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1 Introduction

The increasing precision reached by the LHC experiments in the measurement of the properties
of QCD jets necessitates higher accuracy in perturbative calculations of jet observables. In
addition to higher-order fixed-order calculations, multi-scale observables commonly also
require the resummation of logarithmically enhanced radiative corrections of infrared origin.
In the latter context, we consider the problem of timelike collinear fragmentation of hard
partons produced in a high-energy scattering process. In this regime we are concerned with
observables sensitive solely to collinear logarithmic corrections, where the leading logarithms
(LL) are single logarithms αn

s Ln. Observables of this class are common in collider physics
and have been extensively studied in the literature (see e.g. [1–23]).

For such single-logarithmic observables, a next-to-leading-logarithmic (NLL) calculation
would capture the next-to-single logarithmic tower of corrections of order αn

s Ln−1. Here the
general formulation of an algorithm to carry out NLL resummations requires the consistent
inclusion of 1 → 3 splitting functions at tree-level along with the one-loop corrections to the
1 → 2 splitting functions. A possible theoretical approach to such resummation algorithms
can be formulated using the language of generating functionals [24–26], tailored to this class
of fragmentation problems in refs. [10, 22]. Such a formulation is rather powerful when
trying to connect the field of QCD resummation with that of parton showers, with which
the generating functional method is intimately linked.

An important aspect of the development of novel resummation techniques is testing
them across observables sensitive to different aspects of fragmentation. For example, ref. [22]
considered the NLL calculation of a family of groomed angularities and fractional moments of
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energy correlators. These observables are of a more inclusive kind in that they are defined by
integrating over the momentum fraction z of a given collinear splitting. As a next natural step,
we wish to consider observables that are differential in z, to probe more deeply the structure
of our formulation. Observables belonging to this class are the common NLO fragmentation
functions (FFs) measured either on final state hadrons [4, 5] or on final state jets clustered
with a small jet radius R ≪ 1, which have been studied for instance in refs. [10, 12, 13].
These observables are sensitive to both the z dependence of the novel anomalous dimension
Bf

2 (z) computed for quark and gluon jets respectively in refs. [16, 22], as well as to the full
triple-collinear 1 → 3 squared splitting amplitudes [27, 28].

In the process of testing our formulation on such observables we have uncovered an
important conceptual subtlety connected to FFs defined with an angular cutoff R. In
particular, we find that the anomalous dimensions of small-R FFs differ from the standard
DGLAP ones starting at the two loop order O(α2

s). To the best of our knowledge there
has been no previous calculation of the two loop anomalous dimensions for small-R jets, in
previous literature the answer at this order was conjectured from the form of the evolution
equation (see e.g. ref. [13]).

Interestingly, the two-loop difference between these anomalous dimensions takes a rather
simple analytic form with a universal structure across flavour channels. Moreover, the term
that breaks the correspondence between small-R jets and timelike DGLAP evolution is of
the same form and related analytic origin as the term identified first by Curci, Furmanski,
and Petronzio [5] responsible for breaking of the Gribov-Lipatov reciprocity relation [29–32]
between timelike and spacelike anomalous dimension in the non-singlet flavour channel. In
ref. [33] it was argued that terms of this type are linked to the choice of the evolution cutoff
(see also related discussions in ref. [34]). It is therefore also interesting to explore the link
with FFs defined by other types of kinematical cuts, e.g. a transverse momentum. In order to
investigate this observation, we compute the two-loop evolution kernels for Cambridge jets
defined with a transverse momentum ycut cutoff. We further compute a variant of the small-R
FF, where the kinematic cut on the radiation is proportional to z R (with z being the energy
fraction of the jet), related to the maximum possible transverse momentum of emissions
within a small-R jet. Remarkably, in both of these cases we find that the two-loop anomalous
dimensions now coincide with DGLAP. This result is critical to understand how to reproduce
DGLAP evolution beyond LO in parton showers, which inevitably use a kinematical cutoff.1

In this article we present the new anomalous dimensions for small-R FFs at the two-loop
order and confirm our predictions by comparing to an exact numerical fixed order calculation
at O(α2

s). The paper is organised as follows. In section 2 we study the MS fragmentation
function and we analyse the effect of placing an angular cutoff R ≪ 1. We then present
a simple recipe to derive the small-R anomalous dimensions at the two-loop order. In
section 3 we consider the inclusive small-R jet spectrum as a case study and test our findings
against a fixed-order calculation at O(α2

s) using the Event2 program [36]. To investigate
the dependence of the anomalous dimensions on the kinematic cutoff, we also report the
study of the FF at O(α2

s) with a transverse momentum cutoff in section 3.1, as well as the
study of the small-R jet FF with a modified transverse-momentum-like cutoff scale. In these

1See also ref. [35] and related work for investigations in a related direction.
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cases the anomalous dimensions coincide with the DGLAP ones, highlighting an important
correspondence between the MS scheme and a transverse-momentum cutoff at the NLL order.
Finally, our conclusions are presented in section 4. We also include three appendices which
present: some relevant technical details in appendix A, our full set of modifications to the
DGLAP anomalous dimensions in appendix B, and a derivation of the anomalous dimensions
from the formalism of ref. [22] in appendix C.

2 The inclusive microjet spectrum and small-R fragmentation function

We consider the inclusive small-R jets (microjets) fragmentation function which, for illustrative
purposes, we define in the process e+e− → jets. The cross section differential in the energy
fraction z carried by a microjet is given, up to power corrections, by

1
σ0

dσjet

dz
≡

∑
i=q,q̄,g

∫ 1

z

dξ

ξ
C jet

i (ξ, µ, Q)Djet
i

(
z

ξ
, µ, E R

)
, (2.1)

with σ0 denoting the Born cross section for e+e− → qq̄. The matching coefficient C jet
i (ξ, µ, Q)

admits a fixed order perturbative expansion in αs(µ). We take µ to be of the order of the
centre-of-mass energy Q and more precisely we will set µ = E = Q/2, i.e. the energy of each
hemisphere. For this scale, the fragmentation function Djet

i

(
z
ξ , µ, E R

)
resums the logarithms

of the small jet radius. Its evolution with the factorisation scale µ is perturbative as long
as Q R ≫ ΛQCD and it is governed by the equation

dDjet
k (z, µ, E R)

d lnµ2 =
∑

i

∫ 1

z

dξ

ξ
P̂ik

(
z

ξ
, µ, E R

)
Djet

i (ξ, µ, E R) . (2.2)

Here the index i runs over all active quarks, antiquarks, and gluons. The main result of
this article is that, up to NLL the anomalous dimension P̂ admits a perturbative expansion
of the form

P̂ik (z, µ, E R) = αs(µ2)
2π

(
P̂

(0)
ik (z) + αs(µ2)

2π
P̂

(1), AP
ik (z)− αs(E2R2)

2π
δP̂

(1)
ik +O(NNLL)

)

= αs(µ2)
2π

(
P̂

(0)
ik (z) + αs(µ2)

2π
P̂

(1)
ik (z)

−
(

αs(E2R2)
2π

− αs(µ2)
2π

)
δP̂

(1)
ik (z) +O(NNLL)

)
. (2.3)

As we will show below, while at one loop the anomalous dimension P̂
(0)
ik agrees with the

Altarelli-Parisi one, which we denote with P̂
(n), AP
ik (z) here, this is not true any longer at

higher orders. In particular, we will show that P̂
(1)
ik (z) = P̂

(1), AP
ik (z)− δP̂

(1)
ik (z), where the

new term δP̂
(1)
ik (z) is a consequence of clustering effects, which are absent in conventional

MS evolution of the FFs. Eq. (2.2) is solved as a path-ordered exponential describing the
evolution between a hard scale µ = E and a low scale µ = E R, at which the solution is
convoluted with a boundary condition Djet

k (z, E R, E R). A LL resummation of the FF would
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require the one-loop kernels, while the two-loop kernels as well as the one-loop correction
to the boundary condition are required at NLL.

To define the small-R jets we work with the inclusive generalised-kt family of algo-
rithms [37], which cluster sequentially proto-jets according to the distance measure

dij = 2 min
(

E2
i

Q2 ,
E2

j

Q2

)p

(1− cos θij) ,

diB = E2 p
i

Q2 p
R2 , (2.4)

where Ei denotes the energy of proto-jet i and θij is the angle between proto-jets i and
j. The algorithm proceeds by finding the smallest between all dij and diB in the event
and recombining either i and j if dij is the smallest distance or promoting i to a jet if
diB is the smallest distance. The proto-jets are recombined according to the E scheme,
in which the four momenta are added together. The parameter p identifies the algorithm,
with p = 1 corresponding to the kt algorithm [38], p = −1 to anti-kt [39] and p = 0 to the
Cambridge/Aachen (C/A) algorithm [40, 41]. Though we explicitly study the Cambridge-
Aachen algorithm, at NLL the considerations that follow will hold for all of the three
algorithms. This is because in the small-R limit, differences between these three algorithms
only arise in kinematic configurations that contribute starting at NNLL. In the case of
SISCone [42], the only difference at the NLL order is entirely encoded in the boundary
condition to the evolution equation (2.2), while the anomalous dimensions are identical to
those of the inclusive generalised-kt family of jet algorithms.

The all-order structure of eq. (2.2) is closely related to that of the standard fragmentation
function, governed by the DGLAP equation [1–3]. However, because of a subtlety we will
discuss in the following, the anomalous dimensions governing the evolution of Djet

i will differ
from the DGLAP anomalous dimension describing the evolution of the MS fragmentation
function starting at the two-loop order. This implies that while P̂

(0)
ik (z) = P̂

(0), AP
ik (z) in

eq. (2.3), this is not true at higher orders in αs. In the following section we will derive the
one-loop matching coefficients needed at NLL, while in section 2.2 we will compute the new
two-loop anomalous dimension. Finally, in section 2.3 we will discuss the running coupling
of the new term δP̂

(1)
ik (z) along with the physical interpretation of this effect. Appendix C

reports a derivation of the final evolution equation (2.2) using the formalism of ref. [22].

2.1 One loop matching coefficients and boundary conditions

We start with a simple O(αs) calculation of eq. (2.1), which will allow us to extract the
one-loop matching coefficients C jet

i as well as the boundary condition to eq. (2.2), both of
which are needed for a NLL calculation.

At O(αs), we start with the production of a qq̄g final state, and consider the action of
a clustering algorithm into small-R jets. Since we work in the limit R ≪ 1 we only need
to consider kinematic configurations enhanced by a collinear singularity (hence producing
logarithms of R). This simply amounts to configurations in which the gluon is collinear to
either of the two quarks. The resulting calculation is thus identical to that of the standard
fragmentation function in the regions θ2

qg > R2 and θ2
q̄g > R2, but it gets modified when
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the gluon is recombined with one of the quarks. At the one-loop order, this modification
effectively replaces the O(ϵ−1) pole of the MS fragmentation function with ln 1/R and it will
produce a low-scale non-logarithmic term, which serves as a boundary condition at µ = E R.
For the generalised-kt family of algorithms, we obtain

Djet
i (z, µ, E R) = δ(1− z) + αs(µ)

2π
D

jet (0)
i (z, µ, E R) +O(α2

s) , (2.5)

where

Djet (0)
q (z, E R, E R) = −2CF (1 + z2)

( ln(1− z)
1− z

)
+

+ CF

(
−1 + 2

(
2− 2

z
− z

)
ln (1− z) +

(
6− 4

(1− z) z

)
ln z

)
+ CF

(13
2 − 2

3 π2
)

δ(1− z) , (2.6)

D
jet (0)
q̄ (z, E R, E R) = Djet (0)

q (z, E R, E R) , (2.7)

Djet (0)
g (z, E R, E R) = 2

(
P̂ (0)

gg (z) + 2nf P̂ (0)
qg (z)

)
ln 1

z
− 4CA

(
1− z + z2)2

z

( ln(1− z)
1− z

)
+

− 4nf P̂ (0)
qg (z) ln(1− z)− 4TR nf z (1− z)

+
(

CA

(67
9 − 2

3 π2
)
− TR nf

23
9

)
δ(1− z) . (2.8)

Here we defined the regularised splitting kernels P̂
(0)
gg (z) and P̂

(0)
qg (z) as

P̂ (0)
qg = TR

(
z2 + (1− z)2

)
, P̂ (0)

gg = 2CA

(
z

(1− z)+
+ 1− z

z
+ z (1− z)

)
+ b0 δ(1− z) ,

(2.9)
with b0 = 11/6CA − 2/3TR nf , CF = 4/3, TR = 1/2 and CA = 3, while nf is the number
of light-quark flavours, assumed to be 5 here.

The above expressions agree with the results of ref. [13].2 Finally, the matching coefficients
C jet

i are simply obtained by matching the calculation of Djet
i to the full QCD calculation

at one loop [5], the result is also given in eq. (2.16) of [45]. At this order, they agree with
the sum of longitudinal and transverse coefficient functions entering the MS fragmentation
function which were first computed in ref. [5]. These read

C jet
i (z, µ, Q) = δ(1− z) + αs(µ)

2π
C

jet (0)
i (z, µ, Q) +O(α2

s) , (2.10)

2We find a different result for the SISCone algorithm already at O(αs), which can be traced back to an
initial error in refs. [13, 43], later corrected in ref. [44]. Our results agree with the latter, and therefore we
refrain from reporting them here.
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θ12,3

z1 = (1− x)zp

θ12 z2 = (1− x)(1− zp)

z3 = x

Figure 1. Phase space parametrisation for the production of two identical quarks, labelled by particles
1 and 3.

z1 = 1− x

θ1,23

z2 = x(1− zp)

θ23 z3 = xzp

Figure 2. Phase space parametrisation for the radiation of two independent gluons off a quark line.

where, setting µ = E,

C jet (0)
q (z, E, Q) = CF (1 + z2)

( ln(1− z)
1− z

)
+

(2.11)

− CF

(3
2 − 2 (1 + z2) ln 2

)( 1
1− z

)
+

+ CF

2

(
5− 3 z + 4 (1 + z2)

1− z
ln z

)
− CF

(9
2 − 2

3 π2 − 3 ln 2
)

δ(1− z) ,

C
jet (0)
q̄ (z, E, Q) = C jet (0)

q (z, E, Q) , (2.12)

C jet (0)
g (z, E, Q) = 2CF

2− 2 z + z2

z
(ln(1− z) + 2 ln z + 2 ln 2) . (2.13)

2.2 The two-loop anomalous dimensions

We can now proceed with the analysis at the two-loop order, by calculating the splitting
kernels P̂

(1)
ik . For ease of presentation, we use a simple method for the calculation of the

two-loop anomalous dimension in the non-singlet (NS) flavour channel, where we target the
C2

F colour structure and hence set for the time being CA = nf = 0. It will then be evident
how this argument can be generalised to the remaining colour and flavour channels, allowing
us to derive the full anomalous dimension at two loops.

2.2.1 The C2
F contribution to the NS channel

Since for the time being we are interested in the C2
F contribution to the NS channel, we

must take into account the abelian collinear splittings depicted in figure 1 (q → qqq̄ — with
identical quark flavours) and figure 2 (q → qgg), whose spin-averaged kernels ⟨P ⟩ in the triple
collinear limit can be found in refs. [27, 28, 46, 47]. To extract the C2

F contribution to the
two loop splitting kernel P̂

(1)
qq , it is convenient to start from the identical-quark contribution

– 6 –
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to the standard FF (i.e. not for small-R jets) depicted in figure 1. For z ̸= 1 this reads

I id.
C2

F
(ϵ, z) ≡ 1

2!

∫
dΦ(A)

3
(8π ᾱsµ2ϵ)2

s2
123

⟨P ⟩CF (CF −CA/2) (δ(z − (1− x)zp) + δ(x − z)) , (2.14)

where the identical-fermion contribution to the 1 → 3 splitting function ⟨P ⟩CF (CF −CA/2) is
given in eq. (31) of ref. [28]. The coupling αs is renormalised in the MS scheme and we used
the short-hand notation ᾱs ≡ S−1

ϵ αs, with Sϵ = (4π)ϵ e−ϵγE . The phase space measure dΦ(A)
3

is defined in appendix A, s123 is the squared invariant mass of the collinear three-parton
system, and the two δ functions correspond to fixing the energy fraction of either of the two
final state quarks contributing to the NS FF. The two contributions are identical and exactly
cancel the 1/2! symmetry factor. The integration is straightforward and the result can be
found, for instance, in ref. [16] (and specifically by multiplying eq. (3.7) in this reference
by a factor −1/ϵ). The single pole directly contributes to the NLO DGLAP anomalous
dimension in the non-singlet channel.

The next step is then to consider the same contribution to the small-R FF. An important
property of the integral (2.14) is that it contributes only a single pole to the FF, and it does
not receive a contribution from virtual corrections. This is reflected in the fact that there is
no collinear singularity when the final state particles are strongly ordered in angle. We then
consider applying the C/A clustering which, in the limit R ≪ 1, will only modify eq. (2.14)
in configurations where the relative angles become small. Due to the absence of a collinear
enhancement in such configurations, the contribution of such regions is power suppressed in
R2. This immediately implies that the contribution from this channel to the small-R two
loop anomalous dimension P̂

(1)
qq will coincide with the corresponding DGLAP counterpart.

Next, we consider the abelian channel, namely the double-real contribution in figure 2,
and corresponding real-virtual corrections. As before we start by examining its contribution
to the hadronic FF. One can single out the two loop correction to the Altarelli-Parisi splitting
kernel by calculating the following combination

Iab.
C2

F
(z, ϵ) ≡ 1

2!

∫
dΦ(B)

3
(8π ᾱsµ2ϵ)2

s2
123

⟨P ⟩C2
F

δ(z − xzp)

+
∫

dθ2

θ2 dx
α2

s

(2π)2 V(1), C2
F

q→qg (x, θ, ϵ) δ(x − z)

− 1
2!

∫
dΦ2

2
(8π ᾱsµ2ϵ)2

E4
P

(0)
qq (x, ϵ)

θ2
13

P
(0)
qq (zp, ϵ)

θ2
23

δ(z − xzp) , z ̸= 1 , (2.15)

where the phase space measure dΦ(B)
3 is given in appendix A, and the abelian contribution

to the 1 → 3 splitting function ⟨P ⟩C2
F

can be found in eq. (33) of ref. [28].3 Finally, the

one-loop correction to the 1 → 2 splitting function V(1), C2
F

q→qg was calculated in ref. [46] and
in the convention of eq. (2.15) is given in the r.h.s. of eq. (3.42) of ref. [16] with a factor
of α2

s/(2π)2 removed. The term in the third line of eq. (2.15) has the role of subtracting
the LL terms from the first two lines, hence cancelling all contributions originating from
configurations strongly ordered in angle. The dΦ2

2 phase space measure is defined starting
3We note that the overall C2

F colour factor is included in ⟨P ⟩C2
F

in our notation.
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from the iteration of the 1 → 2 phase space and it is given by

dΦ2
2 ≡ E4−4ϵ

(4π)4−2ϵΓ(1− ϵ)2 dθ2
13 dθ2

23 dx dzp θ−2ϵ
13 θ−2ϵ

23 (x(1− x))−2ϵ(zp(1− zp))−2ϵ . (2.16)

We can recast eq. (2.15) as (for z ̸= 1)

Iab.
C2

F
(z, ϵ) = 1

2!

∫
dΦ(B)

3 (8πᾱsµ2ϵ)2
(

1
s2

123
⟨P ⟩C2

F
− J (x, zp)

E4
P

(0)
qq (x, ϵ)

θ2
13

P
(0)
qq (zp, ϵ)

θ2
23

)
δ(z − xzp)

+
∫

dθ2

θ2 dx
α2

s

(2π)2 V(1), C2
F

q→qg (x, θ, ϵ) δ(x − z)

+ 1
2!

(∫
dΦ(B)

3 J (x, zp) −
∫

dΦ2
2

) (8π ᾱsµ2ϵ)2

E4
P

(0)
qq (x, ϵ)

θ2
13

P
(0)
qq (zp, ϵ)

θ2
23

δ(z − xzp) , (2.17)

where the prefactor J (x, zp) is given by

J (x, zp) ≡
1

z1z2z3x
= 1

(1− x)x3(1− zp)zp
. (2.18)

To make contact with the small-R FF, we partition the three-body phase space according
to the Cambridge-Aachen algorithm, that is we trade the 1/2! in the double-real radiation
integrals by an angular-ordering condition Θ(θ2

13 − θ2
23). In considering the action of the

jet algorithm we are allowed to neglect two effects which are subleading for the present
analysis. The first is the contribution from configurations where the jet algorithm clusters
emissions in regions of phase space that are free of collinear singularities (e.g. when the
two gluons in figure 2 are first clustered together). These clustering corrections are power
suppressed in R2 and therefore can be neglected in the small-R limit. The second effect
that we can neglect in the calculation performed below is the recoil of the jet axis due to
recombination kinematics following a clustering. We have checked by explicit computation
that this effect amounts to a contribution to the boundary condition at O(α2

s), and therefore
is subleading w.r.t. the accuracy considered here.

We now discuss the effect of the clustering on each of the terms in eq. (2.17). Due to
the subtraction of the strongly-ordered regime, the first term in eq. (2.17) enjoys the same
properties as the identical-quark correction in eq. (2.14), in that it is free of soft and collinear
divergences. For this reason, any region of phase space where jet clustering is active gives
only a power suppressed contribution O(R2). This again implies that the corresponding
contribution to the splitting kernel P̂

(1)
qq is the same for the DGLAP and small-R cases.

We next consider the second and third line of eq. (2.17). It is convenient to split the
real phase space integrals by introducing the partition of unity

1 = Θ(θ2
13 − R2) + Θ(R2 − θ2

13) . (2.19)

Analogously, for the virtual corrections V(1), C2
F

q→qg we insert 1 = Θ(θ2 − R2) + Θ(R2 − θ2).
Accordingly, we can write

Iab.
C2

F
(z, ϵ) = Iab.

>R2(z, ϵ) + Iab.
<R2(z, ϵ) . (2.20)
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We now consider the calculation of each of the above two terms, starting with the
contribution Iab.

<R2(z, ϵ). In this case, every emission is contained inside the jet. Hence the sum
of the second and third line of eq. (2.17) only contributes a δ(1− z) to the small-R FF, which
does not have any ln 1/R2 enhancement and hence amounts to a subleading, NNLL boundary
condition. Secondly, we focus on the term Iab.

>R2(z, ϵ). The only source of difference between
the small-R and DGLAP anomalous dimensions is due to the third line in eq. (2.17) in a
region where θ2

23 < R2 while θ2
13 > R2. In this case, we can directly calculate the difference

between the DGLAP and small-R anomalous dimensions by evaluating the integral(∫
dΦ(B)

3 J (x, zp) −
∫

dΦ2
2

) (8π ᾱsµ2ϵ)2

E4
P

(0)
qq (x, ϵ)

θ2
13

P
(0)
qq (zp, ϵ)

θ2
23

Θ(θ2
13 − R2)Θ(R2 − θ2

23)

× (δ(z − xzp)− δ(z − x)) = α2
s

(2π)2

(
δP̂ (1)

qq (z) ln 1
R2 +O(ϵ)

)
, (2.21)

where the two δ functions encode the difference between the hadronic and small-R jet FF. In
obtaining the above equation we have made use of the fact that the contribution of the virtual
corrections V(1), C2

F
q→qg is common to both FFs and thus it cancels. Eq. (2.21) reveals that the non-

singlet contribution to the two-loop anomalous dimension for the small-R FF can be obtained
from the corresponding DGLAP splitting kernel by subtracting the quantity δP̂

(1)
qq (z), namely

P̂ (1)
qq (z) = P̂ (1), AP

qq (z)− δP̂ (1)
qq (z) , (2.22)

where we denote by P̂
(1), AP
qq (z) the standard DGLAP evolution kernels, and4

δP̂ (1)
qq (z) ≡

(
2 ln z P̂ (0)

qq

)
⊗ P̂ (0)

qq

= −C2
F ln z

(
3 z2 + 1
1− z

ln z − 41 + z2

1− z
ln(1− z)− z(4 + z) + 1

1− z

)
, (2.23)

with

P̂ (0)
qq (z) = CF (1 + z2)

( 1
1− z

)
+
+ CF

3
2 δ(1− z) . (2.24)

The remarkably simple structure of the result can be understood by inspecting eq. (2.21).
Here, the difference between the two phase space measures dΦ(B)

3 and dΦ2
2 is of O(ϵ ln x),

arising from the extra x−2ϵ factor in the D-dimensional three-body phase space dΦ(B)
3 . This

multiplies a 1/ϵ pole of collinear origin arising from the θ23 → 0 limit, giving a finite leftover.
Finally, the difference between the two δ functions in eq. (2.21) is reflected in the regularised
splitting functions in eq. (2.23).

The above result is the central observation of this article. It highlights a difference between
the anomalous dimension governing standard DGLAP evolution and that of a fragmentation
function defined with an angular cutoff. It is noteworthy that this term looks precisely like
the difference between the timelike and the spacelike two-loop splitting kernels [5] that breaks
the reciprocity relation [30–33] between timelike and spacelike anomalous dimensions. The
origin of this term was previously found to be related to the specific kinematic infrared cutoff

4The standard convolution operator is defined as f(z) ⊗ g(z) ≡
∫ 1

z
d x/x f(x) g(z/x).
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(e.g. angular vs. transverse momentum) in the collinear radiation [32]. To investigate the
correspondence of the anomalous dimensions with the kinematic cutoff, in section 3.1 we
will calculate and test the two-loop anomalous dimensions for the fragmentation functions
of Cambridge jets, defined with a transverse-momentum cutoff.

2.2.2 Generalisation to all colour and flavour channels

The arguments outlined above can be generalised to other flavour channels. In general,
starting at two loops, a given entry to the anomalous dimension matrix for the small-R
FF will take the form

P̂
(1)
ik = P̂

(1), AP
ik − δP̂

(1)
ik . (2.25)

To calculate δP̂
(1)
ik , we observe that it originates from a sequence of two collinear splittings in

which an O(ϵ) contribution to the first splitting (which amounts to the leading-order splitting
function multiplied by a ln z factor coming from the expansion of the D dimensional phase
space measure) is convoluted with the O(ϵ−1) pole term of the second splitting (amounting
to the corresponding leading-order splitting function). Concretely, we consider the sequence
of 1 → 2 splittings originating from the fragmentation of a parton A, i.e.

A → BC → (DE)C , A → BC → B (FG) . (2.26)

The above sequences will then contribute to the following anomalous dimensions

δP̂
(1)
EA(z) ≡

(
2 ln z P̂

(0)
BA

)
⊗ P̂

(0)
EB ; δP̂

(1)
DA(z) ≡

(
2 ln z P̂

(0)
BA

)
⊗ P̂

(0)
DB ,

δP̂
(1)
GA(z) ≡

(
2 ln z P̂

(0)
CA

)
⊗ P̂

(0)
GC ; δP̂

(1)
F A(z) ≡

(
2 ln z P̂

(0)
CA

)
⊗ P̂

(0)
F C , (2.27)

where the sum over the intermediate states, i.e. over the indices B and C, in each channel is
understood. The relevant corrections δP̂

(1)
ik at the two loop order are reported in appendix B.

A crucial property of the extra terms in the small-R anomalous dimensions is that they must
satisfy the sum rules. Using the expressions given in appendix B we consistently find∫ 1

0
d z z

(
δP̂ (1)

qq (z) + δP̂ (1)
gq (z) + δP̂

(1)
q̄q (z)

)
= 0 ,∫ 1

0
d z z

(
δP̂ (1)

gg (z) + δP̂ (1)
qg (z) + δP̂

(1)
q̄g (z)

)
= 0 ,∫ 1

0
d z

(
δP̂ (1)

qq (z)− δP̂
(1)
q̄q (z)

)
= 0 . (2.28)

2.3 Running coupling effects beyond two loops

In this section we will discuss the scale of the coupling multiplying P̂
(1)
ik (z) in the evolution

equation of the small-R FFs shown in eq. (2.2). Here we will present a simple physical argument
to justify the expression given in eq. (2.3). A full derivation of this equation leading to the
explicit scale of the coupling for the term proportional to δP̂

(1)
ik (z) is reported in appendix C.

As shown explicitly in the previous section, the two loop anomalous dimension P̂
(1)
ik (z) can

be decomposed into the difference between the DGLAP kernel P̂
(1), AP
ik (z) and δP̂

(1)
ik (z) given

– 10 –
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δP̂
(1)
qq (z) ∼

R

×
(
δ(z − xzp)− δ(z − x)

)

Figure 3. Clustering configuration giving rise to δP̂
(1)
qq .

in eq. (2.27). The latter correction originates from the change in the longitudinal momentum
fraction of the final state jet in a configuration in which one of the radiated partons clusters
with the jet. This scenario is depicted in figure 3 for the δP̂

(1)
qq case. In this configuration,

the emission outside the jet will have a coupling evaluated at a scale µ2 that runs between
E2R2 and E2. Conversely, the scale of the coupling associated with the emission inside the
jet is bounded by E2R2 due to the constraint imposed by the jet radius on the angle of the
emission. Therefore, the two terms defining P̂

(1)
ik (z) in eq. (2.25) enter the NLL evolution

equation evaluated at two different scales, that is as

αs(µ2)
(
αs(µ2)P̂ (1), AP

ik − αs(E2R2)δP̂
(1)
ik

)
. (2.29)

The above result is explicitly derived in appendix C using the formalism of ref. [22] and it
justifies the anomalous dimension given in eq. (2.3), where the term in the second line has
the role of changing the scale of the δP̂

(1)
ik term to E2R2.

3 Fixed order test through O(α2
s)

To test our prediction for the inclusive micro-jet spectrum, we compare the perturbative
expansion of eq. (2.1) to a fixed-order prediction obtained with the program Event2 [36].
We define the quantity

∆i(z, R) ≡ 1
σ0

 dσjet

dz

∣∣∣∣∣
(i)

Event2
− dσjet

dz

∣∣∣∣∣
(i)

Eq. (2.1)

 , (3.1)

where the super-script (i) indicates the perturbative order O(αi
s) of the expansion.

We start by considering the O(αs) expansion, and in figure 4 (left plot) we plot ∆1(z, R1)
for R1 = 0.01. The small value of R1 allows us to neglect subleading power corrections in
R1 in the theoretical prediction. As expected, the result is consistent with zero within the
statistical fluctuations of Event2, in line with an NLL prediction for the inclusive micro-jet
spectrum. We then move to O(α2

s). At this order, an NLL prediction is expected to capture
correctly all logarithmic terms lnR2, but not the R-independent constant terms. In this
case, it is convenient to define a second quantity as

∆2(z, R1, R2) ≡ ∆2(z, R1)−∆2(z, R2) . (3.2)

Because of the difference between two jet radii, the quantity ∆2(z, R1, R2) does not contain
the O(α2

s) constant terms at leading power in the limit R2 ≪ 1, which are beyond our
accuracy (i.e. NNLL) in this study. In the following, we show ∆2(z, R1, R2) for R1 = 0.01 and
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Figure 4. Left: function ∆1(z, R1) displaying the difference with the fixed-order prediction at O(αs).
Right: function ∆2(z, R1, R2) displaying the difference with the fixed-order prediction at O(α2

s) for
the CF TR nf colour channel.

DGLAP MS ADs

small-R ADs

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

z

Δ
2C
F
C
A
(z
,R

1
,R

2
)
(g
e
n
e
ra
lis
e
d
k
t
a
lg
o
ri
th
m
s
)

DGLAP MS ADs

small-R ADs

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

z

Δ
2C
F2

(z
,R

1
,R

2
)
(g
e
n
e
ra
lis
e
d
k
t
a
lg
o
ri
th
m
s
)

Figure 5. Left: function ∆2(z, R1, R2) displaying the difference with the fixed-order prediction at
O(α2

s) for the CF CA colour channel. Right: function ∆2(z, R1, R2) displaying the difference with the
fixed-order prediction at O(α2

s) for the C2
F colour channel.

R2 = 0.005, separately for each of the colour structures, that is C2
F , CF TR nf , CF CA. These

are displayed in figure 4 (right plot) and figure 5. In these figures, the red, dot-dashed line
represents the prediction obtained by using the standard NLO DGLAP anomalous dimensions
in the MS scheme in eq. (2.2). On the other hand, the blue, solid line represents our prediction,
obtained by using the P̂ik kernels in the anomalous dimension matrix. From the plots, we
clearly observe that the DGLAP-like prediction for ∆2(z, R1, R2) is incompatible with zero.
Instead, the new anomalous dimensions obtained in this article lead to an excellent agreement
with the fixed order expectation within the statistical fluctuations of Event2 over a very
wide range of z. At the edges of the z range we noticed a deviation between our prediction
from eq. (2.1) and Event2. This is related to subleading-power terms in R present in the
latter fixed-order prediction, which exhibit a divergent behaviour near the endpoints z = 0
and z = 1. These are particularly pronounced in the C2

F and CF CA channels, where the
splitting kernels are divergent either at one of or both of the endpoints. Eliminating this
feature would require evaluating ∆2(z, R1, R2) at very small values of R1 and R2, which due
to numerical stability (as well as to the presence of technical cutoffs) in Event2 is very
challenging. For this reason we cut the region near the extremities of the z range in the plots.
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3.1 Anomalous dimensions for alternative jet algorithms: small-ycut jets

It is instructive to investigate the dependence of the FF’s anomalous dimension on the
kinematic cut applied on jets. Specifically, in addition to the case of inclusive Cambridge-
Aachen jets considered so far, we also study Cambridge jets [40] with a small ycut. The
FF in the latter case is defined by ordering proto-jets according to their angular distance
and then cluster them according to the kt measure. This means that two proto-jets i and
j are recombined into a single jet if

yij = 2
min{E2

i , E2
j }

Q2 (1− cos θij) < ycut , (3.3)

or else the less energetic of the two defines a jet and it is removed from the proto-jets list. This
procedure amounts to setting a transverse momentum cut on the final state jets, as opposed to
an angular cut as in the small-R case. We repeated the calculation of section 2 for this variant
of the FF and found that in this case the NLL result differs from the small-R one both at the
level of the boundary conditions to the evolution equation (2.2) as well as at the level of the
anomalous dimensions. Remarkably, we find that the anomalous dimensions now coincide with
the standard DGLAP ones in the MS scheme, while the boundary conditions are given by:

Djet (0)
q (z, E

√
ycut, E

√
ycut) = (3.4)

= CF

2

(
3− 4 z + z2 + 4 (1 + z2) ln min{1− z, z}

1− z

) ( 1
1− z

)
+

− CF

2 z (1− z)

(
4 (2− 3 z + 3 z2) ln z

+ (1− z)
(
(5− z) z − 4 (2− 2 z + z2) ln min{1− z, z}

1− z

))
− CF

6
(
2π2 − 3 (7− 6 ln 2)

)
δ(1− z)− 2 (P̂qq(z) + P̂gq(z)) ln 2 ,

D
jet (0)
q̄ (z, E

√
ycut, E

√
ycut) = Djet (0)

q (z, E
√

ycut, E
√

ycut) , (3.5)

Djet (0)
g (z, E

√
ycut, E

√
ycut) = −4TR nf z (1− z)

− 4 CA(1− z + z2)2 + TR nf z (1− 3 z + 4 z2 − 2 z3)
(1− z) z

ln (1− z) z

min{1− z, z}

+ 1
36
(
CA

(
131− 12π2 − 132 ln 2

)
− 2TR nf (17− 24 ln 2)

)
δ(1− z)

−
(
2 P̂gg(z) + 4nf P̂qg(z)

)
ln 2 . (3.6)

In figure 6 we show the small-ycut counterpart to the difference (3.2) between the fixed-
order calculation at O(α2

s) obtained with Event2 and our analytic prediction. We use
ycut,1 = 0.0052 and ycut,2 = 0.0012 in our test, and find perfect agreement between the two
predictions. These findings suggest that the DGLAP anomalous dimension in the MS scheme
is in one-to-one correspondence with a transverse momentum cut on final-state jets. This
observation is important in the context of reproducing DGLAP evolution beyond LL in
parton showers, which inevitably use a kinematic cutoff on the generated radiation.
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Figure 6. Function ∆2(z, ycut,1, ycut,2) for different colour factors.

3.1.1 A simple recipe to encode the small-R evolution kernels into the DGLAP
equation

We can exploit the calculation performed in the previous section to explore an idea similar
in spirit to the one suggested in ref. [33] to absorb the new terms in the two-loop evolution
kernels of the small-R FF into a redefinition of the evolution cutoff. In particular, we consider
modifying the collinear cutoff in the small-R resummation with a transverse-momentum scale
µ = z ER, with z being the longitudinal momentum fraction carried by the jet. Specifically,
the latter scale represents the maximum transverse momentum carried by emissions within
the jet. We then evaluate the evolution equation (2.2) starting from a low scale µ = z ER

up to a high scale µ = E. As a consequence of this change of initial scale, the small-R
coefficient functions (2.6) are modified accordingly and the ln z terms in these equations
get absorbed into the running of the coupling. In this case, we verified that the anomalous
dimensions match the DGLAP/small-ycut ones, hence leading to a evolution equation for
these fragmentation functions at the NLL order that coincides with the DGLAP equation.
It is important to stress that, in this prescription for the collinear cut-off, the fraction z is
that of the final jet, and not that of an intermediate state in the branching history implying
that this fraction does not enter the convolutions. We have explicitly verified that the
prescription of using standard DGLAP evolution with the zR dependent cut-off, agrees with
our small-R evolution equation at NLL order.5 The above finding is a further confirmation

5A crucial identity needed for the verification is the following simple result for a chain of convolutions of
identical splitting functions: (P̂ (0)

ik (z1) ⊗ P̂
(0)
ik (z2) ⊗ . . . ⊗ (ln znP̂

(0)
ik (zn)))(z) = 1

n
ln z (P̂ (0)

ik (z1) ⊗ P̂
(0)
ik (z2) ⊗

. . . ⊗ P̂
(0)
ik (zn))(z).

– 14 –



J
H
E
P
0
7
(
2
0
2
4
)
2
3
9

of the observation made in the previous section, of an intimate correspondence between the
MS scheme and a transverse momentum cutoff. While the zR cut-off prescription restores a
standard DGLAP form for the evolution equation, it involves resumming logarithms of zR

rather than purely those in R. Hence while it works at NLL to capture the logarithms of R,
it also introduces potentially uncontrolled logarithms of z into the final result.

The prescription of starting the evolution at a scale proportional to z R concurs with the
result of the formalism of ref. [13], provided one also resums the logarithms of z consistently
in the evolution equations. Specifically, in addition to evolving the jet function between the
scales z R E and z E, as done in ref. [13], it is crucial to evolve the hard function between
E and z E in order to get a full NLL resummation of small-R logarithms. We note that
this peculiar additional resummation of logarithms of z necessary to bring the evolution
equation into a DGLAP form would not be necessary in the case of small-ycut jets treated
in the previous section.

Furthermore, our result provides a crucial insight in the context of reproducing DGLAP
within a parton shower beyond LL. In this case, the shower algorithm would operate with a
cutoff related to the kinematics of the intermediate state and to the evolution variable. The
simple recipe discussed in this section of stopping the evolution at a scale proportional to
z R would then not be viable, in that one does not have access to the final jet’s z fraction
during the showering process. We will present an in-depth discussion of this point within
a concrete shower algorithm in a forthcoming publication.

4 Conclusions

With the eventual goal of testing a recent formulation of collinear evolution using a generating
functional method [22] in mind, in this paper we have analysed the fragmentation function of
small-R jets at NLL order, via a fixed-order calculation at two loop order. Here we performed
for the first time a two loop calculation of the FF in the presence of the angular cutoff set
by the jet radius, and found a difference in the two-loop anomalous dimension for small-R
FFs relative to the standard DGLAP ones in the MS scheme.

We have shown a calculation for the inclusive microjet spectrum at NLO in the limit
R ≪ 1, focusing on the C2

F colour channel, which is sufficient to infer the general form of the
deviation from the standard DGLAP anomalous dimensions in all colour channels. This in
turn allowed us to determine the anomalous dimensions for small-R jets at the two loop order.
We confirmed our conclusions by comparing to a numerical calculation from the fixed-order
program Event2 at O(α2

s). An important first remark is that these findings are not just
specific to the Cambridge-Aachen algorithm but apply to all members of the generalised kt

family of algorithms, widely used at hadron colliders. For the SISCone algorithm, the only
difference at this logarithmic order is encoded in the one-loop boundary condition of the
evolution equation (2.2) for the small-R FF. Finally, the result reported here agrees with the
second-order expansion of the generating functional given in ref. [22], thereby validating this
method for the fragmentation of small-R jets. The derivation is outlined in appendix C.

Moving forward, it is interesting to observe that the simple form of the difference between
the small-R and timelike DGLAP anomalous dimensions amounts to terms of the same form
as that responsible for the violation of the Gribov-Lipatov reciprocity relation, which has

– 15 –



J
H
E
P
0
7
(
2
0
2
4
)
2
3
9

also been previously linked to a change of the kinematic cutoff [33]. To investigate what this
implies in the case of the FF we also performed a two loop calculation for an alternative FF
measured on Cambridge jets with a transverse momentum cut (ycut), as well as for the small-R
FF with a cutoff that represents the maximum possible transverse momentum of emissions in
the jet, proportional to z R. Remarkably, in these cases we find that, besides a difference in
the one-loop boundary conditions, the two loop anomalous dimensions now coincide with
the DGLAP ones in the MS scheme. This highlights a correspondence between MS and a
transverse momentum cut, which is critical to reproduce DGLAP evolution at higher orders
with parton showers. Ultimately, it will also be important to assess the effect of our finding
in the context of the phenomenology of small-R jets at the LHC and future colliders, in view
of the high precision that will be reached in the study of the structure of hadronic jets.
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A Phase space parametrisation

In this appendix we provide the parametrisation of the three body phase space used throughout
the calculations in the article. In D = 4− 2ϵ dimensions, the phase space dΦ3 reads

dΦ3 = 1
π

E4−4ϵ

(4π)4−2ϵΓ(1− 2ϵ)dz2dz3dθ2
13dθ2

23dθ2
12(z1z2z3)1−2ϵ∆−1/2−ϵ Θ(∆) , (A.1)

where the Gram determinant is given by

∆ = 4θ2
ikθ2

jk −
(
θ2

ij − θ2
ik − θ2

jk

)2
, i ̸= j ̸= k , (A.2)

and
3∑

i=1
zi = 1 . (A.3)
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We can now introduce the parametrisation of figure 2, for which the phase space measure
becomes

dΦ(B)
3 ≡ x

π

E4−4ϵ

(4π)4−2ϵΓ(1− 2ϵ)dxdzpdθ2
13dθ2

23dθ2
12((1− x)x2(1− zp)zp)1−2ϵ∆−1/2−ϵ Θ(∆) .

(A.4)
Similarly, for the parametrisation of figure 1 we obtain

dΦ(A)
3 ≡ 1− x

π

E4−4ϵ

(4π)4−2ϵΓ(1− 2ϵ)dxdzpdθ2
13dθ2

23dθ2
12((1− x)2x(1− zp)zp)1−2ϵ∆−1/2−ϵ Θ(∆) .

(A.5)

B Two loop anomalous dimensions for small-R fragmentation

In this appendix we report the explicit anomalous dimensions governing the fragmentation of
small-R jets. Starting from the equation (2.25), for quark fragmentation we obtain:

δP̂ (1)
qq (z) = C2

F ln z
1 + z (4 + z) + 4 (1 + z2) ln(1− z)− (1 + 3z2) ln z

1− z

+ 2CF TR nf
13 (1− z3) + 3 ln z (4 + 3 z (2 + z) + 3 z (1 + z) ln z)

9z
, (B.1)

δP̂
(1)
q̄q (z) = 2CF TR nf

13 (1− z3) + 3 ln z (4 + 3 z (2 + z) + 3 z (1 + z) ln z)
9z

, (B.2)

δP̂ (1)
gq (z) = C2

F

1
3z

(
3 (5− z) (1− z)− 2π2 (2− (2− z) z) + 12 (2− (2− z) z) Li2(z) (B.3)

+ 3 ln z
(
4 (2− (2− z) z) ln(1− z) + z (6− 2 z + (2− z) ln z)

))
− 4CF TR nf

(2− (2− z) z) ln z

3z

+ CF CA
1
9z

(
6π2 (2− (2− z) z)− (1− z) (71 + z (17 + 26 z))

+ 3 ln z
(
−22− 5 z (2− z)− 12 (1 + z + z2) ln z

)
− 36 (2− (2− z) z) Li2(z)

)
.
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Similarly, for gluon fragmentation we obtain:

δP̂ (1)
gg (z) = −C2

A

2 ln z

3 (1− z) z

(
11− 18 z + 3 z2 − 18 z3 + 11 z4 − 12 (1− z + z2)2 ln(1− z)

+ 6 (1 + 3 z2 − 4 z3 + z4) ln z

)
− 8CA TR nf

(1− z + z2)2 ln z

3 (1− z) z

+ CF TR nf

(
−52

9
1− z3

z
− 4

3
(
3 + 6 z + 4 z2

)
ln z + 4 (1 + z) ln2 z

)
, (B.4)

δP̂ (1)
qg (z) = δP̂

(1)
q̄g (z) = CF TR nf

(
1− 6 z + 5 z2 + 2

3 π2 (1− 2 z + 2 z2) + (1− 2 z) ln z

− (1− 2 z + 4 z2) ln2 z − (4− 8 z + 8 z2) Li2(z)
)

+ CA TR nf
1
9

(
− 9− 6π2 + 26

z
+ 54 z + 12π2 z − 71 z2 − 12π2 z2

+ 6 ln z

z

(
4 + 6 z + 18 z2 − 9 z3 + 6 z (1− 2 z + 2 z2) ln(1− z)

)
+ 18 (1 + 4 z) ln2 z + 36

(
1− 2 z + 2 z2

)
Li2(z)

)
. (B.5)

C Derivation of two loop anomalous dimensions from Bq
2(z)

In this appendix we discuss the derivation of the two loop FF for small-R jets from the
generating functionals formalism [10, 24–26, 48] extended to NLL in ref. [22]. This derivation
summarises the original calculation of the small-R anomalous dimension, which led us to
uncover the discrepancy with the timelike DGLAP case. It also serves as an important
test of the method of ref. [22].

We work in the non-singlet (NS) case to simplify the notation, but analogous consid-
erations hold for the other flavour channels. Our starting point is the definition of the NS
FF in terms of the quark generating functional Gq(x, t), where t is the evolution time (cf.
eq. (2.1) of ref. [22]). This is related to a resolution scale (angle) µ = E θ by

t =
∫ E2

µ2

dµ′2

µ′2
αs(µ′2)
2π

, (C.1)

where E = Q/2 is the energy of the initial fragmenting parton (quark in the NS case). The
FF can be obtained by taking the derivatives of the quark generating functional Gq w.r.t. the
probing function [24–26] (source) u which has the function of tagging a final state parton.

We start with LL for the sake of simplicity, and then discuss the NLL case. The evolution
of Gq with the evolution time t is driven by the integral equation

Gq(x, t) = u∆q(t) +
∫ t0

t
dt′
∫ 1−z0

z0
dz Pqq(z)Gq(x z, t′)Gg(x (1− z), t′) ∆q(t)

∆q(t′)
, (C.2)
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where Pqq(z) = CF (1 + z2)/(1− z) denotes the unregularised q → qg LO splitting function
and ∆q(t) is the Sudakov form factor defined as6

ln∆q(t) = −
∫ t0

t
dt′
∫ 1−z0

z0
dz Pqq(z) . (C.3)

We now proceed to calculate the NS FF. A first simplification comes from observing that
the gluons produced in the branching of the quark do not fragment further if one considers
the NS channel. For this reason we can approximate Gg with its first order expansion

Gg = u +O(αs) , (C.4)

hence neglecting any radiative corrections. This implies that the evolution of Gq in the NS
channel simply amounts to a sequence of angular-ordered primary gluon emissions off the
fragmenting quark. The small-R NS FF at LL is then given by

Djet
NS(z, µ, ER) =

∑
n

∫
dPnδ

(
z −

n−1∏
i=1

zi

)
n−1∏
i=1

Θ(θ2
i − R2) =

∑
n

D
jet,(n)
NS (z, µ, ER) . (C.5)

The emission probabilities dPn are calculated with the formula∫
dPn ≡ 1

n!
δn

δun
Gq

∣∣∣∣
u=0

. (C.6)

We define the functional derivative by the above equation to effectively act as an ordinary
derivative, whereas kinematic phase-space constraints (e.g. the observable’s measurement
function) are explicitly added for each dPn (see eq. (C.5) for the FF case).7 The delta function
in eq. (C.5) fixes the longitudinal momentum of the final state quark to be z. This is easily
obtained by noticing that each gluon carries a relative fraction 1− zi of the momentum of
the parent, which sets the energy of the final state quark to E times the product of all zi

fractions. Finally, the theta function in eq. (C.5), with θi being the angle of gluon i w.r.t. the
final state quark,8 implements the Cambridge clustering condition. This ensures that we
consider only gluons which are not recombined with the quark jet, and hence change the jet’s
momentum fraction. In terms of the evolution time t, this constraint simply translates to

ti < tR ≡
∫ E2

E2R2

dµ′2

µ′2
αs(µ′2)
2π

. (C.7)

This effectively replaces the collinear cutoff t0 in eq. (C.2), including in the Sudakov form
factor. Similarly, we also take the limit of the IR cutoff z0 → 0 given the IR safety of the

6Cf. eq. (2.5) of ref. [22]. The limits of the collinear (t0 → ∞) and IR (z0 → 0) cutoffs are meant to be
taken at the level of physical observables. The dependence on the cutoffs for IRC safe observables will cancel
against that in the real corrections up to power corrections, made negligible by taking a small numerical cutoff.
The latter vanish in the calculation reported here since the limits are taken analytically.

7An alternative definition, albeit practically equivalent, of the functional derivative is given in ref. [49].
8Due to strong angular ordering, this coincides with the angle w.r.t. the emitter.
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FF that we are computing. From eq. (C.5) we obtain

D
jet,(1)
NS (z, µ, ER) = ∆q(t) δ(z − 1) , (C.8)

D
jet,(2)
NS (z, µ, ER) = ∆q(t)

∫ tR

t
dt1

∫ 1

0
dz1Pqq(z1) δ(z − z1) ,

D
jet,(3)
NS (z, µ, ER) = ∆q(t)

∫ tR

t
dt1

∫ tR

t1
dt2

∫ 1

0
dz1 dz2Pqq(z1)Pqq(z2) δ(z − z1z2) ,

. . . = . . . ,

D
jet,(n)
NS (z, µ, ER) = ∆q(t)

∫ tR

t
dt1 . . .

∫ tR

tn−2
dtn−1

∫ 1

0

(
n−1∏
i=1

dziPqq(zi)
)

δ

(
z −

n−1∏
i=1

zi

)
.

The scale t in the above equations is related by eq. (C.1) to the upper bound on the angle at
which the evolution is stopped. In order for all logarithmic terms to be resummed in the FF we
set the final scale to µ = E corresponding to the final t = 0. We further introduce the quantity

Σ(z, t) ≡
∑

ℓ

∫ tR

t
dt1 . . .

∫ tR

tℓ−1
dtℓ

∫ 1

0

(
ℓ∏

i=1
dziPqq(zi)

)
δ

(
z −

ℓ∏
i=1

zi

)
, (C.9)

which allows us to write the NS FF at LL as

Djet
NS(z, µ, ER) = ∆q(t) (δ(z − 1) + Σ(z, t)) . (C.10)

What we are interested in here is the evolution of Djet
NS(z, µ, ER) w.r.t. the resolution

scale µ. This is related to the evolution in t by

d

d lnµ2 = −αs(µ2)
2π

d

dt
. (C.11)

We can then obtain the evolution equation for the FF by acting with the above derivative
on Djet

NS(z, µ, ER). We arrive at

dDjet
NS(z,µ,ER)

d lnµ2 = αs(µ2)
2π

∫ 1

0
dy Pqq(y)

[∆q(t)
y

(δ(z/y−1)+Σ(z/y,t)) (C.12)

−∆q(t)(δ(z−1)+Σ(z, t))
]
= αs(µ2)

2π

∫ 1

z

dy

y
(Pqq(y))+ Djet

NS

(
z

y
,µ,ER

)
.

The first term in the above equation arises from the derivative of Σ, while the second from the
derivative of the Sudakov ∆q. The LL evolution equation in eq. (C.12) agrees with the DGLAP
equation, upon noticing that the plus prescription acting on the whole unregularised splitting
function Pqq(y) is fully equivalent to the standard regularised splitting function P̂qq(y).

As a next step, we now derive the corresponding equation at NLL. The starting point
is the NLL evolution equation which reads [22]

Gq(x, t) = u∆q(t, x) +
∫ t0

t
dt′
∫ 1−z0

z0
dz Gq(x z, t′)Gg(x (1− z), t′) ∆q(t, x)

∆q(t′, x) Pq(z, t′, x)

+Kfinite
q [Gq, Gg] , (C.13)
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where
Pq(z, t′, x) ≡ Pq(z, t′)− αs(µ′2)

2π
Pqq(z) b0 ln x2 . (C.14)

Here x is the longitudinal momentum fraction of the quark branching at the angular scale t′.
The term proportional to ln x2 in the r.h.s. of eq. (C.14) has the role of ensuring that the
effective scale of the strong coupling is the energy of the parton that is branching multiplied
by the angular scale of the branching.9 The quantities Pq(z, t) and Kfinite

q are defined in
eq. (2.10) and appendix C of ref. [22], respectively, and they are derived from the exact 1 → 3
splitting functions and corresponding virtual corrections. Accordingly, the LL Sudakov form
factor ∆q(t) is also upgraded to NLL and defined as

ln∆q(t, x) = −
∫ t0

t
dt′
∫ 1−z0

z0
dz Pq(z, t′, x) . (C.15)

A few remarks are in order. The quantity Pq(z, t), referred to as the inclusive emission
probability, encodes the next-to-leading order cross section for the radiation of a gluon of
momentum 1− z differentially both in z and in the angle between the gluon and the emitting
quark. This is encoded in the anomalous dimension Bq

2(z) obtained in ref. [16]. The additional
term Kfinite

q encodes the fully-differential structure of the 1 → 3 splitting functions, which
corrects the inclusive approximation made in Pq(z, t). This guarantees a full coverage of the
1 → 3 splitting phase space and corresponding splitting functions.

An important comment concerns the clustering condition as implemented in eq. (C.5).
As discussed in the main text, in the small-R limit one can neglect any clustering of two or
more emissions, in that they would result in a power-suppressed term, as well as the recoil of
the jet axis. For this reason, the clustering condition in eq. (C.5) (with θi denoting the angle
w.r.t. the final state quark) remains valid at NLL. From here we essentially follow the same
procedure used in the LL case, with more tedious calculations due to the presence of the
extra term Kfinite

q . An important difference w.r.t. eq. (C.10) is that, at NLL, the FF receives
a contribution from O(αs) non-logarithmic terms that are obtained by matching the GFs
prediction at O(αs) to the calculation of the small-R FF at the same order. This leads to
the following expression for the NLL FF in the NS channel

Djet
NS(z, µ, ER) =

(
1 + αs(E2)

2π
D

jet (0)
q, NS (z, ER, ER)

)
⊗∆q(t) (δ(z − 1) + Σ(z, t)) , (C.16)

where ∆q(t) ≡ ∆q(t, 1) and D
jet (0)
q, NS (z, ER, ER) is the non-singlet part of the quantity defined

in eq. (2.6). It reads

D
jet (0)
q, NS (z, E R, E R) = −2CF (1 + z2)

( ln(1− z)
1− z

)
+
− CF

(
(1− z) + 21 + z2

1− z
ln z

)

+ CF

(13
2 − 2

3 π2
)

δ(1− z) . (C.17)

9In the case of Pq, we have replaced the argument θ with t to ease the notation. The two quantities are
related by eq. (C.1). Moreover, we have explicitly expanded out the term proportional to ln x2 from the
definition of the evolution time w.r.t. the notation of ref. [22] (cf. eq. (2.1) there), as this plays a central role
in the derivation shown here.
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The second term to the right of the convolution sign in eq. (C.16) is the result of the functional
derivatives of the quark GF, where the quantity Σ(z, t) at NLL is now given by

Σ(z,t)≡
∑

ℓ

∫ tR

t
dt1

∫ 1

0
dz1 (Pq(z1,t1,1)+χ(z1,t1))

∆q(t1,z1)
∆q(t1,1) ... (C.18)

×
∫ tR

tℓ−1
dtℓ

∫ 1

0
dzℓ (Pq(zℓ,tℓ,z1z2 ...zℓ−1)+χ(zℓ,tℓ))

∆q(tℓ,z1z2 ...zℓ)
∆q(tℓ,z1z2 ...zℓ−1)

δ

(
z−

ℓ∏
i=1

zi

)
.

The new kernel χ arises from the functional derivatives of Kfinite
q and, using the notation

of the main text, it is given by10

χ(z, t) ≡ 1
2!

∫
dΦ(A)

3
(8π αs(E2 θ2

12,3))2

s2
123

⟨P ⟩CF (CF −CA/2)

∣∣∣∣∣
ϵ=0

(C.19)

× δ(t − t12,3) δ(z − zp(1− x))Θ(θ2
12,3 − R2)

+
∫

dΦ(B)
3 (8π αs(E2 θ2

13))2
(

1
s2

123
⟨P ⟩C2

F
− J (x, zp)

E4
P

(0)
qq (x, ϵ)

θ2
13

P
(0)
qq (zp, ϵ)

θ2
23

)∣∣∣∣∣
ϵ=0

× δ(t − t1,3) (δ(z − zpx)− δ(z − x))Θ(θ2
13 − R2)Θ(θ2

13 − θ2
23) ,

with J (x, zp) given in eq. (2.18). To evaluate the derivative w.r.t. lnµ2, we make use of
the following equation

dΣ(z, t)
dt

≃ −
∫ 1

z

dy

y
(Pq(y, t) + χ(y, t))

(
δ

(
z

y
− 1

)
+Σ

(
z

y
, t

))
(C.20)

+ 2 b0

∫ µ2

E2R2

dµ′2

µ′2
α2

s(µ′2)
(2π)2

∫ 1

z

dy

y
ln y Pqq(y)

∫ 1

z/y

dy′

y′
(
Pqq(y′)

)
+

(
δ

(
z

yy′
− 1

)
+Σ

(
z

yy′
, t

))
.

In eq. (C.20) we have exploited the fact that, at NLL, one only needs to retain a single
insertion of the ln x2 term in eq. (C.14), while one can neglect subleading terms stemming
from multiple insertions of this contribution to Pq(z, t, x). Taking the derivative of eq. (C.16)
using eq. (C.11) and (C.20) we obtain the following evolution equation

dDjet
NS(z, µ, ER)

d lnµ2 = αs(µ2)
2π

∫ 1

z

dy

y

[
(Pq(y, t))+ + χ(y, t)

]
Djet

NS

(
z

y
, µ, ER

)
(C.21)

− b0

∫ µ2

E2R2

dµ′2

µ′2
α2

s(µ′2)
(2π)2

αs(µ2)
2π

∫ 1

z

dy

y

∫ 1

z/y

dy′

y′
2 ln y Pqq(y)

(
Pqq(y′)

)
+ Djet

NS

(
z

yy′
, µ, ER

)

≡ αs(µ2)
2π

[
(Pq(z, t))+ + χ(z, t)− b0

∫ µ2

E2R2

dµ′2

µ′2
α2

s(µ′2)
(2π)2 δP̂ (1)

qq (z)
]
⊗ Djet

NS(z, µ, ER) ,

with δP̂
(1)
qq (z) as defined in eq. (2.23). We now comment on the evolution kernel of r.h.s. of

eq. (C.21), and its relationship to the small-R anomalous dimension derived in the main
text. A first comment concerns the absence of the colour channels CF CA and CF TRnf in
eq. (C.19). Let us examine the contribution of the corresponding 1 → 3 splitting functions
to the NS channel. We start by reminding the reader that these channels contribute to the

10Eq. (C.19) can be evaluated using the relation
∫

dθ′2

θ′2 δ(t − t′) =
∫

dθ′2

θ′2
2π
αs

θ2δ(θ2 − θ′2).
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inclusive emission probability Pq(z, t) via the integral of the corresponding 1 → 3 splitting
functions with the longitudinal momentum of the quark after the first splitting fixed. For
the CF CA and CF TRnf channels, this corresponds to fixing the longitudinal momentum
fraction of the final quark with the same flavour as the one that initiated the fragmentation.
This can be intuitively understood by looking at figure 1 for the CF TRnf channel, where
the momentum fraction z3 is kept fixed (and analogously for the CF CA term). On the other
hand, the function χ(z, t) arises from the functional derivatives of Kfinite

q , which is sensitive
to the differential structure to the 1 → 3 splitting. This acts as a correction to the inclusive
approximation made in the definition of Pq(z, t). Since in the NS channel we tag the final
state quark, no correction from Kfinite

q survives if the final state quark coincides with the
quark after the first splitting, as it is the case for the CF CA and CF TRnf contributions. As
a consequence, the only contribution from these colour factors is encoded in Pq(z, t).

A second important comment about eq. (C.21) is the resummation scheme [50] used in
the evolution of the generating functionals. As discussed in ref. [22], eq. (C.21) is defined
in a resummation scheme in which all non-logarithmic terms, captured in the matching
coefficient are evaluated at the hard scale µ ∼ E. This is reflected in eq. (C.16), where the
non-logarithmic terms D

jet (0)
q, NS (z, ER, ER) are evaluated at the hard scale. This implies that

the logarithmic terms that would be otherwise generated by the running of the low-energy
boundary conditions to the evolution equation (2.2) are already encoded in the kernel of
eq. (C.21) rather than in the boundary conditions. Specifically, this means that the for the
solutions to eq. (C.21) and eq. (2.2) (in the NS channel) to be equivalent, we must verify that

αs(µ2)
2π

[
(Pq(z, t))+ + χ(z, t)

]
= αs(µ2)

2π
P̂ (0)

qq (z)

+ α2
s(µ2)
(2π)2

(
P̂ (1), NS

qq (z) + b0 D
jet (0)
q, NS (z, ER, ER)

)
, (C.22)

where b0 = 11/6CA − 2/3TR nf .11 Since we are working with the NS channel, now P̂
(1), NS
qq

only contains the NS contributions, i.e.

P̂ (1), NS
qq (z) ≡ P̂ (1), V

qq (z)− δP̂ (1)
qq (z) , (C.23)

where P̂
(1), V
qq (z) denotes the standard regularised time-like splitting function in the NS channel

(see e.g. in Chapter 6 of ref. [48]). While this correspondence is trivially true at O(αs), in
order to establish it at O(α2

s) we have verified eq. (C.22) numerically for z ̸= 1, finding
perfect agreement. To analyse the case z = 1, we can simply check that eq. (C.22) holds at
the integral level (i.e. integrating over z ∈ [0, 1]). The integral over z of the l.h.s. amounts to
the integral of the first term in eq. (C.19) as everything else vanishes upon integration either
because of the plus prescription (for what concerns (Pq(z, t))+) or due to the difference of
δ functions (for the second term in eq. (C.19)). This gives∫ 1

0
dz

αs(µ2)
2π

χ(z, t) = α2
s(µ2)
(2π)2 CF

(
CF − CA

2

) 13− 2π2 + 8 ζ3
4 , (C.24)

11Note that the terms of eq. (C.21) and eq. (2.2) proportional to δP̂
(1)
qq (z) are trivially in agreement at NLL

after integrating over µ′ (cf. eq. (C.25)).
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in agreement with the integral of the NS regularised splitting function, as predicted by
eq. (C.22). We can now simplify further the structure of eq. (C.21) by writing, at NLL,
the integral over µ′ as

−b0

∫ µ2

E2R2

dµ′2

µ′2
α2

s(µ′2)
(2π)2 ≃ αs(µ2)

2π
− αs(E2R2)

2π
. (C.25)

It is now straightforward to see that the last term in the r.h.s. of eq. (C.21) has the role
of changing the scale of δP̂

(1)
qq (z) in eq. (C.22) from µ2 to E2R2. For consistency with

the notation in the main text we also change the scale of the coupling multiplying the
boundary condition D

jet (0)
q, NS (z, ER, ER) from E2 to E2R2, and thus obtain the final form

of the evolution equation for the NS channel

dDjet
NS(z, µ, ER)

d lnµ2 = αs(µ2)
2π

(
P̂ (0)

qq (z) + αs(µ2)
2π

P̂ (1), V
qq (z)− αs(E2R2)

2π
δP̂ (1)

qq

)
⊗Djet

NS(z, µ, ER) .

(C.26)
Analogous considerations apply to the other flavour channels.

We conclude with a final remark. In eqs. (C.1), (C.14) we have expanded out, compared
to the notation in eq. (2.1) of ref. [22], the dependence on the momentum fraction x from
the coupling constant. One could avoid this expansion and instead directly embed this
dependence into the structure of the evolution equation. In this case it is convenient to
write an evolution equation in the lower bound of the angular evolution range rather than
in the upper one, leading to

dDjet
NS(z, E, µ)
d lnµ2 = −P̂ (0)

qq (z)⊗
(

αs(z2µ2)
(2π) Djet

NS(z, E, µ)
)

− P̂ (1), NS
qq (z)⊗

(
α2

s(z2µ2)
(2π)2 Djet

NS(z, E, µ)
)

, (C.27)

where P̂
(1), NS
qq (z) is defined in eq. (C.23). This equation can be solved, with the same

boundary condition given in eq. (C.8) evaluated at µ = E R, by integrating between µ = E R

and µ = E. We notice that, in this case, the jet radius R does not appear in the running
coupling, but it is encoded in the structure of the differential equation. We have compared
the NLL solutions to eqs. (C.26), (C.27), finding complete agreement.
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