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1 Introduction

Mirror symmetry is a profound fact about Calabi-Yau geometry that underlies much of
what is known about string compactifications [1–9]. Through mirror symmetry, one can
compute certain quantum effects by performing classical period integrals: worldsheet instanton
corrections to the prepotential in a compactification of type IIA string theory on a Calabi-Yau
threefold X can be determined from the periods of the (3, 0) form on the mirror X̃.

The power of mirror symmetry has been brought to bear in understanding noncompact
models, as well as compact models with very few moduli. However, for a compact Calabi-Yau
threefold with more than a handful of moduli in vector multiplets, carrying out the mirror map
with pen and paper is not feasible. Indeed, even with a computer this general case has been
inaccessible. This state of affairs has limited the use of mirror symmetry in understanding
the landscape of string compactifications.

The purpose of this work is to provide a practical computational algorithm that im-
plements the mirror map in a very large class of Calabi-Yau threefolds, order by order in
an expansion around large volume/large complex structure. We will study mirror pairs of
compact Calabi-Yau threefold hypersurfaces in toric varieties, following Batyrev [10], and
will compute the prepotential by building on ideas of Hosono, Klemm, Theisen, and Yau
(HKTY) [4, 6]. Our algorithm remains practical even for the hypersurface with the largest
known number of moduli.

There are three principal obstacles to computing the data of a mirror pair in this setting,
when h1,1(X) = h2,1(X̃) is large. First, one needs to compute the intersection numbers of X,
which by assumption has many Kähler moduli. Second, the procedure of [4], which involves
computing a fundamental period and using properties of the Picard-Fuchs system, requires
that the Mori cone of X be simplicial, a condition that is almost never met for h1,1(X) ≫ 1.
Third, carrying out the mirror map and computing enumerative invariants of X requires
examining a number of lattice sites in the Mori cone of X that is exponential in h1,1(X).

The first obstacle, obtaining the intersection numbers of a threefold hypersurface with
many Kähler moduli, was first solved through the software package CYTools [11]. In the
present work, we overcome the two remaining obstacles: we generalize the approach of [4]
to threefolds with non-simplicial Mori cones, and we present an efficient algorithm for
carrying out the mirror map in this setting. Our method applies to any Calabi-Yau threefold
hypersurface, and remains practical on a laptop even in cases with the largest-known number
of complex structure moduli, i.e. h2,1(X̃) = 491.

The organization of this paper is as follows. In section 2 we recall properties of the
prepotential in type II compactifications on Calabi-Yau threefolds. In section 3 we set notation
for discussing Calabi-Yau hypersurfaces in toric varieties. In section 4 we recall the method
introduced by HKTY [4] for computing the prepotential via mirror symmetry, and we explain
a simplifying assumption made in [4] that limits the scope of this method. We then explain
how to generalize the idea of [4] to an arbitrary Calabi-Yau threefold hypersurface. In section 5
we present a computationally efficient algorithm for computing the prepotential. For certain
curves whose toric description is simple, one can determine the Gopakumar-Vafa invariants
directly, without the procedure given in section 4. We describe this complementary approach
in section 6. In section 7 we illustrate our method in a few examples. We conclude in section 8.
Appendix A contains useful formulas for certain coefficients in the expansion of the periods.
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2 The prepotential in type II compactifications

In this section we set notation and review properties of type II compactifications on Calabi-
Yau threefolds, focusing on the prepotential for the vector multiplet sector. We recall the
definition of Gopakumar-Vafa (GV) invariants and collect basic facts about mirror symmetry.

2.1 Calabi-Yau compactifications of type IIA string theory

2.1.1 Setup

We consider type IIA string theory on a Calabi-Yau threefold X. Denoting by hp,q the
Hodge numbers of X, we take

{
[Ca]

}h1,1

a=1 to be a basis of H2(X,Z), and we write
{
[Ha]

}h1,1

a=1
for the dual basis of H2(X,Z): ∫

X
[Ha] ∧ [Cb] = δa

b . (2.1)

The moduli space of Kähler structures on X has dimension h1,1 and is parameterized by
the Kähler form J , which takes values in the Kähler cone KX ⊂ H1,1(X,R). We denote
by B2 the ten-dimensional Kalb-Ramond two-form of type IIA string theory, and we define
the complexified Kähler form Jc := B2 + iJ .

The low energy effective field theory preserves eight supercharges, and contains the
supergravity multiplet W, as well as h1,1 vector multiplets Va, a = 1, . . . , h1,1, and h2,1 + 1
hypermultiplets Hi, i = 0, . . . , h2,1, one of which contains the string coupling. The gauge
group at a generic point in moduli space is U(1)h1,1+1, with h1,1 gauge fields living in vector
multiplets, and one further gauge field in the gravity multiplet. In this paper we will focus
on the gravity and vector multiplet sector.

The massless U(1) gauge fields (A0, Aa) come from the dimensional reduction of the
ten-dimensional p-form potentials

C1 → A0(x) , C3 →
h1,1∑
a=1

Aa(x) ∧ [Ha] , (2.2)

and their electric-magnetic duals (A0, Aa) can likewise be thought of as the dimensional
reduction of the dual p-form potentials C7 and C5,

C7 → A0(x) ∧ wX , C5 →
h1,1∑
a=1

Aa(x) ∧ [Ca] , (2.3)

where wX is the volume form of X normalized such that
∫
X wX = 1.

We may parameterize the vector multiplet moduli space by h1,1 complex fields

ua :=
∫
X
Jc ∧ [Ca] , (2.4)

defined modulo integers, ua ≃ ua + 1. The imaginary parts ta := Im(ua) are coordinates on
the Kähler cone KX , and the real parts parameterize the flat B-field.

– 2 –
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Extended supersymmetry guarantees that the vector multiplet moduli space is projective
special Kähler, and thus its Kähler metric derives from a Kähler potential K(u, ū) that can
be written in terms of a holomorphic prepotential F(u) as

K = − log
(
2i(F − itaFa) + c.c.

)
, Fa := ∂uaF . (2.5)

The string coupling lives in a hypermultiplet, and so the prepotential is tree-level exact in
the string loop expansion. However, as the Kähler moduli of X live in vector multiplets,
the prepotential F for the vector multiplets receives both perturbative and nonperturbative
corrections in α′:

F = Fpert. + Finst. . (2.6)

In addition to governing the metric on moduli space, the prepotential also computes the
central charges ZQ⃗ of certain BPS states. We consider a bound state of Dp-branes wrapped
on p-cycles, with p ∈ {0, 2, 4, 6}, potentially carrying worldvolume fluxes, and with electric
and magnetic charges Q⃗ (elements of K-theory). Then we have

ZQ⃗ = Q⃗T · Π⃗IIA , (2.7)

in terms of the period vector

Π⃗IIA :=


2F − uaFa

Fa
1
ua

 . (2.8)

One may write the Kähler potential (2.5) in terms of the period vector,

K = − log
(
iΠ⃗†

IIA · I−1 · Π⃗IIA
)
, (2.9)

where
I :=

(
0 1

−1 0

)
(2.10)

is the symplectic electric-magnetic pairing. Given a pair of D-branes with electric-magnetic
charge vectors (Q⃗, Q⃗′), realized by wrapping a pair of cycles (Σ,Σ′) with worldvolume fluxes
(F ,F ′) this pairing is equal to the index of the fluxed Dirac operator on Σ ∩ Σ′ [12],

Q⃗T · I · Q⃗′ =
∫

Σ∩Σ′
eF−F ′

Â
(
T (Σ ∩ Σ′)

)
, (2.11)

where [13]

F − 1
2c1

(
T (Σ ∩ Σ′) ∈ H2(Σ ∩ Σ′,Z) . (2.12)

Finally, we note that the holomorphic prepotential is only the lowest component of an
infinite tower of F-terms that contribute to the Wilsonian effective action [14, 15]

Seff ⊃ −i
∫
d4x

∫
d4θ

∞∑
g=0

FgW2g , (2.13)
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that involve only the gravity multiplet and the vector multiplets via holomorphic functions
Fg ≡ Fg(Va). These are given by the genus g contributions to the free energy of the
topological string [2]. At low energies, the most relevant term in the derivative expansion is
the prepotential F0 ≡ F , which results from worldsheets of genus g = 0.

2.1.2 Perturbative type IIA prepotential

Next, we will explain how to compute the perturbative contributions to the type IIA
prepotential (2.6).

At tree level in α′ the prepotential is simply

Ftree(u) = − 1
3!κabcu

aubuc (2.14)

in terms of the triple intersection numbers κabc :=
∫
X [Ha] ∧ [Hb] ∧ [Hc].

The exact prepotential is strongly constrained by monodromies in Kähler moduli space,
which amount to the Witten effect in the four-dimensional effective theory.1 In order
to understand these monodromies, one first sets up an integer basis of electrically and
magnetically charged particle states. These are furnished by D6-D4-D2-D0 bound states
wrapped on even-dimensional cycles in X.

Specifically, we may choose an integer basis

{m0,ma, e
0, ea} ≡ {mA, e

A} (2.15)

of the 2h1,1 + 2-dimensional electric-magnetic charge lattice as follows. We take m0 to be a
D6-brane wrapped on X without worldvolume fluxes; the ma to be D4-branes wrapped on
representatives of our basis of four-cycle classes [Ha], with Freed-Witten canceling worldvolume
fluxes Fa = −1

2 [Ha]|Ha turned on; the ea to be D2-branes wrapped on representatives of
the dual basis of curve classes [C]a; and e0 to be a D0 brane. These basis elements undergo
monodromies (i.e. the Witten effect [17]) at large volume that are governed by the anomalous
Chern-Simons (CS) term of D-branes [18, 19]:

SΣ
CS = ± 2π

ℓp+1
s

∫
Σ

∑
p odd

Cp ∧ eB2+FΣ ∧

√√√√ Â(TΣ)
Â(NΣ)

, (2.16)

where FΣ is the worldvolume flux on the D-brane, TΣ is the tangent bundle, NΣ is the
normal bundle, and Â denotes the A-roof genus. The monodromy action is as follows: under
B2 → B2 + w, with w ∈ H2(X,Z), the integrand picks up a factor of ew.

The CS action (2.16) is the de Rham inner product on H•(X) between the vector of gauge
fields — expressed as the poly-form

∑
pCp written in terms of the gauge fields as in (2.2)

and (2.3) — and the BPS particle charge, expressed as the poly-form eB2+FΣ ∧
√

Â(TΣ)
Â(NΣ) .

Thus, we can understand the B2 monodromy as a linear map acting on the charge lattice

QΣ = eB2+FΣ ∧

√√√√ Â(TΣ)
Â(NΣ)

7→ ewQΣ . (2.17)

1For a related discussion see [16].
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The central charge Z of a particle state must undergo the very same monodromies, and be
holomorphic in the complex coordinates on vector multiplet moduli space ua =

∫
X(B2 + iJ)∧

[C]a. One thus concludes that the central charge of a D-brane wrapped on a cycle Σ is given by

ZΣ =
∫

Σ
eB2+iJ+FΣ ∧

√√√√ Â(TΣ)
Â(NΣ)

, (2.18)

modulo terms that are single-valued under the monodromies.
The central charges of the elements of the basis (2.15) are

Z⃗ =


1
3!κabcu

aubuc + 1
24u

aca
−1

2κabcu
buc + 1

2κaabu
b − 1

6κaaa −
1
24ca

1
ua

 . (2.19)

However, the basis (2.15) is not in general symplectic, in the sense that the electric-magnetic
pairing deviates from the standard form (2.10). We will now determine an integer change of
basis that brings the symplectic electric-magnetic pairing to the standard form.

In the basis (2.15) the pairwise Dirac indices (2.11) evaluate to

Ĩ =
(

Λ 1

−1 0

)
, with Λ =

(
0 −ib
ia hab

)
, (2.20)

where
hab =

1
2(κabb − κaab) , ia =

1
12ca +

1
6κaaa . (2.21)

It is then straightforward to find the integer change of basis that brings the symplectic pairing
to canonical form. In this new basis the vector of central charges becomes

Z⃗ ′ =
(
1 M

0 1

)
· Z⃗ , with M =

(
0 0
ia habΘ(b− a) .

)
(2.22)

Up to terms that do not affect the monodromies, one finds

Z⃗ ′ =


1
3!κabcu

aubuc + 1
24cau

a

−1
2κabcu

buc + aabu
b + 1

24ca
1
ua

 , (2.23)

with

aab :=


1
2κaab a ≥ b
1
2κabb a < b

. (2.24)

This central charge vector indeed derives from a prepotential,

F̂(u) = − 1
3!κabcu

aubuc + 1
2aabu

aub + 1
24u

aca . (2.25)
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The most general ansatz for the vector of central charges that is compatible with the
monodromies of Z⃗ ′ is

Π⃗IIA = Z⃗ ′ +


2δF − ua∂aδF

∂aδF
0
0

 , (2.26)

with δF(u) a holomorphic function in the ua that is invariant under the monodromies. Thus,
the exact prepotential reads

F := F̂ + δF , (2.27)

with
δF = const.+

∑
0 ̸=q∈H2(X,Z)

Aqe
2πiq·u . (2.28)

The requirement that F := F̂ + δF should asymptote to the tree level result (2.14) for
Im(u) ≫ 1 implies that the sum in (2.28) must only include points q ∈ H2(X,Z) for which
q · Im(u) ≥ 0 for all Im(u) in the Kähler cone. In other words, the sum is restricted to
the Mori cone of X. We can identify δF as the sum of a perturbative O(α′3) correction,
and a tower of worldsheet instantons.

The O(α′3) correction is in fact well known [20–22], and thus to all orders in perturbation
theory one has

Fpert.(u) = − 1
3!κabcu

aubuc + 1
2aabu

aub + ca
24u

a + ζ(3)χ(X)
2(2πi)3 , (2.29)

with
ca :=

∫
Σa

4

c2(X) , and χ(X) =
∫
X
c3(X) . (2.30)

Here ζ(z) denotes the Riemann zeta function. We will say more about the non-perturbative
part Finst. in section 2.1.3.

We pause to stress a crucial point: the large volume monodromies B2 → B2 + w with
w ∈ H2(X,Z), together with the topological O(α′3) correction, uniquely2 determine the period
vector of central charges Π⃗IIA (2.8) expressed in an integral symplectic basis, up to corrections
that fall off exponentially in the large volume limit: we have seen that the perturbative part of
the prepotential Fpert.(u) is given by (2.29). The data that computes (2.29) is given by purely
classical geometric data of X, in the form of its intersection numbers and Chern classes.

2.1.3 Instanton corrections to the type IIA prepotential

The instanton contributions to the prepotential result from genus zero worldsheets wrapping
curves in non-trivial classes [C] ∈ H2(X,Z):

Finst.(u) = − 1
(2πi)3

∑
[C]∈MX

GW0
[C] q

[C] , (2.31)

2The result is unique modulo symplectic transformations.
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where GW0
[C] ∈ Q is the genus zero Gromov-Witten (GW) invariant of the curve class [C],

MX is the Mori cone of effective curves, and

q[C] := exp
(
2πi

∫
C
Jc

)
= exp

(
2πiβ[C]

a ua
)
, (2.32)

where [C] = [Ca]β[C]
a in terms of the basis

{
[Ca]

}
and coefficients β[C]

a , and the coordinates
ua were defined in (2.4).

Similarly, the higher-genus contributions Fg receive non-perturbative contributions
from genus g worldsheets wrapping effective curves, with associated higher genus GW
invariants GWg

[C].
As first observed in [1], the series in (2.31) can be re-expressed in terms of integer

invariants GV0
[C],

Finst.(u) = − 1
(2πi)3

∑
[C]∈MX

GV0
[C] Li3

(
q[C]
)
, (2.33)

with polylogarithm Lik(q) :=
∑∞
l=1 q

l/lk. The GV0
[C] are the genus zero Gopakumar-Vafa

(GV) invariants.
The fact that GV0

[C] ∈ Z is explained by the interpretation of the GV0
[C] as certain BPS

indices [23, 24]. As type IIA string theory on X is dual to M-theory on X × S1, one can
view the four-dimensional theory as a circle compactification of a five-dimensional N = 1
theory that arises from M-theory on X. The F-terms of the five-dimensional theory are
classically exact, so one may view the non-perturbative contributions to the four-dimensional
F-terms as particle instantons from BPS particles of the five-dimensional theory traveling
around the compactification circle in Euclidean time.

The BPS indices GVg
[C] are defined as follows. Given a fixed effective curve class [C],

quantization of the degrees of freedom on M2-branes wrapping curves in [C] gives rise to a
BPS particle spectrum that transforms in the massive little group Spin(4) ≃ SU(2)L×SU(2)R
in a representation

(
2(0)L ⊕

(1
2

)
L

)
⊗
∑
jL,jR

N
[C]
jL,jR

(jL)L ⊗ (jR)R , (2.34)

with degeneracies N [C]
jL,jR

. The contribution to the index is given by the decomposition [24]

∑
jL,jR

(−1)2jR(2jR + 1)N [C]
jL,jR

(jL)L =
∑
g

GVg
[C]

(
2(0)L +

(1
2

)
L

)g
. (2.35)

The GV invariants and GW invariants are related by [23, 24]

∞∑
g=0

λ2g−2 ∑
[C]∈MX

GWg
[C] q

[C] =
∞∑
g=0

∑
[C]∈MX

GVg
[C]

∞∑
k=1

1
k

(
2sin

(
kλ

2

))2g−2
qk[C] . (2.36)
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2.2 Calabi-Yau compactifications of type IIB string theory

Next, we consider compactifying type IIB string theory on the mirror Calabi-Yau, which
we will denote by X̃. We write h̃p,q for the Hodge numbers of X̃, which obey h̃2,1 = h1,1

and h̃1,1 = h2,1. We denote the nowhere-vanishing holomorphic three-form on X̃, which
is unique up to overall scale, by Ω̃.

Mirror symmetry implies that the physical theory in type IIB compactification on X̃ is
equivalent to that in compactification of type IIA string theory on X, discussed hitherto.
However, the geometric interpretation of the low energy degrees of freedom is completely
different: the vector multiplet moduli space of X̃ is now the moduli space of complex structures.
As both the type IIB string coupling and the Kähler moduli of X̃ live in hypermultiplets,
the vector multiplet moduli space is tree-level exact both in the string loop and the α′

expansions, i.e. it is completely classical.
We let

{
[α̃A], [β̃A]

}h̃2,1

A=0 be a symplectic basis of H3(X̃,Z), i.e.∫
X̃
[α̃A] ∧ [β̃B] = δAB ,

∫
X̃
[α̃A] ∧ [α̃B] =

∫
X̃
[β̃A] ∧ [β̃B] = 0 , (2.37)

and we define the periods of the holomorphic three-form

Π⃗IIB :=
(∫

X̃
Ω̃ ∧ βA∫

X̃
Ω̃ ∧ αA

)
. (2.38)

At generic points in moduli space we may use any subset of h̃2,1 of the periods as local
coordinates on moduli space.

Mirror symmetry states that for a suitably chosen basis, and for an appropriate nor-
malization of Ω̃, we have

Π⃗IIA = Π⃗IIB ≡ Π⃗ . (2.39)

By definition, the large volume expansion of Π⃗IIA is equivalent to the large complex structure
(LCS) expansion of Π⃗IIB. Indeed, according to the SYZ conjecture [7], a Calabi-Yau n-fold is
Tn-fibered at sufficiently large complex structure, and mirror symmetry can be understood
as T-duality along all n legs of the torus fiber, thus mapping type IIA and type IIB string
compactifications into each other for n odd.

The exact Kähler metric on moduli space is equal to the classical Weil-Petersson metric
derived from

K = − log
(
−i
∫
X̃
Ω̃ ∧ Ω̃

)
. (2.40)

The mirror dual of the basis (2.15) of electric-magnetically charged states in type IIA is
represented by D3-branes wrapped on the basis of cycles

{
[α̃A], [β̃A]

}h̃2,1

A=0, and the Dirac index
becomes the classical geometric intersection product.

In general it is difficult to compute the periods of the holomorphic three-form in an
integer symplectic basis. However, following [4], we will see in section 4 that one can
compute the periods in an arbitrary C-basis systematically around LCS. Combining this
with the perturbative type IIA result (2.29) then allows one to compute the period vector
systematically in an integral symplectic basis.

– 8 –
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3 Mirror symmetry for hypersurfaces

As we have reviewed in section 2, one can use the fundamental mirror symmetry relation (2.39)
to read off the exact type IIA prepotential F = Fpert. +Finst. from the type IIB periods (2.38)
expressed in a suitable integral symplectic basis

{
[α̃A], [β̃A]

}h̃2,1

A=0 of H3(X̃,Z). To achieve
this in practice, we will need to compute the period integrals in compactification on X̃, and
also compute the topological data of X appearing in (2.29).

Both computations are feasible in the context of Calabi-Yau hypersurfaces in toric
varieties. In this section we recall key properties of such hypersurfaces, with particular
attention to the gauge-invariant coordinates on complex structure moduli space.

3.1 Polytopes and moduli

Let M ≃ Z4 be a four-dimensional lattice, and let N ≃ Z4 be its dual lattice with respect to
the Euclidean inner product ⟨·, ·⟩. A lattice polytope ∆ is the convex hull of a finite set of
lattice points in M . A reflexive polytope is a lattice polytope ∆ ⊂ M whose polar dual

∆◦ ≡
{
p ∈ N | ⟨p, q⟩ ≥ −1 ∀q ∈ ∆

}
(3.1)

is also a lattice polytope. Since (∆◦)◦ = ∆, the dual of a reflexive polytope is reflexive.
Let T be a fine, regular, and star triangulation of a reflexive polytope3 ∆◦. Then, the

cones over the simplices of T define a toric fan ΣT of a smooth toric fourfold V∆◦,T ≡ V .
The one-dimensional cones (edges) in ΣT are the cones over the lattice points p ∈ ∆◦ other
than the origin. Given n such points we will label them as pI , I = 1, . . . , n. To each of
the pI we associate a generator of the Cox ring of homogeneous coordinates xI , and these
give rise to the toric divisors

D̂I := {xI = 0} ⊂ V∆◦,T , (3.2)

and more generally a cone over a simplex in ΣT defines a toric sub-variety of V∆◦,T via the
complete intersection of toric divisors associated with the edges of the cone.

A Z-basis of linear relations among the pI defines a GLSM matrix QaI , a = 1, . . . , n− 4.
Each row of Q encodes the scaling weight of the homogeneous coordinates xI under a C∗

equivalence relation

[x1 : . . . : xn] =
[∏
a

λQ
a

1
a x1 : . . . :

∏
a

λQ
a

n
a xn

]
, ∀λ⃗ ∈ (C∗)n−4 . (3.3)

The toric divisor classes [D̂I ] generate H2(V∆◦,T ,Z), and can be written in terms of a basis
{[Ĥa}h

1,1(V )
a=1 as

[D̂I ] =
n−4∑
a=1

QaI [Ĥa] , (3.4)

and thus we have h1,1(V ) = n − 4.
3For simplicity of presentation we will take ∆◦ to be favorable. Extending our results to non-favorable

polytopes requires additional bookkeeping, but no new techniques.
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We may (over-)parameterize the Kähler form on V as

J =
∑
I

tI [D̂I ] , (3.5)

using h1,1(V ) + 4 redundant coordinates, or as

J =
∑
a

ta[Ĥa] , ta := QaI t
I , (3.6)

using h1,1(V ) gauge-invariant coordinates on the Kähler cone of V .
The dual polytope ∆ ≡ (∆◦)◦ encodes the holomorphic monomials of the anti-canonical

line bundle OV (−K) as follows. We will denote the integer points in ∆ other than the origin
by qĨ , Ĩ = 1, . . . ,m. Each of the qĨ defines a monomial

sĨ :=
n∏
I=1

x
⟨pI ,qĨ⟩+1
I , (3.7)

and we further define s0 :=
∏
I xI , and

SĨ :=
sĨ
s0
. (3.8)

A GLSM charge matrix Q̃ã
Ĩ

for the dual polytope ∆ defines multiplicative relations among
the sĨ , ∏

Ĩ

(
SĨ
)Q̃ã

Ĩ = 1 , ∀ã = 1, . . . ,m− 4 . (3.9)

A generic anti-canonical hypersurface X in V is the vanishing locus of a polynomial

f = Ψ0S0 −
m∑
Ĩ=1

ΨĨSĨ , (3.10)

specified in terms of m + 1 complex parameters ΨĨ . Such a hypersurface X is a smooth
Calabi-Yau [10].

We thus see that points in ∆◦ correspond to divisors of V , while points in the dual
polytope ∆ correspond to monomials of the anti-canonical line bundle. For our purposes, in
both ∆ and ∆◦, it suffices to consider points not interior to facets. Toric divisors associated
to points interior to facets of ∆◦ do not intersect the generic Calabi-Yau hypersurface X,
while part of the automorphism group of V can be used to gauge fix ΨĨ = 0 for all Ĩ with
qĨ interior to a facet of ∆.

Even after this gauge fixing prescription, the coordinates ΨĨ still overparameterize the
moduli space. First, the ΨĨ are at most projective coordinates on the space of inequivalent
Calabi-Yau hypersurfaces, because polynomials differing only by an overall C∗ scale lead to
the same hypersurface. Second, non-trivial scaling symmetries acting on the toric coordinates
lead to distinct choices of coefficients leading to hypersurfaces related by automorphisms.
For generic coefficients we can use

ψ̃ã :=
∏
Ĩ

(
ΨĨ

Ψ0

)Q̃ã
Ĩ

, (3.11)
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Figure 1. The fans (black) and convex hulls (blue) of P2 (left) and P2/Z3 (right).

with ã = 1, . . . , h2,1(X), as gauge-invariant local coordinates. Globally, however, discrete
symmetries of V (or intrinsic symmetries of X) may still identify the threefolds X arising
from some distinct ψ̃ã.

Exchanging ∆◦ ↔ ∆ in the above construction gives rise to the mirror dual X̃, as shown
by Batyrev. We denote by ψa the gauge-invariant coordinates on the complex structure
moduli space of X̃, and the map between the moduli is

logψa

2πi = ua +O(e2πita) . (3.12)

For a detailed implementation of the mirror map, see section 4.

3.2 Example of a cubic in P2

Let us briefly exhibit the above with a very simple example: a cubic in P2. The edges of
the toric fan of P2 are the cones over the points (see figure 1)(

p1 p2 p3
)
=
(
1 0 −1
0 1 −1

)
, (3.13)

which satisfy p1 + p2 + p3 = 0, so the GLSM charge matrix is Q = (1, 1, 1). The convex hull
over these points defines ∆◦, and we have three homogeneous coordinates

[x1 : x2 : x3] = [λx1 : λx2 : λx3] , ∀λ ∈ C∗ . (3.14)

The dual polytope ∆ ≡ (∆◦)◦ contains the points (see figure 1)(
q1 · · · q9

)
=
(
−1 −1 2 −1 −1 0 1 0 1
2 −1 −1 1 0 1 0 −1 −1

)
, (3.15)

as well as the origin. There are ten anti-canonical monomials

(s0, . . . , s9) = (x0x1x2, x
3
2, . . . , x

2
1x0) −→ (S1, . . . , S9) =

(
x2

2
x0x1

, . . . ,
x1
x2

)
. (3.16)

Starting with a general linear combination of these monomials, we may use up all but the
diagonal part of the PGL(3,C) symmetry group of P2 in order to set to zero the coefficients
of all but the vertex monomials,

f → Ψ0x1x2x3 −Ψ1x
3
1 −Ψ2x

3
2 −Ψ3x

3
3 . (3.17)
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The vanishing locus defines an elliptic curve, and its complex structure is parameterized
by a gauge invariant coordinate

ψ := Ψ1Ψ2Ψ3
Ψ3

0
. (3.18)

Indeed, the complex structure τ of the elliptic curve defined by the vanishing of (3.17) is
determined by the discriminant

Disc(ψ) = 1− 27ψ , (3.19)

via
j(τ) = 27(8Disc − 9)3

Disc3(Disc − 1)
, (3.20)

where j(τ) is the modular invariant j-function.
The toric fan obtained by promoting the three vertices (q1, q2, q3) to edges of a toric fan

is the fan of P2/Z3. As the remaining points on the boundary of ∆ are interior to facets, the
generic anti-canonical divisor is smooth, and is again an elliptic curve. Thus, as expected
the mirror of an elliptic curve is again an elliptic curve.

4 Computing periods and the prepotential

4.1 Fundamental period

On the type IIB side of the mirror map, the prepotential can be determined by computing
the period integrals (4.19) in an integral symplectic basis. For a Calabi-Yau hypersurface
defined by the vanishing of a generic anti-canonical polynomial f in a toric fourfold, it
turns out to be straightforward to obtain the period integrals by computing a fundamental
period, as we will now explain.

We will consider a dual pair of reflexive polytopes (∆,∆◦), and, following the conventions
set in section 3, we let (T̃ , T ) be FRSTs of these polytopes, and we denote by (X̃,X) the
respective generic Calabi-Yau hypersurfaces.

By definition the toric variety Ṽ contains a dense algebraic torus (C∗)4, parameterized
by C∗-valued coordinates (t1, . . . , t4). For a smooth simplicial toric fourfold Ṽ this is easy to
make explicit: one considers the dense subset U :=

{
[x1 : . . . : xn] ∈ Ṽ |xĨ ̸= 0 ∀Ĩ

}
, where

one can gauge fix all the toric scaling relations. For example, one may pick a full-dimensional
simplex σ of the triangulation T̃ , and set xq = 1 for all q /∈ σ. The remaining four coordinates
can be taken to be (t1, . . . , t4).

The holomorphic three-form Ω̃ of X̃ can be written as the contour integral

Ω̃ =
∮
f=0

dt1 ∧ dt2 ∧ dt3 ∧ dt4

(2πi)4 · f(t) . (4.1)

Next, we fix an ϵ≪ 1 and set ti = ϵ · e2πiϕi for i = 1, 2, 3, as a function of phases ϕi ∈ [0, 1).
We restrict the coefficients of the polynomial f to take values such that f = 0 has a solution
branch for t4(t1, t2, t3) = O(ϵ). This solution branch defines a T 3 ⊂ X̃, which can be thought
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of as the SYZ fiber [7]. The integral of Ω̃ over this three-torus can be written as a contour
integral over the vanishing loci of the t

i:

ϖ0(ψ) := Ψ0
∫
T 3

Ω̃ = Ψ0
∮
|t1|=ϵ

dt1

2πi · · ·
∮
|t4|=ϵ

dt4

2πi
1

f(t) . (4.2)

The relation (4.2) defines the fundamental period ϖ0(ψ).
Using the residue theorem one can evaluate this expression. Namely, we have

ϖ0(ψ) =
∮

dt1

2πit1 · · ·
∮

dt4

2πit4
1

1−
∑
i

ΨI

Ψ0SI
=

∞∑
k=0

(∑
I

ΨI

Ψ0SI

)k∣∣∣∣∣∣
t-independent

, (4.3)

where on the right-hand side for each k one keeps only the constant terms in the expansion
of
(∑

I
ΨI

Ψ0SI
)k

.
Applying the multinomial theorem one further simplifies the fundamental period to

ϖ0(ψ) =
∞∑
k1=0

· · ·
∞∑

kh2,1+4=0

(
∑
I kI)!∏
I kI !


∏h2,1+4
I=1

(
ΨI

Ψ0

)kI if kIq
I = 0

0 otherwise
, (4.4)

where we used that by virtue of (3.9),
∏
I S

kI
I = 1 if and only if the vector kI defines a linear

relation
∑
I kIq

I = 0 among the points qI of the dual polytope ∆◦.
But a linear relation among the points in ∆◦ defines a curve class in the mirror toric

variety V (defined by an FRST of ∆◦), and in its corresponding Calabi-Yau hypersurface X,
so instead we may sum over curve classes in H2(V,Z) defined by the GLSM matrix

kI =
h1,1(V )∑
a=1

naQ
a
I , (4.5)

subject to the constraint that the kI ≥ 0. In other words one sums over all curve classes
in V that have non-negative intersection with all the toric divisors DI . This identifies the
relevant curve classes as elements of the cone of movable curves MovV in the toric ambient
variety V , and in particular all such curves are effective in V .

Thus, we may express the fundamental period as

ϖ0(ψ) =
∑

n⃗∈MovV ∩H2(V,Z)

Γ(1 + naQ
a

0)∏
I Γ(1 + naQaI)

ψn⃗ =:
∑
n⃗

cn⃗ψ
n⃗ , (4.6)

where Qa0 :=
∑
I Q

a
I is the anti-canonical divisor, we have replaced k! → Γ(1 + k) for later

convenience, and we have defined

ψn⃗ :=
h1,1(V )∏
a=1

(ψa)na . (4.7)

After writing the fundamental period as in (4.6) one can extend the sum to run over
all effective curve classes in H2(V,Z), i.e. over classes n⃗ ∈ MV ∩ H2(V,Z), with MV the
Mori cone4 of V . Let us explain why this is possible. Any effective curve n⃗ ∈ MV has

4To compute the Mori cone of a toric variety V we use the Oda-Park algorithm [25, 26].
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a non-negative intersection with the anti-canonical divisor, and so the numerator of c(n⃗)
remains regular. However, for n⃗ ∈ MV \ MovV , i.e. for curve classes in the complement of
MovV within the cone of effective curves, the denominator develops a pole. Thus the sum
in (4.6) remains unchanged upon extending the range from MovV to MV .

4.2 Picard-Fuchs system

We now turn to the Picard-Fuchs system, which is a system of linear partial differential equa-
tions that is equivalent to the first order Gauss-Manin system of a Calabi-Yau manifold [27, 28].

Due to the automorphisms of Ṽ , not just the fundamental period ϖ0, but in fact all
the period integrals, can be written as

Π⃗(Ψ0,ΨI) =: 1
Ψ0 ϖ⃗(ψ) , (4.8)

in terms of some functions ϖ⃗ that depend only on the gauge-invariant coordinates ψa.
The multiplicative relations among the monomials (3.9) imply that the period vector

satisfies a set of differential equations called the generalized Gelfand-Kapranov-Zelevinksy
(GKZ) hypergeometric system [29]. Concretely, for a choice of basis of linear relations such
that QaI ≥ 0, one finds[(

− ∂

∂Ψ0

)Qa
0
−
∏
I

(
∂

∂ΨI

)Qa
I

]
Π⃗(Ψ0,ΨI) = 0 . (4.9)

Using (4.8) one can rewrite (4.9) as the condition that a set of h̃2,1 differential operators
La in the ψa annihilate the normalized periods ϖ⃗,

L̂aϖ⃗(ψ) = 0 , ∀a = 1, . . . , h̃2,1 , (4.10)

where
L̂a := ψa(Θ̂0 +Qa0)× . . .× (Θ̂0 + 1)−

∏
I

Xa
I , (4.11)

in terms of

Xa
I := (Θ̂I − (QaI − 1))× . . .× (Θ̂I − 1)× Θ̂I , (4.12)

with Θ̂I :=
∑
aQ

a
Iθa, Θ̂0 :=

∑
aQ

a
0θa, and with logarithmic derivatives

θa := ∂
∂ log(ψa) . (4.13)

While all the periods satisfy this system of differential equations, the general solution
of (4.10) cannot be written as a linear combination of periods, i.e. the rank of (4.10) is larger
than 2h̃2,1 + 2. However, one could try to factor the differential operators to find a lower
rank system of differential operators La such that the general solution of

Laϖ⃗(ψ) = 0 , ∀a = 1, . . . , h̃2,1 , (4.14)

is a linear combination of periods [4, 6]. This direct approach has two limitations. The
first is that computing the Picard-Fuchs system by reducing the generalized GKZ system
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is computationally challenging and quickly becomes intractable even for modest numbers
of moduli. The second is that in some cases the GKZ system must be supplemented with
additional data that can be difficult to compute [4].

One would therefore like to bypass the computation of the Picard-Fuchs system in
determining period integrals. An elegant solution to this problem provided by [4, 6] is as
follows. One considers a special point u∗ in moduli space around which the monodromy
is maximally unipotent [30]: this is called a large complex structure (LCS) point. At u∗,
all but one of the linear combinations of the period integrals degenerate. Said differently,
at u∗ the Picard-Fuchs system reduces to the principal part of the Picard-Fuchs system.
As proven in [6], because the solutions to the Picard-Fuchs system maximally degenerate
at u∗, a basis of solutions expanded around u∗ can be obtained via the Frobenius method.
This result relies on the structure of the Picard-Fuchs system and the existence of points
of maximal unipotent monodromy.

Unfortunately, a direct computation of the principal part of the Picard-Fuchs system is
not substantially easier than computing the entire Picard-Fuchs system. The key to a direct
computation of the periods is mirror symmetry, which equates LCS points with large volume
limits of mirror dual Calabi-Yau manifolds [1, 7]. In particular, the LCS monodromies are
identical to the large volume monodromies that we have laid out in detail in section 2.1.2, which
in turn are determined entirely by classical geometric data — in particular the intersection
form — of the mirror threefold. While computing intersection forms of Calabi-Yau threefolds
with many moduli has long been inaccessible, this problem has recently been overcome [11, 31],
making the computation of the required classical geometric data readily available.

With these tools in hand, we can write the general Calabi-Yau periods ϖ⃗ around
an LCS point as suitable linear combinations of the fundamental period ϖ0, and of the
logarithmic functions

ϖa(ψ) =
∑

n⃗∈MV

∂ρa

2πi
(
cn⃗+ρ⃗ ψ

n⃗+ρ⃗
)∣∣∣∣
ρ⃗=0

, ϖab(ψ) =
∑

n⃗∈MV

∂ρa∂ρb

(2πi)2

(
cn⃗+ρ⃗ ψ

n⃗+ρ
)∣∣∣∣
ρ⃗=0

,

ϖabc(ψ) =
∑

n⃗∈MV

∂ρa∂ρb
∂ρc

(2πi)3

(
cn⃗+ρ⃗ ψ

n⃗+ρ⃗
)∣∣∣∣
ρ⃗=0

. (4.15)

Expanding these around the LCS point at zeroth order in ψ one obtains

ϖ0 ≃ 1 , ϖa ≃ log(ψa)
2πi ,

1
2κabcϖ

ab ≃ 1
2κabcϖ

aϖb − 1
24ca

1
3!κabcϖ

abc ≃ 1
3!κabcϖ

aϖbϖc − 1
24caϖ

a + ζ(3)
(2πi)3χ , (4.16)

which can be verified using the fact that

ca == 1
2κabc

(
Qb0Q

c
0 −

∑
I

QbIQ
c
I

)
, (4.17)

χ = −1
3κabc

(
Qa0Q

b
0Q

c
0 −

∑
I

QaIQ
b
IQ

c
I

)
, (4.18)

– 15 –



J
H
E
P
0
1
(
2
0
2
4
)
1
8
4

as follows from the adjunction formula. Comparing with the period vector obtained from
the prepotential (2.29), one concludes that

Π(ψ) = 1
ϖ0


1
3!κabcϖ

abc + 1
12caϖ

a

−1
2κabcϖ

bc + aabϖ
b

ϖ0
ϖa

 , (4.19)

where we have used the freedom to rescale Ω̃(ψ) to fix the overall normalization of Π(ψ) so that
it matches the form one gets from a prepotential, in the conventions used in (2.8). Importantly,
the boundary data at LCS is sufficient to fix all integration constants, as shown in section 2.1.2.

4.3 Periods for a cubic in P2

Let us illustrate the method of [4] by continuing to treat the example of a cubic in P2, as
in section 3.2. First, the fundamental period reads

ϖ0(ψ) =
∞∑
n=0

Γ(1 + 3n)
Γ(1 + n)3ψ

n = 2F1

(1
3 ,

2
3 , 1, 1−Disc

)
, (4.20)

where Disc denotes the discriminant, and the GKZ differential operator is

L̂ = 3ψ(3θ + 3)(3θ + 2)(3θ + 1)− θ3 = θ ×
(
3ψ(3θ + 2)(3θ + 1)− θ2

)
≡ θ × L . (4.21)

The operator L defined via the above factorization annihilates the general period, and defines
the hypergeometric differential equation of degree (1

2 ,
2
3 , 1). The logarithmic solution defined

by applying the prescription (4.15) is indeed the second solution to Lϖ⃗ = 0,

ϖ1(ψ) =
∞∑
n=0

∂ρ
2πi

(
c(n+ ρ)ψn+ρ

)∣∣∣∣
ρ=0

= log(ψ)
2πi ϖ0(ψ) + 3

∞∑
n=0

(3n)! · (H3n −Hn)
(n!)3 ψn

= i√
3 2F1

(1
3 ,

2
3 , 1,Disc

)
, (4.22)

where Hn is the nth harmonic number.
Normalizing the period vector of the elliptic curve as

Π⃗ =
(
τ

1

)
:=
(
ϖ1(ψ)/ϖ0(ψ)

1

)
, (4.23)

one then recovers a well-known expression for the inverse of the j-function,

τ = i√
3

2F1
(

1
3 ,

2
3 , 1,Disc

)
2F1

(
1
3 ,

2
3 , 1, 1−Disc

) . (4.24)

4.4 Enumerative invariants

The first conclusion we draw from (4.19) is that the flat coordinates ua can be expanded
for suitable ψa as

ua = ϖa

ϖ0
= log(ψa)

2πi + 1
2πi

ca(ψ)
ϖ0

, (4.25)
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where we define power series ca(ψ) via the perturbative expansion

ca(ψ) :=
∑

n⃗∈MV

can⃗ ψ
n⃗ , with can⃗ := ∂ρacn⃗+ρ⃗

∣∣∣
ρ⃗=0

. (4.26)

Similarly, we define

cab(ψ) :=
∑

n⃗∈MV

cabn⃗ ψn⃗ , with cabn⃗ := ∂ρa∂ρb
cn⃗+ρ⃗

∣∣∣
ρ⃗=0

. (4.27)

In terms of these variables we may write the periods as

Fa = −1
2κabc

ϖbc

ϖ0
+ aab

ϖb

ϖ0
= −1

2κabcu
buc + aabu

b + ca
24 − 1

2(2πi)2κabc
ĉbc − cbcc

ϖ0
, (4.28)

where

ĉab(ψ) :=
∑

n⃗∈MV

ĉabn⃗ ψ
n⃗ :=

∑
n⃗∈MV

(
cabn⃗ − π2

6
[
Qa0Q

b
0 −

∑
I

QaIQ
b
I

]
cn⃗

)
ψn⃗

≡ cab(ψ)− π2

6
[
Qa0Q

b
0 −

∑
I

QaIQ
b
I

]
ϖ0 . (4.29)

Comparing with (2.33), we find

∑
n⃗∈MX

naGV0
n⃗ Li2

(
ψn⃗ exp

(
nb

cb(ψ)
ϖ0(ψ)

))
= 1

2κabc
ĉbc(ψ)− cb(ψ)cc(ψ)

ϖ0(ψ)
, (4.30)

where we have restricted the sum to run over n⃗ ∈ MX ⊂ MV , as GV0
n⃗ = 0 for n⃗ outside MX .

The master formula (4.30) can be evaluated on both sides order by order in the ψa,
thus determining all the GV invariants systematically. Notably, the series coefficients of the
relevant power series for ϖ(ψ), ca(ψ) and ĉab(ψ) are all rational.5

A few comments are in order: we have written all period components as sums over curve
classes in the Mori cone MV of the ambient toric variety V , but the formulas for ϖ0 and ϖa

make no reference to a choice of triangulation T of the polytope ∆◦, which determines the toric
fan of V and thereby MV . Therefore, one expects that only curve classes in the intersection
of all the Mori cones — associated with the set of toric varieties obtained via all possible
FRSTs of ∆◦ — can contribute. Indeed, curves in MV that shrink across bistellar flips in
V have negative intersection with two of the toric divisors, leading to a double pole in the
denominator of c(n⃗). Therefore, these curves can at most contribute to ϖab and ϖabc, but not
to ϖa and ϖ0. The periods Fa in (4.28) do depend on the choice of triangulation of ∆◦, both
through the intersection form κabc, as well as through the set of curves that contribute to ϖab.

Next we turn to a technical but computationally important point regarding the sum
over curves in MV : on the one hand it turns out that the Mori cone MV of an ambient
variety V is often much larger than the Mori cone of its Calabi-Yau hypersurface MX , so
evaluating (4.30) over many points in MV can come a significant computational cost while

5Formulas for the cn⃗ and ĉab
n⃗ are given in appendix A, following, with some minor simplifications, appendix A

of [4].
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only predicting very few non-vanishing GV invariants. On the other hand, many birational
morphisms between toric varieties associated with different triangulations of the polytope
∆◦ do not actually affect the generic Calabi-Yau hypersurface.

We can make use of this fact and evaluate polynomials only within the intersection of
MV with all the Mori cones MV ′ of toric varieties V ′ that are birational to V and such that
the generic Calabi-Yau hypersurface remains smooth across the birational transformation
V → V ′. We will denote this cone by M∩

V . Typically one finds that M∩
V is a decent outer

approximation to MX , and in all cases MX ⊆ M∩
V . Computing M∩

V directly in geometries
with exponentially many phases is infeasible, but one of the authors has devised an effective
algorithm for obtaining M∩

V [32] that underlies the overall success of our method at large
numbers of moduli.

4.5 Consistent truncation of instanton spectrum

The strategy will be to evaluate equation (4.30) order by order in expansion in the ψa. In order
to do this efficiently and consistently, one has to truncate the semi-group of effective curves in
M∩

V to a finite set of curves, which truncates the infinite power series in the ψa to polynomials.
In order to compute the GV invariants of a set of curves S, one has to be a bit careful about

the truncation scheme. Evaluating both sides of (4.30) can essentially be split into two steps:

(a) Computing the coefficients cn⃗, can⃗, and cabn⃗ of monomials in ϖ0(ψ), ca(ψ) and cab(ψ),
cf. (4.6), (4.26), (4.27).

(b) Evaluating basic functions thereof.

The resulting coefficient of a monomial associated with a curve class n⃗ ∈ M∩
V in the

expansion of (4.30) generically depends on all the coefficients of the output of step (a) — i.e.
the coefficients cn⃗′ , can⃗′ and cabn⃗′ — for all curve classes n⃗′ ∈ MV such that

n⃗ = n⃗′ + n⃗′′ , (4.31)

for some n⃗′′ ∈ M∩
V . Therefore, truncating all power series in ψa to a finite set S of curves in

M∩
V leads to a consistent perturbative scheme determining the GV invariants of all curves

in S if and only if S is subject to a sort of ‘causality’ constraint: for a point n⃗ ∈ M∩
V we

can define its causal diamond

♢V (n⃗) := M∩
V

⋂(
n⃗−M∩

V

)
, (4.32)

where n⃗−M∩
V is minus the cone M∩

V translated by n⃗. The causality constraint is that

♢V (n⃗) ⊂ S , ∀n⃗ ∈ S . (4.33)

One simple way to pick such a region S is by letting S = ♢V (n⃗0) for some fixed choice of
n⃗0 ∈ M∩

V . We will call this method the past light cone method.
Another simple possibility is to choose an integer grading vector d⃗ in the strict interior

of the Kähler cone, i.e.

d⃗ ∈
(
K∪
V − ∂K∪

V

)
∩H2(V,Z) , (4.34)
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where K∪
V is the cone dual to M∩

V . Such a grading vector defines a semi-group homomorphism
that we will call the degree of a curve,

deg
d⃗
: M∩

V → N , n⃗ 7→ ⟨n⃗, d⃗⟩ . (4.35)

We then choose an integer cutoff degree ℓ ∈ N. The semi-group homomorphism property
guarantees that for each curve n⃗ with degree dn⃗ ≤ ℓ, all sets of effective curves that can
be added to yield n⃗ have degrees ≤ dn⃗ ≤ ℓ and are thus automatically included in the
computation scheme. In other words, truncating all power series to effective curves with
degree below any given cutoff deg

d⃗
(n⃗) ≤ ℓ defines a set of curve classes that satisfies the

causality constraint (4.33), and one may set

S → S
d⃗,ℓ

:=
{
n⃗ ∈ M∩

V | deg
d⃗
(n⃗) ≤ ℓ

}
. (4.36)

We will refer to this method as the degree method.
The degree method is particularly useful for approximating the prepotential, evaluated

at some point u⃗0 in moduli space, to fixed precision ϵ: one first finds a nearby rational
point d⃗′ ≈ Im(u⃗0), and clears denominators d⃗ = k · d⃗′ with k ∈ N. One then uses d⃗ as the
grading vector, taking a cutoff degree

ℓ =
⌈
k · log(1/ϵ)2π

⌉
. (4.37)

The most general consistent truncation scheme is generated by the causal diamonds
of any finite set of curves S ′, i.e.

S =
⋃
n⃗∈S′

♢V (n⃗) . (4.38)

The number of points in M∩
V up to some cutoff degree ℓ scales as the volume of the region,

#(S
d⃗,ℓ
) ∼ ℓh

1,1
. (4.39)

Consider for instance a smooth simplicial cone M∩
V and a curve n⃗0 = (k, . . . , k) for some

k > 0. Then,

#
(
♢V (n⃗0)

)
= (1 + k)h1,1

, (4.40)

which, for the largest Hodge number h1,1 = 491, is already of order 6× 10147 for k = 1. Thus,
for large h1,1, computing GV invariants to parametrically large cutoff degree is exponentially
expensive. Nevertheless, we will be able to compute large numbers of nonzero GV invariants,
even at h1,1 = 491, after making suitable choices of grading vectors and working to modest
cutoff degrees.

Alternatively, one can choose n⃗0 to lie in a low-dimensional face m of M∩
V . Then the

causal diamond ♢V (n⃗) lies entirely in m and the computational cost of computing GV
invariants within m scales as

#
(
♢V (ℓ · n⃗0)

)
∼ ℓdim(m) . (4.41)
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We would like to highlight the special case where n⃗0 is proportional to an extremal ray of
the Mori cone, i.e. dim(m) = 1. In this case, even at very large h1,1, ♢V (n⃗0) is a sequence
of curves on the extremal ray, and the computation of GV invariants along it is roughly as
expensive as the computation of GV invariants at h1,1 = 1.

In section 7 we give examples that illustrate each of the above methods.

5 Computational algorithm

Thus far we have described an extension of the ideas of HKTY [4] that in principle allows
one to compute the prepotential in an arbitrary mirror pair of Calabi-Yau hypersurfaces.
We now turn to a practical implementation.

The best-developed public software for performing the mirror map along the lines of [4]
is the Instanton package for Mathematica, developed by Klemm and Kreuzer [33].

Apart from the limitations inherent to the original HKTY procedure, Instanton also
struggles to compute high-degree GV invariants, to handle Calabi-Yaus with a large number
of moduli, and to make use of parallelization capabilities present in modern systems. For
these reasons we rewrote the entire procedure in the C++ programming language, making
a number of functional improvements.

Let us describe how the algorithm works. Given a Calabi-Yau hypersurface, a grading
vector d⃗, and a choice of maximum degree ℓ, we start by constructing the full list of points
(i.e. monomials) whose degree is no larger than ℓ. The monomials are sorted by degree and
arranged in a list. We also construct a hash map6

A central part of the algorithm is the efficient handling of polynomials with a given trun-
cation. Whereas additions and subtractions are simple operations, polynomial multiplication
is an expensive operation of time complexity O(n2). Empirically, one finds that most polyno-
mials are appreciably sparse, making multiplication using Fast Fourier Transforms (FFTs)
impractical. Further complications include the high dimensionality and the extraordinarily
large coefficients that appear. These large numbers need to be stored either as multi-precision
floating-point numbers with MPFR [34] or as arbitrary-precision integers with GMP [35]. These
data types are dynamically allocated and are expensive to allocate and deallocate, which
makes FFTs more impractical. Thus, we tailor the data structures to make polynomial
multiplication as efficient as possible, since this will be the bottleneck of the algorithm.

We represent each polynomial with a data structure containing the indices and coefficients
of monomials with non-zero coefficients. Additionally, we store an ordered list of indices by
degrees either intrinsically, or with an auxiliary vector. This information helps speed up
the multiplication operations, as we now discuss.

The multiplication procedure begins by constructing a hash map P that will store the
indices corresponding to coefficients of the resulting polynomial. One then performs two
nested for-loops that iterate over the monomials in each polynomial ordered by degree. At
each step, one multiplies the monomials, uses the hash map M to find the corresponding

6A hash map, also known as a hash table or dictionary, is a data structure that stores pairs of keys and
values, and performs the mapping from keys to values using a so-called hash function. This function converts
keys into indices that directly indicate the location of the corresponding value, which results in very efficient
evaluation by avoiding iterations over the set of values.
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index, and then multiplies the coefficients and modifies P to store the information. Iterating
over the monomials sorted by degree allows one to break out of the inner loop early, as
soon as the product of the monomials exceeds the specified maximum degree. This escape
significantly speeds up the procedure. The last step is to convert the hash map P into the
data structure of the resulting polynomial. Note that we could have used a different hash
map M′ that maps pairs of indices to another index, but in practice this uses immoderate
amounts of memory when dealing with a large number of monomials.

Toy Multiplication example. Suppose that the generating monomials are x0
and x1, the grading vector is (1, 1), and the maximum degree is 2. The list of sorted
monomials and hash map M are given by

L =

x0 x1



0 0 0
1 0 1
2 1 0
3 0 2
4 1 1
5 2 0

, M =



(0, 0) → 0
(0, 1) → 1
(1, 0) → 2
(0, 2) → 3
(1, 1) → 4
(2, 0) → 5


. (5.1)

Let us work through the multiplication of p = 2x1 +4x0x1 and q = 3+x0 +3x2
1. The

first step is to construct an empty hash map P = {}. Then with nested for-loops we
multiply the monomials. We start with the product of 2x1 and 3. First we compute
(0, 1) + (0, 0) and use M to figure out that the resulting monomial has index 1. We
then multiply the coefficients to obtain 6. Since P does not contain the index 1 we
add the entry 1 → 6. Similarly, we then multiply 2x1 and x0, and add the entry
4 → 2. Finally, before multiplying 2x1 by 3x2

1 we note that the resulting monomial
will be of degree 3, so we skip the computation. We now turn to the next iteration
of the outer loop. As before, when multiplying 4x0x1 by 3 we find that the resulting
monomial has index 4, but now this index is already in P. Hence, we modify the
entry in the hash map to read 4 → 14. Finally, we note that multiplying 4x0x1 and
x0 would exceed the maximum degree, so we break out of the inner loop. Note that
we saved some time by not even considering the product of 4x0x1 and 3x2

1, and in
more complex examples this kind of time savings is very significant. This illustrates
the importance of storing the monomials of a polynomial sorted by degree. The last
step of the computation would be to turn the hash map P = {4 → 14, 1 → 6} into
the appropriate data structure representing the polynomial pq = 6x1 + 14x0x1.

Let us now compute enumerative invariants by carrying out the procedure explained
in section 4.4 and section 4.5. We start by computing the coefficients cn⃗, can⃗, and ĉabn⃗
in (4.6), (4.26), and (4.29), respectively, using the formulas presented in section A. Since
each coefficient is independent, this can easily be done in parallel.

– 21 –



J
H
E
P
0
1
(
2
0
2
4
)
1
8
4

(a) Fix a degree d, starting from d = 1.

(b) Find all curves at degree d, and form the set S := {C ∈ MX |deg(C) = d}. Since at linear
order ψn⃗ = qn⃗, the GW or GV invariants can be read off from the coefficient of the
corresponding monomial in F inst.

a , cf. (5.3). Thus, we extract all invariants from the
curves in S.

(c) Compute either qn⃗ or Li2(qn⃗) for all curves in S in parallel. This is the most expensive
step in the entire algorithm, as it involves many polynomial multiplications. To improve
efficiency, we keep some intermediate results, so that subsequent computations require
fewer polynomial multiplications.

(d) Subtract the computed terms, multiplied by the appropriate factor, so as to eliminate
the corresponding monomials in F inst.

a .

(e) Increment d by one, and repeat from the first step, until the maximum degree is reached.

Algorithm 1. Find enumerative invariants iteratively.

These coefficients are then used to construct the right-hand side of (4.30), which captures
instanton contributions to the derivative of F :

−(2πi)2F inst.
a = 1

2κabc
ĉbc(ψ)− cb(ψ)cc(ψ)

ϖ0(ψ)
. (5.2)

The remaining task is to express the right-hand side as a sum of either qn⃗ or Li2(qn⃗).

−(2πi)2F inst.
a =

∑
n⃗∈MV

naGW0
n⃗ q

n⃗ =
∑

n⃗∈MV

naGV0
n⃗ Li2(qn⃗) , (5.3)

where
qn⃗ := ψn⃗ exp

(
nb

cb(ψ)
ϖ0(ψ)

)
. (5.4)

This could be done by inverting the series to find ψn⃗ as a series in qn⃗. However, it is much
more efficient to extract the enumerative invariants degree-by-degree. The procedure works
as shown in algorithm 1.

6 GV invariants of toric curves

In this section we will obtain formulas for the GV invariants of very simple curve classes,
without using mirror symmetry. We will use these analytical results as a check of the
correctness of the computation of GV invariants using mirror symmetry in section 4. As
in [36], we will restrict to rational curves with smooth moduli spaces M for which the GV
invariant is computed by the simple formula

GV0 = (−1)dim(M)χ(M) , (6.1)

where χ is the topological Euler characteristic.
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6.1 Complete intersection curves

First, we will define simple classes of complete intersection curves in Calabi-Yau threefold
hypersurfaces, whose GV invariants we will be after.

As in section 3, we consider a generic Calabi-Yau hypersurface X in a toric variety V
whose toric fan Σ is defined via an FRST T of a reflexive polytope ∆◦. In this setting, we
consider any pair (pI , pJ) of points in ∆◦ associated with toric divisors (D̂I , D̂J). We then
examine the effective curve CIJ in X that arises via the complete intersection of this pair
of toric divisors with the Calabi-Yau hypersurface, i.e.

CIJ := D̂I ∩ D̂J ∩X ≡ DI ∩DJ , (6.2)

with DI := D̂I ∩X. We will focus on the irreducible components of such a curve.
If the line ℓIJ running from pI to pJ is not an edge of T then D̂I ∩ D̂J = ∅, and thus

also CIJ = ∅. One draws the same conclusion if ℓIJ is an edge of T that is not contained in
any two-face of ∆◦: setting xI = xJ = 0 implies that the generic anti-canonical polynomial f
degenerates to a monomial, associated with the vertex of ∆ that is dual to the three-face
Θ◦

3 ⊂ ∆◦ containing ℓIJ . This monomial does not depend on any coordinates contained in
Θ◦

3, and thus the requirement f |xI=xJ =0 = 0 implies that xK = 0 for some K associated to a
point pK not contained in Θ◦

3. But then the {pI , pJ , pK} could not possibly lie in the same
cone of the toric fan defined by T , and thus again CIJ = ∅.

Thus, the only non-trivial complete intersection curves CIJ arise from pairs of points
contained in a shared two-face of ∆◦. We will make the following distinction. If the line ℓIJ
is contained in a one-face we will say that CIJ is a one-face curve, while if ℓIJ is contained
in a two-face but not in any one-face we will say that CIJ is a two-face curve. Similarly,
we will call a divisor DI a vertex divisor if it arises from a vertex of ∆◦, a one-face divisor
if it arises from a point interior to a one-face, and a two-face divisor if it arises from a
point interior to a two-face.

6.2 Gluing non-compact toric Calabi-Yau threefolds

It will turn out to be useful that certain open patches in compact Calabi-Yau threefold
hypersurfaces are isomorphic to non-compact Calabi-Yau threefolds that are toric vari-
eties themselves.

Let Θ◦
2 be a two-face of ∆◦. One may consider a dense open patch U(Θ◦

2) ⊂ V defined
by requiring that xI ̸= 0 for all I such that pI /∈ Θ◦

2. This patch U(Θ◦
2) is itself a toric

fourfold V̂Θ◦
2
, and its toric fan Σ̂Θ◦

2
arises from the subset of cones in the toric fan of V that

are contained in the cone over Θ◦
2. As all cones in Σ̂Θ◦

2
are contained in a three-dimensional

subspace of NR spanned by the points in Θ◦
2, we can view Σ̂Θ◦

2
as a set of cones in this

three-dimensional subspace, defining a toric fan ΣΘ◦
2

that in turn defines a toric threefold
VΘ◦

2
. We have V̂Θ◦

2
≃ C∗ × VΘ◦

2
, where the coordinate Z on the C∗ factor can be viewed

as the toric coordinate of an arbitrarily chosen point in ∆◦ not contained in Θ◦
2. As VΘ◦

2

is defined by a toric fan whose edges all lie in the same affine two-dimensional plane, we
have that VΘ◦

2
is Calabi-Yau, i.e. c1(TVΘ◦

2
) = 0.

As a simple example consider a two-face Θ◦
2 with three vertices and a single interior

point, as depicted in figure 1. In this case the local Calabi-Yau VΘ◦
2

is the total space of
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the line bundle OP2(−3), where the zero section ≃ P2 corresponds to the divisor π(DI)
associated with the interior point.

For a generic point in VΘ◦
2
, the defining polynomial equation of X amounts to an equation

for the C∗ coordinate in V̂Θ◦
2
≃ C∗×VΘ◦

2
, with g+1 distinct solution branches, for some g > 0.

Thus we may view the induced patch U(Θ◦
2)∩X in X as the branched cover of g+1 copies of

the toric Calabi-Yau threefold VΘ◦
2
, with n branches meeting over codimension-n loci in VΘ◦

2
,

π : U(Θ◦
2) ∩X → VΘ◦

2
. (6.3)

In other words we can view U(Θ◦
2) ∩ X as a fibration of a set of g + 1 points over VΘ◦

2
,

and (6.3) is the projection to the base.
The number of branches g can be computed by restricting to a toric point in VΘ◦

2
, i.e.

by setting xI = xJ = xK = 0 for (pI , pJ , pK) spanning a cone in ΣΘ◦
2
. Then the generic

anti-canonical polynomial reduces to a generic linear combination of monomials associated
with points in the dual one-face Θ1 ⊂ ∆, and only depends on the single C∗ coordinate Z:
it is independent of the coordinates of VΘ◦

2
. Letting k be the number of points in Θ1 ∩M ,

it follows that g + 1 = k − 1. Thus, g is equal to the number of interior points of the dual
one-face Θ, i.e. g is the genus of Θ◦

2.

6.3 Irreducible components of complete intersection curves

In order to compute GV invariants using (6.1) we first need to extract the irreducible
components of complete intersection curves.

Let CIJ be a two-face curve associated with a two-face Θ◦
2 of genus g. Along CIJ the

generic anti-canonical polynomial of V again reduces to a degree g + 2 polynomial in the C∗

coordinate Z, but does not depend on any of the coordinates of VΘ◦
2
. Thus, CIJ is isomorphic

to the disjoint union of g + 1 copies of π(CIJ) ⊂ VΘ◦
2
,

CIJ =
g+1∐
i=1

C(i)
IJ , (6.4)

where we label each component by an index i = 1, . . . , g + 1, C(i)
IJ ≃ π(CIJ).

Similarly, each two-face divisor DI is a disjoint union of g + 1 copies D(i)
I ≃ π(DI), and

each copy contributes a linearly independent class to H2(X,Z). If there exists at least one two-
face divisor DI with g > 0 then h1,1(X) > h1,1(V ) and H2(X,Z) is generated by all irreducible
components of the DI [10]. We will not assume that h1,1(X) = h1,1(V ) in what follows.

If CIJ is such that either DI or DJ is a two-face divisor, then any copies C(i)
IJ take values

in distinct numerical classes, because each copy C(i)
IJ intersects only with the local copy D(i)

J

but not with other copies D(j)
J with j ̸= i [37]. If instead neither DI nor DJ are two-face

divisors then all copies C(i)
IJ have the same numerical class,

[C(i)
IJ ] =

[CIJ ]
g + 1 . (6.5)

Furthermore, we note that the C(i)
IJ are toric varieties themselves, so they are rational curves,

i.e. they are isomorphic to P1. It is typically straightforward to find a triangulation for
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which any one of the [C(i)
IJ ] becomes a generator of the Mori cone of VΘ◦

2
, and each of the

[C(i)
IJ ] is also a generator of MX . In any event, whenever shrinking a curve class [C(i)

IJ ] in
VΘ◦

2
induces singularities merely along compact loci in VΘ◦

2
, we may compute the moduli

space of [C(i)
IJ ] using the local model VΘ◦

2
.

We wish to compute the GV invariants of irreducible components [C(i)
IJ ] ∈ H2(X,Z) of

two-face curve classes [CIJ ]. To this end, we first select a representative C(i)
IJ for some fixed

i, and consider its moduli space M[C(i)]|VΘ◦
2
, viewed as a curve in VΘ◦

2
.

6.4 Moduli space of curves and GV invariants

We are now ready to construct moduli spaces of curves, and from these, using (6.1), compute
GV invariants.

First, from the triple intersection numbers of X we can compute the normal bundle,

NC(i)|X = OX(π(DI))|C(i) ⊕OX(π(DJ))|C(i) ≃ OP1(m)⊕OP1(n) , (6.6)

where
m := κIIJ

g+1 and n := κIJJ
g+1 . (6.7)

As we have

2 = χ(P1) = χ(C(i)) = −κIIJ +κIJJ
g+1 = −m− n , (6.8)

one or both of the pair (m,n) = (m,−2 −m) must be negative.
Without loss of generality we set m ≥ n, and in particular n < 0. The normal bundle

factor corresponding to infinitesimal perturbations of C(i)
IJ away from the divisor π(DJ ) has no

global sections, and thus every point in the connected component of M[C(i)
IJ ]|VΘ◦

2

that contains

C(i)
IJ corresponds to a curve contained in π(DJ).

We now distinguish among three qualitatively different configurations of the triangulation
of Θ◦

2 around ℓIJ : see figure 2.

(a) (m,n) = (−1,−1). In this case the curve C(i)
IJ is an isolated rigid P1 that shrinks to a

conifold singularity, which is clearly compact in VΘ◦
2
.

(b) (m,n) = (0,−2): here the curve C(i)
IJ shrinks to a curve worth of A1 singularities in VΘ◦

2
.

The divisor π(DJ) degenerates to this curve of singularities, and so the singular locus
is compact in VΘ◦

2
if and only if DJ is a two-face divisor.

(c) m > 0: here the shrinking divisor π(DJ) is compact in VΘ◦
2

because convexity of Θ◦
2

implies that DJ is a two-face divisor — see figure 2.

For now, we restrict to two-face curves C(i)
IJ that yield compact singular loci: that is, either

m ̸= 0, or m = 0 and DJ is a two-face divisor. We will later return to the case m = 0
with DJ a one-face divisor.

The normal bundle factor corresponding to infinitesimal perturbations of C(i)
IJ away from

the divisor π(DJ) has no global sections, and every point in the moduli space M[C(i)
IJ ]|VΘ◦

2

– 25 –



J
H
E
P
0
1
(
2
0
2
4
)
1
8
4

 

pJ

pI

pJ

pI

pJ

pI

Figure 2. We show the three different relevant classes of two-face curves CIJ ≃ P1 arising from edges
in the triangulation of a two-face. We depict the edge corresponding to the two-face curve CIJ in
blue, and the adjacent triangles in black. Left: the normal bundle is O(−1)⊕O(−1). Middle: normal
bundle O ⊕O(−2). Right: normal bundle O(1)⊕O(−3).

corresponds to a curve contained in π(DJ). We may therefore equate M[C(i)
IJ ]|VΘ◦

2

with the

moduli space of curves in π(DJ ) in the class [π(DI)|π(DJ )] ∈ H2(π(DJ ),Z). Our (temporary)
simplifying assumption that the singular locus is compact implies that if this moduli space
is not just a point, then π(DJ) is a toric surface. For a toric surface π(DJ) the moduli
space M[C(i)

IJ ]|VΘ◦
2

is equal to the projectivization of the vector space of global sections

P
(
Γ(L(π(DI)|π(DJ )))

)
of the corresponding line bundle L(π(DI)|π(DJ )), i.e.

M[C(i)]|VΘ◦
2
≃ Pm+1 , (6.9)

which, in particular, is smooth.
Applying (6.1), the contribution to the GV invariant is

(−1)dim(Pm+1)χ(Pm+1) = (−1)m+1(m+ 2) . (6.10)

If either DI or DJ is a two-face divisor, the classes [C(i)
IJ ] are distinct and the GV invariant

is fully accounted for by (6.10). Otherwise, the [C(i)
IJ ] are all in the same class and so the

GV invariant of [C(i)] picks up a factor g + 1. In this case, the normal bundle is always
(m,n) = (−1,−1). Thus in total we get

GV0
[C(i)

IJ ]
=

(−1)m+1(m+ 2) if either DI or DJ is a two-face divisor ,
g + 1 otherwise ,

(6.11)

where g is the genus of the two-face Θ◦
2. We reemphasize that we have assumed that whenever

m = 0 the divisor DJ is a two-face divisor.
Next, we consider separately the case we have excluded in the above: we let C(i)

IJ be
a two-face curve with m = 0 and with DJ a one-face divisor. We again seek to compute
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the moduli space of curves in the class [C(i)
IJ ]. To this end, we recall from [37] that one-face

divisors DJ are isomorphic to P1 fibrations over genus-g′ Riemann surfaces Rg′ , or blow-ups
thereof, and each component C(i)

IJ is the fiber of such a fibration,

C(i)
IJ ≃ P1 ↪→ DJ ↠ Rg′ , (6.12)

where g′ is the genus of the corresponding one-face, i.e. the number of interior points in the
dual two-face of ∆. The moduli space of C(i)

IJ inside DJ corresponds to moving the fiber
P1 across the base, and therefore

M[C(i)]|X ≃ Rg′ , (6.13)

and we compute

GV0
[C(i)

IJ ]
= 2g′ − 2 . (6.14)

6.5 Summary

Let us summarize the results we have assembled for two-face curves. If CIJ = DI ∩DJ is a
two-face curve in a two-face Θ◦

2 of genus g, CIJ is the disjoint union of g + 1 components C(i)
IJ ,

i = 1, . . . , g + 1, each isomorphic to a P1, and these components fall into distinct numerical
classes if and only if DI or DJ is a two-face divisor. We have given formulas for the genus-zero
GV invariants of all such curves. In terms of m defined in (6.7), we obtained (6.11), which
applies whenever m ̸= 0, and also applies if m = 0 and DJ is a two-face divisor. In the
remaining case that m = 0 and DJ is not a two-face divisor, we have instead (6.14).

As an obvious extension of the above one can study moduli spaces of rational curves
associated with complete intersections C(i)

I,D := D̂
(i)
I ∩D ∩X where D is a general divisor,

with D2
ID < 0. In this case the moduli space of C(i)

I,D is again equivalent to the moduli
space of divisors in the class [D]

D
(i)
I

∈ H2(D(i)
I ,Z). If D(i)

I is toric, the GV invariant is
again given by (6.10) with

m = D
(i)
I D2 . (6.15)

We carry out this computation in the case of the mirror quintic in section 7.2. Alternatively,
one can employ the topological vertex formalism [38] to compute the GV invariants of general
compact curves in VΘ◦

2
, in order to predict the GV invariants of broader classes of curves in

X. Results along these lines appear in [39] for certain classes of curves in the mirror quintic.

7 Examples

In this section we will illustrate our methods in four examples: specifically, in Calabi-Yau
threefold hypersurfaces with (h1,1, h2,1) = (2, 272), (101, 1), (251, 251), and (491, 11).

For any Calabi-Yau threefold obtained from the Kreuzer-Skarke list, we can compute
GV invariants directly, in the full-dimensional Mori cone, after making an appropriate choice
of grading vector. Below we give the results of such a full-dimensional computation in
each of our examples.
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Even so, the number of curve classes below a given degree is exponential in h1,1, so
storing and manipulating the list of GV invariants becomes expensive at large h1,1, which
limits one to relatively low degrees. At the same time, for large h1,1 the vast majority of
effective curves have vanishing GV invariant. A more informative approach for h1,1 ≳ O(100)
is to compute GV invariants only in p-faces of the Mori cone, for p≪ h1,1. In the examples
below we will take p = 2, because the resulting invariants are readily displayed in a table.

All Calabi-Yau threefolds considered in this section are generic anti-canonical hypersur-
faces of toric varieties defined via an FRST T of a reflexive polytope ∆◦, as in section 3.

7.1 A threefold with h1,1 = 2, h2,1 = 272

As our first example we consider the threefold with h1,1 = 2, h2,1 = 272 obtained as a
hypersurface in CP[1,1,1,6,9]. We denote this threefold by X2,272. Because the Mori cone of
X2,272 is simplicial, there is a canonical grading vector — the sum of the two extremal rays
of the Kähler cone — and a canonical definition of degree.

The enumerative invariants of X2,272 are very well known at low degree [5]. We have
applied the methods explained in section 4 and section 5 to compute the GV invariants of
X2,272 up to degree 200: see table 4. This computation takes about six hours. As an example,
for the curve class with degree (43, 157) we find the GV invariant

GV0
[43,157] = 726245282995534934889897072915014141667911069397332002835106881

884864326532513820580918158765454662251079200060529562336828478433844506024852
438210575004841045244252519526429626073630184108775490151141849636436386659312
81247449246299904230532479568138146504970236927548171261686976659242173343606
57193483195016680692788147547267353684581662054434046775208949578420733506288
158136663478355005217789631576603692419373884907789272751959442276020880914706
818542923846400.

7.2 Mirror quintic threefold with h1,1 = 101, h2,1 = 1

As our next example we consider the mirror quintic. We have h1,1 = 101 and h2,1 = 1, and
we will denote the mirror quintic by X101,1.

The reflexive polytope ∆◦ ⊂ N is defined by vertices (p1, . . . , p5) equal to the columns of


−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

 . (7.1)

For later reference we also define the following points interior to one-faces of ∆◦,

(
p7 p8

)
:=


−1 −1
−1 −1
−1 −1
1 2

 , (7.2)
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Figure 3. The symmetric triangulation of the two-faces of ∆◦ for X101,1.

as well as the following points interior to two-faces,

(
p50 p68 p71 p100

)
:=


−1 −1 0 2
−1 2 −1 −1
1 0 −1 −1
1 −1 1 0

 . (7.3)

For the Delaunay FRST T of ∆◦ we have applied the methods explained in section 4
and section 5 to compute the GV invariants of the mirror quintic. We take the grading vector
to be [ℓ] + [γ], where ([ℓ], [γ]) ∈ H2(X,Z) are certain divisor classes considered in [36, 39].

Computing GV invariants up to degree 1 involves examining 305 nontrivial curves, all
of which turn out to have non-zero GV invariants. This computation takes a fraction of a
second. Working instead up to degree 4, one examines 360,378,675 curves, of which 2500
have nonzero GV invariants: see table 4. This computation takes more than a day and
requires 240 GB of RAM.

As a cross check, we note that certain coarse-grained enumerative invariants of the mirror
quintic, corresponding to specific sums of GV invariants, have been computed in [39], for this
particularly symmetric FRST of ∆◦ (we depict its induced triangulation of the two-faces
in figure 3).7 These are defined as

n0
i,j :=

∑
[C]∈MX : ⟨C,ℓ⟩=i , ⟨C,γ⟩=j

GV0
[C] . (7.4)

We have obtained the n0
i,j for i + j ≤ 4 directly from the GV invariants, and our results

agree with those of [36, 39].
Furthermore, we have used the past light cone method introduced in section 4.5 to

compute GV invariants along a two-dimensional face of the Mori cone. In general, even
finding extremal rays of the Mori cone is not straightforward, particularly because the Mori
cone of the toric ambient variety is typically larger than the Mori cone of the Calabi-Yau
hypersurface. In practice, however, one can find low-dimensional faces of the Mori cone via a
trial and error method, as follows. Given an irreducible curve class [C] — say one inherited
from the toric ambient variety via a complete intersection of toric divisors — one executes
the computation of GV invariants using the set of curves

S = {[C], 2[C], . . . , n[C]} , (7.5)

up to some suitably large multiple n.
7Furthermore, in the related work [36] the GV invariants of certain rational curves were computed directly.

– 29 –



J
H
E
P
0
1
(
2
0
2
4
)
1
8
4

k
l 0 1 2 3 4 5 6 7

0 ∗ 3 −6 27 −192 1695 −17064 188454
1 54 18 −82 612 −5850 64478 −779058 10035288
2 54 85 −684 7425 −93320 1274238 −18353016 274391046
3 72 312 −4140 63846 −1039290 17415504 −297187974 5134670850
4 54 945 −20440 436338 −9074592 185055084 −3719815650 73961593398
5 54 2620 −87318 2523096 −66193218 1629543600 −38372051916 874495652252
6 72 6783 −334128 12819195 −419524080 12376238193 −339633759600 8837783925906
7 54 16200 −1168632 58690260 −2372561334 83309928232 −2651437950876 78491030044392

Table 1. GV invariants GV0
k[C1]+l[C2] of X101,1 for l, k ≤ 7.

Following the discussion of section 4.5, if [C] is not a generator of the Mori cone of the
Calabi-Yau hypersurface, this GV computation is inconsistent. Now, from the perspective of
the computation detailed in section 4 the integrality of GV invariants is due to a miraculous
cancellation between rational terms. Therefore, one expects that the above computation
will not return integer GV invariants unless [C] is a generator of the Mori cone, or is not
effective at all. Thus, we conjecture that a one-dimensional ray as in (7.5), along which
the GV computation returns non-trivial integer invariants, corresponds to a generator of
the Mori cone, and the resulting integers are the GV invariants along the corresponding
one-face of the Mori cone.

Having found a set of generators of the Mori cone, one can consider the two-dimensional
cones spanned by pairs of these, and again execute the GV computation along these sub-
cones of the Mori cone. Again, if the computation returns integer invariants we conjecture
that the two-dimensional sub-cone is a two-face of the Mori cone. One could continue to
higher-dimensional sub-cones, but we stop at two-dimensional sub-cones because displaying
the results remains convenient.

In this way, for an FRST T obtained with a placing/pushing algorithm with TOP-
COM [40], we have found a pair of curve classes ([C1], [C1]) that span a two-face of the Mori
cone.8 We define the extremal generators via their intersection pairing q[C]

I :=
∫
X [C] ∧ [DI ]

with the prime toric divisors DI . The non-vanishing components are

q
[C1]
50,68,100 = (1, 1, 1) , q

[C2]
7,8,71,100 = (1, 1,−3, 1) . (7.6)

The computation of GV invariants along this two-face is highly efficient: we find O(103)
non-vanishing GV invariants in O(10) seconds on a laptop. We give the leading GV invariants
in table 1.

Finally, we note that the curve C2 can be represented by the complete intersection of
prime toric divisors C2 = D7 ∩D71, and along the facet of the Kähler cone where C2 collapses,
the toric divisor D71 shrinks to a point.

8For this purpose the placing/pushing triangulation has an advantage over the more symmetric Delaunay
triangulation used above. In asymmetric triangulations, the cone hosting infinite sequences of non-zero GV
invariants tends to be near a boundary of the Mori cone, so it is easier to find faces populated by many
non-zero GV invariants.
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7.3 A threefold with h1,1 = h2,1 = 251

For our next example we consider the reflexive polytope ∆◦ whose vertices (p1, . . . , p5) are
the columns of 

−903 0 0 0 1
−602 0 0 1 0
−258 0 1 0 0
−42 1 0 0 0

 . (7.7)

Again, we define a further set of points that will become relevant momentarily. The following
points are interior to one-faces of ∆◦,

(
p7 p12 p22 p31 p40

)
:=


−861 −774 −602 −451 −301
−574 −516 −401 −301 −200
−246 −221 −172 −129 −86
−40 −36 −28 −21 −14

 , (7.8)

and we further consider the following points interior to two-faces,

(
p101 p172

)
:=


−409 −193
−273 −129
−117 −55
−19 −9

 . (7.9)

This polytope is self-dual. A fine, star, regular triangulation of ∆◦ defines a toric variety
in which the generic anti-canonical hypersurface is a smooth Calabi-Yau threefold with
h1,1 = h2,1 = 251. As before, we choose the Delaunay triangulation, and denote the resulting
Calabi-Yau threefold by X251,251.

We have applied the methods explained in section 4 and section 5 to compute the GV
invariants of X251,251. As a simple choice of grading vector, one can take the tip of the stretched
Kähler cone, sufficiently scaled and rounded to be integral. Computing GV invariants up to
degree 20 in this grading involves examining 1,047,796 curves, of which 557 have non-zero GV
invariants: see table 4. This computation takes about two minutes on a desktop computer.

Moreover, as in the previous example, we also compute GV invariants along a (conjectured)
two-face of the Mori cone obtained from a placing/pushing triangulation. The face is generated
by the curves (C1, C2) with non-vanishing intersection pairings

q
[C1]
1,7,22,31,172 = (−3, 1, 2, 1, 1) , q

[C2]
1,12,31,40,101 = (−3, 2, 1, 1, 1) . (7.10)

We depict the GV invariants along the two-face in table 2.

7.4 A threefold with h1,1 = 491, h2,1 = 11

Our final example begins with the reflexive polytope ∆◦ whose vertices (p1, . . . , p5) are
the columns of 

−63 0 0 1 21
−56 0 1 0 28
−48 1 0 0 36
−42 0 0 0 42

 . (7.11)
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k
l 0 1 2 3 4

0 ∗ 7 −17 87 −670
1 7 −750 33940 −1131019 32301672
2 −17 33940 −7859136 882187785 −66568176839
3 87 −1131019 882187785 −251747830110 41218265699923
4 −670 32301672 −66568176839 41218265699923 −12971328454531146
5 6283 −841123371 3896195467041 −4696379732519631 2614426093633512280
6 −66432 20600533625 −191037468993574 413491534885669787 −382665656035954784333

Table 2. GV invariants GV0
k[C1]+l[C2] of X251,251 for l ≤ 4 and k ≤ 6.

 

p28

p1

p7

p6
p41

p14

Figure 4. Cartoon of the neighborhood of the vertex p1 ∈ ∆◦. Blue lines represent one-faces ending in
p1, and purple dotted lines represent edges of the triangulation of two-faces. Note that this illustration
has its shortcomings: the seemingly interior one-face containing (p6, p7) is a one-face of three distinct
three-faces, and each of these includes two of the remaining one-faces, but not the third.

We will also need the following points,

(
p6 p7 p14 p28 p41

)
:=


−62 −61 −54 −42 −31
−55 −54 −48 −37 −28
−47 −46 −41 −32 −24
−41 −40 −36 −28 −21

 . (7.12)

The points (p6, p14, p28, p41) are the unique points closest to p1 strictly interior to one of the
respective four one-faces of ∆◦ that have p1 as a vertex. The point p7 is the next point
along the one-face containing p6: see figure 4.

Any FRST of ∆◦ defines a toric variety in which the generic anti-canonical hypersurface
is a smooth Calabi-Yau threefold with h1,1 = 491, h2,1 = 11. We note that 491 is the largest
known value of h1,1 of a Calabi-Yau threefold. We now consider an FRST, and denote the
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k
l 0 1 2 3 4 5 6 7 8 9

0 ∗ 3 −6 27 −192 1695 −17064 188454 −2228160 27748899
1 −2 4 −10 64 −572 6076 −71740 909760 −12146622 168604540
2 0 3 −12 91 −980 12259 −166720 2394779 −35737460 548460000
3 0 5 −12 108 −1332 18912 −289440 4632120 −76306398 1282295808
4 0 7 −24 150 −1808 26983 −443394 7665776 −136440800 2471539911
5 0 9 −56 294 −2982 42005 −689520 12254816 −227540162 4331108122
6 0 11 −140 675 −5992 76608 −1192644 20764870 −386343036 7482057534
7 0 13 −324 1738 −13550 158814 −2322056 38750866 −703362386 13488597425
8 0 15 −686 4732 −33552 359898 −4954570 79050699 −1387505216 25992283043
9 0 17 −1328 12960 −88746 874588 −11327904 172924796 −2932945300 53475853968

Table 3. GV invariants GV0
k[C1]+l[C2] of X491,11 for k, l ≤ 9.

resulting Calabi-Yau threefold by X491,11. The only relevant property of our chosen FRST
is that the following pairs of points from the above set of points interior to one-faces are
connected by an edge of the triangulation,

(6, 14) , (6, 28) , (6, 41) , (7, 14) , (7, 28) , (7, 41) , (7.13)

as illustrated in figure 4.
First, we have applied the methods explained in section 4 and section 5 to compute

the GV invariants of X491,11: see table 4. For the grading vector, we take the tip of the
stretched Kähler cone, scaled and rounded to be integral. Computing to degree 25 in this
grading involves examining 1,699,192 curves, of which 627 have nonzero GV invariants. This
process takes about nine minutes on a desktop computer.

Finally, we consider a two-face of the Mori cone of X491,11. This two-face is spanned by
the curves (C1, C2), which are specified by their non-vanishing intersection pairings

q
[C1]
1,6,7 = (1,−2, 1) , q

[C2]
1,6,14,28,41 = (−3, 1, 1, 1, 1) . (7.14)

Both curves can be represented as complete intersection curves:

C1 = D6 ∩D7 , C2 = D1 ∩D6 . (7.15)

In this instance, the curves (C1, C2) span a two-face of the Mori cone inherited from the
toric ambient variety, so the computation of GV invariants along it is predicted to correctly
return the integer GV invariants. We present the results in table 3. In the limit where C1
shrinks, the one-face divisor D6 shrinks to a curve of genus zero, leading to non-abelian su(2)
enhancement [41, 42], while in the limit where C1 shrinks, the vertex divisor D1 shrinks to
a point, leading to a tensionless string CFT [43].

8 Conclusions

The main result of this work is an efficient algorithm for using mirror symmetry to compute the
prepotential in type II compactifications on Calabi-Yau threefold hypersurfaces. Specifically,
we aimed to be able to compute worldsheet instanton corrections to the prepotential for
any threefold arising from the Kreuzer-Skarke list [44].
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h1,1 degree Npoints Nnonzero Time
2 200 20,300 20,300 6 h

101 2 46,710 560 4 s
101 4 360,378,675 2,500 1 d
251 20 1,047,796 557 2 m
491 25 1,699,192 627 9 m

Table 4. Size and duration of the computation in the examples, in seconds, minutes, hours, and days.
The number of curve classes examined is denoted Npoints, while Nnonzero is the number of nonzero GV
invariants found.

The classic paper of Hosono, Klemm, Theisen, and Yau [4] laid out a procedure that
is valid for Calabi-Yau threefold hypersurfaces in which the Mori cone is simplicial. One
computes a fundamental period on the type IIB side, uses properties of the Picard-Fuchs
system to obtain the remaining periods, and finally reads off the Gopakumar-Vafa invariants.

The method of [4] has two key limitations. The first is that the vast majority of threefolds
resulting from the Kreuzer-Skarke list — and in particular, almost all such threefolds with
large h1,1 — have non-simplicial Mori cones. The second is that extracting enumerative
invariants at large h1,1 appears exponentially costly.

In this work we overcame the above limitations: we devised a generalization of [4] that is
valid for any threefold hypersurface, and we produced an implementation that is practical
even for h1,1 as large as 491. This improved capability rests on a series of conceptual advances
that we presented in section 4 and section 5.

We illustrated our method in a collection of examples. In the hypersurface in CP[1,1,1,6,9],
with h1,1 = 2, we computed GV invariants to degree 200. Even for the largest-known value
of h1,1, i.e. 491, we were able to obtain hundreds of GV invariants in minutes on a desktop
computer: see table 4.

Our results have immediate applications to the study of instanton corrections in Calabi-
Yau compactifications, and have already been used in the construction of AdS vacua in [45],
and of complete Kähler moduli spaces in [46]. We plan to incorporate an implementation
of our algorithm in a near-future version of CYTools.
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A Coefficient formulas

In this appendix, we give some concrete formulas for the coefficients can⃗ and ĉabn⃗ that appear
in section 4.4. We define kI := QaIna, as well as k0 := Qa0na.

First, we reproduce from appendix A of [4] that if n⃗ is such that kI ≥ 0 for all I, then

cn⃗ = k0!∏
I kI !

, (A.1)

can⃗ = Aa
n⃗ cn⃗ :=

[
Qa0Ψ(1 + k0)−

∑
I

QaIΨ(1 + kI)
]
cn⃗ , (A.2)

cabn⃗ =
(
Aa
n⃗Ab

n⃗ + Babn⃗
)
cn⃗ , (A.3)

with Babn⃗ := Qa0Q
b
0Ψ′(1 + k0)−

∑
I

QaIQ
b
IΨ′(1 + kI) , (A.4)

where Ψ(z) := ∂z log Γ(z) ≡ Ψ(1)(z), and Ψ′(z) ≡ Ψ(2)(z), where Ψ(n)(z) denotes the
polygamma function of order n. Using the identities

Ψ(1 +m) = Hm − γE , Ψ′(1 +m) = −Hm,2 +
π2

6 , ∀m ∈ N , (A.5)

where Hm,n ∈ Q are the generalized harmonic numbers, Hm ≡ Hm,1, and γE is the Euler-
Mascheroni constant, we obtain9

Aa
n⃗ = Qa0Hk0 −

∑
I

QaIHkI
, (A.6)

Babn⃗ = B̂abn⃗ + π2

6
[
Qa0Q

b
0 −

∑
I

QaIQ
b
I

]
, (A.7)

with B̂abn⃗ :=
∑
I

QaIQ
b
IHkI ,2 −Qa0Q

b
0Hk0,2 . (A.8)

The vanishing of the first Chern class, c1(X) = 0, corresponds to the condition Qa0 −∑
I Q

a
I = 0, which causes γE to drop out of (A.6)–(A.8). Thus, all coefficients in (A.6)–(A.8)

are manifestly rational.
In summary, we have

can⃗ = Aa
n⃗cn⃗ , ĉabn⃗ =

(
Aa
n⃗Ab

n⃗ + B̂abn⃗
)
cn⃗ , (A.9)

if all QaIna are non-negative.
For n⃗ such that kI = QaIna < 0 for precisely one I = I0, we reproduce from [4] that

cn⃗ = 0, and

can⃗ = −QaI0(−1)kI0 (|kI0 | − 1)!× k0!∏
I ̸=I0 kI !

, (A.10)

cabn⃗ = ĉabn⃗ = −
(
QaI0A

b
n⃗,I0 +QbI0A

a
n⃗,I0

)
(−1)kI0 (|kI0 | − 1)!× k0!∏

I ̸=I0 kI !
, (A.11)

9We thank Andreas Schachner for a useful observation relating to these expressions that led us to improve
the implementation of our algorithm.
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in terms of

Aa
n⃗,I0 := Qa0Hk0 −

∑
I ̸=I0

QaIHkI
−QaI0H|kI0 |−1 . (A.12)

Finally, for kI = QaIna < 0 for precisely two I ∈ {I0, I1} we have cn⃗ = can⃗ = 0, and

cabn⃗ =
(
QaI0Q

b
I1+Q

a
I1Q

b
I0

)
(−1)kI0 +kI1 (|kI0 |−1)!(|kI1 |−1)!× k0!∏

I /∈{I0,I1} kI !
, (A.13)

and ĉabn⃗ ≡ cabn⃗ . In all other cases, i.e. whenever QaIna < 0 for more than two values of I,
one has cn⃗ = can⃗ = cabn⃗ = ĉabn⃗ = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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