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Abstract

The CPT theorem originally proven by Lüders and Pauli ensures the equality

of masses, lifetimes, magnetic moments and cross sections of any particle and

its antiparticle. We show that in a Lorentz invariant quantum field theory

described by its Lagrangian, CPT-violating interaction alone does not split the

masses of an elementary particle and its antiparticle but breaks only the equality

of lifetimes, magnetic moments and cross sections. However, CPT violation in

the mass term of a field in the Lagrangian, which can be attributed to be due

to the size of the particle described by a form factor, breaks only the equality

of masses. Also it is shown that the two separate effects of CPT violation in

the interaction terms or in the mass term do not mix due to higher quantum

corrections and remain distinguishable. Thus, we urge the experimentalists to

search for such observable effects concerning differences in the masses, magnetic

moments, lifetimes and cross sections between the elementary or bound state

particles and their antiparticles. In the case of CPT violation only in the mass

term, besides the difference in the masses of elementary bound state particles

and their antiparticles, there will be also an extremely tiny difference in the

lifetimes of bound states due to the difference in their phase spaces. From the

details of calculations, it appears that the separate effects of the CPT violation

described above are quite general, neither depending on how the nonlocality is

achieved, nor depending on what this violation is due to: due to T violation,

as considered in the present work, which can be attributed to a cosmological

direction of time; to CP or to both T and CP violations. The latter two cases

satisfy the Sakharov’s conditions for explaining the baryon asymmetry in the

Universe.

The Lorentz invariance, CPT and spin-statistics theorems are key properties of any
relativistic quantum field theory (QFT) and understanding their relations remains
a fundamental issue. We seek to answer the question what does violation of CPT
invariance lead to in a Lorentz invariant QFT?
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According to the CPT theorem, any local Lorentz invariant QFT is CPT invariant
[1, 2]. Furthermore, the CPT theorem and the spin-statistics theorem are among the
few general results which can be proven in axiomatic quantum field theory, without
reference to a particular Lagrangian or Hamiltonian model [3–9]. Crucial consequences
of the CPT theorem include the equality of the masses, the decay widths (lifetimes)
and the magnetic moments of a particle and its antiparticle, which hold for both
elementary and composite particles. No violation of the CPT invariance has been
observed in experiments so far. Considering the fundamental role of CPT invariance
in QFT, it is no wonder that there has been a common belief that relativistic quantum
field theories are necessarily CPT invariant, and further on that violation of CPT
invariance would necessarily imply violation of Lorentz invariance, although neither
of the said beliefs have been proven. There is no proof that the Wightman axioms
can be satisfied for every interacting theory in four dimensions. Indeed the axiomatic
framework does not yet cover (non-Abelian) gauge theories or interacting theories in
general [4–7]. Hence the standing of CPT invariance in relativistic QFT is a pertinent
problem [10, 11].

Since the possibility of CPT invariance violation has mainly been studied in theo-
retical frameworks where Lorentz invariance is also violated, it is important to study
the consequences of CPT violation in a Lorentz invariant theory. That is necessary
for uncovering what CPT violation alone entails.

In this letter, we consider relativistic QFT where CPT invariance is broken but
Lorentz invariance is valid. It has been shown that CPT violation does not lead to
violation of Lorentz invariance and vice versa [10]. That was achieved by introducing
nonlocal interactions and/or nonlocal mass terms, which are Lorentz invariant but vio-
late CPT invariance [10, 12, 13]. Such theories can be considered as effective theories,
which can be used to explore the consequences of CPT violation that may arise in
some fundamental theory.

The other direction of the relation between Lorentz invariance and CPT invariance,
i.e. that violation of Lorentz invariance does not lead to CPT violation, has been
known longer, since QFT on noncommutative spacetime preserves CPT invariance
[14–17], while the Lorentz invariance is broken or more precisely deformed as a part of
the twisted Poincaré symmetry [18–20]. We should also note that the spin-statistics
relation remains intact in the noncommutative QFT [15] based on the Groenewold-

Moyal star product, f(x) ⋆ g(x) = f(x) exp
(

i
2

←−
∂ µθ

µν−→∂ ν

)

g(x). A general proof has

been given in [21] for the validity of spin-statistics relation in noncommutative QFT,
based on twisted Poincaré symmetry discovered in [18]. Note that in a deformed
QFT based on the representations of κ-deformed Poincaré algebra, which is Lorentz
violating, however, the spin-statistics relation is lost, and the notion of symmetrized
or antisymmetrized multiparticle states ceases to have meaning [22].

The main conclusion of the Letter is that CPT violation has two separate conse-
quences, depending on whether Lorentz invariant CPT violation is implemented in an
interaction term or in a mass term:

1. If only a CPT-violating interaction term is included, the masses of an elementary
particle and its antiparticle remain equal but the equalities of their lifetimes and
cross sections are broken. Furthermore, the equalities of the masses and the
lifetimes of bound states and their anti-states can be broken.
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2. If CPT violation is implemented only in a mass term of the field, what implies
that the particle is not pointlike, the equality of the masses is broken, while
equalities of cross sections and magnetic moments remain intact, but with a tiny
difference in lifetimes due to slight effect of phase spaces.

If both CPT noninvariant interactions and mass terms are included, their effects are
combined: the equalities of the masses, the decay widths and the magnetic moments
of an elementary particle and its antiparticle can all be broken. The situation with
composite particles is more involved. If a difference in the masses of a composite
particle and its antiparticle is observed, it could be due to either CPT-violating mass
terms or CPT-violating interactions or both, in its constituent particles. All these
consequences have to be taken into account in any experimental test of CPT invariance,
e.g. in tests involving possible differences in the properties of matter and antimatter.
On top of that, we emphasize that the aforementioned consequences do not imply
violation of Lorentz invariance.

It is also important to understand the relation of the CPT invariance and the
spin-statistics theorem. The spin-statistics relation [23–25], and the Pauli exclusion
principle as its manifestation, are essential for the structure and stability of matter
[26, 27]. In axiomatic QFT the requirements for the spin-statistics theorem are stricter
than the requirements for the CPT invariance: the proof of the spin-statistics theorem
requires that the Wightman functions are invariant under cyclic permutations of fields
at Jost spacetime points, while the proof of the spin-statistic theorem requires that the
Wightman functions are invariant under any permutation of fields at Jost spacetime
points [3–7]. Therefore, we could expect that the violation of CPT invariance must
imply violation of the spin-statistics relation. However, we must keep in mind that
the axiomatic framework might not be fully applicable here, since the present theory
involves nonlocal terms, and also since even a local interacting theory might not satisfy
the axioms, as remarked above. We show that the spin-statistics theorem remains valid
in the theory of Lorentz invariant CPT violation.

Lorentz invariant CPT violation Lorentz invariant CPT violation can be realized
with a nonlocal (interaction) term that includes the factor θ(x0 − y0), where θ is the
Heaviside step function and x0, y0 are the time coordinates of two points in spacetime.
Another factor is included to ensure Lorentz invariance, which also defines the scope
of the nonlocal interaction: e.g. θ((x − y)2) for all causally connected points [10]
or δ((x − y)2 − l2) for all points with a certain spacetime interval [12], where l is
a real constant parameter. Another possible choice for the second factor is θ((x −
y)2)e−(x−y)2/l2 [10], where the real parameter l is the scale of the nonlocal interaction.
The product of those two factors, e.g. θ(x0−y0)δ((x−y)2− l2), ensures the invariance
under proper orthochronous Lorentz transformations, since the order of the times x0

and y0 is unchanged for timelike intervals and the second factor ensures that spacelike
intervals do not contribute to the interaction.

Quantization of theories which are nonlocal in time is challenging, since canonical
quantization cannot be relied on due to the lack of a reliable definition of canonical
momenta. Therefore, we do not yet have a perfectly satisfying technique for the
quantization of theories that are nonlocal in time. The path integral quantization
based on Schwinger’s action principle has been applied to the nonlocal CPT-violating
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interactions with interesting results [12]. This approach follows the same lines as
the successful path integral quantization of space-time noncommutative theories [28].
Hence we quantize the theory with the path integral formulation based on Schwinger’s
action principle.

CPT-violating interactions Various types of CPT noninvariant interactions can
be considered by introducing the aforementioned nonlocal factor into an interaction
term. Some examples include self-interactions like a nonlocal modification of λφ4

theory and interactions between fields of different types. Since all the elementary in-
teractions of matter are described with interactions between fermions and bosons, we
show here an example of such an interaction. As a nonlocal CPT-violating interaction
between a spin-1/2 field ψ and a real scalar field φ we consider a Yukawa-type inter-
action. An interaction vertex is introduced into the Lagrangian as in [12] (see also
[10]):

LY = gψ̄(x)ψ(x)φ(x) + g1ψ̄(x)ψ(x)

∫

d4yθ(x0 − y0)δ((x− y)2 − l2)φ(y), (1)

where the nonlocal term with the coupling constant g1 is odd under T and CPT but
retains CP invariance. The effect of the CPT-violating interaction in momentum space
can be represented with the following two form factors

f±(k) =

∫

d4z e±ik·zθ(z0)δ(z2 − l2), (2)

which are related as f±(−k) = f∓(k). For a timelike momentum k we may choose a

Lorentz frame such that ~k = 0, and then the form factors can be written as

f±(k
0) = 2π

∫ ∞

0

dz
z2e±ik

0
√
z2+l2

√
z2 + l2

(k0>0)
=

2π

(k0)2

∫ ∞

0

dz
z2e±i

√
z2+(k0l)2

√

z2 + (k0l)2
, (3)

where k0 > 0 is assumed in the second equality. Form factors are related to the size of
particles (and in the case of a composite particle also to the internal structure of the
particles).

Consider the consequences of the inclusion of the CPT-violating interaction in the
tree level processes (compared to the local Yukawa interaction, i.e. just the first term
in (1)). The amplitude of the fermion pair creation process φ → ψ̄ψ is changed so
that the Yukawa coupling constant g is replaced by g + g1f+(k), where k is the four-
momentum of the scalar particle. The amplitude of the fermion annihilation process
ψ̄ψ → φ is changed so that g is replaced by g+g1f−(k). Consequently, the amplitudes
for these two processes, which are related via time reversal, contain different phases
due to the two form factors (2). There is a similar result in the amplitude of the process
φφ → ψ̄ψ, since g2 is replaced by (g + g1f+(k1))(g + g1f+(k2)), where k1 and k2 are
the momenta of the incoming scalar particles, while in the amplitude of the process
ψ̄ψ → φφ, g2 is replaced by (g + g1f−(k1))(g + g1f−(k2)). Such differences in the
phases result to differences in decay and scattering amplitudes (as well as in induced
dipole moments). The absolute squares of the tree level amplitudes do not feature the
T-violating phases, since (f±(k))

∗ = f∓(k). Hence for example the aforementioned
tree level amplitudes give |g + g1f+(k)|2 = |g + g1f−(k)|2 and |(g + g1f+(k1))(g +
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g1f+(k2))|2 = |(g + g1f−(k1))(g + g1f−(k2))|2. However, when loop corrections are
included, the T-violating phases of the tree level contributions interfere with the phases
of the loop corrections, which results into detectable differences in the probabilities
of the two processes that are related via time reversal. For example, the one-loop
O(g3) contributions to the amplitudes of the processes φ→ ψ̄ψ and ψ̄ψ → φ have the
same phase, say e−iα, while the tree-level O(g1) contributions have different phases,
e±iαCPT . The interference of such phases leads to the violation of time reversal and CPT
invariances in the squared decay and scattering amplitudes (for detailed discussion,
see [12]).

Note that some scattering amplitudes for the interaction (1) do not exhibit CPT
violation effect at tree level. E.g., consider the amplitude of elastic scattering of fermion
and antifermion, ψ̄ψ → ψ̄ψ. The s-channel contribution of the Yukawa interaction is
changed so that g2 is replaced by (g + g1f+(p1 + p2))(g + g1f−(p1 + p2)), while in the
t-channel contribution g2 is replaced by (g + g1f+(p1 − p3))(g + g1f−(p1 − p3)), which
contain only symmetric combinations of the form factors (2). For this process one
needs to look into loop corrections with higher powers of g1.

The fermion self-energy corrections do not introduce splitting of the fermion and
antifermion masses. The theory has residual symmetries under C and CP, which is
sufficient to maintain the equality of the fermion and antifermion masses. The one-loop
fermion self-energy correction for the interaction (1) is obtained as

Σ(p) = (2π)4δ(4)(p′ − p)
∫

d4k

(2π)4
1

/p− /k −m
1

k2 −M2

×
[

g2 + gg1 (f+(k) + f−(k)) + g21f+(k)f−(k)
]

, (4)

where m and M are the fermion and scalar particle masses, respectively. The self-
energy corrections contain symmetric (and Hermitian) combinations of the form factors
(2) such as f+(k)f−(k) and f+(k) + f−(k), which are symmetric under k → −k and
do not break the symmetry between positive and negative fermion energy p0. Thus,
there is no splitting in fermion and antifermion masses. This result is retained even
in the presence of CP violation [12], when the local Yukawa interaction is replaced by
gψ̄(x)(1+ iεγ5)ψ(x)φ(x) with a small real ε, which indicates that the invariance under
C is sufficient to maintain the equality of the masses.

While we have considered a CPT-violating Yukawa interaction in the leading order,
the main conclusion remains valid in general and including all higher order corrections,
as shown below by involving the gauge invariance arguments.

In gauge theory, gauge invariance together with Lorentz invariance ensures that
the mass of a fermion (m) is equal to the mass of its antiparticle (m̄). For simplicity,
consider quantum electrodynamics. Due to the gauge invariance, replacing the photon
Aµ in the fermion-photon vertex eψ̄γµAµψ, with ∂µ (in x-space) or with kµ in mo-
mentum space does not change the vertex, i.e. it gives zero: ψ̄γµkµψ = 0 ⇒ m = m̄;
k = pψ − pψ̄. The electromagnetic current is conserved, as depicted by the Ward
identity.

Now consider a theory with nonlocal interactions, where the action is still invariant
under the gauge transformation [13]: ψ(x) → eiα(x)ψ(x), Aµ(x) → Aµ(x) +

1
e
∂µα(x),

with the gauge field coupled to all charged fields. The free Lagrangian is taken to be
the local one. Consider merely for simplicity that only a Yukawa interaction is taken
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to be nonlocal (1). Corrections to the fermion-photon vertex are depicted in Fig. 1,
where the dashed circles denote the corrections of all orders to the propagators of Aµ,
ψ and ψ̄, and to the vertex. The gauge invariance still ensures that the renormalized
masses are equal, m = m̄.

Aµ

ψ ψ̄

Figure 1: The hashed circles stand for all the quantum corrections to the fermion-
photon interaction vertex.

Splitting of the masses of an elementary particle and its antiparticle If
one starts with the general Hermitian CPT-invariant Lagrangian of a free fermion and
modifies any of its terms to become nonlocal by introducing a nonlocal factor with
the aforementioned method, no splitting between the masses and the widths of the
particle and its anti-particle appears [12]. However, while in a local theory the term
iµψ̄(x)ψ(x) with real µ cancels with its Hermitian conjugate, a nonlocal term like
iµF (x, y)ψ̄(x)ψ(y), where F (x, y) is the nonlocal factor, e.g. θ(x0−y0)δ((x−y)2− l2),
gives a nonvanishing Hermitian contribution to the action. Thus, we consider the
action [29]

S =

∫

d4x
{

ψ̄(x)iγµ∂µψ(x)−mψ̄(x)ψ(x)

−
∫

d4y
[

θ(x0 − y0)− θ(y0 − x0)
]

δ((x− y)2 − l2)[iµψ̄(x)ψ(y)]
}

,

(5)

where for a real parameter µ the nonlocal term is odd under charge conjugation and
even under parity and time reversal. Hence the action (5) is odd under C, CP and
CPT.

Dirac equation in the momentum space, with the Ansatz ψ(x) = eip·xχ(p), is

/pχ(p) = mχ(p) + iµ [f+(p)− f−(p)]χ(p), (6)

where the two form factors f±(p) are defined in (2). The Lorentz covariant off-shell
propagator is defined by

∫

d4x d4y eip·(x−y) 〈T ⋆ψ(x)ψ̄(y)〉 = i

/p−m+ iǫ− iµ[f+(p)− f−(p)]
, (7)

where the poles are shifted due to the form factors. The poles occur only for timelike
momentum. The eigenvalue equation in the rest frame (~p = 0) is

p0 = γ0

(

m− 4πµ

∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

)

. (8)
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The CPT transformed eigenvalue equation, which is obtained by p0 → −p0 and sand-
wiching with γ5, has a similar form but the sign of the second term on the right-hand
side is opposite,

p0 = γ0

(

m+ 4πµ

∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

)

. (9)

For µ≫ m, we can estimate the masses of the particle and its antiparticle by solving
the eigenvalue equations iteratively to the first order in µ: (8) and (9) give the mass
eigenvalues as

m∓ ≈ m∓ 4πµ

∫ ∞

0

dz
z2 sin[m

√
z2 + l2]√

z2 + l2
. (10)

Thus, the difference of the form factors (3) in (8), i.e. f+(p0)− f−(p0), results into the
splitting of the masses of the particle and its antiparticle.

The additional mass term in the action (5) contributes to the free propagator (7)
of the field but does not contribute to any interaction vertices. Therefore, the equality
of the widths and cross sections for a particle and its antiparticle is not altered by the
CPT noninvariant mass term.

Spin-statistics theorem The classic form of the spin-statistics theorem was estab-
lished by Pauli [23] and his proof involved the CPT invariance as one of the assump-
tions. The spin-statistics theorem was proven without assuming the CPT theorem
by Lüders and Zumino [24] and Burgoyne [25]. Those traditional proofs of the spin-
statistics relation rely on the operator formalism. The spin-statistics relation can be
proven also in the path integral formalism [30].

We present key parts of the proof in the theory with Lorentz invariant CPT vio-
lation. Consider the CPT-violating interaction (1). The free fields are unaltered and
hence the proofs of [30] apply for them. The off-shell propagators for the interacting
fields are obtained from the path integral as

〈T ⋆ψ(x)ψ̄(y)〉 = i

i/∂x −m+ gφ(x) + g1
∫

d4zF (x, z)φ(z) + iǫ
δ4(x− y), (11)

where F (x, y) = θ(x0 − y0)δ((x− y)2 − l2), and

〈T ⋆φ(x)φ(y)〉 = i

�x +M2 + gψ̄(x)ψ(x) + g1
∫

d4zF (z, x)ψ̄(z)ψ(z)− iǫδ
4(x− y).

(12)
The Bjorken–Johnson–Low (BJL) method [31, 32] enables the definition of the T -
product in terms of the T ⋆-product, defined for the propagator (11) as

∫

d4x eip·(x−y) 〈Tψ(x)ψ̄(y)〉 =
∫

d4x eip·(x−y) 〈T ⋆ψ(x)ψ̄(y)〉

− lim
p0→0

∫

d4x eip·(x−y) 〈T ⋆ψ(x)ψ̄(y)〉 .
(13)

From such two-point correlation functions the equal time commutation and anticom-
mutation relations for the fields are derived [30]. Assuming that the path integral
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measure for the field ψ is valued in Grassmann variables, we obtain with the BJL
method from (11) and (13) that

δ(x0 − y0) 〈{ψ(x), ψ̄(y)}〉 = γ0δ4(x− y), (14)

which is the basic anticommutation relation for the spin-1/2 field, as well as that
∫

d4x eip·(x−y) 〈T
(

i/∂x −m+ gφ(x) + g1
∫

d4zF (x, z)φ(z)
)

ψ(x)ψ̄(y)〉 = 0, which is con-
sistent with the field equation for ψ. Both ψ and ψ̄ anticommute with themselves,
i.e. δ(x0 − y0) 〈{ψ(x), ψ(y)}〉 = 0 and δ(x0 − y0) 〈{ψ̄(x), ψ̄(y)}〉 = 0, since the corre-
sponding propagators vanish, 〈T ⋆ψ(x)ψ(y)〉 = 0 and 〈T ⋆ψ̄(x)ψ̄(y)〉 = 0. The positive
energy condition is satisfied with the Feynman prescription m − iǫ. The norm in the
Hilbert space is positive definite only when the spin-1/2 field in the path integral is
Grassmann variable. The scalar field φ is considered with the same method using the
propagator (12).

Similar derivation is performed for the case of the CPT-violating theory with
particle-antiparticle mass splitting (5) using the propagator (7). In this case the
derivation is similar to the usual free field case, since the form factors in the propagator
vanish in the equal-time limit, [f+(p)−f−(p)]→ 0 when p0 →∞. Therefore, the spin-
statistics theorem remains valid when CPT-violating interactions and mass terms are
present. It is interesting that a similar result occurs in the case of infinite-component
QFT, where CPT can be violated, while spin-statistics theorem remains intact [33].
Seemingly, infinite-component QFT theories in a way mimic the effect of nonlocality
as is the case in string theories.

As a side remark to reach still another picture of quantization for CPT-violating
but Lorentz invariant QFT, it could be beneficial to mention a quantization method
introduced by Umezawa and Takahashi [34], which was based on Umezawa’s unique
approach to the quantization of local relativistic field theories [35–37]. This method
does not require canonical formulation and it might be possible to generalize it for
nonlocal theories like the present one.

As final remarks, we would like to mention a few important results, which empha-
size general aspects of CPT violation:

• Quantum corrections due to interaction terms always shift the values of the
masses. However, the changes in the mass are equal for the particle and its
antiparticle in all Lorentz invariant theories, where the mass term is not nonlocal.
Therefore, only a nonlocal and CPT-violating mass term, such as the last term
in (5), which corresponds to the form-factor, i.e. to a non-point-like particle, can
give different masses for the particle and its antiparticle.

• From the details and performing the calculations in this work, it has appeared
to us within a certain degree of assurance that the results and the effects of
different CPT-violating terms obtained here are quite general ones and do not
depend on how the nonlocality is achieved, and as well do not depend on how
the CPT violation has appeared:

– Nonlocal QFT can be constructed in several ways, namely by a) the Schwinger
point like prescription; b) by smearing of the field operators, as presented
in the present work; c) by using the higher derivative theories, such as the
ones already used for many years and highlighted in some works, such as
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in [38] and [39], and therein for references to previous works on the subject
in the literature.

– CPT violation in the nonlocal QFT can be achieved in a few ways: i) as in
the present work by breaking the time reversal, what could be attributed
to the cosmological arrow of time, where time evolves only towards future,
on which many works have appeared. Examples can be found, e.g. in
[40–43] and references therein; ii) by breaking the CP invariance, introduc-
ing a complex phase, originating e.g. due to the experimentally verified
Kobayashi–Maskawa quark mixing, while keeping the time invariance; also
iii) by breaking both the CP invariance and independently also breaking
the time invariance. The two cases ii) and iii), whereby both CP and C
violation are present is one of the conditions for the Sakharov mechanism
[44] to explain the matter-antimatter asymmetry in Universe.

We see that there are still several further possibilities to be considered together with
their consequent implications on observable effects, some of which are under study and
will be presented in a future communication.
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