

CERN-EP-2024-009 19 January 2024

Measurement of the branching fraction of $B^0\to J/\psi\pi^0$ decays

LHCb collaboration^{\dagger}

Abstract

The ratio of branching fractions between $B^0 \to J/\psi \pi^0$ and $B^+ \to J/\psi K^{*+}$ decays is measured with proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb⁻¹. The measured value is

$$\frac{\mathcal{B}_{B^0 \to J/\psi \pi^0}}{\mathcal{B}_{B^+ \to J/\psi K^{*+}}} = (1.153 \pm 0.053 \pm 0.048) \times 10^{-2},$$

where the first uncertainty is statistical and the second is systematic. The branching fraction for $B^0 \rightarrow J/\psi \pi^0$ decays is determined using the branching fraction of the normalisation channel, resulting in

$$\mathcal{B}_{B^0 \to J/\psi\pi^0} = (1.670 \pm 0.077 \pm 0.069 \pm 0.095) \times 10^{-5},$$

where the last uncertainty corresponds to that of the external input. This result is consistent with the current world average value and competitive with the most precise single measurement to date.

Submitted to JHEP

C 2024 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence.

[†]Authors are listed at the end of this paper.

1 **Introduction**

In the Standard Model (SM), the violation of charge conjugation-parity (CP) symmetry in 2 charged-current interactions between quarks is a consequence of an irreducible phase in the 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2]. The unitarity of this matrix imposes 4 certain relations between the quark couplings, which in the B^0 sector are graphically 5 represented by the Unitary Triangle and parameterised by three angles α , β and γ . In the 6 approximate parameterisation of the CKM matrix proposed by Wolfenstein [3], the angle 7 β is the phase of the CKM element V_{td} governing the coupling between top and down 8 quarks, and the oscillation between B^0 and \overline{B}^0 mesons. It thus accounts for CP violation 9 in the interference between direct decays of B^0 and \overline{B}^0 mesons to a CP eigenstate and 10 decays to the same final state after oscillation. 11 The angle β is most precisely measured in the $B^0 \to J/\psi K_{\rm S}^0$ channel¹ where the proper-12

time distributions for B^0 and \overline{B}^0 decays exhibit a large asymmetry [4]. At tree level, these 13 decays proceed through a Cabibbo-favoured $b \to c\bar{c}s$ quark transition, which results in a 14 relatively large branching fraction of $\mathcal{O}(10^{-3})$. This also facilitates the interpretation of 15 the CP asymmetry in terms of β as the dominating tree-level amplitude carries no phase. 16 Higher-order decay topologies such as hadronic penguin diagrams can nevertheless affect 17 the decay amplitude. By introducing a shift in the observed phase, they can mask the 18 presence of physics beyond the SM and complicate the determination of the angle β [5]. 19 While their contribution to $B^0 \to J/\psi K^0_S$ decays is expected to be relatively small, they 20 might become a dominant source of uncertainty in future measurements of β [6,7]. 21

²² Current constraints on the phase shift induced by penguin amplitudes are based on a ²³ simultaneous analysis of several *CP*-violation observables for decays mediated by a $b \to c\bar{c}d$ ²⁴ quark transition, whose tree-level amplitude is suppressed [6]. Compared to $B^0 \to J/\psi K_S^0$ ²⁵ decays these modes are experimentally challenging; with branching fractions of $\mathcal{O}(10^{-5})$, ²⁶ several resonances contributing to the final state (*e.g.* $B^0 \to J/\psi \pi^+\pi^-$ decays [8]), photons ²⁷ in the final state (*e.g.* $B^0 \to J/\psi\pi^0$ decays) or, in the case of $B_s^0 \to J/\psi K_S^0$ decays [9], a ²⁸ smaller production cross section for B_s^0 mesons compared to B^0 mesons.

The BaBar and Belle collaborations reported evidence of indirect CP-violation in 29 $B^0 \to J/\psi \pi^0$ decays [10, 11]. The reported values of the CP observables are compatible 30 with the results from $B^0 \to J/\psi K_S^0$ decays, suggesting a small contribution of loop-31 mediated processes to the angle β . The world average for the branching fraction of 32 $B^0 \rightarrow J/\psi \pi^0$ decays of $(1.66 \pm 0.10) \times 10^{-5}$ [12] is based on these two analyses. As 33 pointed out in Ref. [13], this value could imply significant contributions from intermediate 34 pairs of charm mesons to the decay amplitude, which makes the branching fraction an 35 interesting probe of final-state interaction effects. Moreover, the quark model predicts 36 simple relations between the branching fractions of B^0 decays to $J/\psi P$ (where P is a 37 pseudo-scalar meson π^0 , η or η') and the η/η' mixing angles [14], hence motivating higher 38 precision measurements of these modes. 39

As a first step towards a *CP*-violation analysis of $B^0 \rightarrow J/\psi \pi^0$ decays, this paper reports the measurement of the branching fraction through the ratio

$$\mathcal{R} = \frac{\mathcal{B}_{B^0 \to J/\psi\pi^0}}{\mathcal{B}_{B^+ \to J/\psi K^{*+}}},\tag{1}$$

42 where $B^+ \to J/\psi K^{*+}$ decays are used as the normalisation channel, and the K^{*+} meson

¹The inclusion of the charge-conjugated decays is implied throughout the paper.

⁴³ is reconstructed via its decay to $K^+\pi^0$. The study is based on the dataset recorded with ⁴⁴ the LHCb detector in *pp* collisions between 2011 and 2018, corresponding to an integrated ⁴⁵ luminosity of 9 fb⁻¹ collected at centre-of-mass energies of $\sqrt{s} = 7, 8$ and 13 TeV.

$_{46}$ 2 Detector and simulation

The LHCb detector [15, 16] is a single-arm forward spectrometer covering the 47 pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing beauty or 48 charm quarks. It includes a high-precision tracking system consisting of a silicon-strip 49 vertex detector (VELO) surrounding the pp interaction region, a large-area silicon-strip 50 detector (TT) located upstream of a dipole magnet with a bending power of approximately 51 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream 52 of the magnet. The tracking system provides a measurement of the momentum, p, of 53 charged particles with a relative uncertainty that varies from 0.5% at low momentum 54 to 1.0% at $200 \,\text{GeV}/c$. The minimum distance of a track to a primary vertex (PV), the 55 impact parameter (IP), is measured with a resolution of $(15 + 29/p_T) \mu m$, where p_T is the 56 component of the momentum transverse to the beam, in GeV/c. Various charged hadrons 57 are distinguished using information from two ring-imaging Cherenkov detectors. In addi-58 tion, photons, electrons, and hadrons are identified by a calorimeter system consisting of 59 scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. 60 The electromagnetic calorimeter (ECAL) response is calibrated using samples of $\pi^0 \to \gamma \gamma$ 61 decays [17] recorded in different detector-occupancy conditions during the 2011–2012 62 and 2015–2018 data-taking campaigns, respectively. Muons are identified by a system 63 composed of alternating layers of iron and multiwire proportional chambers. 64

The online event selection is performed by a trigger, which consists of a hardware stage 65 followed by a two-level software stage [18]. An alignment and calibration of the detector 66 is performed in near real-time with the results used in the software trigger [19]. The 67 same alignment and calibration information is propagated to the offline reconstruction, 68 ensuring consistent information between the trigger and offline software. In this analysis, 69 candidate events are required to pass the hardware trigger, which selects muon and dimuon 70 candidates with high transverse momenta using information from the muon system. The 71 first stage of the software trigger performs a partial event reconstruction and requires 72 events to have two well-identified oppositely charged muons with an invariant mass larger 73 than $2.7 \,\text{GeV}/c^2$. The second stage performs a full event reconstruction. Events are 74 retained for further processing if they contain a displaced $J/\psi \to \mu^+\mu^-$ candidate. The 75 decay vertex is required to be well separated from each reconstructed PV of the pp76 interaction by requiring the distance between the PV and the J/ψ decay vertex divided 77 by its uncertainty to be greater than three. 78

Simulated pp collisions are generated using PYTHIA [20] with a specific LHCb configura-79 tion [21]. Decays of hadronic particles are described by EVTGEN [22], in which final-state 80 radiation is generated using PHOTOS [23]. The interaction of the generated particles 81 with the detector, and its response, are implemented using the GEANT4 toolkit [24] as 82 described in Ref. [25]. The production of some samples is based on a computing-efficient 83 model which re-uses the underlying event and decays the B meson several times [26]. The 84 resulting selection efficiencies are found to be compatible with those based on the default 85 production model. 86

⁸⁷ **3** Event selection

Signal B^0 candidates are built from the combination of J/ψ and π^0 mesons, reconstructed 88 in the $\mu^+\mu^-$ and $\gamma\gamma$ final states, respectively. The two muon candidates are required to 89 have a transverse momentum larger than 500 MeV/c and to form a good vertex with a 90 significant displacement from the PV. Furthermore, their combination must have a mass 91 within $100 \text{ MeV}/c^2$ of the known J/ψ mass [12]. The photon candidates are reconstructed 92 from isolated energy deposits in the calorimeter system with a transverse energy above 93 200 MeV. Diphoton combinations are considered only if their transverse momentum 94 exceeds 1 GeV/c and if the associated energy deposits in the ECAL are well separated 95 from each other. The latter requirement removes some π^0 candidates at high $p_{\rm T}$ for which 96 the mass resolution decreases. Candidate π^0 decays are retained within a wide diphoton 97 mass window of 50-300 MeV/ c^2 , such that the backgrounds can be studied. 98

Each B^0 candidate is assigned to the PV with the smallest $\chi^2_{\rm IP}$, defined as the 99 smallest difference in the vertex-fit χ^2 to a given PV reconstructed with and without the 100 candidate particle being considered. A loose requirement on the $\chi^2_{\rm IP}$ effectively reduces 101 combinatorial background and is complemented by the requirement that the angle between 102 the reconstructed B^0 momentum and the direction defined by the primary and J/ψ vertices 103 (the so-called direction angle) should be smaller than two degrees. Furthermore, the impact 104 parameter of the B^0 candidates should be smaller than 200 μ m. A kinematic vertex 105 fit [27] is applied to the B^0 candidates to improve the resolution: the dimuon and diphoton 106 masses are constrained to the known values of the J/ψ and π^0 masses [12], respectively, 107 and the B^0 candidate is assumed to have been produced at the PV. 108

To reject background candidates and improve the resolution on the B^0 mass, the 109 final selection step imposes strict requirements on the particle identification (PID) of the 110 photon, the mass of the π^0 candidates, and on a multivariate classifier based on a boosted 111 decision tree (BDT). The classifier is trained to distinguish between simulated signal B^0 112 candidates and background candidates from data whose dimuon mass differs from the 113 known J/ψ mass by more than 60 MeV/ c^2 . It exploits the difference between signal and 114 background in the transverse momenta of the B^0 , J/ψ and π^0 candidates, the B^0 and 115 J/ψ IPs, the J/ψ vertex-fit χ^2 and the direction angle of the B^0 candidate. Variables 116 related to the isolation of the J/ψ vertex and to the event occupancy (such as the number 117 of particles reconstructed around the B^0 flight direction and their momentum) are also 118 used. The requirements on the photon PID, diphoton mass and classifier output are 119 chosen to maximise the product of the purity and the significance of the signal. They 120 are determined based on the expected signal and background yields in a region around 121 the known B^0 mass. The BDT requirement removes more than 99.9% of the background 122 while retaining 25% of the signal. Furthermore, the diphoton mass requirement retains 123 π^0 candidates within one unit of the detector resolution, which is roughly 9 MeV/ c^2 , and 124 reduces significantly the contamination from background events. 125

The decay mode $B^+ \to J/\psi K^{*+}(\to K^+\pi^0)$ is used for the normalisation. The J/ψ and π^0 candidates are selected with identical criteria as for the signal mode, while the K^+ meson is required to have a $p_{\rm T}$ greater than 250 MeV/c, pass loose PID requirements, and be associated to a track that is significantly displaced from the PV. The mass of the $K^+\pi^0$ combination must lie within 100 MeV/c² of the known K^{*+} mass [12]. Finally, B^+ and B^0 candidates share the same selection criteria for the classifier output.

¹³² 4 Yields of signal and normalisation decays

The diphoton mass distributions in the signal and normalisation data samples are first studied to constrain the yield of some background contributions, as described in Sec. 4.1. These constraints are then used to determine the yield of signal decays based on a fit to the B^0 mass distribution in data, as presented in Sec. 4.2. Finally, the yield of B^+ decays is reported in Sec. 4.3.

¹³⁸ 4.1 Study of the diphoton mass distribution

The mass distribution of π^0 candidates reflects the presence of partially reconstructed 139 $K_{\rm S}^0 \to \pi^0 \pi^0$ decays where one pion is missed. In the signal data sample, these partially 140 reconstructed decays represent a significant source of background, especially from processes 141 such as $B^0 \to J/\psi K_{\rm S}^0$ decays. The sensitivity to the $K_{\rm S}^0$ contamination stems from the 142 significant flight distance of $K_{\rm S}^0$ mesons in the LHCb tracking system and the hypothesis 143 used at the reconstruction level that photons originate from the interaction region. Neutral 144 pions from $K_{\rm S}^0$ decays are thus reconstructed with a wrong production vertex and on 145 average, at a lower mass than π^0 mesons from signal decays. This signature is exploited 146 to constrain the $K_{\rm S}^0$ contamination in the data sample by a fit to the diphoton mass 147 distribution. Furthermore, these false π^0 candidates representing combinatorial background 148 are broadly distributed in the diphoton mass, which can also be exploited to assess the 149 contamination of that background. 150

The yields of $K^0_{\rm S}$ and false π^0 background contributions in the signal data sample are 151 first determined over the full diphoton mass range and then extrapolated to the narrow 152 region around the known π^0 mass, that corresponds to the final selection requirement. The 153 yields are determined from an extended unbinned maximum-likelihood fit to the diphoton 154 mass distribution, which includes events with a genuine π^0 meson produced near the 155 interaction region, thus exhibiting a correctly reconstructed mass around $135 \text{ MeV}/c^2$. The 156 mass shapes of the three components are based on simulation. The main contributions to 157 the genuine π^0 and $K^0_{\rm S}$ components are $B^0 \to J/\psi \pi^0$ and $B^0 \to J/\psi K^0_{\rm S}$ decays, respectively. 158 Simulated samples corresponding to these decays are thus used to parameterise the shapes 159 of the two components. The sum of two Crystal Ball functions [28] that share the same 160 mean and width parameters (later referred to as a double-sided Crystal Ball function) 161 is used for the shape of the genuine π^0 component while a Crystal Ball function with 162 a different width for masses below and above the mean represents the $K_{\rm S}^0$ component. 163 The false π^0 component is modelled by a power-law function using samples of simulated 164 $B_{u,d,s} \to J/\psi X$ decays, where X refers to different sets of final-state particles produced in 165 the known B decay modes with branching fractions larger than roughly 10^{-5} . 166

¹⁶⁷ All shape parameters are fixed to the values found in the fits to simulated distributions, ¹⁶⁸ except for the mean and widths of the Crystal Ball functions that are corrected using a ¹⁶⁹ similar fit to the normalisation data sample, where $K_{\rm S}^0$ backgrounds are negligible and ¹⁷⁰ these corrections are well measured.

The diphoton mass distributions for the signal and normalisation data samples are shown in Fig. 1, without the diphoton mass requirement, together with the fit results. In the narrow region around the known π^0 mass, 832 ± 82 and $449\pm27~K_S^0$ and false π^0 candidates are found, respectively. The uncertainties account for the choice of parameterisation of the fit components and the precision of the mean and width corrections.

Figure 1: Mass distribution of π^0 candidates shown with the fit projection for the (left) signal and (right) normalisation modes. The dashed line and coloured regions represent the π^0 produced at the interaction region (IR) and the other fit components, respectively.

¹⁷⁶ 4.2 Signal yield

¹⁷⁷ The number of signal decays is determined using an extended unbinned maximum-¹⁷⁸ likelihood fit to the measured $J/\psi\pi^0$ mass distribution. The signal component of the fit ¹⁷⁹ is parameterised by the sum of two Crystal Ball functions that share the same mean. ¹⁸⁰ The shape parameters are fixed to the values obtained from the simulation, except the ¹⁸¹ widths $\sigma_{\rm L,R}$ on the left and right side of the peak, which are allowed to deviate from their ¹⁸² simulated values by a scale factor $R_{\sigma} = \sigma_{\rm data}/\sigma_{\rm sim}$ that is free to vary in the fit.

The fit model accounts for two main sources of background. First, several fit com-183 ponents are associated to partially reconstructed $B \to J/\psi \pi^0 \pi$ decays where the second 184 pion, neutral or charged, is missed. Each corresponding mass shape is parameterised by a 185 double-sided Crystal Ball function using simulation. As done for the signal shape, the 186 simulated width parameters are corrected by R_{σ} . Based on their known dependence on 187 the mass resolution, the mean and tail parameters are also corrected. While the yields 188 of $B_{u,c} \to J/\psi \rho^+ (\to \pi^+ \pi^0)$ decays are free to vary in the fit, the yield of $B^0 \to J/\psi K_s^0$ 189 decays is fixed to the $K_{\rm S}^0$ yield found in the diphoton mass fit. A small contribution from $B \to J/\psi K^*(\to K_{\rm S}^0\pi)$ decays (with $K_{\rm S}^0 \to \pi^0\pi^0$ and one of the two π^0 is used) is expected 190 191 but neglected in the fit as its impact on the signal yield is negligible (see Sec. 6.1). Other 192 $B \to J/\psi X$ backgrounds where $X = (\phi, \eta, \omega)$ decays to $\pi^+\pi^-\pi^0$, or $X = \omega$ (K^{*}) and 193 decays to $\gamma \pi^0$ ($K \pi^0$) were investigated and found to be negligible. 194

As a second source of background, one or more final-state particles in a b-hadron 195 decay can be mistakenly replaced by a particle from the underlying event. In that case, 196 the mass of the corresponding $J/\psi\pi^0$ candidates will peak close to the signal region. Due 197 to the vertex requirements applied to charged particles, the probability of an occurrence 198 is only significant when the final-state particles are photons: either one decay photon 199 is replaced which results in a false π^0 candidate, or two decay photons are replaced 200 by a false or genuine π^0 meson. The $J/\psi\pi^0$ mass shape of false π^0 contributions from 201 signal and partially reconstructed decays (later referred to as Random γ in Fig. 2 (left)) 202 are determined using π^0 candidates with masses above 200 MeV/ c^2 . A parameterisation 203

Figure 2: Mass distribution of B candidates shown with the fit projection for (left) signal and (right) normalisation modes. The dashed line and coloured regions represent $B^0 \to J/\psi \pi^0$ or $B^+ \to J/\psi K^{*+}$ decays and different sources of background, respectively.

based on the sum of an exponential function and a Gaussian function with exponential 204 tails is used. Their contamination in the narrow region around the known π^0 mass is 205 fixed to the yield of false π^0 candidates found in the diphoton mass fit. Although they 206 do not involve photons from the underlying event, false π^0 candidates formed in e.g. 207 $B^0 \to J/\psi K^0_{\rm S}(\to \pi^0 \pi^0)$ decays by combining photons from the two different π^0 decays 208 are implicitly accounted for in this approach. Finally, background contributions from 209 genuine π^0 mesons (later referred to as Combinatorial in Fig. 2 (left)) are more broadly 210 distributed than the false π^0 contributions and are therefore modelled differently, using 211 an exponential function whose parameter $\alpha_{\rm B}$ is free to vary in the fit. 212

A yield of $1232 \pm 55 \ B^0 \to J/\psi \pi^0$ decays is measured in the data sample. The mass distribution of $J/\psi \pi^0$ candidates and the fit results are shown in Fig. 2 (left) and all fit parameters are listed in Table 1. The yields of partially reconstructed $B^+ \to J/\psi \rho^+$ and $B_c^+ \to J/\psi \rho^+$ backgrounds determined by the signal fit and their expected values based on the full reconstruction of the decays (as presented in Sec. 7.1) are consistent within 0.5 and 0.2 standard deviations, respectively.

²¹⁹ 4.3 Normalisation decay yield

The yield of normalisation decays is determined using an extended binned maximumlikelihood fit to the measured $J/\psi K^+\pi^0$ mass distribution. The signal component of the fit is parameterised with a double-sided Crystal Ball function. Shape parameters are taken from simulation while the mean $J/\psi K^{*+}$ mass and width parameters are allowed to deviate from their simulated values by an offset $D_{\mu,K^*} = \mu_{\text{data},K^*} - \mu_{\text{sim},K^*}$ and a scale factor R_{σ,K^*} , respectively.

Partially reconstructed background contributions are dominated by $B \to J/\psi K^{*+}\pi$ decays where the pion is missed. Although several kaon resonances contribute to the threehadron final state, the corresponding mass shape is determined using simulation samples of $B^+ \to J/\psi K_1(1270)^+$ decays (where the $K_1(1270)^+$ resonance decays to $K^{*+}\pi^0$) and

Table 1: Results of the fit to the $J/\psi\pi^0$ mass: the yields of signal and background decays, the yield of genuine π^0 combinatorial candidates $(N_{\rm B})$, the ratio between the signal width in data and in simulation (R_{σ}) , and the shape parameter of the combinatorial background $(\alpha_{\rm B})$.

Parameter	Value
$N(B^0 \to J/\psi \pi^0)$	1232 ± 55
$N(B^+ \to J\!/\psi \rho^+)$	307 ± 49
$N(B_c^+ \to J/\psi \rho^+)$	75 ± 30
$N_{ m B}$	783 ± 91
R_{σ}	0.88 ± 0.04
$\alpha_{\rm B} \times 10^3 \ (c^2/{\rm MeV})$	-1.56 ± 0.16

²³⁰ parameterised by a double-sided Crystal Ball function. The $J/\psi K^+\pi^0$ mass distributions ²³¹ for kaon resonances heavier than $K_1(1270)^+$ mesons are expected to be shifted to lower ²³² $J/\psi K^+\pi^0$ masses due to the larger momentum of the missed pion. The mean parameter ²³³ is therefore free to vary in the fit to account for the presence of heavier resonances. The ²³⁴ width, however, is corrected using the same scale factor R_{σ,K^*} as used for the normalisation ²³⁵ mass shape. Other parameters are fixed to the values extracted from simulation.

Background B^+ candidates formed when mistakenly associating one or two photons 236 from the underlying event to the final-state particles produced in a b-hadron decay are also 237 present in the normalisation data sample and mainly stem from $B^+ \to J/\psi K^{*+}$ decays due 238 to the large branching fraction and high selection efficiency. As a result, they can be simply 239 parameterised using the corresponding simulation samples instead of the data-driven 240 approach followed for the signal model (the two approaches are compared in Sec. 7.3). The 241 components associated with one- and two-photon background contributions are modelled 242 as a double-sided Crystal Ball function and a Gaussian function with exponential tails, 243 respectively. In both cases, the mean and width parameters are subject to the corrections 244 D_{μ,K^*} and R_{σ,K^*} applied to the normalisation shape parameters. The two background 245 yields are expressed as the product of the yield of normalisation decays times their relative 246 contributions expected from simulation. These contributions are corrected for the slightly 247 larger photon occupancy in data and for isospin-conjugated $B^0 \to J/\psi K^{*0} \to K^+\pi^-$ 248 decays (where the missed charged pion is replaced by a π^0 candidate from the underlying 249 event) which contribute to the two-photon background only. To a lesser extent, partially 250 reconstructed $B \to J/\psi K^{*+}\pi$ decays can also be misreconstructed by exchanging the decay 251 photons with photons from the event. To ensure that this component is accounted for, the 252 reconstructed photons in the $B^+ \to J/\psi K_1(1270)^+$ sample are allowed to originate from 253 the underlying event. The yield of that component is not corrected for the slightly larger 254 photon occupancy in data, however, the impact of this correction on the normalisation 255 yield is negligible. Finally, combinatorial background contributions caused by the wrong 256 association of final-state particles with a muon or a kaon from the event are modelled 257 using an exponential function, with its slope parameter α_{B,K^*} freely varying in the fit. 258

Table 2: Results of the fit to the $J/\psi K^+\pi^0$ mass: the yields of normalisation and partially reconstructed background decays, the yield of combinatorial candidates (N_{B,K^*}) , the ratio between the normalisation width in data and in simulation (R_{σ,K^*}) , the difference between the normalisation mean in data and in simulation (D_{μ,K^*}) , the difference $D_{\mu,K^*\pi}$ for partially reconstructed decays and the shape parameter of the combinatorial background (α_{B,K^*}) .

Parameter	Value
$N(B^+ \to J/\psi K^{*+})$	13052 ± 115
$N(B \to J/\psi K^{*+}\pi)$	1998 ± 79
N_{B,K^*}	1039 ± 90
R_{σ,K^*}	1.05 ± 0.01
D_{μ,K^*} (MeV/ c^2)	-0.3 ± 0.3
$D_{\mu,K^*\pi}$ (MeV/ c^2)	-17 ± 2
$\alpha_{{ m B},K^*} \times 10^3 \ (c^2 / { m MeV})$	-3.9 ± 0.2

Other sources of peaking backgrounds were investigated and found to be negligible given their lower branching fraction and selection efficiency, such as $B^+ \to J/\psi \rho^+ (\to \pi^+ \pi^0)$ decays, where the charged pion is misidentified as a kaon, and $B^+ \to \chi_{c1} (\to J/\psi \gamma) K^+$ decays, where the photon is associated to a photon from the event.

In the data sample, the yield of $B^+ \rightarrow J/\psi K^{*+}$ decays is measured to be 13052 ± 115 . 263 The mass distribution of $J/\psi K^+\pi^0$ candidates and the fit results are shown in Fig. 2 (right) 264 while the fitted parameters are listed in Table 2. The simulation effectively reproduces 265 the B^+ peak position for normalisation decays which justifies that this parameter is fixed 266 in the fit to the signal data sample. Contrary to the signal mode where the B^0 mass 267 resolution was better in data than in simulation, the scale factor is slightly above one for 268 the normalisation mode. Finally, the shift in mass for the shape of partially reconstructed 269 $B \to J/\psi K^{*+}\pi$ decays is negative, as expected from the contributions of kaon resonances 270 heavier than the $K_1(1270)^+$ meson. 271

²⁷² 5 Branching fraction ratio result

The ratio of the branching fractions between the signal and normalisation decays defined in Eq. 1 is calculated as

$$\mathcal{R} = \frac{N_{B^0 \to J/\psi\pi^0}}{N_{B^+ \to J/\psi K^{*+}}} \times \frac{\epsilon_{B^+ \to J/\psi K^{*+}}}{\epsilon_{B^0 \to J/\psi\pi^0}} \times \mathcal{B}_{K^{*+} \to K^+\pi^0},\tag{2}$$

where $N_{B^0 \to J/\psi \pi^0}$ and $N_{B^+ \to J/\psi K^{*+}}$ are the yields reported in Sec. 4, $\epsilon_{B^0 \to J/\psi \pi^0}$ and $\epsilon_{B^+ \to J/\psi K^{*+}}$ the efficiencies for the selection requirements applied to the corresponding candidates, and $\mathcal{B}_{K^{*+} \to K^+ \pi^0} = 1/3$ [12]. The efficiencies account for the loss of *B*-meson candidates due to the detector acceptance, the reconstruction of the final-state particles and the selection requirements detailed in Sec. 3.

The efficiencies that are not associated with PID requirements are estimated using simulated samples without any particular weighting of the events, as the known discrepancies between data and simulation are small. Furthermore, the bias should be comparable in the two modes and cancel in the efficiency ratio. As assessed in detail in Sec. 6.3, the systematic uncertainty assigned to this assumption is relatively small compared to the statistical uncertainty affecting the signal yield.

Photon PID efficiencies are also estimated using simulation. Due to a strong dependence 286 of the PID performance on the particle multiplicity, a weight is applied to each simulated 287 event to improve the description of the photon cluster isolation in the ECAL, the photon 288 kinematics and the number of reconstructed tracks, and eventually of the PID response. 289 The weights are determined using the normalisation data sample from which background 290 contributions are statistically removed by the *sPlot* method [29], and are applied to both 291 the normalisation and signal simulated samples. The efficiencies are then calculated from 292 the sums of weights over the events passing and failing the photon PID requirement. In 293 the selection of the normalisation candidates, the efficiency for the charged kaon PID 294 requirement is determined using calibration samples collected from charm decays [30]. 295

Finally, as the reconstructed π^0 mass in 2011–2012 data samples is above the known π^0 mass by 1–2%, the simulation is corrected accordingly before estimating the efficiency of the selection requirements.

An efficiency ratio between the signal and normalisation decays of 2.73 ± 0.05 is obtained, the normalisation mode efficiency being smaller mostly because of the kaon reconstruction requirement. Using Eq. 2, the obtained ratio of branching fractions is

$$\mathcal{R} = (1.153 \pm 0.053) \times 10^{-2},$$

³⁰² where the uncertainty is statistical.

303 6 Systematic uncertainties

304 6.1 Signal fit model

The dominant sources of uncertainty are associated to the choice of parameterisation for the mass shapes in the signal fit, the constraints on the $K_{\rm S}^0$ and false π^0 background contributions, the assumption of negligible $B \to J/\psi K_{\rm S}^0 \pi$ contributions, and the choice to set the mean parameter of the signal shape to its simulated value (*i.e.* $D_{\mu} = 0$).

A different parameterisation is used for each fit component and the modified model is fitted to the data sample. The variation in signal yield is taken as a systematic uncertainty, except when more than one alternative parameterisation is considered, in which case the average variation or the standard deviation is considered.

The signal shape is replaced by a double-sided Novosibirsk function [31] while random 313 variations of the default parameters describing partially reconstructed backgrounds are 314 generated using the covariance matrices. A hundred sets of new parameters are obtained 315 for each background and used in the fit, and the standard deviation of the signal yield 316 is taken as a systematic uncertainty. In the default model, combinatorial backgrounds 317 associated to photons from the event are modelled using the high-mass region of the 318 diphoton mass distribution that extends from 200–300 MeV/ c^2 . This interval is divided in 319 four regions to determine new values of the shape parameters, keeping the same function. 320 The average variation of the signal yield for the four parameterisations is taken as a 321 systematic uncertainty. An alternative description for the other combinatorial background 322

component is obtained by combining J/ψ and π^0 candidates from different events. The resulting B^0 candidates are passed through the full chain of offline selection requirements and their mass distribution is parameterised by the sum of a Crystal Ball function and an exponential function with a slope free to vary in the fit. The fit results using these models deviate from the default result by less than 1%, except in the case of partially reconstructed $B^0 \rightarrow J/\psi K_S^0$ background decays, where a change in signal yield of 1.5% is observed.

In the default model, the yields of $K_{\rm S}^0$ and false π^0 backgrounds are fixed to the values obtained in the study of the diphoton mass distribution. The default fit is repeated after changing the yields by their uncertainty, as reported in Sec. 4.1. The resulting changes in signal yield lie between 0.6–0.9% and are considered as a systematic uncertainty.

Previously neglected $B \to J/\psi K_{\rm S}^0 \pi$ decays are incorporated in the fit model by setting their contribution relative to $B^0 \to J/\psi K_{\rm S}^0$ decays to its expected value. As these events are distributed well below the signal peak, the resulting change in signal yield is negligible. Finally, the 1–2% difference in the ECAL calibration between the 2011–2012 and 2015–2018 data-taking campaigns is accounted for by leaving the signal mean parameter D_{μ} free to vary in the fit. A change in signal of 1.5% is observed while the parameter D_{μ} takes the value $(3.8 \pm 2.2) \text{ MeV}/c^2$.

In summary, a total uncertainty associated to the choice of signal fit model of 2.6% is found, dominated by the parameterisation of the $K_{\rm S}^0$ background shape and the ECAL energy scale.

344 6.2 Normalisation fit model

The strategy to assess the uncertainties on the yield of normalisation decays is similar 345 to that of the signal yield. The shape of the normalisation component is replaced by a 346 Bukin function [32]. For the background components related to underlying-event photons, 347 combinatorial candidates and partially reconstructed decays, the default functions are 348 replaced by the sum of two Gaussian functions, a Chebyshev polynomial of second 349 degree [33] and an Argus function [34] convoluted with a Gaussian function, respectively. 350 The largest variations in the normalisation yield are found for the modified model of the 351 normalisation and partially reconstructed decays, which are both at the level of 0.3–0.4%. 352 The correction to the relative yield of one- and two-photon backgrounds with respect 353 to that of the normalisation yield is changed according to its uncertainty, as determined 354 in a study of $B^+ \to J/\psi K^+$ decays that contaminate the data sample when the kaon is 355 mistakenly associated with two photons from the event. A systematic uncertainty of 0.3%356 is assigned. 357

The different ECAL calibration in the 2011–2012 and 2015–2018 data samples observed 358 at the π^0 mass level (1-2%) is reflected in the B^+ mass (0.06%) despite the π^0 mass 359 constraint imposed by the kinematic fit of the decays. This small difference in the B^+ mass 360 is ignored in the default model, which determines the shape of the normalisation channel 361 from simulated samples that have the same calibration. The associated uncertainty is 362 determined by correcting the simulated B^+ mass of the 2011–2012 and 2015–2018 samples 363 to match the mass measured in the two different data sets, deriving new parameters 364 for the normalisation shape and fitting the new model to the combined data set. The 365 relative change in yield of 0.2% is taken as a systematic uncertainty, which brings the 366 total uncertainty associated with the choice of the normalisation model to 0.6%. 367

368 6.3 Selection efficiencies

Given the similar topology and selection of signal and normalisation decays, the ratio of efficiency for several requirements should be close to one. This is assessed in detail for the BDT classifier, trigger and photon PID requirements by comparing the corresponding efficiencies in data and in simulation.

The multivariate classifier is constructed to have a similar response to signal and 373 normalisation decays, but also to their isospin-conjugated decays $B^+ \to J/\psi \pi^+$ and 374 $B^0 \to J/\psi K^{*0}$, respectively. These two modes are selected with relatively high efficiency 375 and are less prone to backgrounds due to the absence of a neutral pion in the final state. 376 They are therefore suitable to measure precisely the efficiency of the classifier output 377 requirement and derive a possible correction to the efficiency ratio appearing in Eq. 2. The 378 efficiency ratio is measured with a precision of 1.7%, limited by the size of the simulated 379 $B^+ \to J/\psi \pi^+$ sample. Given that the difference between the measured and simulated 380 ratios is less than that precision, no correction is applied and that precision is taken as a 381 systematic uncertainty. 382

The uncertainty associated with the trigger requirements is determined similarly using samples of $B^+ \rightarrow J/\psi K^+$ events that fulfil any trigger requirements, with the J/ψ signals excluded [35]. Each sample is divided into two smaller samples, which are weighted to reproduce the muon kinematics in the signal and normalisation modes, respectively. The obtained efficiency ratio in data and simulation shows an excellent compatibility of the order of 0.3% which is considered as a systematic uncertainty.

The modelling of the photon PID distributions is studied using background-subtracted 389 samples of normalisation decays. After dividing the sample into two halves, one of the 390 two samples is further weighted such that the photon kinematic and isolation variables 391 match the ones for signal decays. The efficiency is then determined for a wide range of 392 photon PID requirements in each of the two samples and the obtained values compared to 393 the simulation. The difference in the efficiency ratios between data and simulation at the 394 chosen PID requirement is negligible, however, the largest difference of 0.8% is retained 395 as a conservative estimate of the systematic uncertainty. 396

Uncertainties specific to the selection of $B^+ \to J/\psi K^{*+}$ candidates pertain to the kaon 397 reconstruction and PID requirement, as well as the K^{*+} mass requirement. The former is 398 evaluated based on dedicated track reconstruction studies performed with $J/\psi \rightarrow \mu^+\mu^-$ 399 decays whose results are extrapolated to the case of kaons, and gives an uncertainty of 400 1.5% [36]. The PID requirement efficiency is derived using calibration samples from which 401 three-dimensional efficiency tables in bins of kaon $p_{\rm T}$, η , and the number of reconstructed 402 tracks in the event are produced. The influence of the choice of binning on the efficiency 403 is found to be below 0.3% and is taken as a systematic uncertainty. The influence of the 404 size of the calibration samples is below one part per thousand and is therefore ignored. 405 Finally, the modelling of the K^{*+} mass shape is studied by enlarging the selection mass 406 window of $K^+\pi^0$ candidates (from ± 100 to $\pm 300 \text{ MeV}/c^2$ around the known K^{*+} mass) 407 for $J/\psi K^+\pi^0$ candidates in a narrow region around the B^+ mass peak. This pure sample 408 of K^{*+} mesons allows a precise determination of the efficiency in data, compatible with 409 the simulated value at the level of 1.1%, which is taken as a systematic uncertainty. 410

The size of the simulation sample for signal and normalisation decays enters the total systematic uncertainty through the statistical precision of the estimated selection efficiencies, which is evaluated to 1.6%.

Table 3: Summary of uncertainties on the ratio of branching fractions for $B^0 \to J/\psi \pi^0$ and $B^+ \to J/\psi K^{*+}$ decays. Systematic uncertainties of individual sources are added in quadrature.

Source	Uncertainty (%)
Signal model	2.6
Normalisation model	0.6
Simulated sample size	1.6
BDT classifier	1.7
Trigger	0.3
Photon PID	0.8
Kaon reconstruction	1.5
K^{*+} mass	1.1
Systematic uncertainty	4.1
Statistical uncertainty	4.6
Total uncertainty	6.2

414 6.4 Summary of uncertainties

The sources of systematic uncertainties affecting the ratio of branching fractions are summarised in Table 3. Statistical and systematic uncertainties are found to be of the same order and are added in quadrature.

418 7 Cross-checks

419 7.1 Study of background modes

The number of 307 ± 49 partially reconstructed B^+ decays to the $J/\psi\rho^+$ final state found in the signal fit (Table 1) is compatible with the expected yield of 339 ± 19 based on a reconstruction of this mode that includes the charged pion. Similarly, the contribution of $75 \pm 30 B_c^+ \rightarrow J/\psi\rho^+$ decays to the signal data sample is also compatible with the value of 62 ± 4 obtained when fully reconstructing these decays.

In the study of these backgrounds, the selection of ρ^+ candidates is similar to those of the K^{*+} in normalisation decays after exchanging the kaon for a pion. Moreover, the mass of $\pi^+\pi^0$ candidates is required to be within 200 MeV/ c^2 of the known ρ^+ mass [12] The B^+ candidates are selected with identical criteria on the BDT classifier, π^0 mass and photon PID as for the signal mode. In the case of B_c^+ candidates, these selection requirements are relaxed to accommodate the small production of B_c^+ mesons.

The determination of the yield of B^+ decays accounts for partially reconstructed $B^+ \rightarrow J/\psi K^{*+}$ background contributions where K^{*+} mesons decay to $K_{\rm S}^0 (\rightarrow \pi^0 \pi^0) \pi^+$ and one π^0 meson is missed. Like in the signal mode, decays with a $K_{\rm S}^0$ meson in the final state and random photon backgrounds are constrained using a fit to the diphoton mass distribution. Backgrounds from the mis-identification of the kaon in normalisation decays are suppressed by a dedicated PID requirement imposed on the pion. In the B_c^+ sample,

Figure 3: Mass distribution of $J/\psi\rho^+$ candidates shown with the fit projection in the (left) B^+ and (right) B_c^+ signal region. In the latter case, the selection requirements are relaxed to accommodate the small production of B_c^+ mesons. The dashed line and coloured regions represent B^+ or B_c^+ decays to the $J/\psi\rho^+$ final-state and different sources of background, respectively.

⁴³⁷ peaking backgrounds are ignored and only combinatorial backgrounds are modelled in the⁴³⁸ fit.

Results of the fits to the B^+ and B_c^+ samples are shown in Fig. 3. Given that the B_c^+ mode has never been observed, the detailed analysis of these decays is the subject of a separate publication [37].

442 7.2 Study of isospin-conjugated modes

⁴⁴³ Decays of $B^+ \to J/\psi \pi^+$ and $B^0 \to J/\psi K^{*0}$ are used to assess the systematic uncertainty ⁴⁴⁴ associated to the modelling of the BDT classifier response. They can also be used to ⁴⁴⁵ verify that the total efficiencies are well estimated in simulation by measuring the ratio of ⁴⁴⁶ the branching fractions.

In this study, the $p_{\rm T}$ requirement for the π^+ meson is identical to the one for the 447 π^0 mesons in signal and normalisation decays. In addition to the previous selection 448 requirements placed on the K^+ and K^* candidates, stringent PID requirements are imposed 449 to reduce the contamination from the main peaking backgrounds. Accordingly, the mass 450 model for $J/\psi\pi^+$ background candidates accounts only for mis-identified $B^+ \to J/\psi K^+$ 451 decays which still pass the PID selections given a much larger branching fraction, and 452 a combinatorial component. The $J/\psi K^{*0}$ model includes partially reconstructed decays 453 with one missed pion and a combinatorial component. Results of the fits to the B^+ and 454 B^0 samples are shown in Fig. 4. The obtained branching fraction ratio is compatible with 455 the world average at the level of 1.3 standard deviations. 456

⁴⁵⁷ 7.3 Assumptions used in the signal and normalisation fits

⁴⁵⁸ Partially reconstructed $B^0 \rightarrow J/\psi K_{\rm S}^0$ and $B^+ \rightarrow J/\psi \rho^+$ backgrounds have a similar ⁴⁵⁹ distribution in the $J/\psi \pi^0$ mass. In the default fit model, the yield of the latter is free to ⁴⁶⁰ vary, while the former yield is fixed to the value determined in another fit to the diphoton

Figure 4: Mass distribution of (left) $J/\psi\pi^+$ and (right) $J/\psi K^{*0}$ candidates shown with the fit projection. The dashed lines and coloured regions represent $B^+ \to J/\psi\pi^+$ or $B^0_{(s)} \to J/\psi K^{*0}$ decays and different sources of background, respectively.

⁴⁶¹ mass (see Sec. 4.1). A model where the $K_{\rm S}^0$ yield is free to vary and the $B^+ \to J/\psi \rho^+$ ⁴⁶² yield fixed to its expected value (as determined in Sec. 7.1) gives a small 0.4% change in ⁴⁶³ the results from the default model. Similarly, fixing the yield of B_c^+ decays has a 0.7% ⁴⁶⁴ effect on the signal yield.

In the default normalisation fit, random photon background contributions are constrained using calibrated simulation samples, while a data-driven approach is adopted in the signal fit. The normalisation yield, however, is robust against the choice of model for these backgrounds with a small variation of 0.4% when the signal model is used, which is at the level of the associated systematic uncertainty of 0.3%.

By default, no action is taken to remove multiple candidates from the signal and normalisation data samples to which they contribute at the level of one and five parts per thousand, respectively. The bias in the yields when randomly removing multiple candidates from the samples is indeed found to be negligible.

474 8 Results

⁴⁷⁵ The obtained branching fraction ratio between $B^0 \to J/\psi \pi^0$ and $B^+ \to J/\psi K^{*+}$ decays is

$$\mathcal{R} = (1.153 \pm 0.053 \text{ (stat.)} \pm 0.048 \text{ (syst.)}) \times 10^{-2}$$

The current world-average for the normalisation branching fraction of $(1.43 \pm 0.08) \times 10^{-3}$ [12] includes seven measurements performed using K^{*+} candidates with a reconstructed mass within a 100 MeV/ c^2 mass window or smaller of the known K^{*+} mass [38–44]. The Belle analysis [40] is the only to measure the yield for resonant decays but estimates the contributions from nonresonant decays at the level of 5.2% in the K^* mass region. Including the nonresonant contributions, the uncertainty-weighted average of the normalisation branching fraction increases to

$$\mathcal{B}_{B^+ \to J/\psi K^{*+}} = (1.449 \pm 0.083) \times 10^{-3}.$$

Combined with the world average $\mathcal{B}_{B^0 \to J/\psi\pi^0} = (1.66 \pm 0.10) \times 10^{-5}$, the expected ratio \mathcal{R} of $(1.15 \pm 0.10) \times 10^{-2}$ agrees with the result of this analysis, the latter being more precise.

Finally, using this new average for the normalisation branching fraction, the obtained branching fraction for signal decays is

$$\mathcal{B}_{B^0 \to J/\psi\pi^0} = (1.670 \pm 0.077 \text{ (stat.)} \pm 0.069 \text{ (syst.)} \pm 0.095 \text{ (ext.)}) \times 10^{-5},$$

where the last uncertainty reflects the precision on the branching fraction of the normalisation mode. As shown in Fig. 5, this result is in agreement with previous measurements.

490 9 Summary

The measurement of the branching fraction of $B^0 \to J/\psi \pi^0$ decays using $B^+ \to J/\psi K^{*+}$ 491 decays as normalisation channel is presented. The measured ratio of branching fractions is 492 compatible with the value determined from the average branching fractions of the individual 493 decay modes and is more precise. Using a slightly increased average for the normalisation 494 mode that accounts for the presence of nonresonant decays in the analysed $B^+ \to J/\psi K^{*+}$ 495 sample, the branching fraction obtained for $B^0 \to J/\psi \pi^0$ decays is $(1.67 \pm 0.14) \times 10^{-5}$, 496 compatible with the current world-average of $(1.66 \pm 0.10) \times 10^{-5}$. This result achieves a 497 similar precision as the most precise single measurement of $(1.62 \pm 0.13) \times 10^{-5}$ published 498 by the Belle collaboration [10]. This analysis also paves the way for future CP-violation 499 measurements with these decays. 500

Figure 5: Branching fraction for $B^0 \rightarrow J/\psi \pi^0$ decays as measured in this analysis and by the BaBar and Belle collaborations. The world average and its uncertainty (PDG 2022) are indicated by the solid and dashed lines, respectively, representing a combination of the Belle, BaBar and CLEO measurements [10, 11, 45]. The latter measurement is affected by a much larger error and is not shown.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for 502 the excellent performance of the LHC. We thank the technical and administrative staff 503 at the LHCb institutes. We acknowledge support from CERN and from the national 504 agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); 505 CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Nether-506 lands); MNiSW and NCN (Poland); MCID/IFA (Romania); MICINN (Spain); SNSF 507 and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF 508 (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 509 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), 510 GridPP (United Kingdom), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), 511 and Polish WLCG (Poland). We are indebted to the communities behind the multiple 512 open-source software packages on which we depend. Individual groups or members have 513 received support from ARC and ARDC (Australia): Key Research Program of Frontier 514 Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central 515 Universities, and Sci. & Tech. Program of Guangzhou (China); Minciencias (Colombia); 516 EPLANET, Marie Skłodowska-Curie Actions, ERC and NextGenerationEU (European 517 Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes 518 (France); AvH Foundation (Germany); ICSC (Italy); GVA, XuntaGal, GENCAT, Inditex, 519 InTalent and Prog. Atracción Talento, CM (Spain); SRC (Sweden); the Leverhulme Trust, 520 the Royal Society and UKRI (United Kingdom). 521

522 **References**

- ⁵²³ [1] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. **10** (1963) 531.
- [2] M. Kobayashi and T. Maskawa, *CP-violation in the renormalizable theory of weak interaction*, Prog. Theor. Phys. **49** (1973) 652.
- [3] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett.
 51 (1983) 1945.
- [4] A. B. Carter and A. I. Sanda, *CP violation in B-meson decays*, Phys. Rev. **D23** (1981) 1567.
- [5] Y. Grossman and M. P. Worah, *CP asymmetries in B decays with new physics in decay amplitudes*, Physics Letters B395 (1997) 241.
- [6] M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami, In pursuit of new physics with $B_d^0 \rightarrow J/\psi K^0$ and $B_s^0 \rightarrow J/\psi \phi$ decays at the high-precision frontier, J. Phys. **G48** (2021) 065002, arXiv:2010.14423.
- [7] K. De Bruyn, M. Barel, R. Fleischer, and E. Malami, Penguin effects in $B_d^0 \to J/\psi K_S^0$ and $B_s^0 \to J/\psi \phi$, in Proceedings of 11th International Workshop on the CKM Unitarity Triangle — PoS(CKM2021), CKM2021, Sissa Medialab, 2023.
- [8] LHCb collaboration, R. Aaij *et al.*, Measurement of the resonant and CP components in $\overline{B}^0 \to J/\psi \pi^+ \pi^-$ decays, Phys. Rev. **D90** (2014) 012003, arXiv:1404.5673.

- [9] LHCb collaboration, R. Aaij *et al.*, Measurement of the time-dependent CP asymmetries in $B_s^0 \rightarrow J/\psi K_S^0$, JHEP **06** (2015) 131, arXiv:1503.07055.
- [10] Belle collaboration, B. Pal *et al.*, Measurement of the branching fraction and timedependent CP asymmetry for $B^0 \rightarrow J/\psi\pi^0$ decays, Phys. Rev. **D98** (2018) 112008, arXiv:1810.01356.
- [11] BaBar collaboration, B. Aubert *et al.*, Evidence for CP violation in $B^0 \rightarrow J/\psi \pi^0$ decays, Phys. Rev. Lett. **101** (2008) 021801, arXiv:0804.0896.
- ⁵⁴⁷ [12] Particle Data Group, R. L. Workman *et al.*, *Review of particle physics*, Prog. Theor.
 ⁵⁴⁸ Exp. Phys. **2022** (2022) 083C01.
- [13] H. Mehraban and A. Asadi, Final state interaction effects in $B^0 \to J/\psi \pi^0$ decay, Phys. Atom. Nuclei **77** (2014) 1483–1490.
- ⁵⁵¹ [14] R. Fleischer, R. Knegjens, and G. Ricciardi, Exploring CP Violation and η - η' Mixing ⁵⁵² with the $B_{s,d}^0 \to J/\psi \eta^{(\prime)}$ Systems, Eur. Phys. J. C71 (2011) 1798, arXiv:1110.5490.
- [15] A. A. Alves Jr. et al., Performance of the LHCb muon system, JINST 8 (2013)
 P02022, arXiv:1211.1346.
- [16] LHCb collaboration, R. Aaij *et al.*, *LHCb detector performance*, Int. J. Mod. Phys.
 A30 (2015) 1530022, arXiv:1412.6352.
- [17] C. Abellan Beteta et al., Calibration and performance of the LHCb calorimeters in Run 1 and 2 at the LHC, arXiv:2008.11556, submitted to JINST.
- [18] R. Aaij et al., Performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC, JINST 14 (2019) P04013, arXiv:1812.10790.
- [19] S. Borghi, Novel real-time alignment and calibration of the LHCb detector and its
 performance, Nucl. Instrum. Meth. A845 (2017) 560.
- [20] T. Sjöstrand, S. Mrenna, and P. Skands, *PYTHIA 6.4 physics and manual*, JHEP
 05 (2006) 026, arXiv:hep-ph/0603175; T. Sjöstrand, S. Mrenna, and P. Skands,
 A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852,
 arXiv:0710.3820.
- [21] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb
 simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
- ⁵⁶⁹ [22] D. J. Lange, *The EvtGen particle decay simulation package*, Nucl. Instrum. Meth.
 ⁵⁷⁰ A462 (2001) 152.
- ⁵⁷¹ [23] P. Golonka and Z. Was, *PHOTOS Monte Carlo: A precision tool for QED corrections* ⁵⁷² *in Z and W decays*, Eur. Phys. J. **C45** (2006) 97, arXiv:hep-ph/0506026.
- ⁵⁷³ [24] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE
 ⁵⁷⁴ Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

- ⁵⁷⁶ [25] M. Clemencic *et al.*, *The LHCb simulation application, Gauss: Design, evolution and* ⁵⁷⁷ *experience*, J. Phys. Conf. Ser. **331** (2011) 032023.
- ⁵⁷⁸ [26] D. Müller, M. Clemencic, G. Corti *et al.*, *Redecay: a novel approach to speed up the* ⁵⁷⁹ *simulation at LHCb*, Eur. Phys. J. **C78** (2018) 1009.
- [27] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth.
 A552 (2005) 566, arXiv:physics/0503191.
- [28] J. E. Gaiser, Charmonium spectroscopy from radiative decays of the J/ψ and ψ' , PhD thesis, SLAC, 1982, SLAC-0255.
- [29] M. Pivk and F. R. Le Diberder, *sPlot: A statistical tool to unfold data distributions*,
 Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.
- [30] L. Anderlini *et al.*, *The PIDCalib package*, LHCb-PUB-2016-021, CERN, Geneva,
 2016.
- [31] Belle collaboration, H. Ikeda et al., A detailed test of the CsI(Tl) calorimeter for
 BELLE with photon beams of energy between 20-MeV and 5.4 GeV, Nucl. Instrum.
 Meth. A441 (2000) 401.
- [32] BABAR collaboration, J. P. Lees *et al.*, Branching fraction measurements of the color-suppressed decays $\overline{B}^0 \to D^{(*)0}\pi^0$, $D^{(*)0}\eta$, $D^{(*)0}\omega$, and $D^{(*)0}\eta'$ and measurement of the polarization in the decay $\overline{B}^0 \to D^{*0}\omega$, Phys. Rev. **D84** (2011) 112007, Erratum ibid. **D87** (2013) 039901, arXiv:1107.5751.
- [33] T. J. Rivlin, The Chebyshev polynomials. pure and applied mathematics (1st ed.),
 New York-London-Sydney: Wiley-Interscience [John Wiley & Sons], 1974.
- ⁵⁹⁷ [34] ARGUS collaboration, H. Albrecht *et al.*, Search for Hadronic $b \rightarrow u$ Decays, Phys. ⁵⁹⁸ Lett. B **241** (1990) 278.
- [35] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022,
 arXiv:1211.3055.
- [36] LHCb collaboration, M. de Cian *et al.*, Measurement of the track reconstruction efficiency at LHCb, JINST **10** (2015) P02007.
- [37] LHCb collaboration, R. Aaij *et al.*, Observation of the $B_c^+ \to J/\psi \pi^+ \pi^0$ decay, LHCb-PAPER-2023-046, in preparation.
- [38] BaBar collaboration, B. Aubert *et al.*, Evidence for the $B^0 \to p\overline{p}K^{*0}$ and $B^+ \to \eta_c K^{*+}$ decays and study of the decay dynamics of B meson decays into $p\overline{p}h$ final states, Phys. Rev. **D76** (2007) 092004, arXiv:0707.1648.
- [39] BaBar collaboration, B. Aubert et al., Measurement of branching fractions and charge
 asymmetries for exclusive B decays to charmonium, Phys. Rev. Lett. 94 (2005)
 141801, arXiv:hep-ex/0412062.
- [40] Belle collaboration, K. Abe *et al.*, Measurements of branching fractions and decay amplitudes in $B \rightarrow J/\psi K^*$ decays, Phys. Lett. **B538** (2002) 11, arXiv:hep-ex/0205021.

- [41] CLEO collaboration, C. P. Jessop *et al.*, Measurement of the decay amplitudes and branching fractions of $B \rightarrow J/\psi K^*$ and $B \rightarrow J/\psi K$ decays, Phys. Rev. Lett. **79** (1997) 4533, arXiv:hep-ex/9702013.
- [42] CDF collaboration, F. Abe *et al.*, Reconstruction of $B^0 \to J/\psi K_{\rm S}^0$ and measurement of ratios of branching ratios involving $B \to J/\psi K^*$, Phys. Rev. Lett. **76** (1996) 2015.
- [43] CLEO collaboration, D. Bortoletto et al., Inclusive and exclusive decays of B mesons to final states including charm and charmonium mesons, Phys. Rev. D45 (1992) 21.
- [44] ARGUS collaboration, H. Albrecht et al., Exclusive hadronic decays of B mesons, Z.
 Phys. C48 (1990) 543.
- [45] CLEO collaboration, Avery, P. et al., Study of exclusive two-body B^0 meson decays to charmonium, Phys. Rev. **D62** (2000) 051101.

LHCb collaboration

R. Aaij³⁵, A.S.W. Abdelmotteleb⁵⁴, C. Abellan Beteta⁴⁸, F. Abudinén⁵⁴, 624 T. Ackernley⁵⁸ , J. A. Adams⁶⁶ , A. A. Adefisoye⁶⁶ , B. Adeva⁴⁴ , M. Adinolfi⁵² , 625 P. Adlarson⁷⁹, C. Agapopoulou⁴⁶, C.A. Aidala⁸⁰, Z. Ajaltouni¹¹, S. Akar⁶³, 626 K. Akiba³⁵ (b), P. Albicocco²⁵ (b), J. Albrecht¹⁷ (b), F. Alessio⁴⁶ (b), M. Alexander⁵⁷ (b), 627 Z. Aliouche⁶⁰ (D), P. Alvarez Cartelle⁵³ (D), R. Amalric¹⁵ (D), S. Amato³ (D), J.L. Amey⁵² (D), 628 Y. Amhis^{13,46} (D), L. An⁶ (D), L. Anderlini²⁴ (D), M. Andersson⁴⁸ (D), A. Andreianov⁴¹ (D), 629 P. Andreola⁴⁸, M. Andreotti²³, D. Andreou⁶⁶, A. Anelli^{28,p}, D. Ao⁷, 630 F. Archilli^{34,v} \bigcirc , M. Argenton²³ \bigcirc , S. Arguedas Cuendis⁹ \bigcirc , A. Artamonov⁴¹ \bigcirc , 631 M. Artuso⁶⁶ D. E. Aslanides¹² D. M. Atzeni⁶² D. B. Audurier¹⁴ D. Bacher⁶¹ D. 632 I. Bachiller Perea¹⁰, S. Bachmann¹⁹, M. Bachmayer⁴⁷, J.J. Back⁵⁴, 633 P. Baladron Rodriguez⁴⁴, V. Balagura¹⁴, W. Baldini²³, J. Baptista de Souza Leite⁵⁸, 634 M. Barbetti^{24,m} (D, I. R. Barbosa⁶⁷ (D, R.J. Barlow⁶⁰ (D, S. Barsuk¹³ (D, W. Barter⁵⁶ (D, 635 M. Bartolini⁵³ D, J. Bartz⁶⁶ D, F. Baryshnikov⁴¹ D, J.M. Basels¹⁶ D, G. Bassi³² D, 636 B. Batsukh⁵, A. Battig¹⁷, A. Bay⁴⁷, A. Beck⁵⁴, M. Becker¹⁷, F. Bedeschi³², 637 I.B. Bediaga² (D), A. Beiter⁶⁶, S. Belin⁴⁴ (D), V. Bellee⁴⁸ (D), K. Belous⁴¹ (D), I. Belov²⁶ (D), 638 I. Belyaev³³, G. Benane¹², G. Bencivenni²⁵, E. Ben-Haim¹⁵, A. Berezhnoy⁴¹, 639 R. Bernet⁴⁸ (D, S. Bernet Andres⁴² (D, C. Bertella⁶⁰ (D, A. Bertolin³⁰ (D, C. Betancourt⁴⁸ (D, 640 F. Betti⁵⁶ (D), J. Bex⁵³ (D), Ia. Bezshyiko⁴⁸ (D), J. Bhom³⁸ (D), M.S. Bieker¹⁷ (D), N.V. Biesuz²³ (D), 641 P. Billoir¹⁵ D, A. Biolchini³⁵ D, M. Birch⁵⁹ D, F.C.R. Bishop¹⁰ D, A. Bitadze⁶⁰ D, 642 A. Bizzeti D, T. Blake⁵⁴ D, F. Blanc⁴⁷ D, J.E. Blank¹⁷ D, S. Blusk⁶⁶ D, V. Bocharnikov⁴¹ D, 643 J.A. Boelhauve¹⁷ D, O. Boente Garcia¹⁴ D, T. Boettcher⁶³ D, A. Bohare⁵⁶ D, 644 A. Boldyrev⁴¹ (D, C.S. Bolognani⁷⁶ (D, R. Bolzonella^{23,l} (D, N. Bondar⁴¹ (D, F. Borgato^{30,46} (D, 645 S. Borghi⁶⁰, M. Borsato^{28,p}, J.T. Borsuk³⁸, S.A. Bouchiba⁴⁷, T.J.V. Bowcock⁵⁸, 646 A. Boyer⁴⁶, C. Bozzi²³, M.J. Bradley⁵⁹, A. Brea Rodriguez⁴⁴, N. Breer¹⁷, 647 J. Brodzicka³⁸ D, A. Brossa Gonzalo⁴⁴ D, J. Brown⁵⁸ D, D. Brundu²⁹ D, E. Buchanan⁵⁶, 648 A. Buonaura⁴⁸ , L. Buonincontri³⁰ , A.T. Burke⁶⁰ , C. Burr⁴⁶ , A. Bursche⁶⁹, 649 A. Butkevich⁴¹ , J.S. Butter⁵³, J. Buytaert⁴⁶, W. Byczynski⁴⁶, S. Cadeddu²⁹, 650 H. Cai⁷¹, R. Calabrese^{23,l} (D), L. Calefice⁴³ (D), S. Cali²⁵ (D), M. Calvi^{28,p} (D), M. Calvo Gomez⁴² (D), 651 J. Cambon Bouzas⁴⁴, P. Campana²⁵, D.H. Campora Perez⁷⁶, 652 A.F. Campoverde Quezada⁷ , S. Capelli^{28,p}, L. Capriotti²³, R. Caravaca-Mora⁹, 653 A. Carbone^{22,j} , L. Carcedo Salgado⁴⁴ , R. Cardinale^{26,n} , A. Cardini²⁹ , 654 P. Carniti^{28,p}, L. Carus¹⁹, A. Casais Vidal⁶², R. Caspary¹⁹, G. Casse⁵⁸, 655 J. Castro Godinez⁹, M. Cattaneo⁴⁶, G. Cavallero²³, V. Cavallini^{23,1}, S. Celani¹⁹, 656 J. Cerasoli¹², D. Cervenkov⁶¹, S. Cesare^{27,o}, A.J. Chadwick⁵⁸, I. Chahrour⁸⁰, 657 M. Charles¹⁵ , Ph. Charpentier⁴⁶ , C.A. Chavez Barajas⁵⁸ , M. Chefdeville¹⁰ 658 C. Chen¹² , S. Chen⁵ , Z. Chen⁷ , A. Chernov³⁸ , S. Chernyshenko⁵⁰ , 659 V. Chobanova⁷⁸ (D, S. Cholak⁴⁷ (D, M. Chrzaszcz³⁸ (D, A. Chubykin⁴¹ (D, V. Chulikov⁴¹ (D, 660 P. Ciambrone²⁵, X. Cid Vidal⁴⁴, G. Ciezarek⁴⁶, P. Cifra⁴⁶, P.E.L. Clarke⁵⁶, 661 M. Clemencic⁴⁶ , H.V. Cliff⁵³ , J. Closier⁴⁶ , C. Cocha Toapaxi¹⁹ , V. Coco⁴⁶ 662 J. Cogan¹² , E. Cogneras¹¹ , L. Cojocariu⁴⁰ , P. Collins⁴⁶ , T. Colombo⁴⁶ , 663 A. Comerma-Montells⁴³, L. Congedo²¹, A. Contu²⁹, N. Cooke⁵⁷, I. Corredoira ⁴⁴, 664 A. Correia¹⁵, G. Corti⁴⁶, J.J. Cottee Meldrum⁵², B. Couturier⁴⁶, D.C. Craik⁴⁸, 665 M. Cruz Torres^{2,g} [D], E. Curras Rivera⁴⁷ [D], R. Currie⁵⁶ [D], C.L. Da Silva⁶⁵ [D], S. Dadabaev⁴¹ [D], 666 L. Dai⁶⁸ $(D, X. Dai⁶ (D, E. Dall'Occo¹⁷ <math>(D, J. Dalseno^{44} (D, C. D'Ambrosio^{46} (D, J. Daniel^{11} (D, C. D'Ambrosio^{46} (D, J. D)))))$ 667 A. Danilina⁴¹ (D), P. d'Argent²¹ (D), A. Davidson⁵⁴ (D), J.E. Davies⁶⁰ (D), A. Davis⁶⁰ (D), 668 O. De Aguiar Francisco⁶⁰ (b, C. De Angelis^{29,k} (b, J. de Boer³⁵ (b, K. De Bruyn⁷⁵ (b, 669 S. De Capua⁶⁰ , M. De Cian^{19,46} , U. De Freitas Carneiro Da Graca^{2,b} , E. De Lucia²⁵ , 670

J.M. De Miranda² (D), L. De Paula³ (D), M. De Serio^{21,h} (D), D. De Simone⁴⁸ (D), P. De Simone²⁵ (D),

F. De Vellis¹⁷ , J.A. de Vries⁷⁶ , F. Debernardis^{21,h} , D. Decamp¹⁰ , V. Dedu¹² , 672 L. Del Buono¹⁵ D, B. Delaney⁶² D, H.-P. Dembinski¹⁷ D, J. Deng⁸ D, V. Denysenko⁴⁸ D, 673 O. Deschamps¹¹ \bigcirc , F. Dettori^{29,k} \bigcirc , B. Dey⁷⁴ \bigcirc , P. Di Nezza²⁵ \bigcirc , I. Diachkov⁴¹ \bigcirc , 674 S. Didenko⁴¹, S. Ding⁶⁶, L. Dittmann¹⁹, V. Dobishuk⁵⁰, A. D. Docheva⁵⁷, 675 A. Dolmatov⁴¹, C. Dong⁴, A.M. Donohoe²⁰, F. Dordei²⁹, A.C. dos Reis², A. D. 676 Dowling⁶⁶ \bigcirc , A.G. Downes¹⁰ \bigcirc , W. Duan⁶⁹ \bigcirc , P. Duda⁷⁷ \bigcirc , M.W. Dudek³⁸ \bigcirc , L. Dufour⁴⁶ \bigcirc , 677 V. Duk³¹ \bigcirc , P. Durante⁴⁶ \bigcirc , M. M. Duras⁷⁷ \bigcirc , J.M. Durham⁶⁵ \bigcirc , O. D. Durmus⁷⁴ \bigcirc , 678 A. Dziurda³⁸ (D), A. Dzyuba⁴¹ (D), S. Easo⁵⁵ (D), E. Eckstein⁷³, U. Egede¹ (D), A. Egorychev⁴¹ (D), 679 V. Egorychev⁴¹ (\square , S. Eisenhardt⁵⁶ (\square , E. Ejopu⁶⁰ (\square , S. Ek-In⁴⁷ (\square , L. Eklund⁷⁹ (\square , 680 M. Elashri⁶³, J. Ellbracht¹⁷, S. Ely⁵⁹, A. Ene⁴⁰, E. Epple⁶³, S. Escher¹⁶, 681 J. Eschle⁴⁸ (D, S. Esen¹⁹ (D, T. Evans⁶⁰ (D, F. Fabiano^{29,k,46} (D, L.N. Falcao² (D, Y. Fan⁷ (D, 682 B. Fang^{71,13} \bigcirc , L. Fantini^{31,r} \bigcirc , M. Faria⁴⁷ \bigcirc , K. Farmer⁵⁶ \bigcirc , D. Fazzini^{28,p} \bigcirc , 683 L. Felkowski⁷⁷ D, M. Feng^{5,7} D, M. Feo⁴⁶ D, M. Fernandez Gomez⁴⁴ D, A.D. Fernez⁶⁴ D, 684 F. Ferrari²², F. Ferreira Rodrigues³, S. Ferreres Sole³⁵, M. Ferrillo⁴⁸, 685 M. Ferro-Luzzi⁴⁶ , S. Filippov⁴¹ , R.A. Fini²¹ , M. Fiorini^{23,1} , K.M. Fischer⁶¹ , 686 D.S. Fitzgerald⁸⁰ (D), C. Fitzpatrick⁶⁰ (D), F. Fleuret¹⁴ (D), M. Fontana²² (D), L. F. Foreman⁶⁰ (D), 687 R. Forty⁴⁶ D. Foulds-Holt⁵³ D, M. Franco Sevilla⁶⁴ D, M. Frank⁴⁶ D, E. Franzoso^{23,1} D, 688 G. Frau¹⁹ (D, C. Frei⁴⁶ (D, D.A. Friday⁶⁰ (D, J. Fu⁷ (D, Q. Fuehring¹⁷ (D, Y. Fujii¹ (D, 689 T. Fulghesu¹⁵, E. Gabriel³⁵, G. Galati^{21,h}, M.D. Galati³⁵, A. Gallas Torreira⁴⁴, 690 D. Galli^{22,j} (b), S. Gambetta⁵⁶ (b), M. Gandelman³ (b), P. Gandini²⁷ (b), H. Gao⁷ (b), R. Gao⁶¹ (b), 691 Y. Gao⁸ $(D, Y. Gao^6)$, Y. Gao⁸, M. Garau^{29,k} (D, L.M. Garcia Martin⁴⁷ <math>(D, K)692 P. Garcia Moreno⁴³, J. García Pardiñas⁴⁶, K. G. Garg⁸, L. Garrido⁴³, C. Gaspar⁴⁶, 693 R.E. Geertsema³⁵, L.L. Gerken¹⁷, E. Gersabeck⁶⁰, M. Gersabeck⁶⁰, T. Gershon⁵⁴, 694 Z. Ghorbanimoghaddam⁵², L. Giambastiani³⁰, F. I. Giasemis^{15,e}, V. Gibson⁵³, 695 H.K. Giemza³⁹ (D), A.L. Gilman⁶¹ (D), M. Giovannetti²⁵ (D), A. Gioventù⁴³ (D), 696 P. Gironella Gironell⁴³, C. Giugliano^{23,1}, M.A. Giza³⁸, E.L. Gkougkousis⁵⁹, 697 F.C. Glaser^{13,19} , V.V. Gligorov¹⁵ , C. Göbel⁶⁷ , E. Golobardes⁴² , D. Golubkov⁴¹ , 698 A. Golutvin^{59,41,46} (D), A. Gomes^{2,a,†} (D), S. Gomez Fernandez⁴³ (D), F. Goncalves Abrantes⁶¹ (D), 699 M. Goncerz³⁸, G. Gong⁴, J. A. Gooding¹⁷, I.V. Gorelov⁴¹, C. Gotti²⁸, 700 J.P. Grabowski⁷³, L.A. Granado Cardoso⁴⁶, E. Graugés⁴³, E. Graverini^{47,t}, 701 L. Grazette⁵⁴, G. Graziani, A. T. Grecu⁴⁰, L.M. Greeven³⁵, N.A. Grieser⁶³, 702 L. Grillo⁵⁷ D, S. Gromov⁴¹ D, C. Gu¹⁴ D, M. Guarise²³ D, M. Guittiere¹³ D, V. Guliaeva⁴¹ D, 703 P. A. Günther¹⁹, A.-K. Guseinov⁴⁷, E. Gushchin⁴¹, Y. Guz^{6,41,46}, T. Gys⁴⁶, 704 K. Habermann⁷³, T. Hadavizadeh¹, C. Hadjivasiliou⁶⁴, G. Haefeli⁴⁷, C. Haen⁴⁶, 705 J. Haimberger⁴⁶, M. Hajheidari⁴⁶, M.M. Halvorsen⁴⁶, P.M. Hamilton⁶⁴, 706 J. Hammerich⁵⁸ , Q. Han⁸ , X. Han¹⁹ , S. Hansmann-Menzemer¹⁹ , L. Hao⁷ 707 N. Harnew⁶¹ (D), T. Harrison⁵⁸ (D), M. Hartmann¹³ (D), J. He^{7,c} (D), K. Heijhoff³⁵ (D), 708 F. Hemmer⁴⁶ , C. Henderson⁶³, R.D.L. Henderson^{1,54}, A.M. Hennequin⁴⁶, 709 K. Hennessy⁵⁸, L. Henry⁴⁷, J. Herd⁵⁹, J. Herd⁵⁹, J. Herdieckerhoff¹⁷, P. Herrero Gascon¹⁹, 710 J. Heuel¹⁶ , A. Hicheur³ , G. Hijano Mendizabal⁴⁸, D. Hill⁴⁷ , S.E. Hollitt¹⁷ 711 J. Horswill⁶⁰ (D, R. Hou⁸ (D, Y. Hou¹⁰ (D, N. Howarth⁵⁸, J. Hu¹⁹, J. Hu⁶⁹ (D, W. Hu⁶ (D, 712 X. Hu⁴ , W. Huang⁷ , W. Hulsbergen³⁵ , R.J. Hunter⁵⁴ , M. Hushchyn⁴¹ , 713 D. Hutchcroft⁵⁸ $(D, D, Ilin^{41})$, P. Ilten⁶³ $(D, A, Inglessi^{41})$, A. Iniukhin⁴¹ $(D, A, Ishteev^{41})$, A. Ishteev⁴¹ $(D, A, Iniukhin^{41})$, A. Ishte 714 K. Ivshin⁴¹ (b, R. Jacobsson⁴⁶ (b, H. Jage¹⁶ (b, S.J. Jaimes Elles^{45,72} (b, S. Jakobsen⁴⁶ (b, 715 E. Jans³⁵ (D), B.K. Jashal⁴⁵ (D), A. Jawahery^{64,46} (D), V. Jevtic¹⁷ (D), E. Jiang⁶⁴ (D), X. Jiang^{5,7} (D), 716 Y. Jiang⁷ , Y. J. Jiang⁶ , M. John⁶¹ , D. Johnson⁵¹ , C.R. Jones⁵³ , T.P. Jones⁵⁴ 717 S. Joshi³⁹ , B. Jost⁴⁶ , N. Jurik⁴⁶ , I. Juszczak³⁸ , D. Kaminaris⁴⁷ , S. Kandybei⁴⁹ , 718 Y. Kang⁴, M. Karacson⁴⁶, D. Karpenkov⁴¹, A. M. Kauniskangas⁴⁷, J.W. Kautz⁶³, 719 F. Keizer⁴⁶ [b, D.M. Keller⁶⁶ [b, M. Kenzie⁵³ [b, T. Ketel³⁵ [b, B. Khanji⁶⁶ [b, A. Kharisova⁴¹ [b, 720 S. Kholodenko³², G. Khreich¹³, T. Kirn¹⁶, V.S. Kirsebom²⁸, O. Kitouni⁶², 721

S. Klaver³⁶ D, N. Kleijne^{32,s} , K. Klimaszewski³⁹ , M.R. Kmiec³⁹ , S. Koliiev⁵⁰ , 722 L. Kolk¹⁷ D, A. Konoplyannikov⁴¹ D, P. Kopciewicz^{37,46} D, P. Koppenburg³⁵ D, 723 M. Korolev⁴¹, I. Kostiuk³⁵, O. Kot⁵⁰, S. Kotriakhova, A. Kozachuk⁴¹, 724 P. Kravchenko⁴¹ D, L. Kravchuk⁴¹ D, M. Kreps⁵⁴ D, S. Kretzschmar¹⁶ D, P. Krokovny⁴¹ D, 725 W. Krupa⁶⁶, W. Krzemien³⁹, J. Kubat¹⁹, S. Kubis⁷⁷, W. Kucewicz³⁸, 726 M. Kucharczyk³⁸, V. Kudryavtsev⁴¹, E. Kulikova⁴¹, A. Kupsc⁷⁹, B. K. Kutsenko¹², 727 D. Lacarrere⁴⁶ D, A. Lai²⁹ D, A. Lampis²⁹ D, D. Lancierini⁵³ D, C. Landesa Gomez⁴⁴ D, 728 J.J. Lane¹, R. Lane⁵², C. Langenbruch¹⁹, J. Langer¹⁷, O. Lantwin⁴¹, 729 T. Latham⁵⁴ (, F. Lazzari^{32,t} (, C. Lazzeroni⁵¹ (, R. Le Gac¹² (, R. Lefèvre¹¹ (, 730 A. Leflat⁴¹ \bigcirc , S. Legotin⁴¹ \bigcirc , M. Lehuraux⁵⁴ \bigcirc , E. Lemos Cid⁴⁶ \bigcirc , O. Leroy¹² \bigcirc , 731 T. Lesiak³⁸ (D), B. Leverington¹⁹ (D), A. Li⁴ (D), H. Li⁶⁹ (D), K. Li⁸ (D), L. Li⁶⁰ (D), P. Li⁴⁶ (D), 732 P.-R. Li⁷⁰ D, S. Li⁸ D, T. Li^{5,d} D, T. Li⁶⁹ D, Y. Li⁸, Y. Li⁵ D, Z. Li⁶⁶ D, Z. Lian⁴ D, 733 X. Liang⁶⁶ \bigcirc , S. Libralon⁴⁵ \bigcirc , C. Lin⁷ \bigcirc , T. Lin⁵⁵ \bigcirc , R. Lindner⁴⁶ \bigcirc , V. Lisovskyi⁴⁷ \bigcirc , 734 R. Litvinov^{29,k} , F. L. Liu¹ , G. Liu⁶⁹ , K. Liu⁷⁰ , Q. Liu⁷ , S. Liu^{5,7} , Y. Liu⁵⁶ , 735 Y. Liu⁷⁰, Y. L. Liu⁵⁹, A. Lobo Salvia⁴³, A. Loi²⁹, J. Lomba Castro⁴⁴, T. Long⁵³, 736 J.H. Lopes³ , A. Lopez Huertas⁴³ , S. López Soliño⁴⁴ , G.H. Lovell⁵³ , C. Lucarelli^{24,m} 737 D. Lucchesi^{30,q}, S. Luchuk⁴¹, M. Lucio Martinez⁷⁶, V. Lukashenko^{35,50}, Y. Luo⁶, 738 A. Lupato³⁰ (D), E. Luppi^{23,l} (D), K. Lynch²⁰ (D), X.-R. Lyu⁷ (D), G. M. Ma⁴ (D), R. Ma⁷ (D), 739 S. Maccolini¹⁷, F. Machefert¹³, F. Maciuc⁴⁰, B. M. Mack⁶⁶, I. Mackay⁶¹, L. M. 740 Mackey⁶⁶ , L.R. Madhan Mohan⁵³ , M. M. Madurai⁵¹ , A. Maevskiy⁴¹ 741 D. Magdalinski³⁵, D. Maisuzenko⁴¹, M.W. Majewski³⁷, J.J. Malczewski³⁸, S. Malde⁶¹, 742 B. Malecki^{38,46} (D), L. Malentacca⁴⁶, A. Malinin⁴¹ (D), T. Maltsev⁴¹ (D), G. Manca^{29,k} (D), 743 G. Mancinelli¹², C. Mancuso^{27,13,o}, R. Manera Escalero⁴³, D. Manuzzi²², 744 D. Marangotto^{27,0}, J.F. Marchand¹⁰, R. Marchevski⁴⁷, U. Marconi²², S. Mariani⁴⁶, 745 C. Marin Benito⁴³, J. Marks¹⁹, A.M. Marshall⁵², P.J. Marshall⁵⁸, G. Martelli^{31,r}, 746 G. Martellotti³³ (D), L. Martinazzoli⁴⁶ (D), M. Martinelli^{28,p} (D), D. Martinez Santos⁴⁴ (D), 747 F. Martinez Vidal⁴⁵ D, A. Massafferri² D, M. Materok¹⁶ D, R. Matev⁴⁶ D, A. Mathad⁴⁶ D, 748 V. Matiunin⁴¹ (D. C. Matteuzzi⁶⁶ (D. K.R. Mattioli¹⁴ (D. A. Mauri⁵⁹ (D. E. Maurice¹⁴ (D. 749 J. Mauricio⁴³ D, P. Mayencourt⁴⁷ D, M. Mazurek³⁹ D, M. McCann⁵⁹ D, L. Mcconnell²⁰ D, 750 T.H. McGrath⁶⁰, N.T. McHugh⁵⁷, A. McNab⁶⁰, R. McNulty²⁰, B. Meadows⁶³, 751 G. Meier¹⁷ \square , D. Melnychuk³⁹ \square , M. Merk^{35,76} \square , A. Merli^{27,o} \square , L. Meyer Garcia³ \square , 752 D. Miao^{5,7} D, H. Miao⁷ D, M. Mikhasenko^{73,f} D, D.A. Milanes⁷² D, A. Minotti^{28,p} D, 753 E. Minucci⁶⁶, T. Miralles¹¹, B. Mitreska¹⁷, D.S. Mitzel¹⁷, A. Modak⁵⁵, 754 A. Mödden ¹⁷ , R.A. Mohammed⁶¹, R.D. Moise¹⁶, S. Mokhnenko⁴¹, 755 T. Mombächer⁴⁶ , M. Monk^{54,1} , S. Monteil¹¹ , A. Morcillo Gomez⁴⁴ , G. Morello²⁵ , 756 M.J. Morello^{32,s} , M.P. Morgenthaler¹⁹, A.B. Morris⁴⁶, A.G. Morris¹², 757 R. Mountain⁶⁶ (D, H. Mu⁴ (D, Z. M. Mu⁶ (D, E. Muhammad⁵⁴ (D, F. Muheim⁵⁶ (D,758 M. Mulder⁷⁵ (b, K. Müller⁴⁸ (b, F. Muñoz-Rojas⁹ (b, R. Murta⁵⁹ (b, P. Naik⁵⁸ (b, 759 T. Nakada⁴⁷ (D, R. Nandakumar⁵⁵ (D, T. Nanut⁴⁶ (D, I. Nasteva³ (D, M. Needham⁵⁶ (D, 760 N. Neri^{27,o}, S. Neubert⁷³, N. Neufeld⁴⁶, P. Neustroev⁴¹, J. Nicolini^{17,13}, 761 D. Nicotra⁷⁶ D, E.M. Niel⁴⁷ D, N. Nikitin⁴¹ D, P. Nogga⁷³, N.S. Nolte⁶² D, C. Normand⁵² D, 762 J. Novoa Fernandez⁴⁴ \bigcirc , G. Nowak⁶³ \bigcirc , C. Nunez⁸⁰ \bigcirc , H. N. Nur⁵⁷ \bigcirc , 763 A. Oblakowska-Mucha³⁷ , V. Obraztsov⁴¹ , T. Oeser¹⁶ , S. Okamura^{23,l,46} 764 R. Oldeman^{29,k} [D], F. Oliva⁵⁶ [D], M. Olocco¹⁷ [D], C.J.G. Onderwater⁷⁶ [D], R.H. O'Neil⁵⁶ [D], 765 J.M. Otalora Goicochea³ (D), P. Owen⁴⁸ (D), A. Oyanguren⁴⁵ (D), O. Ozcelik⁵⁶ (D), 766 K.O. Padeken⁷³ (D), B. Pagare⁵⁴ (D), P.R. Pais¹⁹ (D), T. Pajero⁶¹ (D), A. Palano²¹ (D), 767 M. Palutan²⁵ D, G. Panshin⁴¹ D, L. Paolucci⁵⁴ D, A. Papanestis⁵⁵ D, M. Pappagallo^{21,h} D, 768 L.L. Pappalardo^{23,l}, C. Pappenheimer⁶³, C. Parkes⁶⁰, B. Passalacqua²³, 769 G. Passaleva²⁴ D, D. Passaro^{32,s} D, A. Pastore²¹ D, M. Patel⁵⁹ D, J. Patoc⁶¹ D, 770

771 C. Patrignani^{22,j}, C.J. Pawley⁷⁶, A. Pellegrino³⁵, M. Pepe Altarelli²⁵,

- S. Perazzini²² , D. Pereima⁴¹ , A. Pereiro Castro⁴⁴ , P. Perret¹¹ , A. Perro⁴⁶ ,
- ⁷⁷³ K. Petridis⁵² (D), A. Petrolini^{26,n} (D), S. Petrucci⁵⁶ (D), J. P. Pfaller⁶³ (D), H. Pham⁶⁶ (D),
- ⁷⁷⁴ L. Pica^{32,s}, M. Piccini³¹, B. Pietrzyk¹⁰, G. Pietrzyk¹³, D. Pinci³³, F. Pisani⁴⁶,
- M. Pizzichemi^{28,p}, V. Placinta⁴⁰, M. Plo Casasus⁴⁴, F. Polci^{15,46}, M. Poli Lener²⁵,
- A. Poluektov¹², N. Polukhina⁴¹, I. Polyakov⁴⁶, E. Polycarpo³, S. Ponce⁴⁶,
- 777 D. Popov⁷ D. S. Poslavskii⁴¹ D, K. Prasanth³⁸ D, C. Prouve⁴⁴ D, V. Pugatch⁵⁰ D,
- 778 G. Punzi^{32,t}, W. Qian⁷, N. Qin⁴, S. Qu⁴, R. Quagliani⁴⁷, R. I. Rabadan Trejo⁵⁴, V.
- J.H. Rademacker⁵² , M. Rama³² , M. Ramírez García⁸⁰ , M. Ramos Pernas⁵⁴ ,
- M.S. Rangel³ , F. Ratnikov⁴¹, G. Raven³⁶, M. Rebollo De Miguel⁴⁵, F. Redi^{27,i}, \mathbb{D} ,
- 781 J. Reich⁵² (D, F. Reiss⁶⁰ (D, Z. Ren⁷ (D, P.K. Resmi⁶¹ (D, R. Ribatti^{32,s} (D, G. R. Ricart^{14,81} (D,
- 782 D. Riccardi^{32,s} (\bigcirc , S. Ricciardi⁵⁵ (\bigcirc , K. Richardson⁶² (\bigcirc , M. Richardson-Slipper⁵⁶ (\bigcirc ,
- ⁷⁸³ K. Rinnert⁵⁸ , P. Robbe¹³ , G. Robertson⁵⁷ , E. Rodrigues⁵⁸ ,
- ⁷⁸⁴ E. Rodriguez Fernandez⁴⁴, J.A. Rodriguez Lopez⁷², E. Rodriguez Rodriguez⁴⁴,
- A. Rogovskiy⁵⁵ (\mathbf{b} , D.L. Rolf⁴⁶ (\mathbf{b} , P. Roloff⁴⁶ (\mathbf{b} , V. Romanovskiy⁴¹ (\mathbf{b} , M. Romero Lamas⁴⁴ (\mathbf{b} ,
- A. Romero Vidal⁴⁴ , G. Romolini²³ , F. Ronchetti⁴⁷ , M. Rotondo²⁵ , S. R. Roy^{19}
- ⁷⁸⁷ M.S. Rudolph⁶⁶, T. Ruf⁴⁶, M. Ruiz Diaz¹⁹, R.A. Ruiz Fernandez⁴⁴,
- J. Ruiz Vidal^{79,z}, A. Ryzhikov⁴¹, J. Ryzka³⁷, J. J. Saavedra-Arias⁹, J.
- J.J. Saborido Silva⁴⁴ , R. Sadek¹⁴ , N. Sagidova⁴¹ , D. Sahoo⁷⁴ , N. Sahoo⁵¹ ,
- ⁷⁹⁰ B. Saitta^{29,k} (\bigcirc , M. Salomoni^{28,p} (\bigcirc , C. Sanchez Gras³⁵ (\bigcirc , I. Sanderswood⁴⁵ (\bigcirc ,
- ⁷⁹¹ R. Santacesaria³³, C. Santamarina Rios⁴⁴, M. Santimaria²⁵, L. Santoro ²,
- ⁷⁹² E. Santovetti³⁴, A. Saputi^{23,46}, D. Saranin⁴¹, G. Sarpis⁵⁶, M. Sarpis⁷³,
- ⁷⁹³ A. Sarti³³ (D), C. Satriano^{33,u} (D), A. Satta³⁴ (D), M. Saur⁶ (D), D. Savrina⁴¹ (D), H. Sazak¹⁶ (D),
- ⁷⁹⁴ L.G. Scantlebury Smead⁶¹, A. Scarabotto¹⁷, S. Schael¹⁶, S. Scherl⁵⁸, A. M.
- ⁷⁹⁵ Schertz⁷⁴ (D), M. Schiller⁵⁷ (D), H. Schindler⁴⁶ (D), M. Schmelling¹⁸ (D), B. Schmidt⁴⁶ (D),
- ⁷⁹⁶ S. Schmitt¹⁶, H. Schmitz⁷³, O. Schneider⁴⁷, A. Schopper⁴⁶, N. Schulte¹⁷,
- ⁷⁹⁷ S. Schulte⁴⁷, M.H. Schune¹³, R. Schwemmer⁴⁶, G. Schwering¹⁶, B. Sciascia²⁵,
- A. Sciuccati⁴⁶, S. Sellam⁴⁴, A. Semennikov⁴¹, T. Senger⁴⁸, M. Senghi Soares³⁶,
- ⁷⁹⁹ A. Sergi²⁶ (D), N. Serra⁴⁸ (D), L. Sestini³⁰ (D), A. Seuthe¹⁷ (D), Y. Shang⁶ (D), D.M. Shangase⁸⁰ (D),
- M. Shapkin⁴¹ , R. S. Sharma⁶⁶ , I. Shchemerov⁴¹ , L. Shchutska⁴⁷ , T. Shears⁵⁸ ,
- ⁸⁰¹ L. Shekhtman⁴¹ $(D, Z. Shen^6 (D, S. Sheng^{5,7} (D, V. Shevchenko^{41} (D, B. Shi^7 (D, Shevchenko^{41} (D, Shevchen$
- E.B. Shields^{28,p}, Y. Shimizu¹³, E. Shmanin⁴¹, R. Shorkin⁴¹, J.D. Shupperd⁶⁶,
- ⁸⁰³ R. Silva Coutinho⁶⁶ , G. Simi³⁰ , S. Simone^{21,h} , N. Skidmore⁵⁴ , T. Skwarnicki⁶⁶ ,
- ⁸⁰⁴ M.W. Slater⁵¹, J.C. Smallwood⁶¹, E. Smith⁶², K. Smith⁶⁵, M. Smith⁵⁹,
- ⁸⁰⁵ A. Snoch³⁵ (b), L. Soares Lavra⁵⁶ (b), M.D. Sokoloff⁶³ (b), F.J.P. Soler⁵⁷ (b), A. Solomin^{41,52} (b),
- A. Solovev⁴¹ , I. Solovyev⁴¹ , R. Song¹ , Y. Song⁴⁷ , Y. Song⁴ , Y. S. Song⁶ ,
- ⁸⁰⁷ F.L. Souza De Almeida⁶⁶ , B. Souza De Paula³ , E. Spadaro Norella^{27,0}
- E. Spedicato²², J.G. Speer¹⁷, E. Spiridenkov⁴¹, P. Spradlin⁵⁷, V. Sriskaran⁴⁶,
- F. Stagni⁴⁶, M. Stahl⁴⁶, S. Stahl⁴⁶, S. Stahl⁴⁶, S. Stanislaus⁶¹, E.N. Stein⁴⁶, O. Steinkamp⁴⁸,
- 810 O. Stenyakin⁴¹, H. Stevens¹⁷, D. Strekalina⁴¹, Y. Su⁷, F. Suljik⁶¹, J. Sun²⁹, Sun²⁹
- ⁸¹¹ L. Sun⁷¹ , Y. Sun⁶⁴ , W. Sutcliffe⁴⁸, P.N. Swallow⁵¹ , F. Swystun⁵³ , A. Szabelski³⁹ ,
- ⁸¹² T. Szumlak³⁷ , Y. Tan⁴ , S. Taneja⁶⁰ , M.D. Tat⁶¹ , A. Terentev⁴⁸ , F. Terzuoli^{32,w}
- F. Teubert⁴⁶, E. Thomas⁴⁶, D.J.D. Thompson⁵¹, H. Tilquin⁵⁹, V. Tisserand¹¹,
- ⁸¹⁴ S. T'Jampens¹⁰, M. Tobin⁵, L. Tomassetti^{23,l}, G. Tonani^{27,o,46}, X. Tong⁶,
- ⁸¹⁵ D. Torres Machado², L. Toscano¹⁷, D.Y. Tou⁴, C. Trippl⁴², G. Tuci¹⁹,
- ⁸¹⁶ N. Tuning³⁵, L.H. Uecker¹⁹, A. Ukleja³⁷, D.J. Unverzagt¹⁹, E. Ursov⁴¹,
- A. Usachov³⁶, A. Ustyuzhanin⁴¹, U. Uwer¹⁹, V. Vagnoni²², A. Valassi⁴⁶,
- ⁸¹⁸ G. Valenti²², N. Valls Canudas⁴², H. Van Hecke⁶⁵, E. van Herwijnen⁵⁹,
- ⁸¹⁹ C.B. Van Hulse^{44,y} (\bigcirc , R. Van Laak⁴⁷ (\bigcirc , M. van Veghel³⁵ (\bigcirc , R. Vazquez Gomez⁴³ (\bigcirc ,
- P. Vazquez Regueiro⁴⁴, C. Vázquez Sierra⁴⁴, S. Vecchi²³, J.J. Velthuis⁵²,
- ⁸²¹ M. Veltri^{24,x} (D), A. Venkateswaran⁴⁷ (D), M. Vesterinen⁵⁴ (D), M. Vieites Diaz⁴⁶ (D),

- X. Vilasis-Cardona⁴², E. Vilella Figueras⁵⁸, A. Villa²², P. Vincent¹⁵, F.C. Volle¹³,
- ⁸²³ D. vom Bruch¹² $(D, V. Vorobyev^{41}, N. Voropaev^{41} (D, K. Vos^{76} (D, G. Vouters^{10}, C. Vrahas^{56} (D, C. Vrah$
- J. Walsh³² , E.J. Walton¹, G. Wan⁶, C. Wang¹⁹, G. Wang⁸, J. Wang⁶, J. Wang⁶
- J. Wang⁵ (D), J. Wang⁴ (D), J. Wang⁷¹ (D), M. Wang²⁷ (D), N. W. Wang⁷ (D), R. Wang⁵² (D),
- 826 X. Wang⁶⁹, X. W. Wang⁵⁹, Y. Wang⁸, Z. Wang¹³, Z. Wang⁴, Z. Wang²⁷,
- J.A. Ward^{54,1}, M. Waterlaat⁴⁶, N.K. Watson⁵¹, D. Websdale⁵⁹, Y. Wei⁶,
- B.D.C. Westhenry⁵², D.J. White⁶⁰, M. Whitehead⁵⁷, A.R. Wiederhold⁵⁴,
- ⁸²⁹ D. Wiedner¹⁷, G. Wilkinson⁶¹, M.K. Wilkinson⁶³, M. Williams⁶², \mathbb{D} , M. Williams⁶², \mathbb{D} , \mathbb{D} ,
- ⁸³⁰ M.R.J. Williams⁵⁶ (D), R. Williams⁵³ (D), F.F. Wilson⁵⁵ (D), W. Wislicki³⁹ (D), M. Witek³⁸ (D),
- ⁸³¹ L. Witola¹⁹ , C.P. Wong⁶⁵ , G. Wormser¹³ , S.A. Wotton⁵³ , H. Wu⁶⁶ , J. Wu⁸
- ⁸³² Y. Wu⁶ (D, K. Wyllie⁴⁶ (D, S. Xian⁶⁹, Z. Xiang⁵ (D, Y. Xie⁸ (D, A. Xu³² (D, J. Xu⁷ (D, L. Xu⁴ (D,
- ⁸³³ L. Xu⁴ D, M. Xu⁵⁴ D, Z. Xu¹¹ D, Z. Xu⁷ D, Z. Xu⁵ D, D. Yang⁴ D, S. Yang⁷ D, X. Yang⁶ D,
- ⁸³⁴ Y. Yang^{26,n} (D, Z. Yang⁶ (D, Z. Yang⁶⁴ (D, V. Yeroshenko¹³ (D, H. Yeung⁶⁰ (D, H. Yin⁸ (D, C. Y.
- ⁸³⁵ Yu⁶ (D, J. Yu⁶⁸ (D, X. Yuan⁵ (D, E. Zaffaroni⁴⁷ (D, M. Zavertyaev¹⁸ (D, M. Zdybal³⁸ (D,
- ⁸³⁶ M. Zeng⁴ $(D, C. Zhang^6 (D, D. Zhang^8 (D, J. Zhang^7 (D, L. Zhang^4 (D, S. Zhang^{68} (D, S$
- S. Zhang⁶, Y. Zhang⁶, Y. Z. Zhang⁴, Y. Zhao¹⁹, A. Zharkova⁴¹, A. Zhelezov¹⁹,
- X. Z. Zheng⁴, Y. Zheng⁷, T. Zhou⁶, X. Zhou⁸, Y. Zhou⁷, V. Zhovkovska⁵⁴, L. Z.
- ⁸³⁹ Zhu⁷ (b), X. Zhu⁴ (b), X. Zhu⁸ (b), V. Zhukov¹⁶ (b), J. Zhuo⁴⁵ (b), Q. Zou^{5,7} (b), D. Zuliani³⁰ (b),
- 840 G. Zunica⁴⁷ \bigcirc .
- ⁸⁴¹ ¹School of Physics and Astronomy, Monash University, Melbourne, Australia
- ²Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
- ⁸⁴³ ³Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- ⁴Center for High Energy Physics, Tsinghua University, Beijing, China
- ⁵Institute Of High Energy Physics (IHEP), Beijing, China
- ⁶School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing,
 ⁸⁴⁷China
- ⁸⁴⁸ ⁷ University of Chinese Academy of Sciences, Beijing, China
- ⁸⁴⁹ ⁸Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
- ⁹Consejo Nacional de Rectores (CONARE), San Jose, Costa Rica
- ¹⁰ Université Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
- ¹¹ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
- ⁸⁵³ ¹²Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
- ¹³ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
- ¹⁴Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris,
 Palaiseau, France
- ¹⁵LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
- ¹⁶I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
- ¹⁷ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
- ¹⁸ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
- ¹⁹Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ²⁰School of Physics, University College Dublin, Dublin, Ireland
- ⁸⁶³ ²¹INFN Sezione di Bari, Bari, Italy
- ⁸⁶⁴ ²²INFN Sezione di Bologna, Bologna, Italy
- ⁸⁶⁵ ²³INFN Sezione di Ferrara, Ferrara, Italy
- ⁸⁶⁶ ²⁴INFN Sezione di Firenze, Firenze, Italy
- ²⁵ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁸⁶⁸ ²⁶INFN Sezione di Genova, Genova, Italy
- ⁸⁶⁹ ²⁷ INFN Sezione di Milano, Milano, Italy
- ²⁸INFN Sezione di Milano-Bicocca, Milano, Italy
- ⁸⁷¹ ²⁹INFN Sezione di Cagliari, Monserrato, Italy
- ³⁰ Università degli Studi di Padova, Università e INFN, Padova, Padova, Italy
- ⁸⁷³ ³¹INFN Sezione di Perugia, Perugia, Italy
- ⁸⁷⁴ ³²INFN Sezione di Pisa, Pisa, Italy

- ⁸⁷⁵ ³³INFN Sezione di Roma La Sapienza, Roma, Italy
- ⁸⁷⁶ ³⁴INFN Sezione di Roma Tor Vergata, Roma, Italy
- ³⁵Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
- ³⁶Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam,
 Netherlands
- ³⁷AGH University of Krakow, Faculty of Physics and Applied Computer Science, Kraków, Poland
- ³⁸ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
 ³⁹ National Center for Nuclear Research (NCBJ), Warsaw, Poland
- ⁴⁰Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
- ⁴¹Affiliated with an institute covered by a cooperation agreement with CERN
- ⁴²DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain
- ⁴³*ICCUB*, Universitat de Barcelona, Barcelona, Spain
- ⁴⁴Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela,
- 888 Santiago de Compostela, Spain
- ⁴⁵Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia CSIC, Valencia, Spain
- $^{46}European \ Organization \ for \ Nuclear \ Research \ (CERN), \ Geneva, \ Switzerland$
- ⁴⁷Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ⁴⁸Physik-Institut, Universität Zürich, Zürich, Switzerland
- ⁴⁹NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
- ⁵⁰Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
- ⁸⁹⁵ ⁵¹ University of Birmingham, Birmingham, United Kingdom
- ⁵²H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- ⁵³ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- $^{54}Department of Physics, University of Warwick, Coventry, United Kingdom$
- ⁸⁹⁹ ⁵⁵STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
- ⁵⁶ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁵⁷School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁸Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁹⁰³ ⁵⁹Imperial College London, London, United Kingdom
- ⁶⁰Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- 905 ⁶¹Department of Physics, University of Oxford, Oxford, United Kingdom
- ⁹⁰⁶ ⁶²Massachusetts Institute of Technology, Cambridge, MA, United States
- ⁶³ University of Cincinnati, Cincinnati, OH, United States
- 908 ⁶⁴ University of Maryland, College Park, MD, United States
- 909 ⁶⁵Los Alamos National Laboratory (LANL), Los Alamos, NM, United States
- 910 ⁶⁶Syracuse University, Syracuse, NY, United States
- 911 ⁶⁷Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ³
- ⁹¹² ⁶⁸School of Physics and Electronics, Hunan University, Changsha City, China, associated to ⁸
- ⁶⁹Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of
- 914 Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China,
- 915 associated to ⁴
- ⁹¹⁶ ⁷⁰Lanzhou University, Lanzhou, China, associated to ⁵
- ⁹¹⁷ ⁷¹School of Physics and Technology, Wuhan University, Wuhan, China, associated to ⁴
- ⁹¹⁸ ⁷²Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to ¹⁵
- ⁹¹⁹ ⁷³ Universität Bonn Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to ¹⁹
- ⁹²⁰ ⁷⁴ Eotvos Lorand University, Budapest, Hungary, associated to ⁴⁶
- ⁹²¹ ⁷⁵ Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to ³⁵
- ⁹²² ⁷⁶ Universiteit Maastricht, Maastricht, Netherlands, associated to ³⁵
- ⁹²³ ⁷⁷ Tadeusz Kosciuszko Cracow University of Technology, Cracow, Poland, associated to ³⁸
- ⁹²⁴ ⁷⁸ Universidade da Coruña, A Coruna, Spain, associated to ⁴²
- ⁹²⁵ ⁷⁹ Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, associated to ⁵⁷
- ⁹²⁶ ⁸⁰ University of Michigan, Ann Arbor, MI, United States, associated to ⁶⁶
- ⁹²⁷ ⁸¹Departement de Physique Nucleaire (SPhN), Gif-Sur-Yvette, France
- 928 ^a Universidade de Brasília, Brasília, Brazil
- ⁹²⁹ ^bCentro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio De Janeiro, Brazil
- 930 ^cHangzhou Institute for Advanced Study, UCAS, Hangzhou, China

- 931 ^dSchool of Physics and Electronics, Henan University, Kaifeng, China
- 932 ^eLIP6, Sorbonne Universite, Paris, France
- 933 ^fExcellence Cluster ORIGINS, Munich, Germany
- 934 ^gUniversidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- 935 ^h Università di Bari, Bari, Italy
- ⁹³⁶ ⁱ Universita degli studi di Bergamo, Bergamo, Italy
- 937 ^j Università di Bologna, Bologna, Italy
- 938 ^k Università di Cagliari, Cagliari, Italy
- 939 ^l Università di Ferrara, Ferrara, Italy
- 940 ^mUniversità di Firenze, Firenze, Italy
- 941 ⁿ Università di Genova, Genova, Italy
- 942 ° Università degli Studi di Milano, Milano, Italy
- 943 ^pUniversità di Milano Bicocca, Milano, Italy
- 944 ^qUniversità di Padova, Padova, Italy
- 945 ^r Università di Perugia, Perugia, Italy
- 946 $\ ^{s}Scuola\ Normale\ Superiore,\ Pisa,\ Italy$
- 947 ^t Università di Pisa, Pisa, Italy
- 948 ^u Università della Basilicata, Potenza, Italy
- 949 ^v Università di Roma Tor Vergata, Roma, Italy
- 950 ^w Università di Siena, Siena, Italy
- 951 ^x Università di Urbino, Urbino, Italy
- 952 ^y Universidad de Alcalá, Alcalá de Henares, Spain
- ²Department of Physics/Division of Particle Physics, Lund, Sweden
- 954 [†]Deceased