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Abstract: Unstable domain wall (DW) networks in the early universe are cosmologically
viable and can emit a large amount of gravitational waves (GW) before annihilating. As such,
they provide an interpretation for the recent signal reported by Pulsar Timing Array (PTA)
collaborations. A related important question is whether such a scenario also leads to significant
production of Primordial Black Holes (PBH). We investigate both GW and PBH production
using 3D numerical simulations in an expanding background, with box sizes up to N = 3240,
including the annihilation phase. We find that: i) the network decays exponentially, i.e. the
false vacuum volume drops as ∼ exp(−η3), with η the conformal time; ii) the GW spectrum is
larger than traditional estimates by more than one order of magnitude, due to a delay between
DW annihilation and the sourcing of GWs. We then present a novel semi-analytical method
to estimate the PBH abundances: rare false vacuum pockets of super-Hubble size collapse to
PBHs if their energy density becomes comparable to the background when they cross the
Hubble scale. Smaller (but more abundant) pockets will instead collapse only if they are close
to spherical. This introduces very large uncertainties in the final PBH abundance. The first
phenomenological implication is that the DW interpretation of the PTA signal is compatible
with observational constraints on PBHs, within the uncertainties. Second, in a different
parameter region, the dark matter can be entirely in the form of asteroid-mass PBHs from the
DW collapse. Remarkably, this would also lead to a GW background in the observable range
of LIGO-Virgo-KAGRA and future interferometers, such as LISA and Einstein Telescope.
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1 Introduction

Physical models that feature the formation of cosmic domain wall (DW) networks have
typically been seen as problematic due to the so-called domain wall problem, the fact that the
network tends to dominate the energy density of the universe [1]. However, if domain walls
are biased and annihilate, this problem turns into a virtue, as the network naturally tends to
be an abundant component in the universe before its collapse, and is thus easier to probe.

Gravitational waves (GWs) are one of the potential signatures [2–4]. The spectrum is
stochastic and analyses with LIGO-Virgo O3 data already place constraints on the parameters
of the network [5]. Recently, the evidence for nano-Hz GWs at Pulsar Timing Arrays (PTAs) [6–
9] brought renewed interest in this possibility: DW networks that annihilate around the
QCD phase transition provide a good explanation of the signal and outperform several other
models [10, 11]. In case of detection of GWs, it is also crucial to find additional signatures,
that can help in selecting DWs over other early Universe sources. Dark radiation and collider
signals may be some of such signatures [10], as well as the production of Primordial Black
Holes (PBHs) from the collapsing network [12, 13] (see also [14–17]), although the resulting
PBH abundance is subject to large uncertainties.

Overall, these aspects motivate a detailed investigation of the evolution of a DW network
during its collapse phase (see [18–23] for previous work) and of its gravitational relics, i.e.
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GWs (see [24–29]) and PBHs, which we aim to perform in this work. We consider the simple
case of DWs with a double-well potential, with an energy per unit area (tension) σ, and
where the potential is slightly tilted by a term of size ∆V , i.e. a bias such that one of the
Z2-symmetric minima becomes a false vacuum [30] (see e.g. [31–34] for other mechanisms
to have viable long-lived walls). We simulate the corresponding DW network throughout
the formation, scaling and annihilation regimes, using field theory numerical simulations in
an expanding radiation-dominated background, with box size up to 32403, while computing
the GWs radiated throughout the evolution.

Until recently, most analyses assumed that GWs in this scenario are radiated until the
pressure on the walls caused by the bias overcomes the self-acceleration due to the wall’s
tension, i.e. when ∆V = σH, where H is the Hubble rate.1 Before this epoch, the network is
in the so-called scaling regime, with most of its energy density in a fixed O(1) number of
walls per Hubble patch. However, the collapsing network consists of large DWs of various
shapes, which contain False Vacuum (FV) pockets, that shrink to small sizes after the scaling
epoch. These last stages of evolution can certainly source GWs in addition to the ones from
the so-called scaling epoch, and has been found in recent work [28]. An order-one change
in the estimate of the time scale for GW production can lead to an order-of-magnitude
enhancement of the final GW signal. Our simulations improve on the determination of such
time-scale, while also providing new insights into the properties of the network at the onset of
annihilation and highlighting the role of the kinetic energy of the scalar field in the production
of gravitational waves in the final stages of the network annihilation.

Our numerical results will also allow us to establish the time evolution of the decaying
network, in particular of its FV pockets. Indeed, the collapse of the network takes some time:
the abundance of Hubble-sized FV pockets at some point drops very quickly, but a small frac-
tion of rare super-Hubble sized pockets survive for a longer time as they must cross the Hubble
radius to annihilate. Their abundance dramatically decreases in time, but their likelihood to
collapse into a BH grows instead simply because the Schwarzschild radius associated with the
FV pocket grows faster in time than the Hubble length. This may result in a tiny population
of BHs at formation, but potentially large at present if the network collapses in the early uni-
verse (this formation mechanism is similar to the one in [36, 37] for isolated DWs, see also [38],
with the crucial difference that for a network the collapse is in general far from spherical).

We provide an analytical understanding of this picture, which complements our numerical
findings to provide an important step forward in the estimate of the PBH abundance.
Nonetheless, large uncertainties in the final PBH abundance persist, due to an exponential
sensitivity to parameters and the departure from spherical collapse, which at this point
is still difficult to quantify.

With these new estimates of both GW and PBH relics, we then analyze the phenomeno-
logical consequences of a generic DW network that annihilates at different epochs in the early
Universe. First, we assess the viability of the DW interpretation of the PTA signal in light of
PBH production. Second, we discuss PBHs from DWs as a candidate for the observed dark
matter, with a possible correlated GW signal at interferometers such as LIGO-Virgo-KAGRA
(LVK) [39], LISA [40], Einstein Telescope (ET) [41] and Cosmic Explorer (CE) [42].

1A refined numerical estimate for dark matter production from string-wall networks was obtained in [35].
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Figure 1. Timeline of DW network evolution. After spending some time in the scaling regime,
the bias (vacuum energy difference ∆V ) becomes effective at (conformal) time η∆V. GW and PBH
production occur somewhat later, at ηgw and ηpbh respectively. The decay of the False Vacuum volume
fraction, Ffv, is parameterized by a decay time ηann, slightly larger than η∆V, and an exponent p.
Both our numerical simulations and analytical model point to p = 3.

The paper is organized as follows. We summarize the evolution of annihilating DW
networks in section 2, highlighting the important time scales in the problem. We present
the results from our numerical simulations in section 3. We present an analytical model to
account for the late FV pockets in section 4. We conclude in section 5 with a discussion
on the phenomenological impact.

2 Domain wall networks: scaling and annihilation regimes

In this work, we focus on a simple model exhibiting DWs: a real scalar ϕ with a Z2 symmetry
ϕ → −ϕ and with a double well potential

V (ϕ) = λ

4
(
ϕ2 − v2

)2
, (2.1)

keeping in mind that several aspects of our discussion may also apply to other models
(e.g. with more minima or from axion potentials). In this model the DW tension - the energy
per unit area of the walls - is σ =

√
2 λ
3 v3 and the scalar mass squared in the minima is

m2 = 2λv2. In addition, we will assume a small bias term in the potential that breaks such a
symmetry, of size ∆V , that will lead to annihilation of the walls.

We assume that a network of walls is formed by a phase transition in the early universe
during radiation domination, i.e. we start with zero initial field plus small random fluctuations
and the walls are formed via the so-called Kibble mechanism [1, 43]. The subsequent evolution
follows a sequence of events, schematically represented in figure 1, and explained in detail
below: (i) the network reaches the so-called scaling regime, (ii) the network starts annihilating
when the bias term becomes relevant, (iii) a peak of gravitational waves is produced, (iv) some
very rare domain walls that survive for a longer time may collapse and give rise to PBHs.
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2.1 Scaling regime

Soon after formation, the DW network reaches a self-similar ‘scaling’ regime characterized
by, on average, about one Hubble-sized DW per Hubble volume. If we consider a generic
network of total comoving area A in a box of comoving volume V , its total energy is σAa2

and so its total energy density is given by

ρdw = σAa2

V a3 = 2A σH , (2.2)

where a is the scale factor, H is the Hubble parameter and we introduced the so-called
area parameter

A ≡ A

V

1
2aH

, (2.3)

which is a dimensionless number related to the area density of the network. During scaling
A is expected to be of order unity [26].

One of the remarkable signatures of the DW network is the stochastic spectrum of GWs
that it creates. In the scaling regime, the spectrum Ωgw(k, t) ≡ ρ−1

c dρgw/d log k, where ρgw
is the energy density in GWs and ρc is the critical background density, as a function of the
wave number k and cosmic time t, peaks at the Hubble scale and previous studies have found
that in scaling its amplitude at the peak is given by [44]

Ω(scaling)
gw (kpeak, t) = 3

32π
ϵ α(t)2 , (2.4)

where ϵ ≃ O(1) is an efficiency factor extracted from the numerical simulations and α(t) ≡
ρdw/ρc is the fraction of the total energy density stored in the walls. The fraction α increases
over time and thus one expects the GW spectrum to have a peak around the annihilation
time of the network.

2.2 Annihilation phase

The annihilation phase occurs roughly once the Hubble rate becomes smaller than the pressure
acceleration, that is, for conformal time η ≳ η∆V , defined by

H(η∆V ) = ∆V/σ , (2.5)

one then expects the network to start collapsing.
So far in most literature it has been assumed that the peak of GW production occurs

exactly at the time given by eq. (2.5), identified with the annihilation time of the network. As
we will see, it is important to determine precisely both the annihilation time of the network
and the time of emission of the peak of GWs, since the final GW spectrum grows as η−4, as
one can see by extrapolating the scaling properties in eqs. (2.2) and (2.4).

A useful quantity to monitor the degree of annihilation of the network is the fraction of
volume occupied by the False Vacuum, Ffv(η). In a Z2 model, Ffv = 1/2 in scaling. There is
some literature on how Ffv decays during the annihilation phase [18–21, 32] (see also [22])
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Figure 2. Evolution of the average of the field in the simulation box, ϕ̄, plus (minus) its standard
deviation σϕ, for several sizes of the bias ∆V , as a function of conformal time.

with no current consensus. In the following sections, we will see that the network decays
exponentially in the annihilation phase according to

Ffv = 0.5 exp
[
−
(

η

ηann

)p ]
, (2.6)

with ηann possibly differing from η∆V by O(1) factors, and p ≃ 3.

3 Numerical results

We now present the results of our lattice simulations of DW networks, obtained by means
of the Cosmolattice code [45, 46]. We set initial conditions at the initial conformal time
ηi in radiation domination such that m = H(ηi = 0), and a(ηi = 0) = 1. We assign a
white noise spectrum of small Gaussian fluctuations in Fourier space to the scalar field,
while setting its homogeneous component at ϕ = 0. The number of gridpoints N3 and the
comoving box size L determine the comoving lattice spacing ∆x = L/N . We set ∆x and the
duration ηf of our simulations such that the physical lattice spacing a(ηf )∆x at the end of
the simulation is smaller than (or equal to) the domain wall width δw ∼ m−1, and impose
that the simulation box contains at least one Hubble patch at the final time. From here on
we set v = m = 1, which corresponds to the choice λ = 1/2 for the quartic coupling. With
these choices, a(η) = 1 + η, H(η) = (1 + η)−2 and the domain wall tension is simply σ = 2/3.

The maximal dynamical range that can be probed with the simulation is then ηf,max =√
N − 1, obtained by choosing L =

√
N , such that at ηf there is only one Hubble patch in

the box and a(ηf )∆x = δw. The field evolution is performed using the leapfrog algorithm
with a time step ∆η ≲ ∆x/2, such that the Courant criterion is well satisfied. More details
about the numerical setup can be found in appendix A.

Here we shall consider a cubic bias, i.e. Vbias = qϕ3, rather than the linear term. The
reason for this choice is only technical: a linear bias shifts the location of the maximum of
the potential, thereby introducing a bias in the population of the two minima already at
the early times of the simulation. Since the limited dynamical range that can be simulated
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requires a sizable ∆V , such a population bias would prevent the formation of a network
and/or alter its evolution. The cubic bias allows to overcome this problem, as the maximum
is not displaced, and for sufficiently small initial field fluctuations the system does not notice
the asymmetry introduced by Vbias in the initial steps.2 The size of the asymmetry between
the two minima is then given by ∆V = 2q(1 + 9q2)3/2. Therefore, the parameter q determines
the time η∆V , defined by eq. (2.5).

The scenario relevant to our analysis is that of a domain wall network that achieves the
scaling regime sufficiently before it starts collapsing as a consequence of a pressure bias between
the two vacua. For the potential adopted in this work, this occurs for ∆V/V (0) ≲ 0.007,
corresponding to η∆V ≳ 18 and thus we focus on this range of bias sizes. For larger bias, the
network does not fully achieve scaling for a sufficient time before collapse. While this scenario
can certainly occur, it is characterized by some residual dependence on initial conditions,
which makes it difficult to extract general conclusions.

We show the evolution of the average field value together with its standard deviation as a
function of conformal time in figure 2, as obtained in simulations with a box size (N = 3000)3

and maximal time ηf = 55. Here we fixed initial conditions and varied the size of the bias
potential, such that η∆V = {19, 22, 25}. The following features can be clearly distinguished:
first, the field is initially localized very close to the maximum of the potential, until around
η ≃ 6 it relaxes to the two minima. Field oscillations are sizeable until η ≃ 10, when they
are significantly diluted by Hubble friction. The standard deviation then begins to shrink
after η ∼ 20 and for η ≳ 30 only the leftmost minimum is populated, signaling that the
network is rapidly dissolving under the action of the bias. For comparison, the behavior
for vanishing bias is also shown (dot-dashed curve). In this case, a tendency towards the
right-most minimum occurs at around η ∼ 15, which is to be attributed to the relatively small
(and decreasing) number of Hubble patches at those times, i.e. ∼ (L/η)3 ≲ 50 at η ≳ 15.

The deviations in the network evolution in the presence of a bias are best understood
by focusing on the following quantities.

3.1 False vacuum fraction

First, we look at the fraction of volume in the false vacuum Ffv, which is numerically obtained
as the fraction of the simulation grid points where ϕ > 0, shown in figure 3 (blue curves).
As expected, initially Ffv = 0.5 in all simulations. This remains approximately true for the
simulation without a bias, although a slight deviation to larger values is observed at late
times, corresponding to the aforementioned small number of Hubble patches near the end of
the simulation. In simulations where a bias is included, Ffv decreases rapidly after a time
which depends on the size of the bias, obviously the later the smaller ∆V . In this work, we
are mostly interested in false vacuum regions that are at least Hubble-sized, since their radius
becomes equal to their Schwarzschild radius if their energy density becomes comparable to
the background at Hubble crossing, as we will explain in more detail in section 4. When the
false vacuum fraction drops below the inverse number of Hubble volumes in the box, given by

2An alternative strategy is to use a time-dependent linear bias [28], which is initially negligible and becomes
important only after a certain activation time. However, we have found that this technique introduces
additional uncertainties in the final results, due to different possible choices of the activation time of the bias.
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Figure 3. (Log of) Volume fraction in the simulation box in the false vacuum, as a function of
conformal time. The blue curves show the numerical results from our simulations. We fitted such
results for small η, before the curves cross the black dot-dashed curve, that shows the inverse of the
number of Hubble volumes in the simulation box. The orange curves are the resulting fits.

nH ≃ (L/(1+η))3 and shown by the black dot-dashed curve in figure 3, such regions no longer
exist in our simulation. For the bias sizes of interest, this occurs around η ≃ 30. At later
times, the remaining false vacuum regions are in sub-Hubble structures. Correspondingly, a
much steeper decrease of Ffv is observed at late times than at early times, when super-Hubble
false vacuum regions can still be present. Thus we attempt fitting the numerical results until
the time at which Ffv ≃ n−1

H with eq. (2.6) where ηann and p are fitting parameters. The
result of this procedure is shown by the orange curves in figure 3. The fitting function above
provides an excellent fit to the early time data, and we find p ≃ 3.3 − 3.5.

To investigate the dependence of these results on the simulation box, we increase the
number of Hubble patches in our box by increasing L (and N to a smaller extent) at the
price of slightly worsening the spatial resolution, and thus limiting the dynamical range of our
simulations. Guided by the previous discussion, we choose L and ηf such that δw/(a∆x) ≃ 1
at time ηf ≃ 35, corresponding to L ≃ 90, with N = 3240. These choices increase the number
of Hubble patches by a factor of ≈ 4.5 with respect to the results in figure 3. The new results
are reported in figure 4, together with the fitting curves. It can be appreciated that Ffv
now remains almost constant for the entire simulation time in the absence of bias, thereby
confirming that the previously observed deviation is due to the limited number of Hubble
volumes. The most relevant result of this improved analysis is a decrease of the inferred value
of p (which is closer to analytical expectations discussed in section 4).

We then perform several realizations with increased number of Hubble patches, for
several values of bias size and changing the random seed that sets the initial conditions,
to estimate numerical uncertainties in our results. We report results in table 1. Averaging
over all realizations, we infer

p = 3.0 ± 0.3. (3.1)

When comparing ηann to the rough expectation η∆V : σH = ∆V , we find a slight delay
ηann ≈ 1.5η∆V .3

3In this regard, we disagree with [23] on the dependence of ηann with ∆V .
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Figure 4. As in figure 3, with N = 3240 and L = 90.

η∆V p ηann

19.4 3.0 ± 0.3 29.0 ± 0.4
22 3.0 ± 0.1 31.2 ± 0.9
25 3.1 ± 0.3 33.9 ± 2.5
27 2.9 ± 0.2 38.5 ± 1.8

Table 1. Mean and standard deviation of the parameters of the fitting function eq. (2.6), over several
realizations of our lattice simulations (about 3 − 4 per each row), with different random seeds.

0 5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Figure 5. Area fraction, eq. (2.3), as a function of conformal time. Note that at early times, η ≲ 10,
there is a transient which does not carry physically relevant information.

3.2 Area parameter

In the absence of a bias, a domain wall network achieves a scaling regime where the area
parameter A remains approximately constant with time. The energy density in the domain
walls during the scaling regime, is determined by eq. (2.2), which is generally smaller than
the total energy density stored by the scalar field. We show in figure 5 the area parameter
extracted from our high resolution simulations, in the absence of a bias (solid magenta curve).
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As expected, it remains approximately constant for η ≳ 25, saturating for this particular
realization to a value A ≃ 0.9. These findings agree roughly with those of [26].

The corresponding evolution in the presence of the bias is shown by the blue dashed,
dotted and dot-dashed curves, for several bias sizes. One can appreciate that the biased
network follows the unbiased one until η ≃ 14 − 17, depending on the size of the bias.4

3.3 Energy density

The evolution of the energy density of the scalar field is shown in figure 6 (left) for unbiased
(solid) and biased (dashed, dotted, dot-dashed) potential. These results are obtained in our
longest simulations, corresponding to the choice L =

√
N . As expected, in the unbiased

case the total energy density in the scalar field remains approximately constant after η ≳ 30,
with a final value ρtot ≈ 3.5 σH. On the other hand, in the biased case the total energy
density decreases sharply, together with the decrease of the vacuum contribution from the
bias potential (orange curves), due to the annihilation of the network. The evolution of
the three components of the energy density, i.e. kinetic, gradient and potential energy, is
shown in figure 6 (right) for the unbiased (solid) potential as well as for an example case
of biased potential (dashed) with the choice η∆V = 22.

The following observations can be made: in the unbiased case, the gradient energy rapidly
saturates to a constant value ρgrad ≃ 1.4 σH, while the potential energy density ρpot decreases
slowly until the end of our simulations (here by potential we denote only the Z2 symmetric
term, whose behavior is shown by the purple curve). The latter decrease may however
partially be a numerical effect since it occurs almost at the end of the simulation where the
domain wall width becomes comparable to the lattice spacing of the simulation. Overall,
these two components make most of the energy density of the scalar field, in agreement
with the intuition that most of the energy density is in domain walls, and in particular
ρgrad + ρpot ≃ 2.6 σH at the end of the simulation. On the other hand, the kinetic energy
decreases rapidly until it saturates to an approximately constant value ρkin ≃ 0.9 σH, thereby
making a subleading contribution to the energy density.

The situation in the biased case is strikingly different, where deviations from the unbiased
scenario occur around η ≳ 20: most importantly, the kinetic energy stops decreasing and
quickly begins to increase, while the potential energy decreases sharply. The former overcomes
the latter around η ≳ 34. This is very close to the value of the annihilation time ηann inferred
from our fit of the false vacuum fraction, nicely confirming that this time scale indeed
characterizes the annihilation of the network when the vacuum pressure from the bias term
(shown by the dashed brown curve) accelerates the walls, thereby increasing the kinetic energy.
The gradient energy initially remains constant, before sharply decreasing at η ≳ 40. This
is easy to interpret, as the existence of the network is the source of gradient energy, which

4Strictly speaking, the area parameter has not achieved a constant value by that time, therefore simulations
with even smaller bias sizes would be desirable to exclude residual effects of initial conditions. With our
resources, these can be performed at the cost of lowering the number of Hubble volumes in the simulation box,
which alters the determination of the fit parameter p. In our high-resolution simulations, we find no significant
differences in the inferred value of p, nor any significant dependence on initial conditions for η∆V ≳ 19,
suggesting that the bias sizes explored in this work are sufficient to achieve a scaling behavior at early times,
before the bias affects the network evolution.
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Figure 6. Left: energy density in the scalar field as a function of conformal time (blue), normalized
to the scaling behavior σH, without (solid) and with several choices of bias sizes (dashed, dotted,
dot-dashed). In orange, the evolution of the average of Vbias in the simulation box is shown. Right:
components of the energy densities of the scalar field as a function of conformal time, for unbiased
(solid) and biased (dashed) potential, the latter for η∆V = 22. The vertical gray line corresponds to
the value of ηann inferred from fitting the false vacuum fraction according to eq. (2.6). In both figures,
N = 3000 and L =

√
N .

is thus quickly dissipated away once the walls annihilate. Eventually, at η ≳ 45 also the
kinetic energy starts decreasing. We have checked that for η ≳ 45 both the potential and
kinetic components decrease approximately like non-relativistic matter, as expected since we
are working with a massive scalar field with m ≫ H at the end of the simulation. Overall,
the kinetic energy dominates the energy density of the biased domain wall network at the
end of our simulations. Notice also that the bias term very rapidly vanishes after η ≳ 40,
corresponding to the exponential decay of false vacuum regions.

Our findings on the behavior of the energy density in the unbiased case may seem different
from the common lore in the literature, which mostly adopts ρdw ≃ 2AσH. In our simulations,
we find that the total energy density in the scalar field, including all the simulation box, is
roughly twice as large as the estimate above, ρtot ≈ 3.5σH. One should nonetheless notice
that: 1) the commonly adopted estimate is expected to apply only to static domain walls,
i.e. it neglects the contribution of the kinetic energy, which in our simulations accounts for
ρkin ≈ 0.9σH; 2) the simulation box includes regions where |ϕ|> 1, which cannot be attributed
to domain walls, but rather to scalar waves. The energy density in this region of field space is
reported in figure 7, for a simulation with a large number of Hubble patches. Its size at the end
of the simulation is ρscal ≈ 0.8σH, mostly coming from kinetic and potential energy. Ignoring
the kinetic part, it contributes ≈ 0.5σH. Therefore our larger total energy density in the scalar
field is easily explained in terms of the two contributions above (plus a small unavoidable
contribution from scalar waves in the region |ϕ|≤ 1).5 We conclude that, according to our
simulations, domain walls carry an energy density ρdw ≃ 2.4σH. If interpreted in terms of
a relativistic correction to the standard formula, i.e. ρdw ≃ 2Aγ2σH, it implies γ ≈ 1.2.

5Despite the commonly reported estimate above, we notice that our findings agree with those presented
in [26].
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Figure 7. Energy density in the simulation box corresponding to |ϕ|> 1. Here N = 3240 and L = 90.

3.4 Gravitational waves

It has long been appreciated that a domain wall network acts as an efficient source of GWs dur-
ing its evolution. Previous numerical calculations have mostly focused on the contribution from
the scaling regime. In our simulations, we are able to extract the energy density radiated in
GWs throughout the annihilating phase as well. Due to higher memory consumption, our simu-
lations including GWs are limited to N = 2040, with a maximal simulation time ηf ≲ 45. Addi-
tionally, to speed up the calculation, we only start the numerical computation of the GWs at the
latest times (η > 35). This is justified since we find that, unlike previous estimates, most of the
GWs are emitted during the annihilation epoch rather than in the scaling regime (see also [28]).

A simple estimate of the maximal energy density fraction (i.e. the energy density in GWs
compared to that of the radiation background) is provided by the quadrupole formula, which
gives Ωgw(η) ∼ 3/(32π)α2

tot(η), where αtot ≡ ρϕ/(3H2M2
p ). This would correspond to the

case in which all the energy density in the scalar field sources GWs. We compare our results
with this simple estimate in figure 8, for three different choices of bias size for which we are
able to capture the full GW production (with same initial conditions as in all previous figures).
For all our choices, we find that the GW energy density fraction reaches a peak at η ≳ 40.
The efficiency factor with respect to the simple quadrupole estimate at peak production is
ϵ ≡ Ωgw/(3/(32π)α2

tot) ≃ 0.5−0.6. Figure 9 shows that GWs are compatible with being mostly
sourced by the kinetic component of the energy density in the scalar field, with a subdominant
contribution from the gradient component, for one example value of bias size. The GW
energy density fraction is computed by integrating the numerically obtained GW spectrum,
although the final result is dominated by the region around the peak of the spectrum.

Our results importantly point to a mild delay between the characteristic time of the
annihilation epoch ηann and the time at which most GW production occurs, ηgw. In our
simulations, this is estimated to be

ηgw/ηann ≃ 1.3 − 1.4 .

Physically, our findings suggest that efficient GW production continues throughout the
annihilation epoch, and so beyond the production during scaling studied in previous works,
and that most of the relic abundance of GWs is determined by the late stages of the DW
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Figure 8. Energy density fraction in GWs compared to quadrupole formula estimate from the total
energy density available in the scalar field. Note that the initial Ωgw is very small because we start
the computation of GWs only at η = 35 for computational reasons.
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Figure 9. Energy density fraction in GWs compared to quadrupole formula estimate from the total
energy density available in the scalar field.

network collapse. Compared to the previous literature, the delay amounts to a factor of
1.3 × 1.4 ∼ 1.8 in the time of GW emission, which was previously estimated to be η∆V , and
so, following eq. (2.4), an enhancement of 1.84 ∼ 10 in the total GW abundance.

4 Semi-analytical approach

Let us now turn to a different way to analyze the problem. The network annihilation process
can be viewed as a transition from DWs in the scaling regime to, eventually, a collection of
rare FV pockets. During scaling, in each Hubble patch, there is typically one Hubble-sized
DW, some scalar radiation and, to a good approximation, no closed DWs. Most of the energy
is stored in the form of large DWs and any DW is typically separated from neighbour DWs
by the correlation length, which in scaling is set by the Hubble length.

Annihilation starts when the force per unit area from ∆V is larger than σH, pushing the
DWs to reduce the volume in the FV. Let us assume that this effect turns on instantaneously
at η∆V . Since the typical separation between walls is also of order η∆V , a Hubble-sized FV
pocket takes a time of about η∆V to shrink to zero, and so one expects that the fraction of
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Figure 10. Evolution of FV pockets with spherical (solid), cylindrical (dashed) and planar (dotted)
shapes as extracted from the Nambu Goto approximation (see appendix B). Blue lines show the
comoving radius R(η) ≡ R(η; R0) as a function of conformal time for various initial radii R0, starting at
η∆V from rest. Lower R0 pockets are more numerous. The dashed vertical gray line denotes when most
of the pockets shrink to small sizes. This is expected to coincide with the peak of GW production ηgw.
The black solid line is the comoving Hubble length at each time. The inset shows the initial values of R0
of (spherical or cylindrical) pockets that reach zero (purple) or the Hubble length (black) at a given time.

the volume in FV becomes tiny after a delay of order η∆V , that is, at η ≃ 2η∆V , since after
that time only very rare structures survive, i.e, the ones that started with super-Hubble size
at η∆V . As an additional confirmation beyond the numerical results shown in section 3.1,
this delay can be qualitatively reproduced by solving the equations of motion for a DW
enclosing the FV pocket, in the so-called Nambu-Goto approximation, for some simple DW
shapes (see appendix B for details), as shown in figure 10.

This simple observation has two interesting consequences. First, we identify that η ∼ 2η∆V

is a ‘maximal shrinking time’, when most of the FV has shrunk to zero, and so it is natural
to expect an additional contribution to GW production on top of the GW that the DWs
have sourced during scaling. Qualitatively, this confirms the results presented in the previous
section of ηgw ∼ 2η∆V .

Second, this also sets the time when we can start to picture the ‘remainders’ of the network
in a simple and useful way: as an ensemble of FV pockets of different sizes, which are placed far
apart so that we can treat them independently. One can call this a dilute gas of FV pockets.

4.1 False vacuum fraction

This approximation allows to compute the FV volume fraction Ffv and extrapolate it to times
that are inaccessible with numerical methods. The basic idea is simple: FV pockets shrink
in time (see figure 10), so that the lifespan of each pocket is determined by its initial size
R0 at η = η∆V . Once the network is sufficiently fragmented we can approximate Ffv(η) as a
sum over an ensemble of pockets of different initial radii R0. Moreover, the relative weights
in the sum R0 are known because they are inherited from the scaling regime.

Indeed, since there are only 2 vacua (for a Z2 model) that are essentially distributed
randomly during scaling, the probability of finding a super-Hubble region of radius R0, where
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the field is in one vacuum, is expected to be

P0(R0) = 2−(R0/Lann)3
, (4.1)

with Lann the correlation length at the onset of annihilation, which is identified as

Lann ≃ η∆V .

The distribution eq. (4.1) satisfies the wanted normalization: initially, a Hubble-sized region
with R0 = Lann, has 50% chance to be in either vacuum.

The FV volume fraction then can be obtained by adding up the (shrinking) volumes
of all pockets with weights given by eq. (4.1) over R0 > Lann,

Ffv(η) = N
L3

ann

∫ ∞

Lann
P0(R0) R3(η; R0) dR0

R0
. (4.2)

We assume here a flat integration measure in log R0 for simplicity, but the results do not
depend very dramatically on the measure choice. Even if this formula holds only for η > 2η∆V ,
the overall normalization constant N can be fixed to have Ffv = 1/2 when extrapolated
to initial time η∆V .

Generically, pockets shrink and vanish after some time. The ‘trajectories’ R(η; R0), that
we obtain by solving the dynamics in the Nambu-Goto approximation (see appendix B)
are basically triangular, they decrease to zero and remain zero. As shown in figure 10, the
shrinking time is quite shape independent too. At any time η, one can track back the initial
radius of the pocket that reaches R = 0 at that moment. We call this

Rmin
0 (η) : R(η; Rmin

0 ) = 0 , (4.3)

and show it in the inset of figure 10 (purple curves).6 By construction, then, the lower
integration limit in eq. (4.2) can be replaced by Rmin

0 (η). Since the size distribution in
eq. (4.1) is exponentially biased towards small R0, it is clear that Ffv must be suppressed
by 2−(Rmin

0 /η∆V )3 . The Nambu-Goto approximation also provides some useful information
to narrow down the asymptotic behaviour at large η. Figures 10 and 13 suggest that the
mock trajectory R(η; R0) → R0 − w(η − η∆V ) with w an O(1) constant gives a reasonable
approximation. With this, the asymptotic form

Ffv ∼
(

η∆V

η

)9
exp

[
− log 2

(
w η

η∆V

)3
]

, (4.4)

follows. Ignoring the power law term, this allows to recognize the FV decay time introduced
in eq. (2.6) as

ηann = η∆V

(log 2)1/3 w
. (4.5)

The value of 1/w can be read off from figure 13, which in the end results in ηann/η∆V being
around 1.3. This is in quite remarkable agreement with the numerical simulations, see table 1,
representing an important nontrivial validation of the FV pocket picture. This is also manifest
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Figure 11. FV fractions from numerical simulations and from analytic estimates as a function of
conformal time. Orange lines correspond to eq. (2.6) with ηann and p extracted from the fits to the
simulations shown in table 1 (only the first and third row, giving the lowest and highest fractions
respectively). The remaining curves arise from the analytic FV pocket ‘gas’ approximation. Blue lines
are the estimate of the full FV fraction from eq. (4.2) with w = 0.9 (solid) and 0.8 (dashed), which
represents a justified margin of uncertainty (see figure 13). The red curves are two estimates of the
FV fraction contained in Hubble-sized (or larger) pockets, for a spherical (dashed) and a cylindrical
(dotted) pocket. For αc = 1 these correspond to the intersection of the red curves with the dotted
vertical line - a tiny number well outside the plot range. The FV fractions for other choices of the
effective collapse criterion αc are given by the intersections of the vertical lines and the red curves.

in figure 11, where we compare the fits from the numerical simulations (orange curves) to
the analytic expression eq. (4.2) (blue curves).

In this picture, it is also possible to isolate the part of this FV fraction Fhor
fv given by

Hubble sized pockets (or larger) at any time. It reduces to integrate from a higher value of
R0, the one corresponding to pockets that enter the Hubble radius (rather than vanishing)
at that time. We then introduce

Rhor
0 (η) : R(η; Rhor

0 ) = η , (4.6)

which is also shown in the inset of figure 10 (black line). Notice how this radius grows
significantly faster than Rmin

0 (η), hence the part of the FV fraction in Hubble sized (or bigger)
pockets is much smaller than the total Ffv.

In this case we obtain

Fhor
fv ∼ 2−(Rhor

0 (η)/η∆V )3
. (4.7)

Since Rhor
0 grows linearly in η (see figure 10), we conclude that the FV fraction contained in

super-Hubble pockets behaves asymptotically like eq. (2.6) with p = 3.
Note also that a very simple relation holds if we use the approximate mock trajectory

linear in η given above, i.e. Rhor
0 (η) = Rmin

0 (η) + η, which immediately implies that the
fraction in Hubble-sized patches is: Fhor

fv ∼ P0(Rhor
0 ) ∼ 2−((1+w)η/η∆V )3 with w ≈ 0.8, much

6Since there is a slight shape dependence, we take two values of Rmin
0 (η), from the spherical and the

cylindrical pockets, to give a sense of ‘theoretical’ errors.
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more suppressed than the total fraction in FV pockets as can be appreciated in figure 11.
while the total fraction in FV pockets is roughly Ffv ∼ P0(Rmin

0 ) ∼ 2−(w η/η∆V )3 .
These results are reminiscent of the scaling exp(−ηd), in d + 1 dimensions, suggested

by [18]. However, let us emphasize that the similarity is accidental. The analysis of [18]
refers actually to an annihilation mechanism based on population bias, with ∆V = 0. In
2 + 1 dimensions, it was found in [21] that the analog of [18] actually did not apply for the
population bias case, whereas it did work for pressure bias, with ∆V ̸= 0. Our work extends
the analysis of [21] to 3 + 1 dimensions (see also [23]) and clarifies the physical reasons behind
this decay law for the pressure bias (∆V ≠ 0) mechanism.

4.2 PBH formation

We are now ready to give some rough estimates of the abundance of PBHs produced during
the network decay. As in [13], the natural strategy is to follow the various FV pockets as
they shrink. Part of this evolution takes place while the pocket is super-Hubble sized. It is
useful then to look at the ‘figure of merit’ defined by the ratio of the Schwarzschild radius
of the pocket to the Hubble radius when the pocket size crosses the Hubble radius. This
quantity actually coincides with the local overdensity of a FV with energy density ρpocket,

αloc = ρpocket
3M2

P H2 . (4.8)

For αloc ≪ 1 the pocket needs to contract significantly after entering the Hubble radius, in
order to form a PBH. This is less likely to happen if it is non-spherical and, since FV pockets
descend from a DW network, asphericities can actually be large.

For larger αloc, this is not so challenging and so one can expect PBHs to form in this way.
Moreover, αloc grows in time, so some PBHs are certainly produced. Notice that the limit
αloc → 1 is special: the pocket collapses to a BH as soon as it enters the cosmological Hubble
radius. These BHs are actually expected to carry a baby-universe. For spherical symmetry,
they have been considered in [36, 37, 47, 48]. We will consider both types of BHs, but we
anticipate that baby-universe BHs should be much rarer than the ordinary ones.

The rest of the argument to estimate the PBH abundances is as follows. First, the
overdensity produced by FV pockets that enter the Hubble radius at η scales like

αloc ≈ 1.5 αgw (η/ηgw)4 , (4.9)

with αgw the average fraction of energy density in DWs at ηgw, and the prefactor fixed by
numerical simulations, see appendix B.

Second, as argued before, the collapsing network can only be acceptably approximated
as an ensemble of pockets after η ≳ 2η∆V .

Third, in principle one should do an analysis of how many of the different pockets actually
manage to shrink enough to form BHs. This will depend on their degree of asphericity and
angular momentum and it can be model dependent. Its estimate deserves a dedicated analysis
of data from numerical simulations that is outside the scope of this work. The result of such
an analysis should effectively result in a threshold of collapse, αc, such that (on average)
pockets which reach αloc ≥ αc collapse into a BH.
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At present we are unable to obtain a reliable estimate of αc. We thus consider a range of
benchmark values that could be reasonable for this quantity. Since αc = 1 is the threshold
for baby-universe BHs, αc < 1 corresponds to sub-Hubble BHs.

Fourth, we will identify the PBH abundance (of either type) with the FV fraction Fhor
fv

evaluated at the time ηPBH when αloc = αc is met.
We show in figure 11 the FV fraction expected to collapse into BHs according to this

simplified criterion, with αc = 0.15 and 0.2. Clearly, since the collapse criterion is satisfied
first with smaller αc, the sub-Hubble PBHs are much more abundant than the ones carrying
baby universes.

As expected, the abundance is exponentially sensitive to αc. The abundance of baby-
universe BHs (αc ≃ 1) is extremely suppressed (and given by the extrapolation of the
red curves to the vertical dotted line) even for quite large αgw. On the other hand, the
sub-Hubble PBHs that can be formed ‘soon’ could be much more abundant. The basic
reason why sub-Hubble PBHs are more abundant is simply that the FV pockets they descend
from are (extremely) more common. Unfortunately, with the current analysis, it is difficult
to make any further quantitative statements due to the large uncertainty in αc. A more
detailed study is left for the future.

5 Phenomenological implications

We now proceed to discuss the phenomenological impact of our estimates of the spectrum of
stochastic GWs and of the abundance of PBHs from the DW network. We base our results
on the numerical output described in section 3 and on the analytical understanding of the
evolution of the false vacuum fraction described in section 4. We start by estimating the
minimal PBH abundance, formed from Hubble sized PBHs pockets that reach αloc = 1, using
eq. (4.4). The total abundance may be expressed as a function of the energy fraction of
the network at the time of GW emission, αgw, and the background temperature at that
time, Tgw. The mass of these black holes is set roughly by the total energy in the Hubble
volume and more precisely by eq. (B.3). The abundance at a given mass is experimentally
constrained by a wide variety of probes. In figure 12 we translate the bounds on the PBH
abundance from [49] and [50] into bounds on the αgw − Tgw plane (thick blue curve). We
relate αloc with αgw using eq. (B.4), which is a minor refinement of eq. (4.9). Constraint on
αgw are obviously stronger for larger Tgw, as PBHs redshift as matter for a longer time. As
an interesting example of the typical mass of these PBHs, we show in green the boundaries
of the asteroid mass range 10−16M⊙ ≲ MPBH ≲ 10−11M⊙ where the PBHs can account
for the whole of the dark matter [51].

The remaining blue lines in figure 12 refer to tentative estimates of the abundance of
PBHs, by assuming some benchmark values, αc = 0.3 and αc = 0.1, at Hubble crossing,
which indicates how much the structure has to further shrink (without dissipation) to enter
its Schwarzschild radius.

In the same plot, we also show the range of parameters where the GW signal from the
DW network could be observed by different GW detectors, from SKA [52] at the lowest
frequencies to LIGO-Virgo-KAGRA (LVK) [39], ET and CE at the highest ones. We have
fixed the frequency of the GW spectrum at the peak to be dictated by the Hubble radius at
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Tgw, and amplitude given by eq. (2.4), with efficiency ϵ = 0.6, as obtained from the numerical
results, and assumed the spectrum to decrease as 1/ω for frequencies ω larger than the peak
and ω3 for smaller frequencies. This behavior corresponds to that observed in the scaling
regime [26], and has been roughly confirmed recently also during the annihilation phase
by [28]. The GW spectra computed in our simulations roughly agree with those works,
although a dedicated study is necessary to firmly establish the high frequency slope.

We then plotted the regions of parameters where the spectrum overlaps with the power
law sensitivity curves derived in [53]. In the same figure, we also show the current bounds
obtained in [5] with LIGO-Virgo O3 data (LV), which already indirectly constraints the
maximal PBH abundance for αc = 1, and the region of parameter space which could provide
an interpretation of the PTA signal (red contours) [11].

Let us focus on the PTA region first, i.e. at Tgw ≈ 1 − 10 GeV. We find the DW
interpretation of the PTA signal to be overall compatible with constraints on PBHs for
collapse thresholds αc ≳ 0.1. Interestingly, if αc ≲ 1, a fraction of PBH dark matter from
DW collapse is expected, which is compatible with what is inferred from the BH merger rate
measured by LIGO/Virgo. Significant tension between PTA observations and astrophysical
bounds on PBHs would instead arise only if the collapse threshold were even smaller, i.e.
αc ≲ 0.1. The likelihood of such low thresholds remains to be assessed by future work. Our
results differ drastically both from [17] (for example regarding the time dependence of the
DW decay) and from the earlier contradictory claim [54].

As mentioned above, a particularly interesting region of parameter space is the asteroid
mass range, for 106 GeV ≲ Tgw ≲ 109 GeV, where the totality of dark matter could be
explained by PBHs from the network. This mass range is typically very hard to probe, given
the particle-like size of their Schwarzschild radius. Crucially however, if PBHs originate from
the DW network, a complementary GW signature of their existence is expected, that can be
probed partially by LVK at design sensitivity and fully by ET and CE.

Beside these two interesting regions, the plot shows that in a large range of parameters,
the annihilation of the network can be “heard” by different GW observatories, and that a
non-negligible abundance of PBHs might also be expected if αgw > O(10−2).

The interplay of GW and PBHs signatures described in this work is similar to the
more studied scenario of PBH formation from the collapse of large adiabatic perturbations
from inflation. However, GWs from density perturbations as an interpretation of PTA data
have been shown to be in tension with constraints from PBH overproduction [55, 56]. In
contrast, the mechanism presented here remains viable according to our current understanding.
Additionally, asteroid-mass PBH DM from inflationary perturbations has been argued to give
a GW signal peaked in the LISA frequency band [57], whereas ground-based interferometers
(LVK, ET, CE) are best-suited to indirectly probe PBH DM from DW collapse.
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A Numerical strategy

The comoving lattice spacing is ∆x = L/N , while the physical lattice spacing is ∆xphys =
a(η)∆x. Units are chosen such that v = 1, and m =

√
2λv = 1, which corresponds to fixing

λ = 1/2. The initial value of a(η) is fixed to 1. In radiation domination, a ∝ 1 + Hiη,
H = Hi(1 + Hiη)−2 and H ≡ aH ∝ a−1 ∝ η−1.
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For Domain walls the following numerical conditions have to be satisfied:

• The physical DW width δw should remain larger than the physical lattice spacing until
the final time, i.e.

δw ∼ m−1 ≫ ∆xphys(ηf ) ⇒ Hiηf ≪ N

L
. (A.1)

• There should be c ≫ 1 Hubble patches at the final time of the simulation in the physical
box, (

∆xphys(ηf )N
H−1(ηf )

)3

∼ c ⇒ L ≳ c1/3ηf . (A.2)

In the extreme allowed case, the width of the domain wall is of the order of the lattice spacing
at the end of the simulation. Then putting together the conditions above we get

N ≳ c1/3η2
f . (A.3)

For instance, if we want to get to ηf ≳ 25 with c ∼ 5 Hubble patches at the end of the
simulation, then we need N ≳ 1100. If we want to get further, like ηf = 30, then we need
N ≳ 1500. The longest simulation time is obtained if both conditions are violated at the
same time, which corresponds to setting L =

√
N/Hi = ηf .

B FV pockets in the Nambu Goto approximation

The thin wall approximation provides additional insight on the DW network behaviour,
especially in the annihilation phase where the remains of the network is a collection of
separate FV pockets. This is a good approximation when the DW worldsheet curvature
radius, R, is large compared to its width, which is set by the inverse scalar mass. (This
is satisfied in most of the network during scaling, except for a small fraction of the total
volume where collisions, interconnections or pinch-off events occur). It is possible to include
the gravitational effect from the DWs themselves (see e.g. [36, 37, 60, 61]) but we shall
ignore this here.

In this approximation, the evolution of a FV pocket follows from the ‘equation of motion’
for the DW at its boundary, which reduces to the Nambu-Goto (NG) equation

σ K = ∆V .

Here K is the extrinsic curvature of the DW worldsheet and we included a pressure term given
by the bias ∆V , see e.g. [62]. It is not easy to solve this equation in general. However, the
equation simplifies for walls with higher symmetry. We are interested in the motion of a DW
network where inevitably the DW shapes are random. However, once the network annihilation
starts, the DW motion, in a way, simplifies. Indeed, the DWs are simply the boundaries of
FV pockets, which shrink quite quickly and quite independently of their initial shape.

This can be illustrated by comparing 3 extreme cases that can be easily computed,
where the shape of the DW is: i) spherical, ii) cylindrical and iii) planar. The NG equation
then reduces to

R′′ +
(

n

R
− 3R′ a

′

a

)
γ−2 + a

∆V

σ
γ−3 = 0 , (B.1)
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Figure 13. Ratio of the initial radius R0 and the (conformal) time to reach R(η) = 0, ∆η, of
super-Hubble FV pockets. It depends mildly on the shape and it asymptotes to a constant value
(dotted black curve).

with n = 2, 1 for spherical or cylindrical DW of comoving radius R respectively. The case
n = 0 corresponds to a planar wall placed at, say, z = R(η). Primes denote derivatives
w.r.t. conformal time, and

γ ≡ 1/
√

R′2 − 1 .

It is straightforward to integrate this equation and thus follow the evolution of a structure
of certain initial comoving radius R0. Some representative examples are shown in figure 10.
It is clear from the figure that the structures reach arbitrarily small size after a finite
(conformal) time ∆η, that is the time lapse until R approaches 0. Of course eventually a
small enough structure transfers its energy into scalar waves (which are not captured in the
NG approximation). Note that if one prefers to define the collapse time as when R(η) reaches
a small radius rc, the result would be the same so long as rc ≪ R0.

The trajectories shown in figures 10 are readily understood: closed DWs shrink under
both the effect of the tension and the pressure ∆V , reaching relativistic speeds quite quickly.

Interestingly, the collapse time ∆η depends mostly on the initial size. As shown in
figure 13, for large enough initial FV pockets, the collapse time approaches C R0, with a
constant C in the range 1.15 − 1.2, quite independently of the pocket shape.

Of course, in a network the DW shapes are not symmetric. However, figure 13 signals
a quite clear time scale in the network decay: the first stage of annihilation, (that is still
far from the FV pocket gas picture) takes about one Hubble time.

One expects a ‘burst’ of GWs from the collapsing FV regions as they shrink because
they are significantly non-spherical. This GW production time ηgw is then expected to be
near the collapse time because it is dominated by the most numerous pockets, with sizes
of order η∆V . In summary, the fact that Hubble-sized structures have to reach small sizes
naturally leads to the expectation

ηgw ≃ η∆V + (∆η)|R0∼η∆V ∼ 2η∆V . (B.2)
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It is also easy to keep track of the energy of a given FV pocket, and how it evolves in
time. Focusing on spherical symmetry for simplicity, the energy is

E = 4π

3 ∆V R3(η)a3(η) + 4πσR2(η)a2(η)γ(η) , (B.3)

and because of the expansion it is not conserved. For super-Hubble pockets, first E grows
(because both the FV region and the DW gain volume/area by the expansion). Only when
they enter the Hubble radius the energy stabilizes.

We can keep track of the energy carried by the FV pocket that enters the Hubble radius
at each time, by evaluating eq. (B.3). The γ factor grows in time, but not enough to compare
to the volume contribution. Thus, after about one Hubble time, E scales like the physical
Hubble volume, ∼ η6. Solving numerically the NG equation (B.1) we find that the expression
E/E0 ≃ (τ6 + τ5 + 2τ4)/4, with τ = η/η∆V and E0 the initial energy of the pocket, provides
a good fit (within 5%) of the actual time dependence (the τ5 term can be identified as the
DW gamma factor). This leads to the following improvement of eq. (4.9)

αloc = 1.5 αgw
τ4 + τ3 + 2τ2

τ4
gw + τ3

gw + 2τ2
gw

, (B.4)

where the factor of 1.5 comes from rewriting αloc(ηgw) = ∆V/(3H(ηgw)2M2
p ) in terms of

the fraction of the energy density in the DW network at the same time αdw = ρdw/ρc, with
ρdw(ηgw) = 2.6 σH(ηgw) and τgw ≃ 2. This is smaller than eq. (4.9) for τ > τgw, so eq. (4.9)
provides a conservative bound.
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