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Abstract

We present a method to construct the extended Kähler cone of any Calabi-Yau three-

fold by using Gopakumar-Vafa invariants to identify all geometric phases that are related

by flops or Weyl reflections. In this way we obtain the Kähler moduli spaces of all fa-

vorable Calabi-Yau threefold hypersurfaces with h1,1 ≤ 4, including toric and non-toric

phases. In this setting we perform an explicit test of the Weak Gravity Conjecture by

using the Gopakumar-Vafa invariants to count BPS states. All of our examples satisfy the

tower/sublattice WGC, and in fact they even satisfy the stronger lattice WGC.
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1 Introduction

The physics resulting from a compactification of string theory often varies across a moduli

space of geometries. Characterizing the moduli space is then a prerequisite for understand-

ing the imprint of quantum gravity on low-energy physics. In general the moduli space is

the union of a number of regions, for example corresponding to distinct geometric phases,

and a primary task is to map out the transitions among these components.

In this work we will consider the Kähler moduli space of birationally-equivalent Calabi-

Yau threefolds. This moduli space is a cone, the extended Kähler cone K, whose dimension

is given by the Hodge number h1,1 of the threefold. The extended Kähler cone is the

union of a collection of smaller cones, each corresponding to the Kähler cone of a distinct

geometric phase, and linked to its neighbors by birational transformations: see Figure 1.

The number of phases grows rapidly as h1,1 increases, so much so that constructing K
becomes challenging for h1,1 > 2.

The first result of this paper is a general algorithm for constructing the extended Kähler

cone. We probe the Calabi-Yau via compactification of M-theory. Starting from one phase,

one needs to know which other phases to adjoin via flop transitions. We show how to use

the Gopakumar-Vafa (GV) invariants of curves to identify the set of curves that can be

flopped. In the process we also identify curves associated to su(2) enhancements, and we

show how to account for the gauge redundancy resulting from their Weyl reflections. We

then use the data of flops and Weyl reflections to map out the entire Kähler moduli space.1

In the case of Calabi-Yau threefold hypersurfaces in toric varieties, one can compute the

GV invariants by means of mirror symmetry [2,3], for example using CYTools [4,5]. In this

setting we construct the Kähler moduli spaces of all favorable geometries with h1,1 ≤ 4,

and of a selection of geometries with h1,1 = 5.

The second result of this paper is an application of the first: we test the Weak Gravity

Conjecture (WGC) [6] in our ensemble of compactifications on Calabi-Yau threefold hy-

persurfaces by reconstructing the Kähler moduli space in each case. The WGC predicts

that certain superextremal states should exist. In particular, in the region in charge space

where BPS black holes2 exist, denoted hereafter by CBH, the WGC predicts the existence

of BPS particles.3 The GV invariants are BPS indices, and so a sufficient — but not nec-

1As explained in [1], the data of the extended Kähler cone also provides a means of studying the
complete effective cones in these geometries, but we defer this application to future work.

2These black holes need not be spherically symmetric, and could in fact be multi-centered.
3Specifically, the lattice WGC predicts the existence of a BPS particle for each site in the intersection

of the charge lattice with CBH; the sublattice WGC predicts the existence of a BPS particle on a full-
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essary — condition for the existence of a BPS particle of a given electric charge is that the

corresponding GV invariant is nonzero. Building on [1], we show how to compute a region

contained in CBH by carrying out all flops, as well as all Weyl reflections across which all

BPS states remain stable. Upon computing this region and the GV invariants of charges

therein, we find that the tower and sublattice WGC [7, 8], and even the stronger lattice

WGC [9], are obeyed in all our examples, out to the highest charges we examined. This

is somewhat surprising because there are known counterexamples to the lattice WGC [7],

which arise in certain toroidal compactifications of type II/heterotic string theory. It is

significant, perhaps, that no such counterexamples arise in the class of Calabi-Yau com-

pactifications considered here.

The structure of this paper is as follows. In §2 we review some salient aspects of Calabi-

Yau geometry. In §3 we explain the transitions that can occur when passing through a

wall in the Kähler moduli space. We show how to use the data of GV invariants to identify

curves that can be flopped, and thus connect birationally-equivalent Calabi-Yau threefolds.

We present an algorithm to assemble the extended Kähler cone by combining all possible

flops, unto the ends of the moduli space. In §4 we construct the extended Kähler cones of

an ensemble of Calabi-Yau threefold hypersurfaces and use this knowledge to carry out a

large-scale test of the WGC. We conclude in §5.

2 Review of Calabi-Yau Compactifications

In this section we will briefly review a few results from compactifications of M-theory and

type IIA string theory on Calabi-Yau threefolds, focusing on the definitions and interrela-

tions of a number of cones, and on their connections to Gopakumar-Vafa invariants.

2.1 Effective theory

We begin by compactifying M-theory on a Calabi-Yau threefold X. The result is a five-

dimensional N = 1 effective supergravity theory. The massless particle spectrum is given

by the gravity multiplet, h2,1(X)+1 hypermultiplets, and n := h1,1(X)−1 vector multiplets.

The 4h2,1(X) + 4 scalar degrees of freedom in the hypermultiplets are furnished by the

2h2,1(X) complex structure moduli of X, the 2h2,1 + 3 axions from dimensional reduction

of the eleven-dimensional three-form, and the overall volume modulus of X, while the n

dimensional sublattice in CBH; and the tower WGC predicts an infinite tower of BPS particles along each
rational ray in CBH.
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scalars parameterizing the vector multiplet moduli space come from the Kähler moduli of

X that leave the overall volume fixed. At generic points in Kähler moduli space the gauge

group is U(1)n+1, where n of the abelian vector fields live in the n vector multiplets and

one lives in the gravity multiplet.

A general Kähler form J can be expanded in a basis of divisor classes
{
[Ha]

}h1,1(X)

a=1
,

J =

h1,1(X)∑
a=1

ta[Ha] , (2.1)

and one can think of the Kähler parameters ta as projective coordinates on vector multiplet

moduli space. By a choice of normalization, integrating J over effective curves in X yields

curve volumes in units of the eleven-dimensional Planck length ℓ11.
4

Neglecting the hypermultiplets, the bosonic action can be written as

S =
2π

ℓ35

∫
d5x

√−g

(
R− 1

2
gij(ϕ)∂ϕ

i · ∂ϕj

)
− 1

4πℓ5

∫
fab(ϕ)F

a ∧ ⋆F b − 1

24π2

∫
κabcA

a ∧ F b ∧ F c , (2.2)

where the ϕi, i = 1, . . . , n, are affine coordinates on moduli space, and the Aa are the n+1

gauge potentials, with field strengths F a = dAa. Moreover, the κabc :=
∫
X
[Ha]∧ [Hb]∧ [Hc]

are the triple intersection numbers, and ℓ5 is the five-dimensional Planck length.

The scalar and gauge field kinetic terms are obtained by dimensional reduction of the

eleven-dimensional effective action and can be written in terms of a homogeneous degree-

three prepotential in the projective coordinates ta,

FM [t] =
1

3!
κabct

atbtc . (2.3)

We may choose the ϕi as coordinates of the n-dimensional hypersurface FM [t] = 1, thus

gauge fixing the projective equivalence ta ∼ λta. The kinetic terms are then

fab = FM
a FM

b −FM
ab , gij = fab∂it

a∂jt
b , (2.4)

where FM
a := ∂aFM and FM

ab := ∂a∂bFM .

Importantly, as the overall volume modulus is in a hypermultiplet, the full prepotential

4We define ℓ11 via the eleven-dimensional Einstein-Hilbert action SEH = 2π
ℓ911

∫
⋆R.
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FM [t] can be computed in the large volume limit where it is classical, and thus receives

neither perturbative nor non-perturbative corrections. This allows one to completely clas-

sify the possible behavior of the EFT at boundaries of the moduli space [10], as we review

in §3.1.
We can also compactify type IIA string theory on X, which is equivalent to reducing

the above five-dimensional theory on a circle. The result is a four-dimensional N = 2

effective supergravity theory, including h2,1(X)+1 hypermultiplets directly inherited from

the five-dimensional theory. The n five-dimensional vector multiplets descend to four-

dimensional vector multiplets, and the reduction of the five-dimensional gravity multiplet

to four dimensions provides one more vector multiplet, for h1,1 in total.

The bosonic action, again neglecting hypermultiplets, is

S =
2π

ℓ24

∫
d4x

√−g
(
R− 2Kab̄∂z

a∂zb
)

+
1

4π

∫ (
Im(NAB)F

A ∧ ⋆FB +Re(NAB)F
A ∧ FB

)
, (2.5)

where A,B = 0, . . . , h1,1 and a, b = 1, . . . , h1,1. The Kähler metric Kab̄ := ∂a∂bK and the

gauge-kinetic matrix NAB can be written in terms of a holomorphic prepotential F IIA,

which is homogeneous of degree two in projective coordinates ZA:

K = − log
(
i
[
ZAF IIA

A − ZAF IIA
A

])
, (2.6)

NAB = F IIA
AB + 2i

Im(F IIA
AC )Z

CIm(F IIA
BD)Z

D

Im(F IIA
MN)Z

MZN
. (2.7)

The type IIA prepotential can be expanded around large volume as

F IIA[Z]

(Z0)2
= − 1

3!
κabcz

azbzc +
1

2
aabz

azb +
1

24
caz

a +
ζ(3)χ(X)

2(2πi)3

− 1

(2πi)3

∑
[C]∈MX

n0
[C]Li3(q

[C]) (2.8)

where za := Za/Z0 are h1,1 complex affine coordinates on Kähler moduli space. The real

parts ba := Re(za) are the integrals of the ten-dimensional two-form B2 over a basis of

H2(X,Z), and the imaginary parts t̃a := Im(za) measure string frame curve volumes.5

5The string frame curve volumes t̃a are related to the curve volumes ta in eleven-dimensional Planck

units via t̃a = g
2
3
s ta ≡ Vol(S1)/ℓ11t

a, with gs the type IIA string coupling.
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As in (2.3), κabc are the triple intersection numbers of X. The leading term in (2.8) is

inherited classically from the five-dimensional prepotential, but in four dimensions there

are also perturbative corrections in α′ parameterized by

ca =

∫
X

c2(X) ∧ [Ha], aab =
1

2

κaab a ≥ b

κabb a < b
, and χ(X) =

∫
X

c3(X), (2.9)

with c2(X) and c3(X) the second and third Chern classes of X, respectively. Furthermore,

the perturbative result is corrected by a series of worldsheet instanton corrections from

strings wrapping effective curves in X, or equivalently BPS particles in the five-dimensional

theory traveling around the compactification circle. The coefficients n0
[C] are the BPS indices

of the five-dimensional theory, namely genus zero GV invariants, and

q[C] := exp

(
2πi

∫
C
JC
IIA

)
, (2.10)

where JC
IIA := B2 + iJIIA and JIIA =

∑
a t̃

a[Ha] is the Kähler form measuring string frame

volumes. Decompactifying the four-dimensional theory back to five dimensions corresponds

to taking the limit

t̃a → λ2t̃a , gs → λ3gs , λ → ∞ , (2.11)

and indeed one recovers the five-dimensional prepotential FM [ta] = −i lim
λ→∞

F IIA[Z]
g2s(Z

0)2
.

2.2 Calabi-Yau geometry and BPS states

Let us review a few well-known facts about Calabi-Yau threefolds and their Kähler moduli

spaces. First, we recall the following theorem:

Wall’s theorem [11]: The diffeomorphism class of a Calabi-Yau threefold X is classified

by its Hodge numbers, h1,1 and h2,1; its triple intersection numbers, κabc; and its second

Chern class, c2.

Positivity of the Hermitian metric on X restricts the Kähler form J of X, introduced

in (2.1), to take values in the Kähler cone KX ⊂ H1,1(X)∩H2(X,R), which is equal to the

cone of ample line bundles. KX is dual to the Mori cone of X, MX , which is generated

by the effective curve classes of X. As effective curves C are calibrated with respect to the
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Kähler form J ,

Vol(C) =
∫
C
J , (2.12)

it follows that along the facets of KX , one or more effective curves shrink.

The effective divisor classes in H2(X,Z) generate the effective cone, E , which is dual

to the cone of movable curves [12], denoted Mov, generated by the effective curves whose

moduli space sweeps out a dense open subset of X.

Along some facets of KX , only effective curves shrink, but no divisors shrink. The

curves that can shrink along such facets are always isolated rational curves [13,14], i.e., P1’s

without continuous moduli spaces, and their normal bundles are isomorphic to O(−1) ⊕
O(−1), O ⊕O(−2), or O(1)⊕O(−3) [15,16]. Continuing past such a facet of KX , where

an effective curve class [C] shrinks, amounts to a birational morphism

X\ ∪C∈[C] C → X ′\ ∪C′∈[C′] C ′ , (2.13)

called a flop transition, where X ′ is in general a topologically distinct Calabi-Yau threefold,

and [C ′] is an effective curve class in X ′. Divisors in X are identified with divisors in X ′

via blowdown maps, and thus we have canonical isomorphisms H2(X,Z) ≃ H2(X ′,Z) and
H2(X,Z) ≃ H2(X

′,Z). The Mori cone MX′ differs from MX because the curve class [C]
ceases to be effective in X ′, and instead [C ′] ≃ −[C] is effective. Moreover, the Calabi-Yau

X ′ is uniquely characterized (via Wall’s theorem) by its intersection numbers and second

Chern class

κ′
abc = κabc −

∑
C∈[C]

CaCbCc , (2.14)

c′a = ca + 2
∑
C∈[C]

Ca , (2.15)

where Ca :=
∫
X
[C] ∧ [Ha].

Thus, the Kähler cones KX and KX′ adjoin along a common facet. Exhausting all

possible flops in this way, and adjoining their respective Kähler cones, one obtains a central

object of this work, the extended Kähler cone

K :=
⋃

X∈[X]b

KX , (2.16)

where [X]b is the birational equivalence class of X.
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Note that some of the cones we have discussed—such as the Kähler cone KX or the

Mori cone MX—depend on the specific Calabi-Yau threefold X, whereas others—such

as the extended Kähler cone K and the effective cone E—only depend on the birational

equivalence class [X]b. In our notation, cones in the former class are written with an

explicit X subscript, whereas those in the latter class lack such a subscript.

A variety of behaviors are possible at the boundaries of the extended Kähler cone. How-

ever, as argued in [1], each known possibility is accompanied by a shrinking (pseudo)effective

divisor class. As effective divisors are calibrated with respect to 1
2
J ∧ J , this is best de-

scribed in dual coordinates

Ta :=
1

2
κabct

btc , (2.17)

which are related to the Kähler coordinates by the map

T : J 7→ 1

2
J ∧ J , i.e. ta 7→ 1

2
κabct

btc . (2.18)

The dual-coordinate image of the extended Kähler cone is the cone of dual coordinates

T := T (K).6 The observation of [1] can then be summarized as T = E∨, i.e., T is precisely

the cone of movable curves.7 Since T , viewed as a map from K to T , is invertible,8 both K
and T provide equally good descriptions of the moduli space, with the preferred description

depending on the context.

In practice, a simple way to obtain an ensemble of birationally-equivalent Calabi-Yau

threefolds is to consider Calabi-Yau hypersurfaces in simplicial toric fourfolds, defined via

distinct fine, regular and star triangulations (FRSTs) of a fixed reflexive polytope ∆◦,

henceforth referred to as toric phases. By adjoining the Kähler cones of the different

toric fourfolds one obtains a sub-cone of the extended Kähler cone K that includes all

birational transformations of the threefold that are inherited from bistellar flips, which are

the building blocks of birational transformations of the toric varieties. Henceforth we will

refer to such flops of the threefold as toric flops. In general, by exploring toric flops one

does not obtain all of K, i.e., there generally are flops intrinsic to the threefold for which one

lacks an embedding into a pair of birationally-equivalent toric fourfolds. We will denote

these as non-toric flops. Indeed, by exploring non-toric flops one can often define new

Calabi-Yau threefolds for which one lacks a known hypersurface embedding into any toric

6This cone was denoted K̃ in [1].
7It would be interesting to mathematically prove this equivalence, but we view the arguments given

in [1] as both compelling and consistent with all known examples.
8This is proved, e.g., in §4.1 of [1] using the fact that K is convex.
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Figure 1: A cartoon of an extended Kähler cone. Each cone represents the Kähler cone of
an individual Calabi-Yau. The cones shaded blue represent Calabi-Yaus obtained as hy-
persurfaces in a toric variety, whereas those shaded red represent Calabi-Yaus that are not
manifestly obtained by performing birational transformations on a toric ambient variety,
but can nonetheless be reached by flops of curves in the Calabi-Yaus. One of the main
results of this work is a method for assembling extended Kähler cones.

variety. We will refer to such geometric models as non-toric phases to distinguish them

from hypersurfaces in toric varieties. Assembling the extended Kähler cone via collecting

and adjoining both toric as well as non-toric phases will be the main focus of this work:

see Figure 1 for an illustration.

As we will explain in detail in §3, along some facets of K an effective divisor shrinks to a

curve of genus g, where the transverse space to each point on the curve is an A1 singularity.

Along such facets, the moduli space ends in a Z2 orbifold singularity, corresponding to the

origin of the Coulomb branch of an su(2) gauge sector in the low-energy EFT. One can

equally well describe the moduli space redundantly by passing to a covering space of K that

includes its images under a discrete (but not necessarily finite) Weyl group W . Although

these Weyl images are not genuinely new geometric phases—but rather gauge-redundant

copies of the original—this Weyl-extended description is useful not only for describing

the BPS black hole solutions [1], but also (we will find) for the program of moduli space

reconstruction.

However, the full Weyl-extended moduli space is in general a branched cover of the

Weyl orbit of K,

W(K) :=
⋃
w∈W

w(K) , (2.19)

where the branch points arise from CFTs appearing on codimension-two faces of the Kähler
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cone (see the example of §C.4). A smaller Weyl extension of moduli space without such

subtleties can be obtained by considering only the subgroup Wstable of Weyl reflections

that do not involve crossing any walls of marginal stability, i.e., across which all BPS

states remain stable. We refer to such Weyl reflections as stable Weyl reflections, and we

refer to the orbit of K under this subgroup as the hyperextended Kähler cone,

Khyp := Wstable(K) =
⋃

w∈Wstable

w(K) . (2.20)

Next, we turn to a short discussion of BPS states and their relevant indices, following

[17]. In a compactification of M-theory on X, M2-branes wrapped on an effective curve C
give rise to a spectrum of massive BPS particle states that transform under the massive

little group SO(4) ≃ SU(2)L × SU(2)R in a representation

R[C] =

[(
1

2
, 0

)
⊕ 2(0, 0)

]
⊗
∑
j1,j2

N j1,j2
[C] · (j1, j2) , (2.21)

with some degeneracies N j1,j2
[C] . Their contribution to the genus g BPS indices ng

[C], which

are the GV invariants, keeps track of the SU(2)L representations but traces out the SU(2)R

spin content with sign (−1)2j2 . Specifically, the ng
[C] are computed via the decomposition

∑
j1,j2

(−1)2j2(2j2 + 1)N j1,j2
[C] (j1) =

∑
g≥0

ng
[C]

[(
1

2

)
+ 2(0)

]g
, (2.22)

where the right-hand side is a formal sum of vector spaces with possibly negative coef-

ficients. One notes that a multiplet with largest right-spin j2 generically contributes to

all ng
[C] with g ≤ 2j2. For instance, hypermultiplets and vector multiplets contribute +1

respectively −2 to the genus zero GV invariants, and to none of the ng>0
[C] .

From a mathematical perspective, the GV invariants ng
[C] are a particular resummation

of Gromov-Witten invariants ñg
[C], which, roughly, count maps from genus g Riemann

surfaces into X as computed by the topological A-model [18,19]. Specifically, we have the

relation [17,20,21]

∑
[C]∈MX

∞∑
g=0

ñg
[C]q

[C]λ2g−2 =
∑

[C]∈MX

∞∑
g=0

∞∑
k=1

ng
[C]
1

k

(
2 sin

(
kλ
2

))2g−2

qk[C] , (2.23)

and in particular, at genus zero
∑

[C]∈MX
ñ0
[C]q

[C] =
∑

[C]∈MX
n0
[C] Li3(q

[C]), with Li3(q) :=

10



Figure 2: Mori coneMX of a Calabi-Yau
threefold X, and its integer sites pop-
ulated by non-vanishing genus zero GV
invariants. Depicted in red: a generator
of MX that is nilpotent and lies outside
of M∞, shown in yellow.

Figure 3: Mori cone MX′ of another
Calabi-Yau X ′ related to X by a flop
transition, and sites populated by non-
vanishing genus zero GV invariants. De-
picted in red: the flopped generator of
MX . In this example, K is the dual of
M∞.

∑∞
k=1 q

k/k3.

We will define MGV
X,g to be the cone generated by all homology classes [C] of curves with

non-vanishing GV invariants ng
[C]. As M2-branes wrapped on curves in classes outside the

Mori cone break all the supersymmetries, they do not generate BPS states, and thus their

GV invariants ng
[C] must vanish. We therefore have the inclusion MGV

X,g ⊆ MX for all g.

The cone MGV
X ≡ MGV

X,g=0 will be of interest because its generators may collapse at finite

distance in moduli space, as we discuss in §3.9

We will furthermore divide rational rays in MX into two classes, following [24, 25]. In

the first class are rays that host an infinite number of curve classes with non-vanishing

genus zero GV invariants: these we term potent rays. The second type of ray hosts only a

finite number of non-vanishing genus zero GV invariants, and we will call this a nilpotent

ray, see Figure 2 for an example. Curve classes along potent and nilpotent rays are likewise

termed potent and nilpotent, respectively.

An important object in this work is the infinity cone, M∞, defined as the closure of

the cone generated by all potent rays. One of our main claims, substantiated in §3, is that
9In contrast, the generators of MGV

X,g>0 can never shrink at finite distance in moduli space, as this
would lead to finitely many massless higher spin degrees of freedom non-trivially coupled to each other at
the two-derivative level, in conflict with classic results [22,23].
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the dual of the infinity cone is the hyperextended Kähler cone Khyp, i.e.

Khyp = M∨
∞ . (2.24)

We now relate the aforementioned cones to the charges of BPS black holes. In particular,

for any point T ⋆
a in the (dual-coordinate) moduli space, let CBH(T

⋆
a ) be the cone of charges

of BPS black holes with asymptotic moduli values Ta → T ⋆
a .

10 As shown in [1],

T ⊆ CBH(T
⋆
a ) for any T ⋆

a ∈ T . (2.25)

This is because T is convex (since T = E∨) and spherically symmetric BPS attractor flows

are straight lines in dual coordinates.

However, since the potent GV invariants remain unchanged across the entire hyper-

extended moduli space, our checks of the lattice WGC in fact depend only on the larger

(hyperextended) cone of BPS black holes

CBH :=
⋃

T ⋆
a∈Thyp

CBH(T
⋆
a ) , (2.26)

where Thyp := T (Khyp) is the hyperextended cone of dual coordinates. In particular,

because invariably T ⋆
a ∈ CBH(T

⋆
a ),

11 we have12

Thyp ⊆ CBH , (2.27)

hence the lattice WGC predicts BPS particles throughout Thyp. One can sometimes estab-

lish a stronger inclusion than (2.27): see Appendix C.1.

While the somewhat-complicated relations given above are sufficient for our present

purposes, we now argue that the situation may actually be simpler than this. Continuously

changing the asymptotic values of the moduli T ⋆
a should not change a solution with smooth

horizons into a singular solution. Instead, BPS black hole solutions of a given charge may

cease to exist another way, by falling apart into infinitely separated components at walls

of marginal stability. If these expectations hold, then CBH(T
⋆
a ) can only change at walls of

10Note that CBH(T
⋆
a ) is necessarily convex, because we consider multi-center solutions to be BPS black

holes.
11The corresponding BPS black hole solutions are of the five-dimensional Reissner-Nordström type,

with constant values for all the moduli.
12If Thyp is convex then the stronger statement Thyp ⊆ CBH(T

⋆
a ) also holds. In all examples we have

checked, Thyp is indeed convex, but we know of no general proof.
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Symbol Description Relations

KX Kähler cone of phase X ≡ M∨
X

MX Mori cone of phase X ≡ K∨
X

K extended Kähler cone :=
⋃

X∈[X]b
KX

M intersection of Mori cones :=
⋂

X∈[X]b
MX , ≡ K∨

E effective cone ≡ Mov∨, ⊇ K
Mov cone of movable curves ≡ E∨, ⊆ K∨

M∞ infinity cone
(3.6)
= K∨

hyp

MGV
X cone over curves C with nonzero n0

[C]
(3.4)
=
⋂

w∈WN=4
w(MX)

Khyp hyperextended Kähler cone :=
⋃

w∈Wstable
w(K),

(3.6)
= M∨

∞

T cone of dual coordinates := T (K),
[1]
= Mov

Thyp hyperextended cone of dual coordinates := T (Khyp), ⊆ CBH

CBH(Ta) cone of BPS black holes at Ta ∋ Ta, ⊇ T
CBH (hyperextended) cone of BPS black holes := CBH(Thyp), ⊇ Thyp

Table 1: The relevant cones. The map T is defined in (2.18). We use ≡ to denote

equivalence and := to denote definitions. The relations marked
(3.4)
= and

(3.6)
= are established

in the present work, as (3.4) and (3.6), respectively, while an argument for the relation

marked
[1]
= was given in [1].

marginal stability. Since by construction there are no such walls within Thyp = T (Khyp),

we would then have

CBH(T
⋆
a )

?
= CBH for any T ⋆

a ∈ Thyp. (2.28)

However, the identification (2.28) relies on some non-trivial assumptions that we will not

test here, and in any event the logic of our analysis is valid without (2.28).

By now we have defined a daunting number of cones, some more standard than others:

see Table 1. With these definitions in hand, we can give a concise overview of the rest of

the paper. In §3, we will establish the relation Khyp = M∨
∞ stated in (2.24). By computing

M∞ from the GV invariants of X and applying (2.24) and (2.18), we arrive at Thyp, a

region inside CBH. Finally, by examining the GV invariants of curve classes in Thyp, we

test the WGC in our ensemble of geometries.
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3 Moduli Space Reconstruction from GV Invariants

We will now explain how the structure of non-vanishing GV invariants determines the

hyperextended Kähler cone Khyp ⊇ K. We begin in §3.1 with a review of the classification

of possible low energy physics that can arise along facets of the Kähler cone KX of a Calabi-

Yau threefold, paying special attention to the sequence of genus zero GV invariants along

the dual generators of the Mori cone. In §3.2 we will use this classification to obtain one of

our main results: an algorithm to (1) compute a domain of Kähler parameters Khyp that

contains the Kähler cones of all inequivalent Calabi-Yau threefolds X in a given birational

equivalence class [X]b, and (2) compute the defining topological data of all X ∈ [X]b.
13

3.1 Facets of the Kähler cone

To reconstruct the extended Kähler cone K starting from a phase X, we need to identify

every effective curve class [C] that can be flopped to reach a new phase X ′, and then adjoin

to KX the associated phase KX′ . To this end, we now review, following Witten [10], the

possible low energy physics that can arise along facets of the Kähler cone KX , and what

imprint the corresponding light charged states leave on the spectrum of GV invariants.

This will allow us to use knowledge of the set of nonzero GV invariants to differentiate

curves that can be flopped from those that shrink on exterior boundaries of K.

3.1.1 Flop transitions

Flop transitions always occur at finite distance in moduli space, and the light states that

arise on the corresponding facets of KX are furnished by M2-branes wrapping the isolated

volume-minimizing representatives of the shrinking curve class [C], i.e. a set of P1’s, con-

tributing a finite number of massless hypermultiplets [31]. The number of such multiplets

is equal to the genus zero GV invariant of the vanishing curve class. Furthermore, at a

generic point on such a facet, at most finitely many states fall within any finite mass win-

dow, and thus the class [C] is nilpotent (as defined in §2.2) and lies strictly outside of the

cone M∞.

13See also [26–30] for works on applications of flop transitions in Calabi-Yau threefolds.
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3.1.2 Weyl reflections

Next we consider a finite distance facet along which an effective curve C, again a P1,

shrinks to a point in X, while simultaneously an effective divisor D degenerates to a genus

g Riemann surface R worth of A1 singularities. In this case D is a P1 fibration over R,

where the fiber is the shrinking P1. Along such facets of KX , a u(1) factor in the generic

gauge algebra enhances to su(2), and one obtains g charged hypermultiplets [32, 33].14

These massless electrically charged states come from M2-branes wrapped on the generic

fiber, while the M5-brane wrapped on the vanishing divisor is interpreted as the ’t Hooft-

Polyakov magnetic monopole string. The genus zero GV invariant of [C] is equal to 2g− 2.

If the P1 fibration over R defining the shrinking divisor D degenerates over NF points in

the base, one obtains in addition NF fundamentally charged hypermultiplets from 2NF

isolated rigid P1’s in half the class of the generic fiber (see §C.3 for an example), and if

NF > 0 the gauge group is SU(2).

In flat coordinates (as opposed to gauge-invariant coordinates) it makes sense to con-

tinue past the facet where [C] and [D] shrink, but the corresponding region in moduli space

is gauge equivalent to the original Kähler cone via the Weyl group action of the non-abelian

gauge theory [1],

ta ≃ wa
b · tb , wa

b = δab − 2
[D]a[C]b
⟨C, D⟩ . (3.1)

In general, we define the Weyl group W associated to a birational equivalence class [X]b

as the group generated by all such Weyl reflections across facets of the extended Kähler

cone K.

The shrinking curve class [C] is either a generator of M∞ or else lies strictly outside

of M∞. To understand this, we first consider the g = 0 case without fundamentally

charged matter, where the non-abelian gauge theory in question is pure supersymmetric

Yang-Mills theory. The four-dimensional theory is asymptotically free, and its Coulomb

branch receives corrections from gauge instantons that dominate over the classical result at

Coulomb branch vevs smaller than the dynamical scale of the theory, as famously computed

by Seiberg and Witten [34]. These corrections can only be accounted for by the known

expression for the prepotential (2.8) if there are non-vanishing genus zero GV invariants

along an infinite sequence of curves that grow by multiples of the vanishing curve, i.e. if

14As explained in [1], along such facets the generic gauge group U(1)n enhances to either SU(2) ×
U(1)n−1, or U(2)× U(1)n−2, or SO(3)× U(1)n−1.
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Figure 4: Mori coneMX of a Calabi-Yau
threefold X, and its integer sites pop-
ulated by non-vanishing genus zero GV
invariants. Depicted in red: a generator
of MX that is nilpotent and lies on the
boundary of M∞.

Figure 5: Non-pointed Mori cone MX′

related to MX by an unstable Weyl flop,
if one assumes no wall-crossing. Depicted
in red: the flopped generator of MX .

n0
[C′

k]
̸= 0 for sequences of curve classes of the form

[C ′
k] := [C ′

0] + k · [C] , k = 0, . . . ,∞ , (3.2)

or infinite sub-sequences thereof. This implies that [C] is a generator of M∞, even though

the GV sequence associated with its own integer multiples terminates, i.e. even though [C]
itself is nilpotent. More generally, whenever the non-abelian gauge theory is asymptotically

free, i.e. if 4(1− g)−NF > 0, the shrinking class is a generator of M∞.

As an aside we note that this implies the existence of a wall of marginal stability already

in the five-dimensional theory at the origin of the Coulomb branch: the fact that there

exists at least one sequence of the form (3.2) implies that upon continuing into a distinct

Weyl chamber — by passing through the origin of the Coulomb branch — all but finitely

many BPS indices associated to curve classes in the series must jump to zero. Otherwise,

the Weyl-transformed Mori cone could not be a pointed cone, as illustrated in Figures 4

and 5.

The converse statement is false: gauge instanton corrections to the prepotential of an

IR-free gauge theory vanish at the origin of the Coulomb branch, but one may still have

sequences of the form (3.2) that give rise to a holomorphic series with a finite analytic

continuation to the origin of the Coulomb branch (see §C.3 for an example). Thus, a curve

C shrinking along a Weyl-reflection locus associated with non-abelian enhancement giving
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rise to an IR-free gauge theory in four dimensions can be either a generator of M∞ or lie

strictly outside of it.

As far as the spectrum of GV invariants is concerned, a facet of KX featuring non-

abelian enhancement with g > 1 hypermultiplets in the adjoint representation and no

fundamentally charged hypermultiplets cannot be distinguished from a flop of 2g − 2 ra-

tional curves.15 Indeed, Weyl flops of genus g > 0 occur only along tuned loci in complex

structure moduli space, and turn into ordinary flops (if g > 1) or smooth points (if g = 1)

under a generic perturbation in complex structure [35]. We will single out the case where

g = 1, again without fundamental matter: here the GV invariant of the shrinking curve

vanishes, due to the fact that the non-abelian gauge theory is conformal and has acciden-

tally enhanced N = 4 supersymmetry. When such a g = 1 locus exists, the cone over

non-vanishing genus zero GV invariants MGV
X is strictly smaller than the Mori cone MX ,

and the cone dual to MGV
X is the Kähler cone adjoined by its gauge equivalent copy gen-

erated by the Weyl reflection associated with the N = 4 Yang-Mills theory.16 We denote

the group generated by such Weyl reflections as WN=4.

To recap, there are three kinds of qualitatively different Weyl reflections that can occur,

distinguished by the sign of the beta function in the four-dimensional gauge theory.

• For an asymptotically free gauge theory, i.e. 4(1 − g) − NF > 0, there is an infinite

tower of gauge instanton corrections that become important near the origin of the

Coulomb branch of the four-dimensional theory. As a consequence, the shrinking

generator of the Mori cone is also a generator of M∞.

• In the conformal case 4(1 − g) − NF = 0, the shrinking generator [C] of the Mori

cone is either strictly outside of M∞ or is on its boundary. In the special case

(g,NF ) = (1, 0) the gauge theory enhances to the N = 4 theory, and we expect that

[C] is strictly outside M∞.

• For an infrared-free gauge theory, i.e. 4(1− g)−NF < 0, the shrinking generator of

the Mori cone can be a generator of M∞ or lie strictly outside of M∞.

In general, su(2) enhancements from generators of M∞ have a wall of marginal stability at

their respective origins of the Coulomb branch (corresponding to unstable Weyl reflections),

while those from curves outside of M∞ do not (corresponding to stable Weyl reflections).

15Similarly, a genus g > 1 non-abelian enhancement with NF fundamentally charged hypermultiplets
cannot be distinguished from a length-2 flop with GV invariants (2NF , 2g − 2).

16We assume that no walls of marginal stability can arise at the origin of the Coulomb branch of a
gauge theory with enhanced supersymmetry.
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3.1.3 Tensionless string CFTs

A third possibility is that an effective curve [C] shrinks, while simultaneously an effective

divisor degenerates to a point in X. As explained in [10], an infinite tower of M2-brane

excitations on curves in D becomes massless, while the magnetically charged string from

the M5-brane wrapped on D becomes tensionless. One arrives at a non-trivial SCFT in five

dimensions featuring tensionless strings [10]. The presence of infinitely many electrically

charged BPS states — barring infinitely many exact cancellations in the index, which we

will assume does not happen — implies that multiples of the shrinking curve class [C]
itself contribute an infinite sequence of nonzero GV invariants. Such a point lies at finite

distance in moduli space. One might expect that a point where an infinite number of states

becomes massless is necessarily at infinite distance [36,37], but in this case, strong coupling

in the infrared invalidates this intuition.

3.1.4 Asymptotic boundaries

The final possibility is a facet of the Kähler cone where a curve class [C] and effective

divisor class [D] shrink at infinite distance in moduli space. This corresponds to a partial

decompactification of the five-dimensional theory, and for reasons as in §3.1.3 one expects

that the GV sequence n0
k[C] does not terminate.17

3.2 Moduli space from genus zero GV invariants

We will now apply the classification given in §3.1 to see how flop curves can be identified

from their GV invariants.

If [C] is a potent curve, i.e. if the GV sequence n0
k[C] does not terminate, then [C] cannot

be flopped: shrinking [C] corresponds at best to a facet of the Kähler cone that is either a

tensionless string CFT or an asymptotic boundary.

Next, if [C] is a nilpotent curve in M∞ — either strictly inside or on the boundary

— that is not a generator of M∞, then one cannot shrink [C] without first shrinking a

generator. Thus without loss of generality we can consider curves that are generators of

M∞. A nilpotent generator of M∞ is not a flop curve, but instead corresponds to an

unstable Weyl reflection.

17In the infinite distance limit, this infinite tower of nonvanishing GV invariants leads to an infinite
tower of light particles, in agreement with the Distance Conjecture of Ooguri and Vafa [38]. Such limits
have been considered in e.g. [39–41].
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The only remaining case is that [C] is nilpotent and lies strictly outside the cone M∞

of potent curves. We call such a curve a nilpotent-outside-potent, or nop, curve. The key

lesson of §3.1 is that

[C] is a nop curve ⇔ shrinking [C] yields a flop or a stable Weyl reflection , (3.3)

where we refer to a Weyl reflection as stable if it results from su(2) enhancement without

wall-crossing at the origin of the Coulomb branch. One important consequence is that by

identifying all nop curves, we determine the group Wstable ⊆ W of stable Weyl reflections.

Analytically continuing past a wall in the Kähler cone where a nop curve shrinks leads

either to a topologically distinct Calabi-Yau, or to a Calabi-Yau that gives rise to the same

physics as the original geometry, either due to a gauge symmetry or an isomorphism of the

two geometries.

The discussion above leads us to several useful results. First, the cone over the non-

vanishing genus zero GV invariants MGV
X is equal to the intersection over the N = 4 Weyl

orbit of the Mori cone:

MGV
X =

⋂
w∈WN=4

w(MX) . (3.4)

AsWN=4 is non-trivial only for tuned complex structure, we further have thatMGV
X = MX

at generic points in complex structure moduli space.

Second, the cone over the rays in the Mori cone hosting infinite series of GV invariants,

which we denoted M∞, is equal to the intersection of all Mori cones and their images

under the stable Weyl group, Wstable:

M∞ =
⋂

w∈Wstable

⋂
X∈[X]b

w(MX) ≡
⋂

w∈Wstable

w(M) . (3.5)

In particular, the dual of M∞ is the union over the Wstable orbit of the extended Kähler

cone,

M∨
∞ =

⋃
w∈Wstable

w(K) =: Khyp , (3.6)

which is what we previously defined as the hyperextended Kähler cone Khyp. We have

therefore established the relation (2.24). For generic complex structure we have Khyp = K.

In summary, one can determine the full Kähler moduli space of M-theory compactifi-

cations from the data of genus zero GV invariants, up to possible overcounting of gauge-

equivalent chambers.
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3.3 Geometric data from analytic continuation

We have explained how to determine an overcomplete domain for Kähler moduli, Khyp :=

Wstable(K), furnished by the extended Kähler cone and its orbit under stable Weyl reflec-

tions. But, in addition to charting out the domain of Kähler moduli one would also like to

characterize the Calabi-Yau threefold, and evaluate the prepotential F IIA, in each geomet-

ric chamber. It turns out that computing the four-dimensional prepotential F IIA in one

particular representative X of a birational equivalence class [X]b is sufficient to determine

the defining geometric data (and thus the large volume expansion of the prepotential) in

all chambers of Khyp, in a way that is readily accessible.

We will now consider how the prepotential (2.8) transforms across a facet on which a

nop curve shrinks. In this scenario, the shrinking curve formally acquires negative volume

on the other side of the transition. Along the facet where the nop curve has zero volume,

the volumes of all curves in M∞ can be made arbitrarily large by scaling up the Kähler

parameter, and for each choice of Kähler parameter there exist at most finitely many

curves in M∞ that have volumes below any fixed finite threshold. Thus, in order to obtain

the geometric data of all different chambers, one must only make sense out of formally

negative volumes appearing in finitely many polylogarithms in the expression (2.8).18 This

is straightforward to do by invoking Jonquière’s identity

Li3(e
2πiu)

(2πi)3
=

Li3(e
2πi(−u))

(2πi)3
− u3

6
+

u2

4
− u

12
, (3.7)

which allows one to rewrite an instanton correction with formally negative action as one

with positive action, supplemented by a polynomial correction term. Geometrically, this is

interpreted as collapsing a holomorphic curve class [C], continuing past its vanishing locus,

and re-interpreting its formally negative volume as minus the volume of the new effective

curve class [C ′] = −[C]. The polynomial correction term is interpreted as the perturbative

correction induced by the passing through the locus where a hypermultiplet has become

massless, and can be absorbed into the classical geometric data, precisely reproducing

(2.14) for the case of a flop, where the genus zero GV invariant is a literal count of shrinking

curves, while also generalizing to the case of a stable Weyl reflection. In summary, upon

passing through a flop transition, or a Weyl reflection without wall-crossing, whereby an

18The reasoning here is formally similar to that employed in [24] to compute Calabi-Yau periods sys-
tematically near conifold boundaries of the large complex structure cone. Indeed, for a flop curve the limit
of vanishing curve volume is mirror dual to the conifold limit discussed in [24].
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effective nop curve [C] collapses, the classical geometric data is modified as

κ′
abc = κabc − n0

C CaCbCc ,
c′a = ca + 2n0

C Ca , (3.8)

and the GV invariants remain the same, up to reassigning

n′0
[C′] ≡ n′0

−[C] = n0
[C] , and n′0

[C] = 0 . (3.9)

3.4 Assembly algorithm

We can now state an algorithm for constructing the hyperextended Kähler cone Khyp of a

Calabi-Yau threefold X:

1. Compute the genus-zero GV invariants of X, up to high enough degree to obtain an

accurate approximation to M∞.

2. Identify all nop curves, i.e. nilpotent curves on extremal rays that are strictly outside

M∞.

3. Assemble Khyp by adjoining phases related by flops and Weyl reflections, out to the

boundaries of the moduli space listed in §3.1.3 and §3.1.4.

In practice, some of the nilpotent curves in step (2) may correspond to stable Weyl reflec-

tions, so that the corresponding chambers do not furnish physically new regions of moduli

space. In fact, the number of chambers of Wstable(K) is often quite large, or even infinite,

as a consequence of symmetries. We explain in Appendix §A.2 how we replace Khyp with

a smaller, less redundant cone, containing a finite number of chambers. Using this, our

assembly algorithm is applicable even to birational equivalence classes featuring infinitely

many symmetric flops, and non-polyhedral effective cones such as the examples of [27,29].

Analogously, our algorithm can be applied to cases where the effective cone becomes non-

polyhedral at special loci in complex structure moduli space, corresponding to an infinite

order Wstable.

In contrast, if M∞ is infinitely generated due to the existence of infinitely many flops

that do not arise as simple reflections across facets of Kähler cones, then any computation

of GV invariants at finite cutoff degree will yield only an (inner) approximation of M∞,

which asymptotes to the exact result as the cutoff degree is sent to infinity. Similarly, if
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any representative in a birational equivalence class has a non-polyhedral Mori cone, then

GV invariants computed to finite cutoff degree will produce only an approximation of the

true Mori cone, and likewise M∞. A famous such example is the Schoen manifold [42].

3.5 An example

As an example, let us consider a Calabi-Yau threefold hypersurface X with h1,1 = 2

favorably embedded in a toric fourfold V , constructed in a standard way19 from a reflexive

polytope ∆◦. The integer points in ∆◦ other than the origin are the columns of
−1 0 0 0 −1 1

−1 0 0 1 1 0

−1 0 1 0 0 0

−1 1 0 0 0 0

 , (3.10)

and are associated with homogeneous coordinates xI , I = 1, . . . , 6, identified via a (C∗)2

action with scaling weights x1 x2 x3 x4 x5 x6

0 0 0 −1 1 1

1 1 1 2 −1 0

 . (3.11)

The columns of (3.11) are the charges of the divisors DI := {xI = 0} ∩ X. The faces of

∆◦ are simplices, so V is smooth.

In a basis of divisor classes {[D1], [D6]}, the triple intersection numbers and second

Chern class of X are

κ1ab =

(
5 5

5 5

)
, κ2ab =

(
5 5

5 3

)
, ca =

(
50

42

)
. (3.12)

The Mori cone inherited from the ambient variety, MV , is generated by the curve classes

(1, 0) and (0, 1). The genus zero GV invariants are given in Table 2, and the sites in

MV populated by them are depicted in Figure 2. In particular, the generators of MV

have non-vanishing GV invariants, so MV ≃ MX , and the generator class [C1] := (1, 0) is

19For some details on Calabi-Yau threefold hypersurfaces in toric fourfolds, see Appendix B. Further
examples are given in Appendix C.
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q1
q2 0 1 2 3 4 5

0 ∗ 56 −272 3240 −58432 1303840
1 20 2635 2760 −45440 1001340 −26330880
2 0 5040 541930 933760 −18770880 490600080
3 0 190 2973660 277421695 563282580 −11813767700
4 0 −40 2454600 2644224240 208000930200 470459159880
5 0 3 67980 5829698942 2855250958116 193028959075965
6 0 0 −14960 3084577280 11119027471400 3465883673329200
7 0 0 3420 75341270 14592676836440 19950547779012810
8 0 0 −760 −13884400 5711374027440 45586693863580200
9 0 0 100 2767590 132960571500 42020108300555745
10 0 0 −6 −783664 −21741657848 13122339863069280

Table 2: Genus zero GV invariants n0
q1,q2

for the geometry of §3.5. Charges inside the
infinity cone M∞ = {q1 − 5q2, q2 ≥ 0} but outside the cone of dual coordinates T =
{q2 − q1, 2q1 − q2 ≥ 0} are shown in yellow. Charges in T are shown in pink.

nilpotent.20 Moreover, the infinity cone M∞ is generated by the classes (5, 1) and (0, 1).

Upon shrinking the curve class [C2] := (0, 1) the divisor D5 shrinks to a point, generating a

tensionless string CFT. Indeed, the sequence of GV invariants along this generator of the

Mori cone is infinite:

n0
k·[C2] = {56,−272, 3240,−58432, 1303840,−33255216, . . .} (3.13)

We now note that the curve class [C1] lies outside M∞ (and it is the only curve class that

does). Therefore, one can flop this curve21

[C1] −→ −[C1] , (3.14)

obtaining a smooth threefold X ′ with genus zero GV invariants as depicted in Figure 3.

This flop is not inherited from any birational transformation of the toric ambient variety,

so is non-toric in the sense described in §2.2.
As this phase is non-toric, we will determine its Mori cone from the data of GV invari-

ants. The generators of MGV
X′ = ∩w∈WN=4

w(MX′) are −[C1] = (−1, 0) and [C3] := (5, 1).

The flopped triple intersection numbers and second Chern class, expressed in their natural

20Computing the exact Mori cone by showing that the GV invariants of the torically inherited cone
MV are non-zero has also been employed in earlier works, e.g., [29, 43].

21One can check that no divisors shrink in this limit, and so this is a true flop.
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basis, the generators (−[C1], [C3]) of MGV
X′ , are

κ′
1ab =

(
90 30

30 10

)
, κ′

2ab =

(
30 10

10 3

)
, c′a =

(
120

42

)
, (3.15)

showing that X ′ is not isomorphic to X.

If WN=4 were non-trivial, it would have to map the set of generators of MGV
X′ to

themselves. Thus, in this example, at least one element would have to exchange its two

generators. However, this cannot be a symmetry as the GV invariants of the two generators

of MGV
X′ are distinct: they turn out to be 20 and 3 respectively (cf. Table 2). Therefore

WN=4 is trivial and we can determine the exact Mori cone: MX′ = MGV
X′ . Along the facet

of KX′ where the curve class [C3] shrinks, the toric divisor D4 shrinks to a point, leading to

another tensionless string CFT. Again, the sequence of GV invariants along this generator

of the Mori cone MX′ is infinite:

n0
k·[C3] = {3,−6, 27,−192, 1695,−17064, . . .} (3.16)

The extended Kähler cone K is equal to the dual of the infinity cone M∞ in this

example, and, expressed in the original basis of divisor classes ([D1], [D6]), it is generated

by the classes (1, 0) and (−1, 5). Absent any Weyl group we have Khyp = K. The cone

of dual coordinates T is generated by (1, 1) and (1, 2) and is indeed dual to the effective

cone, generated by the divisors [D4] = (−1, 2) and [D5] = (1,−1).

4 Checks of the Weak Gravity Conjecture

The WGC [6] provides an interesting constraint on the spectra of effective theories that

arise as low-energy limits of quantum gravity. We will now describe a direct check of

the WGC in a large ensemble of Calabi-Yau hypersurface compactifications of M-theory.

This analysis relies on using Gopakumar-Vafa invariants to reconstruct the Kähler moduli

spaces of Calabi-Yau threefolds, via the algorithm we described in §3.

4.1 The lattice WGC for BPS states

TheWGC states that in an effective field theory that admits a UV-completion to a theory of

quantum gravity, black holes must be able to decay. In its simplest form, for a theory with

a single U(1) gauge field, this condition states there must be a (super)extremal particle,
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i.e., a particle whose charge to mass ratio satisfies∣∣∣∣ QM
∣∣∣∣ ≥ ∣∣∣∣ QM

∣∣∣∣
ext

, (4.1)

where the quantity on the right-hand side is the charge to mass ratio of an extremal black

hole.

In theories with more than one U(1) gauge field, the condition that black holes must

be able to decay translates to the condition that the convex hull of charge to mass ratios of

particles in the spectrum must contain the region in charge to mass space where black holes

can exist [44]. The convex hull condition is the minimal requirement for black holes to

decay in a given theory, but a more stringent version of the conjecture was proposed [7] for

reasons of consistency under dimensional reduction (see also [8,45]). This stronger version,

known as the lattice WGC, holds that every site in the charge lattice must support a

(super)extremal particle.

In full generality, the lattice WGC is difficult to check: the spectrum of light states is

unknown, and for theories with moduli, the black hole extremality bound deviates non-

trivially from the Reissner-Nordström result. Nonetheless, in certain regions of charge

space, one can take advantage of the properties of BPS states. Recall that we have de-

noted by CBH the cone in charge space where BPS black holes exist. The lattice WGC is

satisfied in the BPS region of charge space if and only if for each site in CBH, there exists

a (super)extremal state.

Following [1], in the region CBH the BPS bound implies that a (super)extremal state is

indeed extremal, and BPS. Thus, the lattice WGC implies the existence of a single-particle

BPS state for every charge in CBH. We will apply this fact to test the lattice WGC by

using GV invariants to count BPS states in a subcone of CBH. Specifically, as explained

in §2.2, we have the containment relation Thyp ⊆ CBH, where Thyp is the cone of dual

coordinates defined in (2.18). In §3.2 we established how to compute Thyp from the data

of GV invariants, and thus we are now equipped to test the lattice WGC in Thyp.

4.2 Testing the lattice WGC

We have applied the above logic to check the lattice WGC in a large ensemble of com-

pactifications of M-theory on Calabi-Yau threefolds constructed as hypersurfaces in toric

varieties. We used CYTools [4,5] to compute genus-zero GV invariants, and so carried out

the algorithm outlined in §3.4.
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In fact, in this setting one can first perform a more efficient test of a sufficient condition

for the lattice WGC, and for many geometries this test obviates the full process of §3.4.
The process is as follows: one finds the cone EV of effective divisors inherited from the

ambient toric variety V , which obeys EV ⊆ E , and therefore

Thyp ⊆ E∨
V . (4.2)

The analogue of (4.2) also holds if EV is replaced by any other inner bound on the true

effective cone E . A sufficient test of the lattice WGC is to check that every site in E∨
V is

populated with a non-vanishing GV invariant. If there are empty sites in E∨
V , then either

the lattice WGC is false, or there exist autochthonous divisors, i.e. effective divisors in the

Calabi-Yau that are not inherited from the ambient variety. In this way, the lattice WGC

makes non-trivial predictions for geometry, specifically for the cone of effective divisors

(cf. [46, 47]).

A subclass of autochthonous divisors that we will refer to as min-face divisors are

readily obtained from polytope data, by examining simple factorizations of the defining

polynomial. In practice, we construct the cone Einner generated by all inherited effective

divisors, as well as any min-face divisors, which obeys

EV ⊆ Einner ⊆ E . (4.3)

We then check whether there are empty sites in E∨
inner, up to some cutoff degree. If there

are no such empty sites, the lattice WGC holds in the example in question, up to the cutoff

degree tested.

In cases where E∨
inner contains empty sites, then either the lattice WGC is false, or there

are further autochthonous divisors that are not of min-face type. To analyze such cases,

we proceed by using the GV invariants to obtain Thyp ⊆ CBH, as described in §3.3. This

approach is more computationally expensive, because one has to adjoin all phases resulting

from flops, but it is also exhaustive.

We can now describe the general algorithm to check the lattice WGC in the BPS cone

of a Calabi-Yau threefold, X. Given an arbitrarily chosen grading vector v⃗g ∈ H2(X,Z)
that lies strictly interior to K, we define the degree of a charge q⃗ ∈ H2(X,Z) as d = v⃗g · q⃗.
Then, up to a cutoff degree d ≤ dcutoff, we implement the following procedure:

1. For each site q ∈ E∨
inner with dq ≤ dcutoff, compute the GV invariant. If all sites have

non-vanishing GV invariants, the lattice WGC is satisfied up to cutoff degree dcutoff.
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If not, continue.

2. Using the methods described in §3.3, identify all possible flops of X, and calculate

triple intersection numbers in each one.

3. Compute Thyp using (3.6) and (2.18).

4. For each site in q ∈ Thyp with degree less than dcutoff, compute the GV invariant. If

all such sites have non-vanishing GV invariant, the lattice WGC passes this test.

Because this approach involves a computation up to a finite cutoff degree, there are

several subtleties associated to possible misidentifications. For example, an apparent vio-

lation of the lattice WGC could in principle arise due to an overestimation of CBH, though

in all examples considered in this paper we have been able to compute GV invariants to

high enough order to avoid this issue. In §A.3 we give a comprehensive discussion of the

potential problems of a finite computation, and we explain how we have mitigated them.

We have performed the above analysis beginning with a set of seed Calabi-Yau three-

folds, from which we obtain the rest of the phases via flop transitions. The 2062 seed

threefolds result from a single FRST of each of the 1464 four-dimensional reflexive poly-

topes with 2 ≤ h1,1 ≤ 4, as well as 598 additional favorable polytopes with h1,1 = 5. For

each seed geometry X, we compute the GV invariants and subsequently identify the geo-

metric phases of the given birational equivalence class [X]b, obtained via flop transitions

from the original phase X.

One of the key results of this work is that, via flop transitions of toric hypersurface

Calabi-Yaus, we can discover Calabi-Yau threefolds that cannot be written as hypersurfaces

in the initial ambient toric variety, as in the example presented in §3.5. In fact, this method

sometimes allows one to discover Calabi-Yaus that cannot be obtained via a triangulation

of any four-dimensional reflexive polytope.22 But in general we do not distinguish between

the two cases in this work, and we use ‘non-toric phase’ to refer to a phase for which we

have found no manifest description as a hypersurface in a toric variety. Figure 6 shows the

number of geometric phases obtained from FRSTs of polytopes, as well as the number of

non-toric phases obtained through flops.

We carried out the algorithm outlined above to test the lattice WGC in 2062 polytopes.

We found no violations of the lattice WGC.

It should be noted that there are known counterexamples to the lattice WGC, all of

which arise from compactifications on toroidal orbifolds [7] (see also the recent work [49]).

22This is the case for the non-toric phase in the example in §3.5.
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(a) h1,1 = 2 (b) h1,1 = 3

(c) h1,1 = 4

Figure 6: The number of apparently-inequivalent toric and non-toric phases that we found.
For h1,1 = 2, 3, 4 we have (36, 6), (274, 123), and (1760, 2180) toric and non-toric phases,
respectively. The polytope IDs are ordered as in [48], and in particular h2,1 increases to
the right.

Nonetheless, in the present work we have found no evidence against the proposition that the

lattice WGC holds in M-theory compactifications on Calabi-Yau threefold hypersurfaces.

Even so, we hasten to remind the reader that the present computation is in a limited

ensemble, at h1,1 ≤ 5, and only checks the lattice WGC in the BPS sector, up to a finite

cutoff degree.

We also note that in 1170 of these cases the lattice WGC predicted autochthonous

divisors, and of these cases, 493 geometries predicted further autochthonous divisors beyond

min-face ones. These predictions were then confirmed with the full algorithm.
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5 Conclusions

A primary result of this work is a method for computing the complete Kähler moduli space

of a Calabi-Yau threefold X from knowledge of its genus zero Gopakumar-Vafa invariants.

We have shown that an efficient way to identify all phase transitions in Kähler moduli

space is to computeM∞ ⊂ H2(X), i.e. the closure of the cone generated by rays supporting

infinite series of nonvanishing GV invariants. Curves in the complement of M∞ within

the Mori cone shrink across phase transitions. Some of these are flop transitions, while

others are Weyl reflections associated with non-abelian gauge enhancements. By passing

through all such phase transitions, unto the boundaries of moduli space, one assembles

an object that we call the hyperextended Kähler cone, Khyp. In the absence of Weyl

reflections, Khyp coincides with the extended Kähler cone K, while in general Khyp ⊇ K
gives a gauge-redundant parametrization of K.

We carried out this algorithm in an ensemble of geometries, including all favorable

hypersurfaces with 1 ≤ h1,1 ≤ 4 resulting from the Kreuzer-Skarke list, as well as 598

examples with h1,1 = 5. Using CYTools [4] to compute GV invariants, we constructed the

Kähler moduli spaces in each case.

The other major result of this work is a test of the Weak Gravity Conjecture in compact-

ifications of M-theory on Calabi-Yau threefold hypersurfaces. The lattice WGC predicts

that in the region in charge space where BPS black holes exist, which we denoted CBH,

there must exist a complete lattice of BPS particles. We showed that a subcone Thyp of

CBH is determined by the data of Khyp: see (2.27). Moreover, a nonzero GV invariant for

a given charge implies the existence of a corresponding BPS particle. Thus, GV invariants

serve a dual purpose: they determine M∞, from which we obtain Khyp and in turn the

region Thyp where we test the WGC, and they also provide information on the BPS particle

spectrum, which is the quantity being tested.

In the geometries we studied, we checked the prediction of the WGC for every charge

in Thyp ⊆ CBH up to a finite cutoff degree. We found that not just the tower and sublattice

WGC, but even the full lattice WGC, holds for the charges in question. We stress that

our computation provides no information about BPS particles beyond the chosen cutoff

degree, nor any information about non-BPS particles. Thus, our result should be read as

confirming the predictions of the lattice WGC in a finite subregion of the charge lattice.
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A Computational Algorithm

In this Appendix, we give details of the algorithm for reconstructing the Kähler moduli

space and testing the WGC. We discuss the residual gauge redundancy, as well as the

possible misidentifications of flops that can result from a computation of the GV invariants

of finitely many curves.

A.1 Identifying flop curves and stable Weyl reflections

We first describe how to identify flop curves given a Calabi-Yau obtained as a hypersurface

in a toric variety, together with the charges and associated GV invariants computed up

to a finite cutoff degree dcutoff using a grading vector v⃗g (given by a suitable point in the

Kähler cone). We will denote by C the set of charges with nonzero GV invariants up to

this cutoff.

We start by creating a list N of curve classes that appear nilpotent based on a com-

putation of GV invariants up to cutoff degree dcutoff . To do this, for each co-prime curve

class [C] we check if multiples of [C] have nonzero GV invariants, up to the cutoff dcutoff .

Given a charge [C], if there exists a positive integer multiple k∗ such that

k∗[C] · v⃗g ≤ dcutoff and n0
k∗[C] = 0 , (A.1)

and
∑k∗−1

k=1 k2 · n0
k[C] > 0, then the charge [C] is added to N.

Given the set of (apparently) nilpotent charges N and the set of (apparently) potent

charges C\N, we would like to determine the set F ⊆ N of nop curves. This is done in two

steps:
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1. For each curve [C] ∈ N, determine whether [C] is on the boundary of the closure

of the cone generated by C\N. Intuitively, if [C] lies strictly outside of the cone

generated by C\N, the ray that passes through [C] diverges from all potent rays (and

even other nilpotent rays). In practice we will test for this feature in the following

non-unique way: we find the largest integer k such that k[C] lies on or below the

affine subspace defined by half the cutoff degree, i.e. k[C] · v⃗g ≤ dcutoff/2. Then,

having determined k, we define a codimension one lattice by the intersection of the

affine subspace generated by all curves [C ′] with degree equal to k[C] · v⃗g, declaring
k[C] as the new origin, and find a reduced lattice basis using LLL reduction [50].

In the lattice-reduced basis we compute d, defined as the smallest norm || · ||∞ of

all integer points that arise from rays in C\N. We use this quantity as an integer

notion of distance between the candidate nilpotent ray and the potent rays along a

slice through the Mori cone defined by half the cutoff degree. Then, we repeat this

process, similarly computing an integer distance d′ but with dcutoff/2 replaced by the

full cutoff degree dcutoff. If d
′ > d, we conclude that, up to the chosen cutoff degree,

the ray passing through [C] diverges from the potent rays and is thus a candidate

nop curve. We add it to a list of candidate nop curves, F0.

2. Assuming that all curves strictly interior to M∞ with sufficiently large degree are

in fact potent, step (1) will reliably identify all nop curves of sufficiently low degree.

However, one frequently finds examples where regions inside M∞ are not populated

by potent rays (see e.g. the GV invariants in Table 4 of our example §C.3). In order

to deal with this we repeat step (1) for all the candidate nop curves in F0 with the

following difference: in computing the pair (d, d′) we take the norm of all integer

points that arise from rays in the convex cone generated by the complement C\F0,

as opposed to just the potent rays. All curves in F0 that still appear to diverge from

the potent rays via this notion of distance are added to the list F, and treated as nop

curves.

It is not hard to convince oneself that for every nop curve there exists a finite cutoff degree

such that the above algorithm will find the nop curve. Similarly, every nilpotent ray on

the boundary of M∞ will be rejected for sufficiently large cutoff. Conversely, for any fixed

cutoff dcutoff one may over or underestimate the true set of nop curves, a subtlety which

we discuss in more detail in §A.3.
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A.2 Gauge equivalence and isomorphisms

The set F is the set of curves that can be flopped in some phase to reconstruct the hyper-

extended Kähler cone, Khyp. Many (sometimes infinitely many—see [29]) chambers of Khyp

are redundant, either because of gauge symmetries or topological isomorphisms between

the Calabi-Yaus. In practice, we construct a less redundant subset of the hyperextended

Kähler cone, K◦ ⊆ Khyp, by identifying the curves in F that, when flopped, produce Weyl-

symmetric or isomorphic phases. To this end, given a particular Calabi-Yau X and the

generators of MGV
X , we perform the following test:

1. For each MGV
X generator [C] ∈ F, one tests whether there exists a non-vanishing

d⃗ ∈ H1,1(X,Z), such that κabcd
atbtc ≡ 0 along the dual facet of KX . If not, the

facet where [C] shrinks marks a flop transition, and one computes the transformed

geometrical data κ′
abc, c

′
a and GV invariants of a new Calabi-Yau X ′ using (3.8) and

(3.9), and adjoins a new geometrical chamber equal to the dual of MGV
X′ .

2. If, on the other hand, there exists a d⃗ such that κabcd
atbtc ≡ 0 along the dual facet

of KX , one computes the map w of (3.1), and tests whether κmnlw
m

aw
n
bw

l
c is equal

to κ′
abc computed from (3.8). If so, one has proven that the newly encountered geo-

metrical chamber is gauge-equivalent to the original one, either via a Weyl reflection

or via a flop transition between two diffeomorphic Calabi-Yau’s, and can thus be

omitted. Otherwise, one records the new phase X ′, and adjoins a new geometrical

chamber equal to the dual of MGV
X′ .

For every geometric chamber thus obtained one reruns the above algorithm, and further

omits geometric chambers that have previously been generated. Finally, one quotients the

result by whatever subgroup of the symmetry group of the birational equivalence class [X]b

one has access to.

Three kinds of gauge-redundancies remain in K◦:

• N = 4 Weyl reflections.

• neighboring phases X and X ′ may still be diffeomorphic if the basis change of

H2(X,Z) needed to make the equivalence of triple intersection numbers and sec-

ond Chern class manifest, is not equal to a simple reflection across their joined facet

of Kähler cones.

• non-neighboring X and X ′ may be diffeomorphic, but not related to each other by a

known symmetry of [X]b.

32



A.3 Limitations of a finite cutoff

In applying a computation of the GV invariants up to a finite degree d to characterize a

ray r, several misidentifications are possible. For each possible error we denote by T (0)
hyp the

resulting approximation to the true Thyp. The relevant possibilities are:

1. A ray r is effective and in M∞ but is misidentified as being non-effective, because

the first nonzero GV invariant along r has degree > d. In this case T (0)
hyp ⊋ Thyp.

2. A ray r is potent but is misidentified as being nilpotent and containing a nop curve,

because the infinite series of nonzero GV invariants begins at degree > d. In this

case T (0)
hyp ⊋ Thyp.

3. A ray r is nilpotent and on the boundary of M∞ but is misidentified as containing

a nop curve. In this case T (0)
hyp ⊋ Thyp.

4. A ray r is nilpotent and contains a nop curve but is misidentified as being potent,

because the GV invariants are nonzero up to degree d. In this case T (0)
hyp ⊊ Thyp.

5. A ray r is nilpotent and contains a nop curve but is misidentified as being on the

boundary of M∞. In this case T (0)
hyp ⊊ Thyp.

In practice, by repeating our computation with ever-increasing d, we have reduced the

incidence of each of these errors.

A.4 Checking the lattice WGC up to a finite cutoff

Given the set C of charges with nonzero GV invariants, the set F of nilpotent curves outside

of M∞, and all of their associated GV invariants, we can reconstruct an approximation

K(0)
◦ to the cone K◦ using the methods described in §A.1 and §A.2. We then construct

T (0)
◦ := T (K(0)

◦ ). To check the lattice WGC, we compute points in Conv
(
T (0)
◦
)
subject to

the condition

p⃗ · v⃗g ≤ dcutoff . (A.2)

Here, as defined above, v⃗g is the grading vector and dcutoff is the chosen cutoff degree. We

then compute the GV invariant for each curve class p⃗. If all such GV invariants are nonzero,

we conclude that the lattice WGC is satisfied in T (0)
◦ up to the cutoff dcutoff . Because T (0)

◦
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is a fundamental domain for Thyp under (a subgroup of) the automorphism group, we can

thereby conclude that the lattice WGC is satisfied in all of Thyp up to the specified cutoff.23

B Toric Technology and Notation

In this appendix, we review some of the necessary technology that underlies both our

general scans as well as the examples discussed in §3.5 and Appendix C, simultaneously

setting notation for these examples.

Following Batyrev [51], we describe Calabi-Yau hypersurfaces in simplicial toric four-

folds, constructed in the following standard way from the four-dimensional reflexive poly-

topes classified by Kreuzer and Skarke [48]. The cones over the faces of a reflexive polytope

∆◦ ⊂ Z4 define a toric fan of a singular toric variety. A fine, regular and star triangulation

(FRST) T of ∆◦ defines a desingularized toric fourfold V∆◦,T with toric fan assembled from

the cones over the simplices of T. The generic anticanonical hypersurface X∆◦,T is smooth

and Calabi-Yau. The toric divisors associated with points strictly interior to facets do not

intersect X∆◦,T, and thus we will in practice be concerned with triangulations that ignore

such points. Thus, each integer point p ∈ ∆◦ not interior to a facet and other than the

origin defines a generator of the Cox ring xp of homogeneous coordinates, and we may

index the generators as {xI}h
1,1+4

I=1 with h1,1 ≡ h1,1(V∆◦,T), and likewise for the points pI .

The linear relations among the pI define the toric C∗-scaling weights of the homogeneous

coordinates xI , conveniently organized in a GLSM charge matrix Qa
I whose rows are a

Z-basis of linear relations, ∑
I

Qa
IpI = 0 , a = 1, . . . , h1,1 . (B.1)

We have

[x1 : . . . : xh1,1+4] =

[
h1,1∏
a=1

λQa
1

a x1 : . . . :
h1,1∏
a=1

λ
Qa

h1,1+4
a xh1,1+4

]
, ∀λ ∈ (C∗)h

1,1

, (B.2)

parameterizing the part of the group of toric scaling relations Gtoric that is continuously

connected to the identity. The full Gtoric consists of η
I such that

∑
I η

IpI ∈ Z4, leading to

23Note that if T (0)
◦ is not convex then we may have actually checked a region that is somewhat larger

than Thyp, but not necessarily as large as Conv
(
Thyp

)
, since the union of the convex hulls of a set of regions

is sometimes smaller than the convex hull of the union of the regions.
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equivalence relations

[x1 : . . . : xh1,1+4] = [e2πiη
1

x1 : . . . : e
2πiηh

1,1+4

xh1,1+4] . (B.3)

We will denote the toric divisors of the toric fourfold by D̂I := {xI = 0} ⊂ V∆◦,T, and the

prime toric divisors of the Calabi-Yau threefold DI := D̂I ∩ X∆◦,T. The D̂I generate the

divisor lattice H2(V∆◦,T,Z), as well as the cone of effective divisors E(V∆◦,T). A choice of

Qa
I is equivalent to a choice of basis of curve classes in H2(V∆◦,T,Z) whose intersection

pairing with the toric divisors D̂I are the rows of the GLSM charge matrix, and we will

specify a basis of curve classes in this manner. We will fix the basis of divisor classes to

be its dual. Cones in T are in one-to-one correspondence with torus-invariant subvarieties

equal to the simultaneous vanishing of the homogeneous coordinates associated with one-

dimensional sub-cones. All subsets of homogeneous coordinates not associated with a cone

in T in this way generate the Stanley-Reisner (SR) ideal.

All our examples will be favorable in the sense that the natural inclusionH2(X∆◦,T,Z) ↪→
H2(V∆◦,T,Z) is an isomorphism. The basis of curve and divisor classes in X∆◦,T will be

the one induced from this isomorphism. We note that different FRSTs of ∆◦ lead to

Calabi-Yau hypersurfaces in the same birational equivalence class. If a pair of FRSTs have

equivalent induced triangulations on all two-faces of ∆◦, the corresponding Calabi-Yau hy-

persurface remains smooth as one transitions from one FRST to the other. We will make

use of K∪
X defined as the union over all Kähler cones of ambient varieties V∆◦,T obtained

from the same polytope ∆◦, but from distinct FRSTs T that agree on two-faces. We have

K∪
X ⊆ KX . Furthermore, we define M∩

X ⊇ MX as its dual cone.

Finally, we will often drop the subscripts (∆◦,T) and refer to the toric variety simply

as V and the Calabi-Yau hypersurface as X, when no confusion is likely to arise.

C Examples

In this appendix we work out a few examples in detail that illuminate features we have

discussed abstractly in §3. Some of the required toric technology with our chosen notational

conventions can be found in Appendix B.
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C.1 Additional constraints on CBH

First, we discuss some properties of the cone of BPS black holes CBH that will be rele-

vant in the following examples. Although we placed several inner bounds on it, this cone

is generally hard to compute exactly for two reasons. Firstly, it may be generated by

non-spherically-symmetric solutions, which are difficult to construct explicitly. Secondly,

even upon restricting our attention to the cone of spherically symmetric BPS black holes

C spherical
BH ⊆ CBH, the resulting attractor flows can run into strongly-coupled CFT bound-

aries (see [1] for more information), which makes it difficult to determine whether a smooth

horizon exists or not.

In our main analysis, we have sidestepped these issues by only relying on the inclusion

Thyp ⊆ CBH in (2.27) when checking the lattice WGC. Here we will be more specific to

better understand the following examples.

At any given point in the moduli space T ⋆
a , the cone of BPS black holes CBH(T

⋆
a )

certainly includes the spherically symmetric solutions that can be explicitly constructed

using BPS attractor flows that avoid strongly-coupled CFT boundaries. This region is

precisely

Cexplicit
BH (T ⋆

a ) = Vis(T ⋆
a ) , (C.1)

where Vis(T ⋆
a ) denotes the region of theWeyl-extended dual-coordinate moduli space that is

“visible” from T ⋆
a , i.e., that can be reached from T ⋆

a along a straight line in dual coordinates

without crossing any boundaries of the Weyl-extended moduli space. Note that Vis(T ⋆
a )

is not necessarily contained in Thyp, i.e., we can freely cross through unstable Weyl flops;

the low-energy effective field theory remains under control at these flops despite the wall-

crossing phenomena that occur in the ultraviolet BPS spectrum.

Thus, since Cexplicit
BH (T ⋆

a ) ⊆ CBH(T
⋆
a ), we can strengthen the inclusion (2.27) to

Vis(Thyp) ⊆ CBH , (C.2)

where Vis(Thyp) :=
⋃

T ⋆
a∈Thyp

Vis(T ⋆
a ).

Note that, as the fully Weyl-extended dual-coordinate moduli space is not in general

convex, Cexplicit
BH (T ⋆

a ) = Vis(T ⋆
a ) generically does depends on T ⋆

a . This does not contradict the

conjecture (2.28), because the inclusion Cexplicit
BH (T ⋆

a ) ⊆ CBH(T
⋆
a ) need not be strict. If there

are no CFT boundaries at codimension one in the dual-coordinate moduli space then we

can say a bit more. In this case, Cspherical
BH (T ⋆

a ) and Cexplicit
BH (T ⋆

a ) are essentially the same—at

most up to a measure-zero set of points. If the fully Weyl-extended dual-coordinate moduli
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space still fails to be convex, as occurs in the example discussed in §C.4, then for some T ⋆
a ,

Cspherical
BH (T ⋆

a ) ⊊ C spherical
BH :=

⋃
T ⋆
a∈Thyp

Cspherical
BH (T ⋆

a ) . (C.3)

Given the existence of such examples, we conclude that in general Cspherical
BH (T ⋆

a ) ̸= C spherical
BH .

This once again does not contradict (2.28) because the cone of BPS black holes may be

generated by solutions that are not spherically symmetric. However, settling this question

would require constructing all such solutions and characterizing their properties, a highly

non-trivial problem that we leave to future work.

C.2 An unstable Weyl flop with fully-determined CBH

We begin with a simple example that contains an unstable Weyl flop, but no CFT bound-

aries. As a consequence, there are no indeterminate flows and we can determine C spherical
BH

exactly: it turns out to be a strict subcone of the infinity cone, M∞. Moreover, while we

lack the tools to check this explicitly, the general features of the computed GV invariants

suggest that CBH = C spherical
BH in this example.

The geometry consists of a Calabi-Yau threefold hypersurface with h1,1 = 2 in a toric

variety, constructed from an FRST of the reflexive polytope ∆◦ whose points other than

the origin are 
−1 0 0 0 1 2

−1 0 0 1 0 0

0 0 1 0 0 −1

0 1 0 0 0 −1

 . (C.4)

A GLSM charge matrix is given byx1 x2 x3 x4 x5 x6

0 1 1 0 −2 1

1 0 0 1 1 0

 . (C.5)

The faces of ∆◦ are simplices, so no FRST needs to be specified.

In the GLSM basis, the Mori cone MV inherited from the toric ambient variety is

simply the first quadrant. The GV invariants of both generators are nonzero, and thus

MX = MV and the Kähler cone is given by KX = {t1 , t2 ≥ 0}. The geometry has no flop

transitions, so K = KX .
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q1
q2 0 1 2 3 4 5 6 7 8

0 ∗ 177 177 186 177 177 186 177 177
1 −2 178 20291 317172 2998628 21195310 123413576 622393836 2806637500
2 0 3 −177 332040 73458379 3048964748 67638465983 1034258133329 12232084778113
3 0 5 −708 44790 794368 3122149716 710345698242 46445530268176 1663087069097865
4 0 7 −1068 75225 −4468169 243105088 54329854510 46884487081241 10524250865224651
5 0 9 −1448 110271 −7157586 396368217 −27580928924 2382035587157 1540781601550297
6 0 11 −1880 157734 −11253268 676476353 −48092153649 2530899579921 −241894701950815
7 0 13 −2412 231979 −18701330 1241479305 −87415077360 4793679740747 −439028227820944
8 0 15 −3122 356005 −32878062 2432078638 −172868371620 10041154974639 −797065258455869

Table 3: Genus zero GV invariants n0
q1,q2

for the geometry of §C.2. Charges inside the
infinity cone M∞ = {q1, q2 ≥ 0} but outside the cone of spherically-symmetric BPS black
holes C spherical

BH = {q2 ≥ q1 ≥ 0} are marked in yellow, charges inside C spherical
BH but outside

the cone of dual coordinates T = {q2 ≥ 2q1 ≥ 0} are shown in green, and charges inside
T are shown in pink. The absence of zeros within C spherical

BH is consistent with the lattice
WGC.

The geometry in question has independent triple intersection numbers

κ111 = 0 , κ112 = 3 , κ122 = 7 , κ222 = 14 . (C.6)

These triple intersection numbers lead to the five-dimensional prepotential

F =
3

2
(t1)2t2 +

7

2
t1(t2)2 +

7

3
(t2)3 . (C.7)

The boundary t2 → 0 is an asymptotic boundary, which lies at infinite distance. The

boundary t1 = 0 is the locus of a genus zero Weyl reflection, where the toric divisor D6

shrinks to a P1. The Weyl reflection acts on the Kähler coordinates as

w : t1 → −t1 , t2 → t2 + t1 . (C.8)

Note that this Weyl reflection is unstable, and correspondingly there are no nop curves

in this geometry. Accordingly, the hyperextended Kähler cone is equal to the extended

Kähler cone, Khyp = K = KX .

The GV invariants for this geometry are shown in Table 3. The infinity cone M∞ is

simply equal to the Mori cone, consistent with the relation M∞ = K∨
hyp.

The dual coordinates Ta are given by

T1 = 3t1t2 +
7

2
(t2)2 , T2 =

3

2
(t1)2 + 7t1t2 + 7(t2)2 . (C.9)
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These parametrize the cone of dual coordinates,

T = {T2 ≥ 2T1 ≥ 0} , (C.10)

which is indeed dual to the effective cone, generated by the divisor classes [D5] and [D6].

Under the Weyl reflection, these coordinates transform as T1 → T2 − T1, T2 → T2, and

the cone of dual coordinates transforms to

w(T ) = {2T1 ≥ T2 , T2 ≥ T1} . (C.11)

Since the Weyl-extended dual-coordinate moduli space W(T ) = T ∪ w(T ) is (trivially)

convex, the cone of spherically-symmetric BPS black holes is simply

C spherical
BH = Vis(Thyp) = W(T ) = {T2 ≥ T1 ≥ 0} . (C.12)

As can be seen in Table 3, all the GV invariants within this cone are nonzero up to the

degree calculated, in agreement with the lattice WGC.

Finally, we note that the genus zero GV invariants in Table 3 have different characteris-

tics inside and outside C spherical
BH . For example, their sign strictly alternates by column out-

side C spherical
BH , whereas they are mostly positive within C spherical

BH . These and other patterns

suggest that different physics contributes inside and outside C spherical
BH , which is perhaps

indicative that C spherical
BH may be the full cone of BPS black holes CBH in this example.

C.3 SU(2) enhancement with fundamental matter

Our next example illustrates two new phenomena: (1) the su(2) gauge theory arising at a

Weyl flop can have massless, fundamentally charged matter and (2) even though it is typ-

ically finitely generated, the Weyl group need not be a finite group because different Weyl

flops need not commute (even in the absence of a higher-rank nonabelian enhancement).

We consider the toric variety V and its Calabi-Yau hypersurface X arising from the

four-dimensional reflexive polytope ∆◦ whose points not interior to facets and other than
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the origin are the columns of
1 −3 0 −1 0 −2 0

0 1 0 −1 0 −1 1

0 −2 0 1 1 0 0

0 −1 1 0 0 0 0

 . (C.13)

A GLSM charge matrix is given by
x1 x2 x3 x4 x5 x6 x7

1 0 0 1 −1 0 1

1 0 0 −1 1 1 0

3 1 1 0 2 0 −1

 . (C.14)

Evidently, we have h1,1 = 3. All FRSTs of ∆◦ give are equivalent along two-faces. We

choose, arbitrarily, one such FRST, whose SR ideal is generated by the monomials

SR = ⟨x4x7, x1x5x6, x1x6x7, x2x3x4, x2x3x5⟩ . (C.15)

The independent triple intersection numbers κabc are

κ111 = κ112 = κ113 = κ123 = κ133 = κ222 = κ233 = 1

κ122 = κ223 = −1 , κ333 = 0 . (C.16)

The GV invariants of the generators ofM∩
X are all non-vanishing and thereforeMX = M∩

X .

The generators, denoted {[Ci]}4i=1 ⊂ H2(X,Z), expressed in the basis (C.14), are

(
[C1] [C2] [C3] [C4]

)
=

1 0 0 1

0 1 0 −1

0 0 1 1

 . (C.17)

In other words, the Kähler cone is defined by ta > 0, a = 1, 2, 3, and t1 − t2 + t3 >

0. The two-faces of the Mori cone are generated by the pairs ([Ci], [Cj]) with (i, j) ∈
{(1, 2), (2, 3), (3, 4), (4, 1)}.

For suitable choice of defining polynomial and Kähler class, the Calabi-Yau X has a
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Z2 symmetry acting as

s2 : H2(X,Z) → H2(X,Z) : [C] 7→ Λ · [C] , Λ :=

0 1 1

1 0 −1

0 0 1

 , (C.18)

which interchanges [C1] ↔ [C2] and [C3] ↔ [C4].

In the limit t1 → 0 the curve C1 shrinks to a point, and the prime toric divisorD5 shrinks

linearly in t1, i.e. D5 degenerates to a curve. Indeed, D5 is a non-trivial P1 fibration over

P1 and in the above limit the fiber, in the class 2[C1] ∈ H2(X,Z), shrinks. To see this one

notes that the generic anticanonical polynomial f in V can be written, up to overall scale,

as

f =x2
1 + x2

6x
2
7

4∑
i=0

g8−2i[x2 : x3] · (x4x5)
i

+ x3
6x7x4

3∑
i=0

k7−2i[x2 : x3] · (x4x5)
i + x6x

3
7x5

3∑
i=0

l7−2i[x2 : x3] · (x4x5)
i

+ x4
6x

2
4

3∑
i=0

m6−2i[x2 : x3] · (x4x5)
i + x4

7x
2
5

3∑
i=0

n6−2i[x2 : x3] · (x4x5)
i , (C.19)

where {gi, ki, li,mi, ni} are generic homogeneous degree i polynomials in (x2, x3). There-

fore, we have

f |x5=0 = x2
1 + g8[x2 : x3]x

2
6x

2
7 + k7[x2 : x3]x4x

3
6x7 +m6[x2 : x3]x

2
4x

2
6 . (C.20)

Along D5, without loss we may assume x6 ̸= 0, and can thus gauge fix x6 = 1.24 The

remaining scaling relations are then summarized in a conveniently reordered charge matrixx2 x3 x1 x4 x7

0 0 1 1 1

1 1 3 0 −1

 , (C.21)

associated with the three-dimensional toric variety D̂5.

We can therefore view the divisor D5 as a hypersurface in the toric threefold D̂5. One

24Setting x6 = 0 along D5, the vanishing of f |x5=x6 would enforce that x1 = 0. But the monomial
x1x5x6 is in the Stanley-Reisner ideal of V and thus x6 ̸= 0 along D5.
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immediately sees that D̂5 is a P2 fibration over P1:

P2
f ↪→ D̂5 ↠ P1

b , (C.22)

and the polynomial (C.20) defines a quadratic hypersurface in P2
f , i.e. a P1 in the class

2[H] where [H] is the hyperplane class of the fiber, over each point of P1
b parameterized by

the projective coordinates [x2 : x3]. Therefore, the divisor D5 is a P1 fibration over P1,

P2
f ⊃ P1

2[H] ↪→ D5 ↠ P1
b , (C.23)

which degenerates over all points in the base along which the discriminant

∆f := 4m6g8 − (k7)
2 (C.24)

vanishes. For generic choice of {g8, k7,m6} the P1
2[H] fiber thus degenerates to the union of

two P1’s, each in the hyperplane class [H] of P2
f , over 14 points in the base P1, thus totaling

28 isolated rigid P1’s.

The generic P1 fiber is obtained by intersecting D5 with a generic representative of the

class [D2] = [D3]. By intersecting with a basis of divisors, one computes that it is in the

homology class 2[C1] ∈ H2(X,Z). Its curve moduli space M2[C1] is equal to the base of the

P1 fibration (C.23), and thus its GV invariant is

n0
2[C1] = (−1)dim(M2[C1])χ(M2[C1]) = −2 . (C.25)

As in [32,33], M2-branes wrapped on the P1 fiber become massless W-bosons in the singular

limit, and the gauge group enhances an SU(2) factor. The presence of 28 isolated P1’s in

the class [C1] on the other hand implies that

n0
[C1] = 28 , (C.26)

and in the singular limit M2-branes wrapped on these curves lead to 28 massless hypermul-

tiplets with half the Cartan-U(1) charge of the W-bosons, which therefore must organize

into 14 hypermultiplets in the fundamental representation of the gauge group SU(2). This

direct prediction for the GV invariants is confirmed by an independent systematic compu-

tation of GV invariants using mirror symmetry [2, 3, 5], see Table 4.

As usual, their contribution to the prepotential of the type IIA compactification has a
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logarithmic branch cut starting at the singular locus Z := [C1]az
a = z1 = 0,

F IIA ⊃ − 1

(2πi)3
(
28 Li3(e

2πiZ)− 2 Li3(e
4πiZ)

)
≃ 1

2
Z2 (28− 4× 2)

log(1/Z)

(2πi)
+hol. , (C.27)

leading to running of the U(1) gauge coupling

τU(1) = ∂Z
(
[D5]

a∂aF IIA
)
= − i

2π
× 2bYM × log

(
ΛL

Z

)
+O(Z/MP ) , (C.28)

with

bYM := µ∂µ
8π2

g2YM(µ)
= 2Nc −NF = −10 , ΛL := µUVe

2πi
bYM

τYM(µUV)
, τYM(µUV) = z2 ,

(C.29)

with UV matching scale µUV := MP e
K
2 , where K is defined in (2.6) and Z := −2πiµUVZ.

Here, Nc = 2 is the dual Coxeter number of the gauge group SU(2), NF = 14 is the

number of adjoint hypermultiplets, ΛL is the Landau pole of the IR-free gauge theory, and

ℓ5 · τYM(µUV) is the classical gauge coupling of the five-dimensional theory as a function of

the remaining Kähler parameters.

The Weyl group associated with the SU(2) gauge group is generated by

w : H2(X,Z) → H2(X,Z) , [C] 7→

−1 2 4

0 1 0

0 0 1

 · [C] , (C.30)

but the GV invariants turn out to not be invariant under this Weyl group action (cf. Table

4), implying a non-trivial wall-crossing phenomenon at the origin of the Coulomb branch.

The physics described above of course applies equally well to the codimension-one facet

of the Kähler cone where the curve C2 shrinks, via the symmetry (C.18). As the curve

classes ([C1], [C2]) span a two-face of the Mori cone, one might expect that the simultaneous

shrinking of these two curves leads to higher rank non-abelian enhancement. This, however,

is not so: the diagonal limit (t1, t2) → 0 lies at infinite distance in moduli space, where X

degenerates into a complex surface. We further note that passing through Weyl reflections

associated with the shrinking curves C1 and C2 in alternating order, one obtains the infinite-
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Figure 7: Left: Two-dimensional cross-section of the Weyl-group orbit of the Kähler
cone. Interior lines mark Weyl-reflection loci, while exterior walls mark the CFT lim-
its. Right: Two-dimensional cross-section of the Weyl-group orbit of the cone of movable
curves (black), embedded into the Mori cone (pink). Again, Weyl-reflection loci are marked
by white lines. The lower two vertices are the curves that shrink to give rise to su(2) en-
hancements while the upper two correspond to the CFT limits.

order Weyl group W generated by

w′ := s2 ◦ w : H2(X,Z) → H2(X,Z) , [C] 7→

 0 1 1

−1 2 3

0 0 1

 · [C] . (C.31)

The Weyl orbit of the Kähler cone is an infinitely generated convex cone, and the Weyl orbit

of the cone of movable curves is likewise an infinitely generated convex sub-cone of the Mori

cone (see Figure 7). All Weyl-group images of the Kähler cone intersect at an accumulation

point, which is the aforementioned intersection of both non-abelian enhancement loci, lying

at infinite distance in the moduli space.

Along the other two facets of the Kähler cone the prime toric divisors D6 and D7 shrink

to points, so the low energy physics is a strongly coupled tensionless string CFT in the

five-dimensional theory.

Absent any flop transitions, we have K ≡ KX and the effective cone is generated by the

(rigid) prime toric divisors {D4, D5, D6, D7}. Its dual, the cone of movable curves Mov,
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q 3
=

0

q1
q2 0 1 2 3 4 5 6

0 ∗ 28 −2 0 0 0 0
1 28 196 28 0 0 0 0
2 −2 28 176 28 −2 0 0
3 0 0 28 196 28 0 0
4 0 0 −2 28 176 28 −2
5 0 0 0 0 28 196 28
6 0 0 0 0 −2 28 176

q 3
=

1

q1
q2 −1 0 1 2 3 4 5

0 − 252 0 0 0 0 0
1 252 26144 161240 34336 −16132 24576 −32768
2 0 161240 3389568 11865384 3618944 −297512 688128
3 0 34336 11865384 144023712 379678864 147415200 5082408
4 0 −16132 3618944 379678864 3340910720 7490806028 3376234624
5 0 24576 −297512 147415200 7490806028 52954926336 107008961736
6 0 −32768 688128 5082408 3376234624 107008961736 643290939648

q 3
=

2

q1
q2 −2 −1 0 1 2 3 4

0 − − −9252 0 0 0 0
1 − 0 143640 1005480 143640 0 0
2 −9252 143640 107389712 1982306472 6785861560 2202638504 −365781232
3 0 1005480 1982306472 74208835520 669904166680 1684741323120 699283955480
4 0 143640 6785861560 669904166680 13132156970304 82543157015248 172178353335592
5 0 0 2202638504 1684741323120 82543157015248 1115085309377792 5538585837897800
6 0 0 −365781232 699283955480 172178353335592 5538585837897800 57882723471476816

q 3
=

3

q1
q2 −3 −2 −1 0 1 2

0 − − − 848628 0 0
1 − − 0 −18865280 −132056960 −18865280
2 − 0 0 1000128720 19800596480 69523670960
3 848628 −18865280 1000128720 1155156240800 37248393860088 317060747387520
4 0 −132056960 19800596480 37248393860088 1975319069667328 30784544966451680
5 0 −18865280 69523670960 317060747387520 30784544966451680 832309647138723328

q 3
=

4

q1
q2 −4 −3 −2 −1 0 1

0 − − − − −114265008 0
1 − − − 0 3226808340 22587658380
2 − − 0 0 −149516774740 −2854273434600
3 − 0 0 5158112400 12435686082500 427372552969920
4 −114265008 3226808340 −149516774740 12435686082500 18251242470992832 850602661974296708
5 0 22587658380 −2854273434600 427372552969920 850602661974296708 58131312791048887904

Table 4: Genus zero GV invariants n0
q1,q2,q3

for the geometry of Appendix C.3. The sites
labeled “−” lie outside the (non-simplicial) Mori cone. The infinity cone is equal to the
Mori cone and is marked in yellow. The cone T is marked in pink and its images under
w′ and w′−1 of eq. (C.31) are marked in green (higher order images do not have integer
sites in their interior that fall into the displayed window). Together, the pink and green
sites denote the largest region Vis(Thyp) where BPS black holes are known to exist. These
charges are fully populated by non-vanishing GV-invariants, in agreement with the lattice
WGC.
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turns out to be fully populated by non-vanishing genus zero GV invariants, as predicted

by the lattice WGC, and is indeed equal to the cone of dual coordinates T .

The hyperextended Kähler cone Khyp is also equal to K, as all loci of su(2) enhancement

are unstable. Therefore, by our discussion in §3, the infinity cone M∞ should be equal to

the entire Mori cone. This indeed appears to be borne out in this example: the sequence

of GV invariants associated with either of the two CFT limits is

ng
(0,0,k) = {252,−9252, 848628,−114265008, 18958064400,−3589587111852,

744530011302420,−165076694998001856, 38512679141944848024,

−9353163584375938364400, 2346467355966572489025540, . . .} , (C.32)

and does not appear to terminate. Likewise, adding arbitrary multiples of one of the

generators that shrinks at an su(2)-enhancement locus to a suitable curve class gives rise

to a sequence of GV invariants that appears infinite, e.g.:

n(1,2,1)+k·(1,0,0) = {34336, 11865384, 144023712, 379678864, 147415200, 5082408, 10208800,
−13565952, 16957440,−20348928, 23740416,−27131904, 30523392,

−33914880, 37306368,−40697856, 44089344,−47480832, . . .} . (C.33)

Finally, despite the presence of walls of marginal stability along the Weyl-reflection

loci in moduli space, the entire Weyl-orbit W(T ) of the cone of dual coordinates is fully

populated by non-vanishing GV invariants, see Table 4. Because this region is convex

in the present example, this is precisely Vis(Thyp), so the absence of any vanishing GV

invariants within this larger cone provides a more stringent test of the lattice WGC.

C.4 Monodromy in the Weyl-extended moduli space

Our final example involves yet another new feature: branch cuts and monodromy in the

fully Weyl-extended moduli space. This example has two Weyl flops, one stable and one

unstable, with a CFT boundary at their codimension-two intersection. Upon passing

through the two Weyl flops alternately in sequence, one discovers that the CFT point is a

branch point for the fully Weyl-extended moduli space, with a monodromy in the central

charges as one moves around this branch point. This monodromy is not visible when one

restricts attention to the hyperextended moduli space Thyp (avoiding the unstable Weyl

flop). Indeed, since Khyp = M∨
hyp is convex, the T map is invertible throughout Khyp,
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forbidding such a monodromy.

Let us consider the h1,1 = 3 Calabi-Yau threefold hypersurface constructed from an

FRST of the reflexive polytope ∆◦ whose points not interior to facets, excluding the origin,

are the columns of 
−9 0 0 1 1 −4 −2

−5 0 1 0 1 −2 −1

−3 1 0 0 1 −1 0

−2 0 0 0 2 0 0

 . (C.34)

A GLSM charge matrix is given by
x1 x2 x3 x4 x5 x6 x7

1 0 0 0 1 −2 0

0 1 0 0 0 1 −2

0 0 1 2 0 0 1

 . (C.35)

All FRSTs of ∆◦ are equivalent along two-faces, so without loss we can choose a single

arbitrary FRST of ∆◦. The cone M∩
X is the first octant in the basis (C.35).

Our geometry has nonzero independent triple intersection numbers

κ123 = 1 , κ223 = κ133 = 2 , κ233 = 4 , κ333 = 8 , (C.36)

while the rest vanish. These triple intersection numbers lead to the 5d prepotential

F = t1t2t3 + (t2)2t3 + t1(t3)2 + 2t2(t3)2 + 4(t3)3/3 . (C.37)

In the limit t3 → 0 the Calabi-Yau volume vanishes, so this limit corresponds to a facet of

the Kähler cone that lies at infinite distance in moduli space. At t1 = 0 the prime toric

divisor D6 shrinks to a curve of genus one, while as t2 = 0 the prime toric divisor D7

shrinks to a curve of genus zero.25 Along each of these latter two boundaries, there is an

su(2) enhancement of the gauge symmetry, and there is a Weyl reflection of the moduli

space through the boundary. Thus, the Mori cone is simplicial and its generators coincide

with our choice of basis.

25One sees this from the data of the polytope as follows: the prime toric divisors D6,7 are associated to
points interior to one-faces of ∆◦. Their P1 fibers — the curves that shrink at the respective facets of the
Kähler cone — are associated to edges of the triangulation interior to two-faces that end in the respective
one-face points. The genera of the curves they degenerate to are equal to the genera of the one-faces,
defined as the number of points interior to the dual two-faces of the dual polytope.
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The genus one Weyl reflection is given by

w1 : t1 → −t1 , t2 → t2 + t1 , t3 → t3 , (C.38)

under which the prepotential in (C.37) is invariant. Relatedly, the genus zero GV invariant

n0
1,0,0 vanishes due to a cancelation between hypermultiplets and vector multiplets, which

become massless at the wall t1 = 0.

Meanwhile, under the genus zero Weyl reflection,

w2 : t1 → t1 , t2 → −t2 , t3 → t3 + t2 , (C.39)

the prepotential shifts as F → F+(t2)3/3. The corresponding shift κ222 → κ222+2 can be

read off from the GV invariant n0
0,1,0 = −2, which tells us that a charged vector multiplet

(and no hypermultiplets) becomes massless at t2 = 0, as expected for a genus zero Weyl

reflection.

This geometry has no flop transitions, so the extended Kähler cone K is given simply

by KX .

The dual coordinates are given by Ta :=
1
2
κabct

btc, so by (C.36) they take the form

T1 = t2t3+(t3)2 , T2 = t1t3+2t2t3+2(t3)2 , T3 = t1t2+(t2)2+2t1t3+4t2t3+4(t3)2 . (C.40)

These parametrize the cone of dual coordinates,

T = {T1 ≥ 0 , T2 ≥ 2T1 , T3 ≥ 2T2} . (C.41)

As expected, T is contained in the Mori cone, MX , which is by definition the dual of the

Kähler cone:

MX = K∨
X = {T1, T2, T3 ≥ 0} . (C.42)

Meanwhile, the effective cone is

E = T ∨ =
{
t1 + 2t2 + 4t3 ≥ 0 , t2 + 2t3 ≥ 0 , t3 ≥ 0

}
, (C.43)

and in this case is generated by the prime toric divisors {D1, D6, D7}.
The only nop curve class is the one of charge qa = (1, 0, 0), which shrinks to zero size at

the boundary of the Kähler cone associated with the genus one Weyl reflection. By (C.38),
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T1/T3

<latexit sha1_base64="DbJ6HHQbTRK9wv3hJNsq0xz8VmA=">AAACBHicbVC7TsMwFL3hWcqrwMhiUSF1KkmpgLESC2OR+pLaKHJcp7XqOJHtIFVRV3ZW+AU2xMp/8Ad8Bk6bgbYcydLROffl48ecKW3b39bG5tb2zm5hr7h/cHh0XDo57agokYS2ScQj2fOxopwJ2tZMc9qLJcWhz2nXn9xnfveJSsUi0dLTmLohHgkWMIK1kbotr3bV8q69Utmu2nOgdeLkpAw5ml7pZzCMSBJSoQnHSvUdO9ZuiqVmhNNZcZAoGmMywSPaN1TgkCo3nZ87Q5dGGaIgkuYJjebq344Uh0pNQ99UhliP1aqXif95/UQHd27KRJxoKshiUZBwpCOU/R0NmaRE86khmEhmbkVkjCUm2iRUXFqTDZcqUDMTjbMaxDrp1KrOTbX+WC83KnlIBTiHC6iAA7fQgAdoQhsITOAFXuHNerberQ/rc1G6YeU9Z7AE6+sXwveYDA==</latexit>

T2/T3

<latexit sha1_base64="P2ZtbaLJTbAICgNGAa7Ug3lHliw=">AAACCnicbVDLSsNAFL2pr1pfVZduBosgCCWpRd0IBTcuK6QPaEOYTCft0MnDmYlQQv/AvVv9BXfi1p/wD/wMJ20WtvXAhcM598XxYs6kMs1vo7C2vrG5Vdwu7ezu7R+UD4/aMkoEoS0S8Uh0PSwpZyFtKaY47caC4sDjtOON7zK/80SFZFFoq0lMnQAPQ+YzgpWWHNu9RLfIdq0L26255YpZNWdAq8TKSQVyNN3yT38QkSSgoSIcS9mzzFg5KRaKEU6npX4iaYzJGA9pT9MQB1Q66ezpKTrTygD5kdAVKjRT/06kOJByEni6M8BqJJe9TPzP6yXKv3FSFsaJoiGZH/ITjlSEsgTQgAlKFJ9ogolg+ldERlhgonROpYUz2XIhfTnV0VjLQaySdq1qXVXrD/VKA+UhFeEETuEcLLiGBtxDE1pA4BFe4BXejGfj3fgwPuetBSOfOYYFGF+/28uZnQ==</latexit>

T
3 =

T
1 +

T
2

<latexit sha1_base64="cnO6dZk3Ou2qf5EzilCrQw6tyHk=">AAACBnicbVDLSsNAFL2pr1pfVZduBovgqiSlqBuh4MZlhb6kDWEynbRDJ5MwMxFK6N69W/0Fd+LW3/AP/AwnbRa29cDA4Zz7muPHnClt299WYWNza3unuFva2z84PCofn3RUlEhC2yTikez5WFHOBG1rpjntxZLi0Oe060/uMr/7RKVikWjpaUzdEI8ECxjB2kiPLa+GblHLc7xyxa7ac6B14uSkAjmaXvlnMIxIElKhCcdK9R071m6KpWaE01lpkCgaYzLBI9o3VOCQKjedHzxDF0YZoiCS5gmN5urfjhSHSk1D31SGWI/VqpeJ/3n9RAc3bspEnGgqyGJRkHCkI5T9Hg2ZpETzqSGYSGZuRWSMJSbaZFRaWpMNlypQMxONsxrEOunUqs5Vtf5QrzRQHlIRzuAcLsGBa2jAPTShDQRCeIFXeLOerXfrw/pclBasvOcUlmB9/QKHlZhk</latexit> T 2
=

T 1

<latexit sha1_base64="oSYXXLFIOBoTCvT9LEExz7AgIBU=">AAACBHicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUTdCwY3LCn1BO5RMmmlDk8yQZIQydOverf6CO3Hrf/gHfoaZdha29UDgcM595QQxZ9q47rdT2Njc2t4p7pb29g8Oj8rHJ20dJYrQFol4pLoB1pQzSVuGGU67saJYBJx2gsl95neeqNIskk0zjakv8EiykBFsrNRpDjx0h9xBueJW3TnQOvFyUoEcjUH5pz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP5+fO0IVVhiiMlH3SoLn6tyPFQuupCGylwGasV71M/M/rJSa89VMm48RQSRaLwoQjE6Hs72jIFCWGTy3BRDF7KyJjrDAxNqHS0ppsuNKhntlovNUg1kn7qupdV2uPtUod5SEV4QzO4RI8uIE6PEADWkBgAi/wCm/Os/PufDifi9KCk/ecwhKcr18Xx5eb</latexit>

T
1

=
0

<latexit sha1_base64="9nDY+yhD0mkqQMomOQpmRvEngKs=">AAACEHicbVDLTsJAFL3FF+Kr6NLNRGLiRtIiUTcmJG5cYgJIAk0zHaYwYfrIzFRDGn7CvVv9BXfGrX/gH/gZTqELAU8yk5Nz7ivHizmTyrK+jcLa+sbmVnG7tLO7t39glg87MkoEoW0S8Uh0PSwpZyFtK6Y47caC4sDj9MEb32b+wyMVkkVhS01i6gR4GDKfEay05JrllnuBblANtdwaOte/7ZoVq2rNgFaJnZMK5Gi65k9/EJEkoKEiHEvZs61YOSkWihFOp6V+ImmMyRgPaU/TEAdUOuns9Ck61coA+ZHQL1Ropv7tSHEg5STwdGWA1Ugue5n4n9dLlH/tpCyME0VDMl/kJxypCGU5oAETlCg+0QQTwfStiIywwETptEoLa7LhQvpyqqOxl4NYJZ1a1b6s1u/rlQbKQyrCMZzAGdhwBQ24gya0gcATvMArvBnPxrvxYXzOSwtG3nMECzC+fgHjg5qK</latexit>

T3
= 2T2

� T1

<latexit sha1_base64="819mMOk1f9H/L2FXg4RRxHu9zxg=">AAACBnicbVC7TsMwFL3hWcqrwILEYlEhMVVJVQFjJRbGItEHaqPIcZ3Wqp1EtkNVRd3ZWeEX2BArv8Ef8Bk4bQbaciRbR+fc63t9/JgzpW3721pb39jc2i7sFHf39g8OS0fHLRUlktAmiXgkOz5WlLOQNjXTnHZiSbHwOW37o9vMbz9RqVgUPuhJTF2BByELGMHaSI9jzxl7VXN7pbJdsWdAq8TJSRlyNLzST68fkUTQUBOOleo6dqzdFEvNCKfTYi9RNMZkhAe0a2iIBVVuOlt4ii6M0kdBJM0JNZqpfztSLJSaCN9UCqyHatnLxP+8bqKDGzdlYZxoGpL5oCDhSEco+z3qM0mJ5hNDMJHM7IrIEEtMtMmouDAme1yqQE1NNM5yEKukVa04V5Xafa1cP81DKsAZnMMlOHANdbiDBjSBgIAXeIU369l6tz6sz3npmpX3nMACrK9f1iWZLA==</latexit> w 1
w 2

w 1

<latexit sha1_base64="BzrkU0tMJteXcCZk1Nf0bM0pvfY=">AAACBnicbVC7TsMwFL3hWcqrwILEYlEhMVVJVQFjJRbGItEHaqPIcZ3Wqp1EtkNVRd3ZWeEX2BArv8Ef8Bk4bQbaciRbR+fc63t9/JgzpW3721pb39jc2i7sFHf39g8OS0fHLRUlktAmiXgkOz5WlLOQNjXTnHZiSbHwOW37o9vMbz9RqVgUPuhJTF2BByELGMHaSI9jrzr2HHN7pbJdsWdAq8TJSRlyNLzST68fkUTQUBOOleo6dqzdFEvNCKfTYi9RNMZkhAe0a2iIBVVuOlt4ii6M0kdBJM0JNZqpfztSLJSaCN9UCqyHatnLxP+8bqKDGzdlYZxoGpL5oCDhSEco+z3qM0mJ5hNDMJHM7IrIEEtMtMmouDAme1yqQE1NNM5yEKukVa04V5Xafa1cP81DKsAZnMMlOHANdbiDBjSBgIAXeIU369l6tz6sz3npmpX3nMACrK9f18KZLQ==</latexit>

w2w1w2

<latexit sha1_base64="IcZeyzI/CrFtQWs+ExlqYA6hw1w=">AAACAHicbVDLSgMxFL3xWeur6kZwEyyCqzIjRV0W3LisaB/QDiWTZtrQTGZIMkoZunHvVn/Bnbj1T/wDP8NMOwvbeiBwOOe+cvxYcG0c5xutrK6tb2wWtorbO7t7+6WDw6aOEkVZg0YiUm2faCa4ZA3DjWDtWDES+oK1/NFN5rcemdI8kg9mHDMvJAPJA06JsdL9U8/tlcpOxZkCLxM3J2XIUe+Vfrr9iCYhk4YKonXHdWLjpUQZTgWbFLuJZjGhIzJgHUslCZn20umpE3xmlT4OImWfNHiq/u1ISaj1OPRtZUjMUC96mfif10lMcO2lXMaJYZLOFgWJwCbC2b9xnytGjRhbQqji9lZMh0QRamw6xbk12XClAz2x0biLQSyT5kXFvaxU76rl2nEeUgFO4BTOwYUrqMEt1KEBFAbwAq/whp7RO/pAn7PSFZT3HMEc0Ncvn/WW4Q==</latexit>

w1

<latexit sha1_base64="xvK/ZojDkpkDXNNhJGk1v5B9VRM=">AAACAHicbVDLSsNAFL2pr1pfVTeCm8EiuCpJKeqy4MZlRfuANpTJdNIOnUzCzEQJoRv3bvUX3Ilb/8Q/8DOctFnY1gMDh3Pua44Xcaa0bX9bhbX1jc2t4nZpZ3dv/6B8eNRWYSwJbZGQh7LrYUU5E7Slmea0G0mKA4/Tjje5yfzOI5WKheJBJxF1AzwSzGcEayPdPw1qg3LFrtozoFXi5KQCOZqD8k9/GJI4oEITjpXqOXak3RRLzQin01I/VjTCZIJHtGeowAFVbjo7dYrOjTJEfijNExrN1L8dKQ6USgLPVAZYj9Wyl4n/eb1Y+9duykQUayrIfJEfc6RDlP0bDZmkRPPEEEwkM7ciMsYSE23SKS2syYZL5aupicZZDmKVtGtV57Jav6tXGid5SEU4hTO4AAeuoAG30IQWEBjBC7zCm/VsvVsf1ue8tGDlPcewAOvrF6GPluI=</latexit>

w2

<latexit sha1_base64="YImdQ55vURiHC0oN/YxtJW2hYjk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIXZVEirosuHFZoS9oQphMJ+3QyYOZGzGEuPFX3LhQxK1/4c6/cdJmoa0HLhzOuZd77/FiziSY5rdWWVvf2Nyqbtd2dvf2D/TDo76MEkFoj0Q8EkMPS8pZSHvAgNNhLCgOPE4H3uym8Af3VEgWhV1IY+oEeBIynxEMSnL1EzvAMCWYZ93czWygD5BN0zjPXb1uNs05jFVilaSOSnRc/cseRyQJaAiEYylHlhmDk2EBjHCa1+xE0hiTGZ7QkaIhDqh0svkHuXGulLHhR0JVCMZc/T2R4UDKNPBUZ3GvXPYK8T9vlIB/7WQsjBOgIVks8hNuQGQUcRhjJigBniqCiWDqVoNMscAEVGg1FYK1/PIq6V80rctm665VbzfKOKroFJ2hBrLQFWqjW9RBPUTQI3pGr+hNe9JetHftY9Fa0cqZY/QH2ucP92yXzQ==</latexit>

Thyp
<latexit sha1_base64="WGed9qYugROq43cgOnvXi1fuufQ=">AAAB+3icbVC7TsMwFHXKq5RXKCOLoSCVpUpQBYyVWBiL1JfURJHjOq1Vx4lsB6ii/AoLAwix8iNs/A1OmwFajmTp6Jx7dY+PHzMqlWV9G6W19Y3NrfJ2ZWd3b//APKz2ZJQITLo4YpEY+EgSRjnpKqoYGcSCoNBnpO9Pb3O//0CEpBHvqFlM3BCNOQ0oRkpLnll99GznpO6ESE0wYmknu/DMmtWw5oCrxC5IDRRoe+aXM4pwEhKuMENSDm0rVm6KhKKYkaziJJLECE/RmAw15Sgk0k3n2TN4rpURDCKhH1dwrv7eSFEo5Sz09WSeUS57ufifN0xUcOOmlMeJIhwvDgUJgyqCeRFwRAXBis00QVhQnRXiCRIIK11XRZdgL395lfQuG/ZVo3nfrLXOijrK4BicgjqwwTVogTvQBl2AwRN4Bq/gzciMF+Pd+FiMloxi5wj8gfH5A+b2k6E=</latexit>

w1(T )
<latexit sha1_base64="VYO0yZ925oh6EuI7H29EH6RrPyU=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBKvgqsxIUZcFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0Seo0urjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmuguyJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10r+veTb3x2Kg1L4o6ynAG53AFHtxCEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AhxWRVQ==</latexit>T

Figure 8: Regions in the space of dual coordinates. The hyperextended cone of dual
coordinates Thyp is the union of the cone of dual coordinates T (shaded dusty rose) and
its image under the genus one Weyl reflection, w1(T ), shaded lavender. Additional regions
of moduli space may be accessed by further Weyl reflections, and the (non-convex) part
of moduli space Vis(Thyp) that may be connected by straight lines through moduli space
to Thyp is bounded in green. By the analysis of [1], BPS black holes necessarily exist in
Vis(Thyp).
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q 1
=

0

q2
q3 0 1 2 3 4 5 6

0 ∗ 96 144 96 144 96 144
1 −2 96 5384 69376 631788 4247296 24219184
2 0 0 144 69376 4281984 119221248 2152806016
3 0 0 0 96 631788 119221248 8128381416
4 0 0 0 0 144 4247296 2152806016
5 0 0 0 0 0 96 24219184
6 0 0 0 0 0 0 144

q 1
=

1

q2
q3 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 −2 96 5384 69376 631788 4247296 24219184
2 −4 288 −7968 227200 47491408 1531634496 29149503744
3 −6 480 −15936 473472 −9517380 1720814976 324341564352
4 −8 672 −23904 789120 −20298336 571788736 20359924864
5 −10 864 −31872 1104768 −30447504 945902400 −17554938576
6 −12 1056 −39840 1420416 −40596672 1324263360 −26368736640

q 1
=

2

q2
q3 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 144 69376 4281984 119221248 2152806016
3 −6 480 −15936 473472 −9517380 1720814976 324341564352
4 −32 3360 −150480 4375040 −82286208 5273528256 −61597979328
5 −110 12960 −677376 23110528 −563180076 16877260800 −205787147392
6 −288 36960 −2128560 81523584 −2360300928 63452512704 −1056669477312

q 1
=

3

q2
q3 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 96 631788 119221248 8128381416
4 −8 672 −23904 789120 −20298336 571788736 20359924864
5 −110 12960 −677376 23110528 −563180076 16877260800 −205787147392
6 −756 105600 −6674400 267266592 −7543925760 201410856192 −4254252869280

q 1
=

4

q2
q3 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 144 4247296 2152806016
5 −10 864 −31872 1104768 −30447504 945902400 −17554938576
6 −288 36960 −2128560 81523584 −2360300928 63452512704 −1056669477312

Table 5: Genus zero GV invariants n0
q1,q2,q3

for the geometry of Appendix C.4. The cone
of dual coordinates T is shown in pink, the region Vis(Thyp) \ T is shown in green, and the
region M∞ \ Vis(Thyp) is shown in yellow. There are nonzero GV invariants everywhere
in the region Vis(Thyp) where BPS black holes are known to exist, in agreement with the
lattice WGC.
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we have

w1(K) =
{
t2 ≥ −t1 ≥ 0 , t3 ≥ 0

}
. (C.44)

Correspondingly, the hyperextended Kähler cone is given by

Khyp =
⋃

w∈Wstable

w(K) = K ∪ w1(K) =
{
t2, t3 ≥ 0 , t1 ≥ −t2

}
. (C.45)

In §3, we argued that the infinity cone M∞ is dual to the hyperextended Kähler cone,

M∞
(3.6)
= K∨

hyp = {T2 ≥ T1 ≥ 0 , T3 ≥ 0} . (C.46)

We may compare this with the GV invariants of Table 5. We have n0
q1,q2,q3

̸= 0 everywhere

in the interior of M∞, i.e. for all q2 > q1 > 0, q3 > 0, implying that indeed M∞ = K∨
hyp.

The hyperextended Kähler cone maps to a region in dual coordinates of the form

Thyp = {T2 ≥ T1 ≥ 0 , T3 ≥ 2T2} . (C.47)

Note that Thyp ⊂ M∞, as required by the lattice WGC, since Thyp ⊆ CBH.

In fact, Vis(Thyp) ⊆ CBH as discussed in §C.1. Upon examining the fully Weyl-extended

moduli space, we encounter a surprise: as shown in Figure 8, this moduli space is a branched

cover of the Weyl orbit W(Thyp). In fact, passing repeatedly around the branch point,

much of this moduli space turns out to lie outside M∞. This sounds worrying from the

perspective of the lattice WGC, but only Vis(Thyp) ⊆ CBH really matters for our analysis.

Explicitly, this region is

Vis(Thyp) = T ∪ w1(T ) ∪ w2(T ) ∪ w2 ◦ w1(T ) ∪ w1 ◦ w2(T )) ∪ w1 ◦ w2 ◦ w1(T )

= {T2 ≥ T1 ≥ 0 , T3 ≥ min(T1 + T2, 2T2 − T1)} , (C.48)

i.e., the (non-convex) vee-shaped region outlined by the green lines in Figure 8. One can

then verify that every GV invariant within this cone is non-zero up to the degree calculated

— see Table 5 — so the predictions of the lattice WGC are actually satisfied. The fact that

the fully Weyl-extended moduli space eventually passes outside M∞ is rather an indication

that the BPS black hole solutions undergo wall crossing at the unstable Weyl flop. This

would be very interesting to verify explicitly.
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