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Abstract We analyze data on B → Kμ+μ− and B →
K ∗μ+μ− decays in the whole dilepton invariant mass spec-
trum with the aim of disentangling short- vs. long-distance
contributions. The sizable long-distance amplitudes from cc
narrow resonances are taken into account by employing a
dispersive approach. For each available q2 = m2

μμ bin and
each helicity amplitude an independent determination of the
Wilson coefficient C9, describing b → s�+�− transitions
at short distances, is obtained. The consistency of the C9

values thus obtained provides an a posteriori check of the
absence of additional, sizable, long-distance contributions.
The systematic difference of these values from the Standard
Model expectation supports the hypothesis of a non-standard
b → sμ+μ− amplitude of short-distance origin.

1 Introduction

Exclusive and inclusive b → s�+�− decays are sensitive
probes of physics beyond the Standard Model (SM). The
flavor-changing neutral-current (FCNC) structure implies a
strong suppression of the decay amplitudes within the SM
and, correspondingly, enhanced sensitivity to short-distance
physics. The two ingredients to fully exploit this potential
are precise measurements to be compared with precise theo-
retical SM predictions.

On the experimental side, the exclusive B → Kμ+μ−
and B → K ∗μ+μ− decays are very promising. The LHCb
collaboration has already been able to identify large samples
of events on both modes with an excellent signal/background
ratio, providing precise information on the decay distribu-
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tions at a fully differential level [1–3]. In the B → Kμ+μ−
case precise results have also been recently reported by the
CMS experiment [4]. In all cases the present experimental
errors are statistically dominated and are expected to improve
significantly in the near future.

The difficulty of performing precise SM tests via these
exclusive modes lies more on the theoretical side, given their
theoretical description requires non-perturbative inputs. The
latter can be divided into two main categories: (i) the B →
K (∗) form factors, necessary to estimate the hadronic matrix
elements of the local b → s operators; (ii) the non-local
hadronic matrix elements of four-quark operators related to
charm re-scattering. While the theoretical error related to the
first category can be systematically improved and controlled
via Lattice QCD, a systematic tool to deal with the second
category, in the whole kinematical region, is not yet available.

From the observed values of �(B → K (∗) J/�) and
�(B → K (∗)�(2S)) we know that charm re-scattering com-
pletely obscures the rare FCNC transitions when the invariant
mass of the dilepton pair, q2 = (p�+ + p�−)2, is in the region
of the narrow charmonium resonances. This is why precise
SM tests in the rare modes are usually confined to the so-
called low-q2 (q2 � 6 GeV2) and high-q2 (q2 � 15 GeV2)
regions. Although, as pointed out in [5], also the high-q2

region can be used to extract short-distance information via
a data-driven treatment of the resonance contributions.

Estimates of the non-local hadronic matrix elements,
obtained by combining dispersive methods and heavy-quark
expansion [6–8], indicate that charm re-scattering is well
described by the (small) perturbative contribution in the low-
q2 region. Using these results, but also with more conserva-
tive estimates of charm re-scattering (see in particular [9]),
several groups observed a significant tension between data
and SM predictions in the low-q2 region (see [10–20] for
recent analyses). On the other hand, doubts about a possible
underestimate of the theory errors in some of these analyses,
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particularly those based on dispersive methods, have been
raised in Refs. [21,22]. An independent indication consis-
tent with the tension observed at low-q2, despite with lower
statistical significance, has been obtained recently in [23] by
looking at the semi-inclusive rate in the high-q2 region.

The purpose of this paper is to extract additional infor-
mation from data that can shed light on the origin of this
tension. More precisely, we extract differential properties on
the whole q2 spectrum about the difference between data and
theory that can help distinguish a non-local amplitude (of
SM origin) vs. a short-distance one (of non-SM origin). To
achieve this goal, we put together all the known ingredients
of B → K (∗)μ+μ− amplitudes within the SM, taking into
account also the contribution of charmonium resonances. The
latter are described by means of data via a subtracted disper-
sion relation. We then compare this amplitude with the exper-
imental results for the two rare modes. By doing so, we deter-
mine the residual amplitude sensitive to charm re-scattering,
both as a function of q2 and as a function of the specific
hadronic transition. As we shall show, the residual ampli-
tude extracted in this way shows no significant dependence
on q2, nor a dependence on the hadronic transition, contrary
to what would be expected from a long-distance contribution.
These results confirm a similar conclusion obtained first in
Ref. [24], although with a larger q2 binning, a wider cut to
avoid the charmonium-resonance region, and averaging over
the different hadronic channels.

The paper is organized as follows. In Sect. 2 we discuss
the structure of B → K (∗)�+�− amplitudes within the SM,
focusing in particular on the non-perturbative effects which
can mimic the contribution of the short-distance operatorQ9.
We present both a general parametrization of these effects,
and an estimate based on dispersion relations. In Sect. 3 we
analyze the available experimental data using the amplitude
decomposition presented in Sect. 2, which contains all the
known ingredients of B → K (∗)μ+μ− transitions within
the SM, but is general enough to describe possible addi-
tional non-local contributions. The outcome of the data-
theory comparison is a series of independent determinations
of the Wilson coefficient C9 in each q2 bin and each inde-
pendent hadronic amplitude. The implications of these results
are discussed in Sect. 4 and summarized in the Conclusions.
The Appendix is devoted to the determination of the param-
eters appearing in the dispersive description of charmonium
resonances.

2 Theoretical framework

The effective Lagrangian describing b → s�+�− transitions,
after integrating out the SM degrees of freedom above the b-
quark mass, can be written as

Leff(b → s�+�−) = 4GF√
2
VtbV

∗
ts

10∑

i=1

CiQi

+L[N f =5]
QCD+QED. (2.1)

Here Vi j denote the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, and the subleading terms pro-
portional to VubV ∗

us have been neglected (i.e. we assume
VcbV ∗

cs ≈ −VtbV ∗
ts). The most relevant effective operators

are

Q1 = (s̄α
Lγμc

β
L )(c̄β

Lγ μbα
L ) , Q2 = (s̄LγμcL )(c̄Lγ μbL ) ,

(2.2)

Q7 = e

16π2 mb(s̄LσμνbR)Fμν , Q8 = gs
16π2 mb(s̄LσμνT abR)Ga

μν ,

(2.3)

Q9 = e2

16π2 (s̄LγμbL )(�̄γ μ�) , Q10 = e2

16π2 (s̄LγμbL )(�̄γ μγ5�) .

(2.4)

The explicit form of the additional four-quark operators
Q3−6, with subleading Wilson coefficients, can be found
in [25].

Only the FCNC quark bilinearsQ7,9,10 have non-vanishing
tree-level matrix elements in B → K (∗)μ+μ−. Those of the
operators Q7 and Q9, which are central to our analysis, lead
to the following contributions to the decay amplitudes

M (
B → K�+�−)∣∣

C7,9
= 2N

[
C9〈K |s̄LγμbL |B〉

−2mb

q2 C7〈K |s̄L iσμνq
νbR |B〉

]
�γ μ�

= N C9

[
f+(q2)(pB + pK )μ + f−(q2)qμ

]
�γ μ�

+N C7
fT (q2)

(mB + mK )

[
q2(pB + pK )μ − (m2

B − m2
K )qμ

]

×
(

2mb

q2

)
�γ μ� (2.5)

and

M (
B → K ∗�+�−)∣∣

C7,9
= N C9

×
[
−2iεμνρσ (ε∗)ν pρ

B p
σ
K ∗

V (q2)

mB + mK ∗

+qμ

(
ε∗ · q) 2mK ∗

q2 A0(q
2)

+
(

ε∗
μ − qμ

ε∗ · q
q2

)
(mB + mK ∗ ) A1(q

2)

−
(

(pB + pK ∗ )μ − qμ

m2
B − m2

K ∗
q2

)
ε∗ · q

mB + mK ∗
A2(q

2)

]
�̄γ μ�

+N C7

[
− 2iεμνρσ (ε∗)ν pρ

B p
σ
K ∗T1(q

2)

+ (ε∗ · q)
(
qμ − q2

m2
B − m2

K ∗
(pB + pK ∗ )μ

)
T3(q

2)

123
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+ (ε∗
μ(m2

B − m2
K ∗ ) − (

ε∗ · q) (pB + pK ∗ )μ
)
T2(q

2)

](
2mb

q2

)
�γ μ�,

(2.6)

where

qμ = pμ
B − pμ

K (∗) , N = √
2GFαemVtbV

∗
ts/(4π), (2.7)

while {Ai (q2), V (q2), Ti (q2)} and f±,T (q2) denote the rel-
evant B → K ∗ and B → K hadronic local form factors,
respectively. Due to the conservation of the leptonic current
(qμ�γ μ� = 0), we can rewrite Eqs. (2.5)–(2.6) as

M (
B → K�+�−)∣∣

C7,9
= N

[
C9 + 2mb

mB + mK

fT (q2)

f+(q2)
C7

]

× f+(q2)(pB + pK )μ �̄γ μ�

M (
B → K ∗�+�−)∣∣

C7,9

= N
{
−
[
C9 + 2mb(mB + mK ∗)

q2

T1(q2)

V (q2)
C7

]

× 2V (q2)

mB + mK ∗
iεμνρσ (ε∗)ν pρ

B p
σ
K ∗

−
[
C9 + 2mb(mB + mK ∗)

q2

T2(q2)

A2(q2)
C7

×
(

1 + O
( q2

m2
B

))] A2(q2)

mB + mK ∗
(ε∗ · q)(pB + pK ∗)μ

+
[
C9 + 2mb(m2

B − mK ∗)

q2

T2(q2)

A1(q2)
C7

]

×A1(q
2) (mB + mK ∗) ε∗

μ

}
�̄γ μ�, (2.8)

where it emerges more clearly that the contributions of Q7

and Q9 admit the same Lorentz decomposition. The four
independent Lorentz structures appearing in these amplitudes
are in a linear relation with the four independent |B〉 → |Hλ〉
hadronic transitions, where

|HK 〉 ≡ |K 〉, |H⊥〉 ≡ |K ∗(ε⊥)〉, |H‖〉 ≡ |K ∗(ε‖)〉,
|H0〉 ≡ |K ∗(ε0)〉. (2.9)

To identify these amplitudes rather than the Lorentz struc-
tures, we redefine the independent form-factor combinations
associated to the matrix element of the Q9 operator as

FK (q2) = f+(q2) , F⊥(q2) = V (q2) , F‖(q2) = A1(q2) ,

F0(q2) = (mB + mK∗ )2(m2
B − m2

K∗ − q2)A1(q2) − λ(m2
B ,m2

K∗ , q2)A2(q2)

16mBm
2
K∗ (mB + mK∗ )

,

(2.10)

with λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc).

2.1 Hadronic matrix elements of four-quark operators

The focus of this paper is to extract information on the non-
local matrix elements of the four-quark operators Q1,6 from
data. To this purpose, the first point to note is that to all orders
in αs , and to first order in αem, these matrix elements have
the same structure as the matrix elements of Q7 and Q9. In
other words, Lorentz and gauge invariance imply

M (
B → Hλ�

+�−)∣∣
C1−6

= −i
32π2N

q2 �̄γ μ�

×
∫

d4xeiqx 〈Hλ|T
⎧
⎨

⎩ jem
μ (x),

∑

i=1,6

CiQi (0)

⎫
⎬

⎭ |B〉

=
(

�λ
9(q2) + m2

B

q2 �λ
7

)
〈Hλ �+�−|Q9|B〉 , (2.11)

where jem
μ (x) denotes the electromagnetic current,

jem
μ (x) =

∑

q=u,c

2

3
(q̄γμq)(x) −

∑

q=d,s,b

1

3
(q̄γμq)(x),

(2.12)

and the explicit form of 〈Hλ �+�−|Q9|B〉 follows from
Eq. (2.8).

The function �λ
9(q2) parameterizes the matrix elements

of the four-quark operators in all the kinematical range but
for possible singular contributions in the q2 → 0 limit. By
construction, �λ

9(q2) is a function of q2 and, a priori, differs
for each hadronic amplitude (i.e. for each value of λ ∈ {K ,⊥
, ‖, 0}). The coefficient �λ

7 describes singular contributions
in q2 → 0 limit, corresponding to matrix elements of the
four-quark operators which are non-zero for B → Hλγ with
an on-shell photon. By helicity conservation, this is possible
only λ =⊥ and ‖, hence �

K ,0
7 = 0.

In principle, we should introduce additional independent
(non-local) hadronic form factors to describe the matrix
elements of the four-quark operators; however, thanks to
Eq. (2.11), we can effectively describe these matrix elements
via an appropriate q2- and λ-dependent modifications of C9

and a universal (q2- and λ-independent) shift of C7. In par-
ticular, the regular terms in the q2 → 0 limit are described
by Eq. (2.8) via the substitution

C9 → Ceff,λ
9 = C9 + Y λ(q2) . (2.13)

By means of Eq. (2.13) we describe in full generality both
perturbative and non-perturbative contributions. The pertur-
bative ones, evaluated at the lowest-order in αs , lead to the
well-known hadronic-independent (factorizable) expression

Y λ(q2)

∣∣∣
α0
s

= Y [0]
qq̄ (q2) + Y [0]

cc̄ (q2) + Y [0]
bb̄

(q2), (2.14)

123
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where

Y [0]
qq̄ (q2) = 4

3
C3 + 64

9
C5 + 64

27
C6 − 1

2
h(q2, 0)

×
(
C3 + 4

3
C4 + 16C5 + 64

3
C6

)
,

Y [0]
cc̄ (q2) = h(q2,mc)

(
4

3
C1 + C2 + 6C3 + 60C5

)
,

Y [0]
bb̄

(q2) = −1

2
h(q2,mb)

(
7C3 + 4

3
C4 + 76C5 + 64

3
C6

)
,

with

h(q2,m) = −4

9

(
ln

m2

μ2 − 2

3
− x

)
− 4

9
(2 + x)

⎧
⎨

⎩

√
x − 1 arctan 1√

x−1
, x = 4m2

q2 > 1,
√

1 − x
(

ln 1+√
1−x√
x

− iπ
2

)
, x = 4m2

q2 ≤ 1.

To a good accuracy, given the smallness of C3...6, it follows
that

Y λ(q2)

∣∣∣
α0
s

≈ h(q2,mc)

(
4

3
C1 + C2

)
. (2.15)

Non-factorizable corrections to Y λ(q2) are generated at
higher order in αs . We checked against the EOS software [26]
that the perturbative non-factorizable corrections to Ceff

9 are
numerically subleading and can be safely neglected.1 This is
not the case for the non-perturbative contributions induced
by cc resonances, which we discuss in detail in Sect. 2.2.

The contributions of the four-quark operators leading to
a non-vanishing B → Hλγ amplitude, hence generating a
pole for q2 → 0 in B → Hλ�

+�−, have been analyzed first
in Ref. [27]. Here there are no factorizable contributions. The
leading effect has been estimated in perturbation theory up
to the next-to-leading order in αs in the heavy quark limit.
As anticipated, a pole for q2 → 0 occurs only in the λ =⊥
and ‖ amplitudes, whose tensor form factors coincide in the
q2 → 0 limit. This is why these contributions can effectively
be taken into account by a universal shift of C7 [27]:

C7 → Ceff
7 ≈ 1.33C7. (2.16)

We implement this shift in allC7 terms in Eq. (2.8).2 In order
to take into account the scale uncertainty and missing higher-
order corrections, we assign a conservative 10% error to the
value of Ceff

7 .

1 We thank Méril Reboud for providing the necessary information to
perform the cross-checks.
2 This shift, which has been determined in the q2 → 0 limit, provides
a correct evaluation of non-factorizable corrections to the pole terms
only; however, given the smallness of non-pole terms proportional to
C7, we can safely apply it as universal shift in all C7 terms.

2.2 Long-distance contribution from cc resonances

The perturbative result in Eq. (2.15) does not provide a
good approximation of the large non-perturbative contribu-
tion induced by the narrow charmonium resonances. How-
ever, the latter can be well described using dispersion rela-
tions and experimental data [6,7,28–30]. To achieve this
goal, we need to go back to Eq. (2.11) and isolate the hadronic
part of the matrix elements. In the B → K case, this can can
be decomposed as [7]

− i
∫

d4xeiqx 〈K |T
⎧
⎨

⎩ jem
μ (x),

∑

i=1,2

CiQi (0)

⎫
⎬

⎭ |B〉

= [q2(pB)μ − (pB · q)qμ]HK
cc̄(q

2) . (2.17)

Proceeding in a similar manner, we decompose the four-
quark matrix elements in B → K ∗ as

− 2i
∫

d4xeiqx 〈K ∗|T
⎧
⎨

⎩ jem
μ (x),

∑

i=1,2

CiQi (0)

⎫
⎬

⎭ |B〉

=
(

ε∗
μ − qμ

ε∗ · q
q2

)
(mB + mK ∗ )H‖

cc̄(q
2)

− iεμνρσ (ε∗)ν pρ
B p

σ
K ∗

2

mB + mK ∗
H⊥

cc̄(q
2)

−
(

(pB + pK ∗ )μ − qμ

q · (pB + pK ∗ )

q2

)
ε∗ · q

mB + mK ∗
H̃0

cc̄(q
2) .

(2.18)

Since we are interested in labeling the amplitudes accord-
ing to the helicity of the hadronic state, in analogy with
Eq. (2.10), we also define

H0
cc̄(q

2)

= (mB + mK ∗ )2(m2
B − m2

K ∗ − q2)H‖
cc̄(q

2) − λ(m2
B ,m2

K ∗ , q2)H̃0
cc̄(q

2)

16mBm2
K ∗ (mB + mK ∗ )

.

(2.19)

We can write a one-time subtracted dispersion relation for
each Hλ

cc̄(q
2) function, namely

�Hλ
qq̄(q

2) = q2 − q2
0

π

∫ ∞

s0

ds
�[Hλ

cc̄(s)]
(s − q2

0 )(s − q2)

≡ q2 − q2
0

π

∫ ∞

s0

ds
ρλ

cc̄(s)

(s − q2
0 )(s − q2)

. (2.20)

This allows us to rewrite in full generality (i.e. without any
expansion in αs) the cc̄ contribution to Y λ(q2) as

Y λ
cc̄(q

2) = Y λ
cc̄(q

2
0 ) + 16π2

Fλ(q2)
�Hλ

cc̄(q
2) , (2.21)

123
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Table 1 Magnitudes (ηK
V ) and phases (δKV ) of the B+ → K+V → K+μ+μ− amplitudes, as determined in Appendix A. The mass and width of

the resonances are also reported

V ηK
V δKV mV (MeV) �V (MeV)

J/ψ 32.3 ± 0.6 −1.50 ± 0.05 3096.9 0.0926 ± 0.0017

ψ(2S) 7.12 ± 0.32 2.08 ± 0.11 3686.1 0.294 ± 0.008

ψ(3770) (1.3 ± 0.1) × 10−2 −2.89 ± 0.19 3773.7 ± 0.4 27.2 ± 1.0

ψ(4040) (4.8 ± 0.8) × 10−3 −2.69 ± 0.52 4039 ± 1 80 ± 10

ψ(4160) (1.5 ± 0.1) × 10−2 −2.13 ± 0.33 4191 ± 5 70 ± 10

ψ(4415) (1.1 ± 0.2) × 10−2 −2.43 ± 0.43 4421 ± 4 62 ± 20

Table 2 Magnitudes (ηλ
V ) and phases (δλ

V ) of the B → K ∗(ελ)V →
K ∗(ελ)μ+μ− amplitudes, as determined in Appendix A

V Polarization ηλ
V δλ

V

J/ψ ⊥ 26.6 ± 1.1 1.46 ± 0.06

‖ 12.3 ± 0.5 −4.42 ± 0.06

0 13.9 ± 0.5 −1.48 ± 0.05

ψ(2S) ⊥ 3.0 ± 0.9 3.2 ± 0.4

‖ 1.11 ± 0.30 −3.32 ± 0.22

0 1.14 ± 0.06 2.10 ± 0.11

where Fλ(q2) denote the four hadronic form factors defined
in Eq. (2.10).

The function ρλ
cc̄(s) is the spectral density for an inter-

mediate hadronic state with cc̄ valence-quark content and
invariant mass s, and s0 denotes the energy threshold where
such state can be created on-shell. The parameter q2

0 is the
subtraction point. As shown in [7], one recovers Eq. (2.15)
if ρλ

cc̄(s) is evaluated at the partonic level, i.e. factorizing the
hadronic matrix elements as

〈Hλ|T { jem
μ (x),Q1,2(0)

} |B〉 ∝ 〈0|T { jem
μ (x),

(c̄Lγ μcL)(0)
} |0〉 × 〈Hλ|s̄LγμsL |B〉 (2.22)

and evaluating the T -product between the charm current and
jem
μ (x) at O(α0

s ).
In order to take into account non-perturbative effects,

we need to evaluate ρcc̄(s) at the hadronic level. In this
case, the leading contribution is provided by single-particle
intermediate states with the correct quantum numbers and
valence quarks, namely the spin-1 charmonium resonances
(V = J/ψ,ψ(2 S), . . .). Describing these contributions to
ρcc̄(s) via a sum of Breit-Wigner distributions leads to

�Hλ,1P
cc̄ (q2) =

∑

V

ηλ
V e

iδλ
V

(q2 − q2
0 )

(m2
V − q2

0 )
Ares
V (q2)

∣∣∣∣∣
q2

0 =0

=
∑

V

ηλ
V e

iδλ
V
q2

m2
V

Ares
V (q2) , (2.23)

Table 3 Input parameter for the numerical analysis

Parameter Value

ηEWGF (1.1745 ± 0.0023) × 10−5 GeV−2

mc 1.68 ± 0.20 GeV

mb 4.87 ± 0.20 GeV

1/αem(mb) 133

|VtbV ∗
ts | 0.04185 ± 0.00093

where

Ares
V (q2) = mV�V

m2
V − q2 − imV�V

. (2.24)

The {ηλ
V , δλ

V } parameters need to be determined from data.
In Tables 1 and 2 we report their values for the two leading
charmonium resonances, J/ψ and ψ(2S). In the B → K
case we also report the {ηλ

V , δλ
V } for the wider charmonium

states (which have a smaller impact). The determination of
these parameters is discussed in Appendix A.

In order to use the general decomposition in Eq. (2.21),
the last missing ingredient is the subtraction term Y λ

cc̄(q
2
0 ).

Having chosen as subtraction point q2
0 = 0, which is far

from the resonance region, we can use the perturbative result
in Eq. (2.15). Since

h(q2,m)
q2→0−→ −4

9

[
1 + ln

(
m2

μ2

)]
(2.25)

we finally obtain

Y λ
cc̄(q

2) = −4

9

[
4

3
C1(μ) + C2(μ)

] [
1 + ln

(
m2

μ2

)]

+ 16π2

Fλ(q2)

∑

V

ηλ
V e

iδλ
V
q2

m2
V

Ares
V (q2) . (2.26)

123
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Table 4 Input values for the Wilson coefficients

Coefficient Value Coefficient Value

C1(μb) −0.291 ± 0.009 C6(μb) 0.0012 ± 0.0001

C2(μb) 1.010 ± 0.001 Ceff
7 (μb) −0.450 ± 0.050

C3(μb) −0.0062 ± 0.0002 Ceff
8 (μb) −0.1829 ± 0.0006

C4(μb) −0.0873 ± 0.0010 C9(μb) 4.273 ± 0.251

C5(μb) 0.0004 ± 0.0010 C10(μb) −4.166 ± 0.033

3 Numerical analysis of the experimental data

In this section, we describe the fitting procedure that we
employ to analyse the available experimental data on B+ →
K+μ+μ− and B → K ∗0μ+μ− differential decay distribu-
tions, allowing C9 to vary in the most general way. More
precisely, we fit data using the SM expressions discussed in
Sect. 2, setting

C9 → Cλ
9 (q2) + Y λ

cc̄(q
2) + Y [0]

qq̄ (q2) + Y [0]
bb̄

(q2), (3.1)

and extracting Cλ
9 (q2) in each q2 bin and for each value of

λ. We use the input parameters reported in Table 3 and we
fix the renormalization scale to μb = 4.2 GeV. The SM val-
ues of the Wilson coefficients are reported in Table 4, with
errors taking into account the variation of the scale between
μb/2 and 2μb. The only case where the error is larger than
what obtained from the naïve scale variation is C9: here we
adopt the estimate presented in Ref. [23] which conserva-
tively takes into account also the scale variation associated
to the h function in Eq. (2.25).3

We construct the usual χ2 function as

χ2 =
∑

i, j

[Oexp
i − Otheory

i ](Vtheory + Vexp)
−1
i j [Oexp

j

−Otheory
j ] (3.2)

where the indices i, j run over all the observables Oi( j). The
matrices Vtheory and Vexp are the theoretical and experimen-
tal covariances, respectively. The theoretical covariance is
built propagating errors on local form factors, Breit–Wigner
parameters, and on Ceff

7 . In principle, it has a non-trivial
dependence on Cλ

9 . In Ref. [14], a method to include such
effects in the calculation of the theory covariance matrix is
discussed. However, since at the current status experimental
uncertainties dominate over the theory one, we choose to set
Cλ

9 to its SM value in the calculation of the theory covari-
ance, effectively accounting for the SM covariance only. The
experimental covariance consists of two parts: the statisti-
cal covariance, given in the experimental papers, and the

3 The value ofC9 in Table 4 does not enter directly our numerical anal-
ysis, aimed at extracting C9 from data, but rather provides the reference
SM value to compare with the data-driven results.

Table 5 Determinations of C9 from B → Kμ+μ− in the low-q2 (left)
and high-q2 (right) regions. The p values for the constant fits are 0.17
(low-q2) and 0.39 (high-q2)

q2 (GeV2) CK
9

[1.1, 2] 1.9+0.5
−0.8

[2, 3] 3.2+0.3
−0.4

[3, 4] 2.6+0.4
−0.5

[4, 5] 2.1+0.5
−0.7

[5, 6] 2.4+0.4
−0.6

[6, 7] 2.6+0.4
−0.5

[7, 8] 2.3+0.5
−0.7

constant 2.4+0.4
−0.5(χ

2/dof = 1.35)

q2 (GeV2) CK
9 (LHCb) CK

9 (CMS)

[15, 16] 1.8+0.8
−1.8 1.4+0.9

−1.4

[16, 17] 2.1+0.7
−1.0 1.9+0.8

−1.9

[17, 18] 2.9+0.5
−0.5 3.0+0.5

−0.6

[18, 19] 2.7+0.6
−0.5

[18, 19.24] 2.9+0.6
−0.7

[19, 20] 0+1.6
−0

[20, 21] 1.4+0.9
−1.4

[21, 22] 3.2+0.8
−0.9

[19.24, 22.9] 2.5+0.7
−1.0

constant 2.6 ± 0.4(χ2/dof = 1.06)

systematic covariance, which we construct from the system-
atic uncertainties assigning a 100% correlation. We checked
explicitly that this hypothesis does not impact significantly
our results, since systematic uncertainties are typically sub-
dominant compared to the statistical ones. Following a fre-
quentist approach, we extract the best-fit point by minimizing
the χ2 function. All the errors correspond to 68% confidence
interval, which we obtain by profiling the χ2 functions over
the various fit parameters. We consider two fitting regions:
the low q2 region, where q2 ∈ [1.1, 8] GeV2, and the high
q2 region, where q2 > 15 GeV2. In the B → K ∗μ+μ−
we also consider the bin between the J/ψ and the ψ(2S),
q2 ∈ [11, 12.5] GeV2.

For the B+ → K+μ+μ− mode, we construct the the-
ory predictions starting from the results of Ref. [31] and we
employ the available data from the LHCb [32] and CMS
[4] collaborations on the differential branching fraction. The
results of the fit are shown in Table 5 and Fig. 1, where we
first extract CK

9 in each bin, and then we explore the hypoth-
esis of a constant CK

9 throughout all the kinematic regions.
Both at low and high q2, we find that both these hypotheses
lead to a good fit, characterized by a χ2/dof close to unity.

In the case of B → K ∗0μ+μ− we fit the branching
ratio using the experimental results reported in [33], as well
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Fig. 1 Determinations of C9 in
different q2 bins from
B → Kμ+μ− data. The error
bars indicate the 68%
confidence interval. The red
band denotes the SM value. The
gray band corresponds to the
value extracted assuming a
constant (q2-independent) C9,
respectively. In the first plot the
experimental results from LHCb
and CMS have been combined,
whereas in the second plot two
separate fits are performed due
to different bin widths in the
experimental datasets. The bins
shown in the figure are the
LHCb ones; the best-fit points
from CMS data correspond to
the bins (14.82, 16), (16, 17),

(17, 18), (18, 19.24), (19.24, 22.9)

(all in GeV2)

as the angular observables FL , S3, S4, S5, AFB , S7, S8, S9,
measured by LHCb in [34]. We implement the angular
observables as in [25,35] and we correct for the mismatch
in the definition of the muon helicity angle to follow the
experimental conventions given in [36]. To obtain the theory
predictions we use the form factors from [37]; see also [38]
for a recent review. Due to the lack of data on the decays
B → K ∗Vj with Vj above the ψ(2S) resonance, only the
first two cc̄ resonances, the J/ψ and the ψ(2S), are imple-
mented. The results of the fits are reported in Table 6 and
Fig. 2. At the bottom of Table 6 the results of the fit in the
low-q2 and in the high-q2 regions under the assumption of a
constant C9, averaged over the bins and the different polar-
izations, are also indicated.

4 Discussion

As discussed in Sect. 2, treating C9 as a q2- and channel-
dependent quantity allows us to describe in full general-
ity the long-distance contributions to the B → K (∗)μ+μ−
amplitudes of SM origin. In the limit where the Y functions
in Eq. (3.1) describe well these long-distance effects, we
should expect the experimentally determined Cλ

9 (q2) values
to exhibit no q2 and λ dependence (within errors). Moreover,
the extracted values should coincide with the SM prediction
of C9(μb). Conversely, a dependence from q2 and/or λ in
the values of Cλ

9 (q2) thus determined would unambiguously
signal an incorrect description of long-distance dynamics via
the Y functions.

Table 6 Determinations of C9 in different q2 bins from the different
polarizations of the B → K ∗μ+μ− decay. The p values for the constant
fits are 0.14 (low-q2) and 0.73 (high-q2)

q2 (GeV2) C‖
9 C⊥

9 C0
9

[1.1, 2.5] 2.2+1.3
−1.2 6.4+1.7

−1.8 1.4+0.9
−0.9

[2.5, 4] 4.6+1.4
−1.4 3.6+1.3

−1.2 2.6+0.8
−1.0

[4, 6] 3.5+1.0
−1.1 3.5+1.1

−1.0 2.4+0.8
−1.2

[6, 8] 3.4+0.6
−0.6 2.5+0.6

−0.6 3.1+0.6
−0.6

constant 2.8+0.2
−0.2 (χ2/dof = 1.26)

q2 (GeV2) C‖
9 C⊥

9 C0
9

[11, 12.5] 3.3+0.6
−0.6 3.1+0.4

−0.4 2.9+0.8
−0.9

[15, 17] 3.7+0.6
−0.7 3.7+0.5

−0.5 3.6+0.7
−0.7

[17, 19] 3.4+0.7
−1.0 4.0+0.8

−0.8 3.7+0.8
−0.8

constant 3.3+0.3
−0.2 (χ2/dof = 0.82)

The independent Cλ
9 (q2) values determined from data,

reported in Tables 5 and 6, exhibit no significant q2 and/or
λ dependence. This statement is evident if we look at Figs. 1
and 2, where the results for the low- and high-q2 regions are
shown separately for the two modes. However, it also holds in
the whole q2 spectrum and for all the hadronic amplitudes.
To better quantify this statement, in Table 7 we report the
results of fits performed assuming constant C9 values in the
low- and high-q2 regions, separating or combining the dif-
ferent decay amplitudes, or considering the same value over
the full spectrum for all the decay amplitudes.
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Fig. 2 Determinations of C9 in
different q2 bins from the
different polarizations of the
B → K ∗μ+μ− decay.
Notations as in Fig. 1

Table 7 Best-fit points assuming constant C9 values in the low- and high-q2 regions, separating or combining the different decay amplitudes, or
considering the same value over the full q2 spectrum for all the decay amplitudes (last column)

q2 region Amplitude C9 values

Low q2 B → K 2.4+0.4
−0.5 2.7+0.2

−0.2

B → K ∗(ε‖) 3.0+0.6
−0.6

B → K ∗(ε⊥) 2.7+0.7
−0.7 2.8+0.2

−0.2 (χ2/dof=1.28, p value=0.09)

B → K ∗(ε0) 2.7+0.7
−0.8 3.0+0.1

−0.1

High q2 B → K 2.6+0.4
−0.4 3.0+0.2

−0.2 (χ2/dof = 1.33, p value=0.01)

B → K ∗(ε‖) 3.2+0.5
−0.5

B → K ∗(ε⊥) 3.4+0.4
−0.4 3.3+0.3

−0.2 (χ2/dof=1.06, p value=0.37)

B → K ∗(ε0) 3.3+0.6
−0.6

A graphical illustration of the combined fit results is
shown in Fig. 3. As can be seen, the independent C9 values
determined in different kinematical regions and in different
hadronic amplitudes are all well consistent. A quantification
of the consistency is provided by the χ2 of the fit assuming a
universalC9, namely χ2/dof = 1.33. On the other hand, it is
evident that the universal C9 determined from data is not in
good agreement with the SM expectation. The two main con-
clusions we can derive from these results can be summarized
as follows:

• Data provide no evidence of sizable unaccounted-for
long-distance contributions. These would naturally lead
to a significant q2 and/or λ dependence in the experimen-
tally determined Cλ

9 (q2) values, that we do not observe
(at least given the present level of precision).

• The observed discrepancy in the experimentally deter-
minedC9 value, compared to the SM expectation, is con-
sistent with a short-distance effect of non-SM origin.

These findings are qualitatively similar to those obtained in
Ref. [10].

In Table 3 we also report the p value of the fits performed
under the hypothesis of a constant C9. The overall p value of
1%, when all data are combined, indicates that the global fit
is not particularly good. The main source of this low proba-
bility is the precise B → Kμ+μ− data at low-q2 (Table 1,
upper panel). Indeed, excluding these data, the p value raises
to 15%. The origin of this discrepancy is not clear at this stage
(could be a problem in the experimental data, in the B → K
form factors at low q2, or a sub-leading re-scattering effect
not well described). However, given the fitted value of C9
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Fig. 3 Independent
determinations of C9. The black
points illustrate the
determinations in the low- and
high-q2 regions for the different
decay amplitudes (see Table 7).
The grey band is the result of the
fit assuming a universal C9 over
the full spectrum. The red band
indicates the SM value

from B → K at low q2 is in good agreement with the other
seven determinations, the low p value of those data does not
modify the main conclusion of a largely q2– and λ– indepen-
dent shift in C9 compared to the SM expectation.

In principle, we cannot exclude a sizable long-distance
contribution with no q2 and λ dependence, which would
mimic a short-distance effect. However, this is a rather
unlikely possibility. To this purpose, it is worth noting that
the known long-distance contributions, described by the Y
functions, exhibit a strong q2 and λ dependence. In partic-
ular, an estimate of the λ dependence can be obtained by
comparing the different ηλ

V values (for a given resonance)
reported in Tables 1 and 2. They vary up to a factor of 3 in
the V = J/� case and up to a factor of 6 in the V = ψ(2S)

case.
To conclude, we stress that the uncertainties of the inde-

pendentC9 values reported in Fig. 3 are still rather large. This
partially weakens the two statements above, and is the reason
why we refrain from quantifying (in terms of σ ’s) the dis-
crepancy between data and the SM hypothesis. If the absence
of q2 and λ dependence survived with smaller uncertainties,
the implausibility of the hypothesis of unaccounted-for long-
distance contributions would emerge more clearly. This, in
turn, would enable a credible quantitative estimate of the
deviation from the SM hypothesis.

5 Conclusions

The difficulty of performing precise SM tests in B →
K (∗)�+�− decays lies in the difficulty of precisely esti-
mating non-perturbative long-distance contributions related
to charm re-scattering in these rare modes. In this paper
we have presented a general amplitude decomposition that
allows us to describe these effects in full generality, in both

B → K�+�− and B → K ∗�+�− decays, and over the full
q2 spectrum.

Using this general amplitude decomposition we have ana-
lyzed the available B → K (∗)μ+μ− data obtaining indepen-
dent determinations of the Wilson coefficient C9 from differ-
ent kinematical regions and from different hadronic ampli-
tudes. The results, summarized in Fig. 3, do not indicate a
significant dependence on q2 and/or the hadronic channel,
as naturally expected in the case of unaccounted-for long-
distance contributions. On the other hand, they exhibit a sys-
tematic shift compared to the SM value. These findings sup-
port the hypothesis of a non-standardb → sμ+μ− amplitude
of short-distance origin.

At present, given the sizable uncertainties of the inde-
pendent C9 values reported in Fig. 3, and the relatively low
p value of the global fit obtained assuming a universal C9,
is difficult to translate the above qualitative conclusion into
a quantitative statement about the inconsistency of the SM
hypothesis. However, the method we have presented has no
intrinsic theoretical limitations: with the help of more pre-
cise data and more precise determinations of the local form
factors from Lattice QCD, it could allow us to derive more
precise results. A crucial ingredient is also the determina-
tion of the resonance parameter directly from data, which is
presently available only in the B → K case. If, with the help
of more data, the absence of q2 and λ dependence survived
with smaller uncertainties, the implausibility of the hypoth-
esis of unaccounted-for long-distance contributions might
emerge more clearly. This, in turn, would enable a reliable
quantitative estimate of the deviation from the SM hypothe-
sis.
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Appendix A: Resonance parameters

A.1 B → K�+�−

Defining the ηK
V parameters as in Eq. (2.23), the branching

ratio for the resonance-mediated process B+ → K+V →
K+μ+μ− is

B (B+ → K+V → K+μ+μ−)

=
∣∣∣ηK

V

∣∣∣
2 G2

Fα2
em

∣∣VcbV ∗
cs

∣∣2

1024π5�B+
×

×
∫ (mB−mK )2

4m2
μ

∣∣∣k(q2)

∣∣∣
3 [

β(q2)

−1

3
β3(q2)

] (
16π2

)2 ∣∣∣Ares
V

(
q2
)∣∣∣

2
∣∣∣∣∣
q2

m2
V

∣∣∣∣∣

2

dq2, (A.1)

whereβ(q2) =
√

1 − 4m2
μ/q2 and

∣∣k(q2)
∣∣ = λ1/2(m2

B,m2
K ,

q2)/2mB . In the narrow-width approximation, which is an
excellent approximation for the J/ψ and ψ(2S) resonances,
we obtain the following expression for |ηK

V |:
∣∣∣ηK

V

∣∣∣ = [B (B+ → K+V → K+μ+μ−)]1/2×

×
[
G2

Fα2
em

∣∣VcbV ∗
cs

∣∣2 �VmV λ3/2
(
m2

B+ ,m2
K+ ,m2

V

)

6m3
B+�B+

]−1/2

.

(A.2)

We have used this expression, together with the B(B+ →
K+V → K+μ+μ−) reported in [39], to derive the ηK

V
reported in Table 1. The corresponding δKV have been deter-
mined by the LHCb collaboration [39] considering the inter-
ference between resonant and non-resonant amplitudes.

A.2 B → K ∗�+�−

The discussion of the K ∗ case is a bit more involved. We
start from a general decomposition of the B → K ∗V weak
matrix element that, following [40], reads

〈K ∗(pK ∗ , ε(λ))V (q, η(λV ))|Leff(b → s)|Bq(pB)〉
= ε∗

μ(λ)η∗
ν(λV )Mμν (A.3)

where

Mμν = agμν

+ b

mK ∗mV
qμ pν

K ∗ + i
c

mK ∗mV
εμναβ pK ∗αqβ .

(A.4)

The coefficients a, b and c encode all possible contractions
of the four-quark charm operators (Q1,2), which provide the
largely dominant contribution to the amplitude. It is conve-
nient to introduce three helicity amplitudes, which are related
to the coefficients a, b and c as

A0 = − xa − (x2 − 1)b ,

A‖ = + √
2 a ,

A⊥ = +
√

2(x2 − 1) c , (A.5)

where x = pK ∗ · pV /(mK ∗mV ).
We further parameterize the matrix element of the elec-

tromagnetic current relevant to the V → e+e− decay as

〈V (q, η(λV ))| jμem|0〉 = 2 fV (q2)ημ∗(λV ) . (A.6)

Here fV ≡ fV (m2
V ) is a dimensionless constant that can be

determined by B(V → �+�−) via the relation

B(V → �+�−) = 4αem f 2
V (m2

V )mV

3�V
. (A.7)

In the cases we are interested in, namely V = J/ψ and
ψ(2S), using the leptonic branching fractions for the char-
monium states in [41], we derive

f J/ψ = (1.36 ± 0.02) × 10−2,

fψ(2S) = (4.87 ± 0.07) × 10−3. (A.8)
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Combining Eqs. (A.4), (A.5) and (A.6) we obtain

M(B → K ∗V → K ∗�+�−)

=
∑

λV

M (
B → K ∗V

)M (
V → �+�−)

= 2e fV
q2 − m2

V + imV�V

⎡

⎣A‖√
2

(
−ε∗ρ(λ) + ε∗(λ) · q

m2
VmK ∗(x2 − 1)

(xmV pρ
K ∗ − mK ∗qρ)

)

+ A0

mK ∗m2
V (x2 − 1)

(
ε∗(λ) · q) (mV pρ

K ∗ − mK ∗xqρ
)

− iA⊥√
2
(
x2 − 1

)
mVmK ∗

εμαβρε∗
μ(λ)pK ∗αqβ

⎤

⎦ �γρ� (A.9)

By equating Eq. (A.9) to (2.6), taking into account the def-
inition of the Hλ

cc̄(q
2) functions in (2.18) and that of the

{ηλ
V , δλ

V } parameters in (2.23), we deduce

η0
V e

iδ0
V = − fV

8
√

2παGF|VtbV ∗
ts |mBmK ∗�V

A0 ,

η
‖
V e

iδ‖
V = − fV

2
√

παGF|VtbV ∗
ts |(mB + mK ∗)mV�V

A‖ ,

η⊥
V e

iδ⊥
V = − fV (mB + mK ∗)

2
√

παλGF|VtbV ∗
ts |mV�V

A⊥ . (A.10)

The negative signs in Eq. (A.10) take into account the nega-
tive sign of Re(Vts) in the standard CKM phase convention,
that we adopt through the paper.

The last step in order to derive numerical predictions for
the {ηλ

V , δλ
V } is to extract magnitudes and phases of the Aλ

taking into account experimental data on decay rates and
time-dependent distributions of B → K ∗V decays. Exper-
imentally, B → K ∗V decays are analyzed in terms of the
normalized helicity amplitudes Aλ(t),

d�(B → K ∗V )

dt
= N (|A0(t)|2 + |A‖(t)|2 + |A⊥(t)|2),

(A.11)

satisfying

|A0(0)|2 + |A‖(0)|2 + |A⊥(0)|2 = 1. (A.12)

The explicit time dependence of the Aλ(t) can be found in
[2]. By comparing the time integral of Eq. (A.11), with the
partial rate expressed in terms of the Aλ, namely

�(B → K ∗V ) = (|A0|2 + |A‖|2

+|A⊥|2)λ
1/2(m2

B,m2
V ,m2

K ∗)

16πm3
B

, (A.13)

we deduce

|Ai |2 = (2.46 × 10−13GeV2) × |Ai (0)|2 . (A.14)

in the B → K ∗ J/ψ case.
The complex amplitudes Ai (0) are parameterized as

Ai (0) = |Ai (0)|e−iδi and, by convention, data are analyzed
setting δ0 = 0. The experimental values thus determined in
the B → K ∗ J/ψ case are [2]

|A0(0)|2 = 0.227 ± 0.004 ± 0.011,

δ‖ = −2.94 ± 0.02 ± 0.03,

|A⊥(0)|2 = 0.201 ± 0.004 ± 0.008,

δ⊥ = 2.94 ± 0.02 ± 0.02,

(A.15)

with |A‖(0)| unambiguously fixed by Eq. (A.12). In the
absence of experimental data on B → K ∗ J/ψ(→ μ+μ−)

decays fixing the overall phase difference between resonant
and non-resonant amplitudes, we assume this interference
to be the same as in the B → K J/ψ case [39], where the
two amplitudes are almost orthogonal in the complex plane:
φrel ≈ −1.5. We thus shift all the δλ in Eq. (A.15), as well as
δ0, by φrel. Using these results in Eq. (A.10) leads to the ηλ

J/ψ

and δλ
J/ψ values reported in Table 2. This assumption about

the overall phase difference is certainly very naïve; however,
we have checked explicitly that varying this phase by ±30%
has a negligible numerical impact on the analysis.

Determining B → K ∗ψ(2S) amplitudes via SU (3)F rela-
tions

Since the B → K ∗ψ(2S) helicity amplitudes have not been
measured, we use SU(3)F relations to estimate them in terms
of the Bs → ψ(2S)φ ones, which are experimentally acces-
sible. In the Bs case, the t = 0 normalized helicity amplitudes
for the two narrow resonances reads [42]

|A⊥(Bs → J/ψφ)|2 = 0.2504 ± 0.0049 ± 0.0036

δ⊥ = 3.08+0.14
−0.15 ± 0.06

|A0(Bs → J/ψφ)|2 = 0.5241 ± 0.0034 ± 0.0067

δ‖ = 3.26+0.10
−0.17 ± 0.06

(A.16)

|A⊥(Bs → ψ(2S)φ)|2 = 0.264+0.024
−0.023 ± 0.002

δ⊥ = 3.29+0.43
−0.39 ± 0.04

|A0(Bs → ψ(2S)φ)|2 = 0.422 ± 0.014 ± 0.003,

δ‖ = 3.67+0.13
−0.18 ± 0.03

(A.17)

123



  547 Page 12 of 13 Eur. Phys. J. C           (2024) 84:547 

yielding the ratios
∣∣∣∣
A0 (Bs → ψ(2S)φ)

A0 (Bs → J/ψφ)

∣∣∣∣ = 0.897 ± 0.017,

∣∣∣∣
A⊥ (Bs → ψ(2S)φ)

A⊥ (Bs → J/ψφ)

∣∣∣∣ = 1.03 ± 0.33,

δ⊥ (Bs → ψ(2S)φ)

δ⊥ (Bs → J/ψφ)
= 1.08 ± 0.14,

∣∣∣∣
A‖ (Bs → ψ(2S)φ)

A‖ (Bs → J/ψφ)

∣∣∣∣ = 1.18 ± 0.32,

δ‖ (Bs → ψ(2S)φ)

δ‖ (Bs → J/ψφ)
= 1.13 ± 0.07. (A.18)

Assuming the same ratios hold in the B → K ∗V case, we
determine the corresponding B → K ∗ψ(2S) amplitudes
starting from the B → K ∗ψ ones in Eq. (A.15). The phases
are then corrected for an overall shift that we deduce from
the B → Kψ(2S) result. Also in this case we have checked
that varying this phase difference by ±30% has a negligible
impact on the analysis.
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