for
PGCM relative to 16O16O collisions for the 1% most central events. At the same time, theoretical
uncertainties largely cancel when studying relative variations of observables between two systems.
This demonstrates a method based on experiments with two light-ion species for precision charac-
terizations of the collective dynamics and its emergence in a small system.

Introduction. A central motivation for the program of
ultra-relativistic nuclear collisions is to access bulk prop-
erties of QCD matter that emerge in conditions similar
to those found in the early Universe or in extreme as-
trophysical objects [1]. A prime example is the quark-

gluon plasma (QGP), the hot phase of QCD matter that
behaves like a near-perfect fluid [2]. Hydrodynamic be-
havior is inferred from the harmonic spectrum of the az-
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imuthal distributions of final-state hadrons [3],

dNch

dη d2p
=

dNch

dη dpT

1

2π

(
1 + 2

∞∑
n=1

vn cosn(ϕ− ϕn)

)
,

where dNch/dη d
2p is the charged hadron distribution

differential in pseudorapidity, η, and transverse momen-
tum, p, with pT = |p| and ϕ the azimuthal angle. The
coefficients vn quantify the anisotropic flow . In hydro-
dynamics, vn arise as a response of the system created
in the interaction region to the anisotropy of its geom-
etry, as dictated by an emergent pressure-gradient force
[4], the hallmark of hydrodynamic behavior. An ellipti-
cal deformation of the interaction region leads to elliptic
flow, v2, a triangular deformation to v3, and so on [5].

Observations of anisotropic flow in small systems [6, 7],
such as proton-nucleus and proton-proton collisions, have
triggered tremendous efforts investigating whether a
QGP description is appropriate even in regimes where
applying hydrodynamics becomes hard to justify [8, 9].
Theoretical studies have either pushed hydrodynamic
simulations to extreme situations [10–15], analyzed in de-
tail the transition from kinetic theory to hydrodynamics
[16–23], or studied the emergence of collectivity via other
mechanisms [24]. Small systems pose, thus, a fundamen-
tal challenge rooted in the issue of the thermalization and
hydrodynamization of QCD matter [25–29].

To advance our knowledge of small systems, one has
to isolate in the experimental data information able to
discriminate theoretical approaches. A breakthrough in
this direction would be the identification of a correlation
between the final-state anisotropy in momentum space
(vn) and the deformation of the initial-state geometry,
supporting an underlying hydrodynamic-type scenario.
This strategy has been pursued at the Relativistic Heavy
Ion Collider (RHIC) in a system-geometry scan compar-
ing p197Au and d197Au collisions at the same beam en-
ergy. Defining v2{2} ≡

√
⟨v22⟩ as the elliptic flow at a

given multiplicity, both the PHENIX collaboration [30]
and the STAR collaboration [31, 32] observe

v2{2}d197Au > v2{2}p197Au.

This constitutes a plausible signature of the elliptical ge-
ometry of the system formed when a deuterium impinges
onto a large gold target. Similarly, at the Large Hadron
Collider (LHC) one observes [33–35]

v2{2}208Pb208Pb > v2{2}p208Pb,

v3{2}208Pb208Pb ≈ v3{2}p208Pb.

The enhancement of elliptic flow in 208Pb208Pb collisions
is interpreted as coming from the intrinsic ellipticity of
the overlap area for off-central collisions, i.e. collisions
that are not head-on. These observations hint at the
role played by the collision geometry, but employ proton-
nucleus collisions as a baseline of a system that does not

present any intrinsic shape. This presents two drawbacks.
First, proton-nucleus collisions have a different longitu-
dinal structure than nucleus-nucleus collisions (including
d197Au collisions [36, 37]), whose geometry is better cor-
related across rapidities [38, 39]. Second, the geometry of
proton-nucleus collisions largely depends on the proton
structure at low values of the Bjorken x variable, which
is poorly understood [7]. Thus, it would be desirable to
isolate signatures of the geometry of the initial states in
the scattering of actual ions, presenting a well-defined
notion of an interaction region.
Upcoming data on collisions of 16O isotopes is expected

to mitigate these issues [40]. Preliminary data from
16O16O collisions were recently presented at the Quark
Matter 2023 conference by the STAR collaboration [41].
At the CERN LHC, a run of 16O16O collisions is expected
to take place in 2025. Comparing peripheral 208Pb208Pb
(or 129Xe129Xe) collisions and central 16O16O collisions
should reveal [42, 43]:

v2{2}208Pb208Pb > v2{2}16O16O.

However, comparing highly peripheral 208Pb208Pb col-
lisions with central 16O16O collisions is suboptimal, as
it does not resolve issues related to the definition of an
overlap area and the longitudinal structure.
In this Letter, we demonstrate an alternative more ro-

bust approach to isolate the impact of the initial-state
geometry. We study central collisions of light ions pre-
senting different shapes. Differences in the collective flow
between two collision systems would demonstrate the in-
fluence of the nuclear geometry, a technique akin to that
used to infer nuclear deformation effects in isobar colli-
sions at RHIC [44–47]. The advantage with light species
is that we benefit from an advanced knowledge of their
geometries coming from ab initio calculations of nuclear
structure [48, 49]. The drawback with light-ion collisions
is instead that the anisotropy induced by nuclear shapes
is only a small correction to the anisotropy induced by
large density fluctuations caused by the small numbers
of participant nucleons. In other words, with light ions
extreme nuclear shapes are required for their fingerprints
to be detectable in the final state.
Here, we overcome this issue. We exploit the fact that

the stable isotope presenting the most extreme ground-
state geometry in the Segrè chart, namely 20Ne, is close
in mass to 16O. We argue that having 20Ne20Ne data in
conjunction with 16O16O data leads to the observation
of unambiguous imprints of the initial-state geometry on
the collective flow. This in turn enables one to perform
quantitative tests of hydrodynamics in a small system.

Nuclear structure inputs. Modern ab initio ap-
proaches to the nuclear many-body problem aim at solv-
ing as exactly as possible Schrödinger’s equation for nu-
clear Hamiltonians constructed through chiral effective
field theories of low-energy QCD. Such approaches are
routinely used to describe the structure of light- and
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medium-mass nuclei [50–55] and first applications to
208Pb were even recently reported [55, 56]. In this work,
we employ results for the structure of 16O and 20Ne de-
rived within the the framework of Nuclear Lattice Effec-
tive Field Theory (NLEFT) simulations and the ab initio
Projected Generator Coordinate Method (PGCM).

The NLEFT framework [57–59] combines the princi-
ples of effective field theory with lattice Monte Carlo
methods, and is well suited to probe clustering and other
collective phenomena in the ground states of nuclei [60].
NLEFT simulations implement a Euclidean time evolu-
tion coupled with auxiliary-field Monte Carlo simulations
to produce ground-state configurations of nucleons for
each realization of the nuclear wave function. The pin-
hole algorithm [60] enables one to keep track of the posi-
tions of the nucleons during the Euclidean time evolution
while preserving the information about their center-of-
mass. The produced nuclear configurations carry, thus,
many-body correlations to all orders as dictated by the
ground state of the Hamiltonian. We employ a mini-
mal pion-less EFT Hamiltonian with a periodic lattice of
eight sites with spacing a = 1.315 fm [61], which success-
fully reproduces measured binding energies and charge
radii for the isotopes under study. For 16O, the pinhole
configurations are taken from Ref. [62], while a new set
is calculated for 20Ne. Due to the larger mass number,
these configurations contain a larger fraction of nuclei
with a non-unique center-of-mass due to the periodic-
ity, as well as a higher number of negative-weight states
[58, 60] than the 16O ones. These issues are addressed in
the evaluation of our uncertainties for the subsequent hy-
drodynamic study (see the Supplemental Material (SM)).
Lastly, we distribute nucleons at each lattice site uni-
formly between −a/2 and a/2 while maintaining a mini-
mum inter-nucleon distance, dmin, to mimic the effect of
short-range repulsion.

The ab initio PGCM formalism [63–68] is also adapted
to describe collective correlations, e.g. quadrupolar and
octupolar deformations that appear in doubly-open-shell
systems such as 20Ne. In particular, it was shown in
Ref. [67] that this method captures experimental data
on the ground-state rotational band and the charge den-
sity of this nucleus, employing a recent N3LO chiral EFT
Hamiltonian [69] which we also use here. We first perform
PGCM calculations exploring simultaneously the triax-
ial quadrupole (βv

20, β
v
22) and octupole (βv

30, β
v
32) degrees

of freedom to determine average intrinsic deformations
for the correlated ground states of 16O and 20Ne. The
resulting shape parameters align with the results of em-
pirical frameworks such as the energy density functional
approach [70–72] or the antisymmetrized molecular dy-
namics approach [73]. Then, we compute an intrinsic
Hartree-Fock-Bogoliubov state constrained at those av-
erage deformations, and we evaluate the particle-number
projected one-body density of the resulting system. To
quantify the systematic uncertainty on the procedure, the

Figure 1. Point-nucleon densities of 16O and 20Ne obtained
from particle-number-projected Hartree-Fock-Bogoliubov
states with deformations constrained to the predictions of
the ab initio PGCM framework. The background plots show
slices of the densities through the origin. The black dots and
lines show the centers and boundaries of the regions used in
the clustered sampling method (see text and SM for details).

average deformations of the ground states are computed
from pure mean-field states as well as from particle-
number-projected states (more details in the SM). The
results in the latter case are shown in Fig. 1. We note de-
formed geometries with well-separated clusters. In 16O
they form an irregular tetrahedron with two short and
two long edges of 2.30 and 2.55 fm respectively (see [74]
for recent work employing a regular tetrahedron). For
20Ne we observe a characteristic bowling-pin-like 16O+α.

For the hydrodynamic simulations, the densities in
Fig. 1 are randomly oriented and used to sample either
16 or 20 coordinates of nucleons for each realization of
the nucleus. Unlike the NLEFT simulations, PGCM does
not provide us with correlated samplings of nucleon po-
sitions. Sampling nucleons capturing the ground-state
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Figure 2. The deformed shape of 20Ne impacts the hydrodynamic flow of its collisions as compared to 16O16O collisions.
Here we show results for charged particle multiplicity dNch/dη (top left), mean transverse momentum ⟨pT ⟩ (top middle),
relative fluctuations of transverse momentum δpT /⟨pT ⟩ (top right), elliptic flow v2{2, |∆η| > 1} (bottom left), triangular flow
v3{2, |∆η| > 1} (bottom middle) and the Pearson correlation coefficient ρ(v2{2}2, ⟨pT ⟩) (bottom right). In each panel, we
show the 16O16O and 20Ne20Ne results, as well as their ratio, using both PGCM and NLEFT as nuclear structure inputs. For
ρ(v2{2}2, ⟨pT ⟩) a difference is taken instead of a ratio in the lower panel. We show statistical uncertainties (error bars), the
total systematic uncertainty (solid bands) as well as its components being Trajectum (hatched) and nuclear structure (dotted).

correlations of the N3LO Hamiltonian is therefore am-
biguous. We use two methods as a quantification of this
systematic uncertainty. One samples nucleons indepen-
dently (as in [75, 76]), whereas the second divides up
space into four or five regions (see Fig. 1) and samples
exactly two protons and two neutrons from each (see also
SM). Lastly, configurations are rejected if nucleons are
closer than dmin.
Hydrodynamic simulations. We perform event-by-

event hydrodynamic simulations of 20Ne20Ne and 16O16O
collisions by means of the Trajectum framework [43, 77–
79]. The calculations start with configurations of nucle-
ons in the colliding nuclei, taken from either the PGCM
or the NLEFT results.1 Each collision is then assigned to
an impact parameter, participant nucleons are selected,
and energy density is deposited in the transverse plane.
Following a brief pre-equilibrium phase, the system is
evolved as a relativistic viscous fluid. Hydrodynamic
cooling lasts until the local temperature reaches a critical
value (T ∼ 154MeV), below which hadronization occurs.
Subsequent strong decays and rescattering of hadrons

1 For all profiles we provide 20k configurations as part of the sub-
mission.

are computed by the SMASH code [80–82], leading to
the particle distributions in the final state. These are
analyzed to construct multi-particle correlations follow-
ing the experimental protocols. We define the collision
centrality from the multiplicity of charged particles with
pT ≥ 0.4GeV and |η| ≤ 2.4, with 0% centrality corre-
sponding to the limit of small impact parameters.

The parameters of the model are chosen probabilisti-
cally by sampling from the posterior distribution inferred
in a Bayesian analysis of 208Pb208Pb collisions, within
the same model [83]. We use twenty different samples
from the parameter space to quantify the uncertainty on
the results coming from wide parameter variations. This
represents the largest part of the Trajectum systematic
uncertainty, which in addition also takes into account ef-
fects of finite grid spacing (as discussed in the SM).

Our results for pT -integrated observables that char-
acterize the collective flow of hadrons are displayed in
Fig. 2. Our first remark concerns the cancellation of un-
certainties we observe when a relative variation of observ-
ables, e.g. a ratio, is taken between 16O16O and 20Ne20Ne
collisions. The dominant uncertainty on the absolute
magnitude of the results (upper two plots in each panel)
is the systematic one. However, in the relative varia-
tions (lowest plots) the contribution from the systematic
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error becomes nearly equal to that from the statistical
error. This enables us to make robust predictions for
percent-level variations of observables across the two sys-
tems. The larger uncertainty affecting the PGCM results
is due to the ambiguities of the empirical method used
to extract the correlated distributions of nucleons.

We discuss now those observables that are more
strongly impacted by the bowling-pin shape of 20Ne. The
first is the rms elliptic flow, v2{2}, in the lower-left panel
of Fig. 2. We find:

v2{2}NeNe

v2{2}OO
=

{
1.170(8)stat.(30)

Traj.
syst. (0)

str.
syst. (NLEFT),

1.139(6)stat.(27)
Traj.
syst. (28)

str.
syst. (PGCM),

in the 0–1% most central events. This is nearly iden-
tical for both nuclear structure inputs, implying that
the enhancement of fluctuations in the second harmonic
predicted by the NLEFT simulations for 20Ne20Ne col-
lisions is largely captured by the (randomly-oriented)
bowling pin predicted by the PGCM calculation. The
v2{2} ratio between 20Ne20Ne and 16O16O collisions is
as large as that expected between peripheral (∼60% off-
central) 208Pb208Pb collisions and central 16O16O colli-
sions [42, 43]. However, the cancellation of uncertainties
that we achieve here is only possible because we consider
experiments with two ions close in mass.

Another probe of the bowling-pin shape of 20Ne is
the correlation between the mean squared elliptic flow,
v2{2}2, and the mean transverse momentum, ⟨pT ⟩. It
is quantified via a Pearson coefficient denoted by ρ2 ≡
ρ(v2{2}2, ⟨pT ⟩) [84], which reflects the correlation be-
tween the shape and the size of the produced QGP
droplets [42, 85, 86]. Results for ρ2 are reported in the
lower-right panel of Fig. 2. The suppression of the ob-
servable in central 20Ne20Ne collisions relative to 16O16O,
observed for both nuclear structure inputs, is a generic
signature of the elongated nuclear shape [75, 87–90].
The same effect has been reported in 238U238U [91] and
129Xe129Xe [92, 93] experiments.

The ρ2 correlator is strongly sensitive to several hy-
drodynamic model parameters, and thus plagued by a
large systematic uncertainty which makes 16O16O and
20Ne20Ne results overlap. Neglecting the triaxiality of
these nuclei, and dubbing β2 the nuclear quadrupole de-
formation (where β2,20Ne > β2,16O from spectroscopic
data [94], as well as from the densities shown in Fig. 1),
the ρ2 observable roughly follows at a given centrality:
ρ2 = a − bβ3

2 , where a and b are positive coefficients
[91, 95, 96]. Model studies suggest that both a and b are
nearly independent of the collision system at the same
centrality [75, 95]. As a consequence, we expect the dif-

ference ρ2,Ne+Ne−ρ2,O+O ∝
(
β3
2,16O − β3

2,20Ne

)
to isolate

the imprint of the nuclear deformation. This is confirmed
in Fig. 2 (lower-right panel), where the evaluated dif-
ference cancels most of the systematic uncertainties. A

comment is in order. In hydrodynamics, the ρ2 of ultra-
central 16O16O collisions is about the same as that of
peripheral 208Pb208Pb collisions at the same multiplici-
ties [79, 97]. Therefore, contrary to the enhancement of
v2{2} relative to 16O16O systems, which occurs in both
central 20Ne20Ne and peripheral 208Pb208Pb collisions,
the suppression of ρ2 represents a geometry-driven effect
only accessible by colliding 20Ne isotopes.
Four more observables are in Fig. 2, namely the

charged multiplicity, dNch/dη, the mean transverse mo-
mentum, ⟨pT ⟩, the fluctuations thereof, and the triangu-
lar flow, v3{2}. Significant differences appear between
PGCM and NLEFT for dNch/dη and ⟨pT ⟩ in the ratio
plots. These can be understood from the respective nu-
clear radii.2 The NLEFT charge RMS radii are 2.76
and 3.17 fm for 16O and 20Ne respectively (ratio 1.14),
whereas clustered PGCM has 2.87 and 3.09 fm with ratio
1.08. For both NLEFT and PGCM we use a Gaussian nu-
cleon charge distribution of width 0.84 fm [98, 99]. This
compares well with the experimental values 2.6955 and
3.0055 fm (ratio 1.11) [100]. We note that for PGCM
the independent sampling method gives 0.05 and 0.03 fm
smaller radii for 16O and 20Ne respectively. The dmin

parameter has negligible effect when smaller than 0.5 fm,
but increases especially the PGCM radii for larger values.
Due to the relatively larger difference in size comparing
20Ne and 16O, the NLEFT results lead to a smaller ⟨pT ⟩
for 20Ne20Ne as compared to the PGCM results due to a
reduced radial expansion. Similarly, the larger size of the
PGCM oxygen leads to an increased 16O16O cross sec-
tion and consequently per collision a lower multiplicity,
affecting the dNch/dη ratio (see also [83]). For the fluctu-
ations of ⟨pT ⟩ the observed mild enhancement in central
20Ne20Ne collisions is a generic consequence of the more
deformed 20Ne shape, which enhances fluctuations in the
overall size of the overlap region [95, 101].

Conclusion & Outlook. We have showcased the possi-
bility of reducing theoretical systematic uncertainties in
hydrodynamic model calculations of small systems. One
needs experiments with two light-ion species presenting
sufficiently different geometries to perform quantitative
tests of the QGP paradigm for shape-induced modifica-
tions of the collective flow. As 16O16O collisions are es-
sentially already available at colliders, the extreme shape
of 20Ne makes this proposal realizable in practice.

Our predictions are based on the same hydrodynamic
picture used in the description of collisions of heavy nu-
clei. They do not include additional ingredients, e.g.,
out-of-equilibrium corrections due to the expected par-
tial thermalization of the interaction region [23, 102, 103],
the breakdown of the equations used in our simulations

2 Here the charge radii equal the matter radii for NLEFT since the
computation is isospin symmetric. For PGCM the matter radii
are about 0.012 fm smaller than the charge radii.
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due to causality constraints [104–106], features such as
the escape mechanism [107] that would affect the elliptic
flow in a transport-based approach, or even the impact of
momentum anisotropies originating in the initial states
[24]. Therefore, testing our predictions in experiments
will provide unprecedented quantitative insights into the
applicability of a QGP paradigm and the emergence of
collective dynamics in QCD matter.

As an outlook, additional research avenues are opened
by the study of high-energy 20Ne20Ne collisions. They
will be the subject of future works.

The elongated 20Ne shape may help reveal hard-
probe modifications in a small system via the study of
path-length-dependent effects in the comparison between
20Ne20Ne and 16O16O collisions. These can be studied
experimentally by triggering on ultra-central events pre-
senting large final-state ellipticities [108], and estimated
theoretically from the analysis of the path lengths tra-
versed by the hard probes [109].

Second, both 16O and 20Ne can be injected in the
SMOG2 system of the LHCb detector to perform fixed-
target experiments at

√
sNN ≈ 0.07TeV in the center-of-

mass frame [110]. The LHC could thus deliver 20Ne20Ne
and 16O16O collisions at both

√
sNN ≈ 7 and 0.07TeV,

as well as fixed-target 20Ne+208Pb and 16O+208Pb col-
lisions. This wealth of experimental information com-
bined with the possibility of canceling uncertainties via
the study of relative observables would provide a unique
handle on the manifestations of small-x dynamics and
nonlinear QCD evolution and how they impact the col-
lective structure of nuclei [111].

Finally, several γ-mediated processes in ultra-
peripheral nucleus-nucleus collisions (UPCs) are aimed
at imaging the gluonic content of nuclei at high energy.
As showcased in Ref. [112] for the diffractive production
of J/ψ, the shape of 20Ne can leave distinct signatures on
the cross sections on top of a γ+16O background. Ratios
of observables in UPCs would allow one to cancel uncer-
tainties and obtain a more transparent view of the gluon
geometries and their modification at high energy.
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NUCLEAR STRUCTURE CALCULATIONS

NLEFT

Nuclear Lattice Effective Field Theory (NLEFT) is a
method to solve the nuclear A-body problem in a finite
volume, more precisely on a hypercubic lattice of volume
L×L×L×Lt, with L the spatial extent and Lt the tem-
poral one. It also employs corresponding lattice spacings
a and at. Here, the lattice spacing a is typical chosen in
the range from 1 to 2 fm, corresponding to a UV cutoff
of pmax = π/a = 314 to 628 MeV. In this work, we use
a = 1.3155 fm.
There are various formulations of the underlying ac-

tion. Here, we employ the so-called minimal nuclear
model [61], which has been successfully used to describe
the gross properties of light and medium-mass nuclei and
the equation of state of neutron matter to a few percent
accuracy. It has also been successfully applied to studies
of nuclear thermodynamics [113], studies of clustering in
hot dilute matter [114] and the puzzling 4He transition
form factor [115]. This minimal nuclear interaction is
given by the SU(4)-invariant leading-order effective field
theory based on smeared contact terms,

HSU(4) = Hfree +
1

2!
C2

∑
n

ρ̃(n)2 +
1

3!
C3

∑
n

ρ̃(n)3,

where n = (nx,ny, nz) are the lattice coordinates, Hfree

is the free nucleon Hamiltonian with nucleon mass m =
938.9MeV. The density operator ρ̃(n) is defined as [60],

ρ̃(n) =
∑
i

ã†i (n)ãi(n) + sL
∑

|n′−n|=1

∑
i

ã†i (n
′)ãi(n

′),

where i is the joint spin-isospin index, sL is the local
smearing parameter, and the non-locally smeared anni-
hilation and creation operators with parameter sNL are
defined as

ãi(n) = ai(n) + sNL

∑
|n′−n|=1

ai(n
′).

The summation over the spin and isospin implies that
the interaction is SU(4) invariant. The parameter sL
(sNL) controls the strength of the local (non-local) part
of the interaction. The low-energy constants C2 and C3

give the overall strength of the two-body and three-body
interactions, respectively. We take values from [61], C2 =
−3.41 · 10−7 MeV−2, C3 = −1.4 · 10−14 MeV−5, sNL =
0.5, and sL = 0.061.
Central to the studies done here is the pinhole algo-

rithm [60], which performs a Monte Carlo sampling of
the A-body density of the nucleus in position space. It
allows to pin down the center-of-mass of a given nucleus,
which is a basic ingredient to calculate charge or mat-
ter distributions as done here. It was e.g. successfully
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Figure 3. Point-nucleon densities of 16O (top) and 20Ne (bottom) obtained from NLEFT. The panels on the left show densities
obtained from configurations aligned as described in the text, whereas the panels on the right show baseline densities obtained
from configurations of which the angular information for each nucleon was randomized before the alignment of the nucleus.
The background plots show slices of the densities through the origin.

used to investigate the emergent geometry and intrinsic
cluster structure of the low-lying states of 12C [116]. We
obtain the pinhole algorithm by including the A-nucleon
density operator in the projection amplitudes according
to

Zpinhole
f,i ≡ Zf,i(i1, j1, . . . , iA, jA; n⃗1, . . . , n⃗A;Nt)

= ⟨Ψf |MNt/2ρi1,j1,...,iA,jA(n⃗1, . . . , n⃗A)

×MNt/2|Ψi⟩,

which amounts to the insertion of a “screen”, with pin-
holes located at the positions n⃗1, . . . , n⃗A and spin-isospin
indices i1, j1, . . . , iA, jA, at the midpoint of the Euclidean
time evolution. Here, the NLEFT transfer matrix M is
applied Nt times to the initial and final states. With this,
one is able to pin down the center-of-mass of a given nu-
clear state with spin J and parity P and consequently
derive charge and matter distributions. It should also

be noted that the resolution of the pinhole algorithm in
coordinate space is a/A.

The pinhole positions contain many-body correlations
up to all possible orders. To reduce them to a one-body
intrinsic density distribution, a certain alignment for each
configuration is needed, and one should keep in mind that
such a procedure may not be unique. For example, one
can align configurations according to the long- or short-
axis of the moment of inertia matrix [116, 117]. Here we
try to align the pinhole configurations of 16O and 20Ne
according to the symmetry found by PGCM calculations,
i.e., a tetrahedron and bowling pin shape, respectively.
We first identify α clusters by requiring that the distance
among the four nucleons (proton spin up/down, and neu-
tron spin up/down) is (approximately) the smallest. For
16O, we randomly choose one cluster c1 and align it to
one of the tetrahedron symmetry axis a1; then we ran-
domly choose another cluster c2 and symmetry axis a2,
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and rotate along a1 so that the inner product of c2 and
a2 is the largest. For 20Ne, we first align the long prin-
cipal axis to z direction and require

∑A
i=1(zi − zc.m.)

3

to be positive. Then we choose the cluster that has the
smallest |z| value to put it in the ±x directions.
The corresponding point-nucleon densities for the

NLEFT calculation are displayed in Fig. 3 (left). The
overall shape as well as the inner cluster structure of both
nuclei look quite similar to the PGCM results. The bot-
tom part of 20Ne looks thinner and the top part looks
fatter than the one obtained by PGCM, this could be
due to the effect of aligning the long principal axis to
z−direction, that the density is strengthened too much
along this direction [117]. To study the effect of the
alignment procedure, we also show in Fig. 3 (right) the
same densities, but using configurations where the angu-
lar information has been randomized. Without any bias
coming from the alignment procedure, these distributions
should be exactly spherical. One can therefore see that at
least some of the non-trivial shape seen in Fig. 3 (left) is
due to bias from the alignment procedure. However, the
α-clustering seen on the left is much more pronounced,
as well as the bowling-pin shape of 20Ne.

PGCM

The calculations described here were performed using
the numerical suite TAURUS [118, 119] in a model space
with emax = 6, e3max = 18 and h̄ω = 12 MeV. This
model space proved to be sufficient to converge systems
with similar masses in previous calculations [67, 119].

Concerning the nuclear Hamiltonian, H, we employ
the recent χEFT-based interaction at N3LO published in
Ref. [69] and apply the rank-reduction scheme proposed
in Ref. [63] to obtain an effective two-body operator.

The first step of our PGCM calculations is the gen-
eration of a set of reference states. Here, we con-
sider real general Bogoliubov quasi-particle states opti-
mized at the variation-after-particle-number projection
level. In addition, the Bogoliubov states |Φ(q)⟩ are
constrained to have, on average, a given deformation
q ≡ (β20, β22, β30, β32), where

βlm =
4π

3Rl
0A

⟨rl (Ylm + (−1)mYl−m)⟩,

with A being the number of nucleons, R0 = 1.2A1/3, r
being the position and Ylm being a spherical harmonic.
For a more efficient exploration of quadrupole deforma-
tions, the constraints on β20 and β22 are reformulated as
constraints on the usual triaxial parameters

β =
√
β2
20 + 2β2

22,

γ = arctan

(√
2β22
β20

)
,

and we use a parallelogram mesh as described in
Ref. [120]. For 16O, we considered the intervals: β ∈
[0, 1.2] with a spacing ∆β = 0.2, γ ∈ [0, 60◦], β30 ∈
[0, 1.2] with a spacing ∆β30 = 0.3, β32 ∈ [0, 1.2] with a
spacing ∆β32 = 0.3. For 20Ne, we considered the inter-
vals: β ∈ [0, 1.5] with a spacing ∆β = 0.3, γ ∈ [0, 60◦],
β30 ∈ [0, 1.5] with a spacing ∆β30 = 0.3, β32 ∈ [0, 0.9]
with a spacing ∆β32 = 0.3.
To pick the states to be included in the configuration

mixing, we project all (converged) quasi-particle states
|Φ(q)⟩ on Jπ = 0+ and the appropriate number of pro-
tons and neutrons, and select the states with a projected
energy

E(0+, q) =
⟨Φ(q)|HPπ=+1P J=0

00 PZPN |Φ(q)⟩
⟨Φ(q)|Pπ=+1P J=0

00 PZPN |Φ(q)⟩
,

lower than a threshold of Eth = 4 and 8MeV for 16O and
20Ne, respectively, above the absolute minimum. Here,
Pπ, P J

MK , PZ and PN are the projection operators onto
a good parity, total angular momentum, number of pro-
tons and number of neutrons, respectively [121, 122]. To
say it differently, we consider the mixing set

Σ ≡
{
|Φ(q)⟩, E(0+, q)−min

[
E(0+, q)

]
< Eth

}
.

The PGCM ansatz considered for the ground state
takes the form

|Ψ0+ZN
1 ⟩ =

Σ∑
q

f0
+ZN

1q Pπ=+1P J=0
00 PZPN |Φ(q)⟩,

with the weights, f0
+ZN

1q , being determined variationally
by requiring the energy to be minimal. After solving the
variational equation, we use the weights to determine an
“average” deformation for the PGCM correlated state,
|Ψ0+ZN

1 ⟩, following the procedure described in Ref. [75].
The average deformation is calculated using either the
deformation of the Bogoliubov states (q̄1) or the defor-
mation of the associated particle-number projected states
(q̄2). Then, we build a new Bogoliubov state constrained
to have the deformation q̄1, |Φ(q̄1⟩), as well as a particle-
number projected state constrained to have the defor-
mation q̄2, |ΦZN (q̄2)⟩. Finally, we compute the particle-
number projected spatial densities

ρm,1(x, y, z) =
∑
st

⟨Φ(q̄1)|a+xyzstaxyzstPZPN |Φ(q̄1)⟩
⟨Φ(q̄1)|PZPN |Φ(q̄1)⟩

,

ρm,2(x, y, z) =
∑
st

⟨ΦZN (q̄2)|a+xyzstaxyzst|ΦZN (q̄2)⟩
⟨ΦZN (q̄2)|ΦZN (q̄2)⟩

,

where a+xyzst (axyzst) creates (annihilates) a particle with
spin s = ±1/2 and isospin t = ±1/2 at position (x, y, z).
The two densities are used in the subsequent hydrody-
namic simulations to partially estimate the uncertainty
related to our empirical procedure.
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Figure 4. We show radial density profiles of 16O (left) and 20Ne (right), for both NLEFT and PGCM. The PGCM results are
computed using the density ρm,2 as given in the text, while the NLEFT results come from smeared lattice configurations with
dmin = 0.5 fm.
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Figure 5. We show v2{2, |∆η| > 1} (left), v3{2, |∆η| > 1} (middle) and ρ(v2{2}2, ⟨pT ⟩) (right), with kinematic cuts as used by
CMS (left and middle) and ATLAS (right).

Comparison of configurations

In Fig. 4, we compare the orientation-averaged radial
distributions of nuclei generated using both NLEFT and
PGCM. For PGCM, we show the density ρm,2 as de-
scribed above, and for NLEFT we show densities recon-
structed from the lattice configurations after they have
been smeared and after a minimal distance dmin = 0.5 fm
has been imposed. We take the origin to lie at the center
of mass of either the density (PGCM) or at the center of
mass of the sampled nucleons (NLEFT). Overall agree-
ment between the two calculations is good, especially for
20Ne.

KINEMATIC CUTS

In Fig. 5, we show v2{2, |∆η| > 1}, v3{2, |∆η| > 1}
and ρ(v2{2}2, ⟨pT ⟩) with different kinematic cuts from
those used in the main text. In the main text, cuts as
used by ALICE were used, whereas here we use CMS cuts
for vn{2, |∆η| > 1}, and ATLAS cuts for ρ(v2{2}2, ⟨pT ⟩).

One can see that while the individual curves for 20Ne and
16O have a dependence on the cuts, the ratios/differences
shown in the bottom panel for each observable are un-
changed.

STATISTICAL AND SYSTEMATIC
UNCERTAINTIES

The observables in the main text are shown with sta-
tistical and systematic uncertainties, where the latter are
broken up into Trajectum and nuclear structure parts. In
this section, we discuss in detail how these uncertainties
are computed.
To quantify the systematic uncertainty due to the re-

maining uncertainty in the parameters of the Trajectum
model after the Bayesian fit, we take 20 likely choices of
parameters, which are randomly drawn from our poste-
rior. We subsequently evaluate our observables on all of
these choices, and use the spread of the parameters to
generate a systematic uncertainty. Since this essentially
requires doing the computation 20 times, we choose to do
this computation using settings which evaluate relatively
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Figure 6. We show v2{2,OC} for 16O16O collisions, using
NLEFT nuclear structure input. The gray curves represent
20 different parameter choices taken from a Bayesian analysis
[83]. The blue curve is the mean of the gray curves, and the
error bars shown on it represent the statistical uncertainty.
The blue band represents the systematic uncertainty, and is
constructed from the spread of the gray curves.

quickly. This requires some approximations, which we
then subsequently identify and correct for. In this way,
the computation is naturally split up into a ‘main’ com-
putation where we use the 20 choices of parameters to
generate an ensemble of predictions, and a number of
corrections. This section is organized in the same way.

Trajectum

First, let us discuss how the ensemble of 20 predic-
tions is used. As an example, in Fig. 6, we show in gray
the 20 predictions in 16O16O (NLEFT) for v2{2,OC}, an
observable related to v2{2, |∆η| > 1} (more on this be-
low). Each prediction comes with its own statistical un-
certainty as estimated by the Trajectum code. We then
average the values to produce the mean value (shown as
a blue curve), which we take as our central value. The
statistical uncertainty is estimated by averaging the sta-
tistical variances of the 20 predictions.3 We then com-
pute the standard deviation of the ensemble of predic-
tions, which gives us the total uncertainty. The system-
atic uncertainty is then computed as the quadratic differ-
ence between the total and the statistical uncertainties.
The systematic uncertainty coming from this source is
counted as part of the Trajectum systematic uncertainty.
We now turn to a discussion of the corrections, where

we start with corrections common to the PGCM and
NLEFT simulations. Firstly, we point out an impor-
tant distinction between the ρ(v2{2}2, ⟨pT ⟩) observable

3 We average the variances instead of the standard deviations be-
cause the variance is an additive quantity.
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Figure 7. We show both v2{2, |∆η| > 1} and v2{2,OC} for
16O16O (NLEFT) (top). Also shown is the ratio v2{2, |∆η| >
1}/v2{2,OC} (bottom), which serves as the correction factor
discussed in the text. It can be seen that the correction factor
is small but significant.

and the others. Since ρ(v2{2}2, ⟨pT ⟩) can and does cross
zero, we treat its corrections additively, whereas the other
corrections are treated multiplicatively. In the discussion
that follows, we will be using multiplicative corrections
as an example, which will always involve a division of
some sorts. The additive corrections work the same way,
but replacing division by subtraction.
The first correction we encounter occurs only for

v2{2, |∆η| > 1} and v3{2, |∆η| > 1|}. These observables
are statistically hard due to their large η gap, but there
is a cheaper alternative, which we have called v2{2,OC},
where the OC stands for oversampled cumulants. The
observable vn{2} is defined by

vn{2}2 = ⟨⟨exp(in(φi − φj))⟩⟩,

where the double ⟨·⟩ means first an average over par-
ticle pairs (i, j) inside each event, and then an average
over events. Which particle pairs are used then deter-
mines the subtle differences between various related ob-
servables. For vn{2}, one simply uses all pairs within
the kinematic cuts, whereas for vn{2, |∆η| > 1} one uses
only pairs where one particle has η < −0.5 and the other
has η > 0.5. The latter choice suppresses non-flow by
using only particle pairs which are far apart in rapidity.
Since Trajectum is a theory model, we can do one thing
which in experiment is impossible; we can generate mul-
tiple particle sets from a single hydrodynamic evolution,
which we call oversamples. If one analyzes these oversam-
ples separately in the same way as described above, then
using oversamples simply improves statistics without in-
troducing a bias. What we can also do, however, is to
use the oversamples as a cheap way to mimic the effect of
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Figure 8. We show the same correction factor as in the bottom
panel of Fig. 7, but for the ratio 20Ne20Ne/16O16O (NLEFT).
We show both the correction for v2{2, |∆η| > 1} and for
v3{2, |∆η| > 1}. It can be seen that whereas the former is
a relatively small correction, the latter can be as much as
20%.

having a (large) η gap, while still using all available pairs
from an event. The way the observable vn{2,OC} does
this is by letting go of the requirement that the partners
in a particle pair need to be from the same oversample.
This dilutes the effect of non-flow (in particular reso-
nance decays), thereby mimicking the vn{2, |∆η| > 1}
observable, but with much better statistical uncertainty.

Returning to the same example used in Fig. 6, in Fig. 7
we show both v2{2, |∆η| > 1} and v2{2,OC} for 16O16O
using NLEFT, as well as the ratio between both observ-
ables. This ratio represents the correction factor with
which one needs to multiply the v2{2,OC} result to ob-
tain v2{2, |∆η| > 1}. We treat the uncertainties in this
correction factor as statistical. Note that whereas for the
20Ne20Ne/16O16O ratio of v2{2, |∆η| > 1} this correction
factor is well under 1% for most centralities, the same ra-
tio for v3{2, |∆η| > 1} shows a correction of up to 20%
(see Fig. 8).

There is one other correction applied to both PGCM
and NLEFT results, and that is a finite grid spacing cor-
rection. The hydrodynamic simulations are performed at
a finite grid spacing, which can bias the results. To cor-
rect for this, we perform calculations using 0.125, 0.083
and 0.063 fm grid spacings. Continuing to use our ex-
ample of v2{2, |∆η| > 1}, we show these different com-
putations for v2{2,OC} of 16O16O for NLEFT in Fig. 9.
We then take a continuum limit by performing a least
squares fit of these results to

v2{2,OC} = c1 + c2a
2,

where ci are constants, and a is the grid spacing. The
constant c1 then contains our extrapolated result, which
is also shown in Fig. 9. Using c1 and c2 together, we
can then obtain a factor which translates from the grid
spacing that the ensemble of 20 predictions was made
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Figure 9. We show v2{2,OC} for 16O16O (NLEFT), using
three different grid spacings for the hydrodynamic calcula-
tions. In addition, we show the extrapolation to zero grid
spacing, where the error bars show statistical uncertainty, and
the bands show systematic uncertainty.

with to the extrapolated value. We use the prior un-
certainties from the fit as statistical uncertainties on the
correction factor, and if the posterior uncertainties are
larger (which happens if (χ2)red > 1), then we use the
squared difference of the posterior and prior uncertainties
as a systematic, which we count as part of the Trajectum
systematic uncertainty.

NLEFT

We now describe the corrections which are applied only
to the NLEFT results. The first of these pertains to the
weights of the NLEFT configurations. For 16O (20Ne),
around 26% (33%) of configurations have a weight of −1,
whereas the rest has weight +1. To take this into account
properly, we must assign each collision weight +1 if the
weights of the two nuclei are both positive or both neg-
ative, and −1 otherwise. The number of collisions with
weight +1 is therefore only 62% (56%), and this makes
the simulations much more expensive statistically. For
this reason, we compute the ensemble of 20 predictions
using only the configurations with positive weight, and
then perform a correction using a dedicated high statis-
tics run using all configurations. In Fig. 10, we show the
results for v2{2,OC} for 16O16O using either only the
positive weight configurations or all configurations, to-
gether with the ratio between the two results, which is
used as the correction factor. We then count the statisti-
cal uncertainty of this ratio as part of the total statistical
uncertainty. We note that the weighting effect is in fact
rather important for e.g. the charge radius. Indeed for
20Ne the positive and negative weight radii are 3.205 and
3.244 fm respectively, which then leads to an overall ra-
dius of 3.17 fm quoted in the main text.
The other correction applied to NLEFT only deals with



15

v
2
{2
,O
C
}

c
o
rr
e
c
ti
o
n

all configurations

positive weight configurations
0.05

0.06

0.07

0 10 20 30 40 50
0.98

0.99

1.00

centrality [%]

Figure 10. We show v2{2,OC} for 16O16O (NLEFT), where
we either take only configurations with positive weight, or all
configurations. In the latter case, we propagate the weights
through the entire computation. The resulting correction fac-
tor is shown in the bottom panel.

resolving the periodicity induced by the lattice. We ob-
tain the configurations on non-periodic boundaries by ex-
amining all possible places to put the boundaries between
adjacent unit cells, and selecting the choice which leads
to the smallest nuclear rms size. In a small number of
cases (1.1% for 16O and 6.3% for 20Ne), this is ambigu-
ous, as there is more than one solution which minimizes
the rms size. In this case, we have two choices for resolv-
ing this further. The first choice is to just pick randomly,
whereas for the second choice we pick such that after clus-
tering into α-clusters, the clusters have a smaller size. In
other words, the second choice favors α-clustering. Given
that the unambiguous configurations appear to be α-
clustered, we believe that the second choice should be
better. However, since this is a choice we impose and
not something that comes from the Hamiltonian, we view
this as a source of systematic uncertainty. We show both
methods for v2{2,OC} in 16O16O in Fig. 11, as well as
the ratio of choice 2 over choice 1. This ratio is used as a
correction factor, as the ensemble of 20 predictions was
made with choice 1, whereas we believe that choice 2 is
better. The standard deviation between the two choices
divided by choice 1 is used as a systematic uncertainty
after quadratically subtracting the statistical uncertainty
of the ratio. This systematic uncertainty is counted as
the sole part of the nuclear structure part of the total
systematic uncertainty for NLEFT. From Fig. 2 one can
see that this uncertainty is almost everywhere negligible
compared to the Trajectum systematic uncertainty.
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Figure 11. We show v2{2,OC} for 16O16O (NLEFT), where
we resolve the ambiguity with both choices described in the
text. The resulting correction factor is also shown in the bot-
tom panel, where the error bars show statistical uncertainty,
and the bands show systematic uncertainty.

PGCM

We then move on to describing the two sources of nu-
clear structure systematic uncertainty for the PGCM re-
sults. The first of these sources comes from the fact that
PGCM produces a density function, whereas what Tra-
jectum needs as its input are explicit configurations. Tak-
ing a finite number of samples from a density invariably
alters the shape of the sampled distributions compared
to the density they were sampled from. As an extreme
example of this, when sampling a single nucleon from
any density, the resulting shape will always be spherical.
Given that the entire effect we study in this work relies
on precisely knowing the shapes of the colliding nuclei, it
is important to quantify how the shape distortion from
sampling affects the final results. To this end, we use two
different sampling methods. The first (independent sam-
pling) simply samples 16 (20) independent nucleons from
the density. The second (clustered sampling) divides the
space up into 4 (5) regions centered on the local maxima
defined by the α-clusters, where the region boundaries
are determined by equidistance between region centers.4

These regions can be seen in Fig. 1, where the centers are
shown as black points on the 3D view, and the boundaries
between the regions are shown in the 2D cross sections.
We then sample 4 nucleons from each region according
to the density. The clustered sampling method enforces

4 We move the centers slightly compared to these initial ansätze
to ensure each region has approximately equal integrated density
inside.
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Figure 12. We show the radial profiles of 16O (left) and 20Ne (right) for PGCM, where we show both sampling methods
discussed in the text, alongside the original densities these configurations were sampled from.
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Figure 13. We show v2{2,OC} for 16O16O (PGCM), where
we either sample independently from the densities provided
by PGCM, or we sample such that we enforce that each re-
gion (corresponding with an alpha cluster) contains exactly
4 nucleons. The resulting correction factor is shown in the
bottom panel.

a more even distribution of sampled nucleons through-
out the density, suppressing fluctuations where one of
the regions contains more nucleons than another. For
this reason, we believe that clustered sampling should
yield configurations closer in shape to the original den-
sity than independent sampling and importantly is more
realistic in approximating the physical sampling where
all nucleon-nucleon correlations would have been taken
into account. Fig. 12 shows the radial profile of both 16O
(left) and 20Ne (right) using both of these methods, and
compares against the original density they were sampled
from (shown as well in Fig. 4). For 16O, the clustered

method is near the original density from around 1 fm out-
wards, whereas for the independent method this is about
1.5 fm. Below those values the clustered method under-
estimates the original density, whereas the independent
method overestimates it. For 20Ne, the difference be-
tween both methods is more pronounced, with the clus-
tered method being closer to the original density than
the independent method almost everywhere.

Given that both methods are approximations, we take
an agnostic approach, and use their mean as our central
value, whereas we use the standard deviation between
them as part of the nuclear structure systematic uncer-
tainty (after quadratically subtracting the statistical un-
certainty). The ensemble of 20 predictions is made using
clustered sampling, by which we normalize both the cen-
tral value and the systematic uncertainty to obtain the
correction factor. Fig. 13 shows the v2{2,OC} of 16O16O
for both of the sampling methods, as well as the correc-
tion factor obtained from them.

The last source of nuclear structure systematic uncer-
tainty for PGCM is constructed from the two previously
discussed methods to constrain the configurations to the
ground state, resulting in the two densities ρm,1(x, y, z)
and ρm,2(x, y, z). The results obtained from these two
densities give us a handle on the effect of these variations
in the PGCM computation on the final state observables.
Therefore, similarly to the previous source of systematic
uncertainty, we use the mean of the results obtained from
both densities as our central value, and use the standard
deviation between them as part of the nuclear structure
systematic error. As the computation using ρm,2(x, y, z)
is used for the ensemble of 20 predictions, we use it to
normalize both the central value and the systematic er-
ror. Fig. 14 shows the v2{2,OC} of 16O16O for both of
these versions, as well as the correction factor obtained
from them.
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Figure 14. We show v2{2,OC} for 16O16O (PGCM), where
we use either the density ρm,1 or ρm,2 as inputs to Trajectum.
The resulting correction factor is shown in the bottom panel.
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