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The ATLAS tile calorimeter (TileCal) is the hadronic sampling calorimeter covering the
central region of the ATLAS detector at the Large Hadron Collider (LHC). This paper gives an
overview of the calorimeter’s operation and performance during the years 2015–2018 (Run 2).
In this period, ATLAS collected proton–proton collision data at a centre-of-mass energy of
13 TeV and the TileCal was 99.65% efficient for data-taking. The signal reconstruction, the
calibration procedures, and the detector operational status are presented. The performance of
two ATLAS trigger systems making use of TileCal information, the minimum-bias trigger
scintillators and the tile muon trigger, is discussed. Studies of radiation effects allow the
degradation of the output signals at the end of the LHC and HL-LHC operations to be estimated.
Finally, the TileCal response to isolated muons, hadrons and jets from proton–proton collisions
is presented. The energy and time calibration methods performed excellently, resulting in good
stability and uniformity of the calorimeter response during Run 2. The setting of the energy
scale was performed with an uncertainty of 2%. The results demonstrate that the performance
is in accordance with specifications defined in the Technical Design Report.
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1 Introduction

ATLAS [1] is a general-purpose detector at the Large Hadron Collider (LHC) [2] designed to reconstruct
events from colliding hadrons. It has a forward–backward symmetric cylindrical geometry and a near 4𝜋
coverage in solid angle. ATLAS consists of an inner tracking detector surrounded by a thin superconducting
solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon
spectrometer. The inner tracking detector covers the pseudorapidity range of |𝜂 | < 2.5.1 It consists of
silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-Argon (LAr)
sampling calorimeters provide electromagnetic (EM) energy measurements. A steel/scintillator-tile
hadronic calorimeter covers the central pseudorapidity range of |𝜂 | < 1.7. The endcap and forward regions
are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to |𝜂 | = 4.9.
The muon spectrometer (MS) surrounds the calorimeters in the pseudorapidity range of |𝜂 | < 2.7 and is
based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of
the toroids ranges between 2 and 6 Tm across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering.

The tile calorimeter (TileCal) is the hadronic barrel calorimeter sub-detector of ATLAS and provides
essential input to the identification of hadronic jets and measurement of their energy and direction. It also
provides information for triggers, participates in the measurement of the missing transverse momentum
carried by non-interacting or not detected particles, and assists in the identification of muons. The TileCal
design provides a standalone energy resolution for isolated pions of 𝜎/𝐸 = 56.4%/

√︁
𝐸 (GeV) ⊕ 5.5% [1]

and a linear response with a nonlinearity tolerance of 2% for jets up to 4 TeV to be sensitive to the full
range of energies expected in the LHC lifetime. A detailed description of the ATLAS TileCal can be found
in the dedicated Technical Design Report [3]; the construction, optical instrumentation and installation into
the ATLAS detector are described in Refs. [4, 5]; the operation and performance of the TileCal during
Run 1 at the LHC are reported in Ref. [6].

This paper presents the operation and performance of the TileCal during the LHC Run 2 data-taking
period (2015–2018).2 The full ATLAS detector recorded events from cosmic-ray muons in the period
February–July 2015. The first proton–proton (𝑝𝑝) collisions at a centre of mass energy

√
s = 13 TeV were

recorded in April 2015 with a bunch spacing of 50 ns [7]. Later in 2015 and the following years, the LHC
𝑝𝑝 collisions continued to be at

√
s = 13 TeV, but the instantaneous luminosity and the number of proton

collisions per bunch crossing increased and the bunch spacing decreased to 25 ns. The total integrated
recorded (delivered) luminosity was 145.5 fb−1 (157.4 fb−1) [7, 8]. Only events recorded during stable
beam conditions and with all ATLAS sub-detectors fully operational are considered in the analysis. The
corresponding integrated luminosity is 140.1 fb−1 [8]. A summary of the LHC beam conditions in Run 2
is shown in Table 1. Additional special runs with low integrated luminosity and a low average number of
interactions per bunch crossing, ⟨𝜇⟩, used for commissioning purposes, were taken with a bunch spacing of
25 ns in 2017 and 2018. During these years ATLAS also recorded data with lower-energy proton collisions

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis
points upwards. Cylindrical coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis.
The pseudorapidity is defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). Angular distance is measured in units of
Δ𝑅 ≡

√︁
(Δ𝜂)2 + (Δ𝜙)2.

2 In ATLAS, data collected over periods of time spanning an LHC fill or generally stable conditions are grouped into a ‘run’, while
the entire running period under similar conditions for several years is referred to as a ‘Run’. Run 1 refers to runs collected in the
period 2008–2012. Data taken within a run are broken down into elementary units called luminosity blocks, corresponding to
about one minute of collision data for which the detector conditions or software calibrations remain approximately constant.
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(
√

s = 5 TeV), and data produced by lead–lead or xenon–xenon ion collisions. These runs had very low
integrated luminosity.

Table 1: Summary of the proton–proton collision data collected in the four years of Run 2 and used to obtain
the results presented in this paper. The ATLAS analysis integrated luminosity corresponds to the total integrated
luminosity approved for analysis, passing all data quality requirements ensuring the detector and reconstruction
software are properly functioning [7, 8].

2015 2016 2017 2018

Maximum beam energy [TeV] 6.5 6.5 6.5 6.5
Delivered integrated luminosity [fb−1] 4.0 39.0 50.6 63.8
Recorded integrated luminosity [fb−1] 3.6 35.5 46.4 60.0
ATLAS analysis integrated luminosity [fb−1] 3.2 33.4 44.6 58.8
Mean number of interactions per bunch crossing 13 25 38 36
Maximum instantaneous luminosity [1033cm−2s−1] 5 13 16 19

The recorded events are separated into different streams according to the trigger category for which the
event is selected. Physics streams are composed of triggers that are used to identify electrons, photons,
muons, jets, hadronically decaying 𝜏-leptons, and missing transverse momentum in collision data. There
are also calibration streams used by the various sub-detectors for calibration and monitoring purposes.

This paper is organised as follows. Section 2 describes the experimental set-up. The reconstruction and the
calibration of physics events are the subjects of Section 3. The calibration streams used by the TileCal
for calibration purposes were taken in dedicated runs when the beams were off. As discussed in the
paper, they include caesium, laser and charge injection system (CIS) events. Laser events taken during
empty bunches in the LHC abort gap [2] are used for timing calibration. Physics events are also used
for calibration purposes. To minimise systematic uncertainties, as discussed at the end of the section,
the procedure used to reconstruct the experimental energy deposited in the cells is used in the case of
simulated events. The TileCal data subsets used in the hardware-based Level-1 (L1) ATLAS trigger system
are discussed in Section 4. The deterioration of the detector performance due to the radiation exposure is
reported in Section 5. These studies allow the amplitude reduction of the output signals at the end of the
LHC and HL-LHC operations to be estimated. The online and offline data quality (DQ) checks applied
to the hardware and data acquisition systems are explained in Section 6. The validation of the full chain
of TileCal calibration and reconstruction using physics events is described in Section 7. The results are
obtained by analysing the physics stream containing muons, zero-bias events [9] and jets. The performance
of ATLAS trigger systems based on TileCal information is also discussed. All results presented in this
document are summarised in Section 8.

The data used in the studies were collected by the tile calorimeter sub-detector using the full ATLAS data
acquisition chain. An extensive software suite [10] is used for real and simulated data reconstruction and
analysis, for operation, and in the trigger and data acquisition systems of the experiment. In addition to the
TileCal, the information of other ATLAS sub-detectors is used to assist in particle identification, and track,
momentum and energy reconstruction.
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Figure 1: (a) Cut-away view of the ATLAS calorimeter system. The TileCal consists of a barrel and two extended
barrel sections. The sections of the ATLAS liquid-argon (LAr) calorimeters are also indicated. (b) An illustration
of the mechanical assembly and optical readout of a single tile calorimeter module. A total of 256 such modules
comprise the full tile calorimeter. Source tubes are used to circulate a 137Cs radioactive source contained in a capsule
for calibration purposes.

2 Experimental setup

2.1 Tile calorimeter

The tile calorimeter is a sampling calorimeter consisting of tiles of plastic scintillator as active material and
low-carbon steel absorber plates. The technical details of the scintillator tiles are described in Ref. [5]. As
shown in Figure 1(a), the TileCal surrounds the LAr calorimeter and fills the volume from an inner radius
of 2.28 m to an outer radius of 4.23 m. The amount of material in front of the TileCal at 𝜂 = 0 corresponds
to 2.3𝜆 3 [1]. The sub-detector thickness at the outer edge of the tile instrumented region is 9.7𝜆 at 𝜂 = 0.
Including 1.3𝜆 from the outer support, the total detector thickness is 11𝜆 at 𝜂 = 0, sufficient to reduce
punch-through well below the irreducible level of prompt decay muons. The calorimeter is mechanically
divided into three segments along the 𝑧-axis (the beam axis): one central long barrel (LB) section that is
5.8 m in length (|𝜂 | < 1.0), and two extended barrel (EB) sections on either side of the LB that are each
2.6 m long (0.8 < |𝜂 | < 1.7).

Each TileCal barrel consists of 64 modules in the angular direction 𝜙 allowing full azimuth coverage.
Figure 1(b) shows a schematic of a TileCal module. In each module, the steel and scintillator tiles have a
thickness of 14 mm and 3 mm respectively. The steel and scintillator tiles are interleaved periodically in
the longitudinal direction 𝑧. The scintillator tiles are organised along the radius in 11 rows of different
sizes, numbered from 1 to 11 starting from the smallest radius. Each row corresponds to a group of
tiles at the same distance from the beam axis. Light from the scintillator tiles is collected at their edges
by wavelength-shifting (WLS) fibres, arranged in pre-shaped opaque plastic ‘profiles’ attached to both
sides of the modules and running radially, as shown in Figure 1(b). The WLS fibres transport the light to

3 The nuclear interaction length 𝜆 is defined as the mean path length required to reduce the flux of relativistic primary protons
and neutrons to a fraction 1/e.
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Figure 2: The layout of the TileCal cells with 𝜂 ≥ 0, denoted by one or two letters (A to E) plus an integer number.
The layer A is closest to the beamline.The naming convention is repeated for cells with negative 𝜂. The long barrel
(extended barrel) cells are shown at the left (right).

photomultiplier tubes (PMTs). The readout cell geometry is defined by grouping the fibres from individual
tiles on the given PMTs [5]. The cell layout of the LB and EB modules is shown in Figure 2 for 𝑧 > 0.
A mirroring of those in the other direction in 𝑧 defines the three sections of the calorimeter. Three
longitudinal layers are obtained. In the long barrels, layers A, BC and D cells are made of three, six and
two rows corresponding to depths of 1.5, 4.1, and 1.8𝜆 respectively. In the extended barrels, layers A, B
and D cells have three, four and four rows corresponding to depths of 1.5, 2.6, and 3.3𝜆 respectively. The
layers allow the jet energy depositions to be measured at different depths. The cells have a granularity
of Δ𝜂 × Δ𝜙 = 0.1 × 0.1 in the two innermost layers and Δ𝜂 × Δ𝜙 = 0.2 × 0.1 in the outermost one. As
shown in the figure, the scheme produces pseudo-projective towers. The total energy in a tower is used for
triggering purposes as discussed in Section 2.2.

To correct for energy losses in the gap region between the TileCal and the LAr sections, where many cables
and electronics racks from other ATLAS sub-detectors are located, a special Intermediate tile calorimeter
(ITC) system is installed. As shown in Figure 2, the ITC cells (D4, C10 and E1–E4) are located between
the LB and EB, and provide coverage in the range of 0.8 < |𝜂 | < 1.6. Some of the C10 and D4 cells have
reduced thickness or special geometry to accommodate services and readout electronics for other ATLAS
sub-detectors [3, 11]. The gap (E1–E2) and crack (E3–E4) cells are composed of only scintillator media
and are read out by one PMT each. The minimum-bias trigger scintillators (MBTS) [12], used to trigger
events from colliding particles, are also read out by TileCal EB electronics and provide coverage in the
range of 2.08 < |𝜂 | < 3.86 (see Section 4.3). Most TileCal cells are read out by two PMTs, accounting for
a total of 9852 readout channels for the 5182 cells.

2.2 Readout electronics

The PMTs and front-end electronics are placed in aluminium units housed in a steel girder on the outer radius
of each module. The units can be completely extracted and are therefore called electronics drawers. Two
contiguous connected drawers form a super-drawer. In each module of the LB there are two super-drawers
hosting the electronics of the cells with 𝜂 > 0 (A-side) and 𝜂 < 0 (C-side) respectively. The electronics of
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the cells of each of the modules of the EBs are located in a super-drawer. In this way, from an electronic
point of view, one identifies four barrels, the LBA and EBA with 𝜂 > 0 and the LBC and EBC with 𝜂 < 0.
There are 45 and 32 channels per super-drawer in the LB and EB, respectively.

Each channel consists of a unit called a PMT block, which contains the light-mixer, PMT tube and
High-Voltage (HV) divider, and a ‘3-in-1 card’ [13, 14]. The card receives the PMT signal and provides
three output signals as follows:

• A shaper with a shaping time of 50 ns shapes the fast PMT signal to the requirements of the 10-bit,
40M sample per second ADCs used to digitise the signal at the LHC bunch crossing rate [15]. The
amplitude of the shaped signal is proportional to the PMT signal. Two linear outputs are produced
with a relative gain of 64 and hence an overall 16-bit dynamic range using two 10-bit ADCs. Seven
samples centred around the pulse peak and synchronised with the LHC master clock are extracted
from the circular pipeline buffer. The data are temporarily stored in another pipeline memory until a
Level-1 trigger [9] signal is received. A gain switch is used to determine which gain information
is sent to the back-end electronics for event processing. By default the high-gain (HG) signal is
used unless any of the seven samples saturates the ADC, at which point the low-gain (LG) signal is
transmitted. The signals from the digital readout are used to measure physics and laser calibration
data (Section 2.3)

• An integrator that receives less than 1% of the PMT current digitized by a 12-bit ADC card saturating
at 5 V [16]. The integrator is a low-pass DC amplifier with six switchable gain settings and a
calibration input. With one of the available gains, the currents range between 0.01 nA and 1.4 𝜇A
over a time window of 10–20 ms. The integrator readout is used for calibration and monitoring
purposes (Section 2.3) measuring the caesium and physics runs signals. In the case of physics runs
the signals are produced essentially by inelastic proton-proton collisions at low momentum transfer,
known as minimum-bias (MB) events. Besides response monitoring, the measurements of MB
events also allow to determine the instantaneous luminosity of the colliding beams, not discussed in
this article.

• A differential signal from the LG output of the shaper is sent to the adder boards located in the
drawer to determine the total energy in a calorimeter tower used in the ATLAS trigger (Section 4.1).
The signals of the D5 and D6 cells are used as input to the tile muon trigger system (Section 4.2).
The channels reading the MBTS counters provide the analogue HG outputs to the corresponding
trigger (Section 4.3).

In addition to the PMT signals, the 3-in-1 card also contains an input path for the calibration charge
injection system described in Section 2.3.1.

In the case of the digital readout, the DMU (data management unit) chips located on the digitiser boards
are responsible for organising the digitized samples in packets of data. There are eight digitiser boards in
each super-drawer, and each one has two DMU devices, so there are 16 DMU devices per super-drawer.
The interface board collects data from all the digitisers, serialises and transmits them to the back-end
electronics. The integrity of the data received by the back-end is checked using a CRC (cyclic redundancy
check) algorithm. The back-end electronics are located in the counting room approximately 100 m away
from the ATLAS detector. The data acquisition system of the TileCal is split into four logical partitions
associated with the super-drawers of the modules in LBA, LBC, EBA, and EBC. Optical fibres transmit
signals between each super-drawer and the back-end trigger, timing and control (TTC), and readout driver
(ROD [17]) crates. There are a total of four TTC and ROD crates, one for each logical partition. The
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Figure 3: The signal paths for each of the three calibration systems used by the TileCal. The signal produced by
particles from collisions is denoted by the thick solid line, and the path taken by each of the calibration systems is
shown with dashed lines.

ATLAS TTC system distributes the LHC clock, trigger decisions, and configuration commands to the
front-end electronics. If the TTC system sends the trigger acceptance command to the front-end electronics,
the corresponding digital samples for all channels of the calorimeter are sent to the ROD where the signal
is reconstructed.

The integrator output voltage of each PMT of a module, proportional to the input charge, is read out
sequentially using a single ADC. The switching between the corresponding 3-in-1 cards takes place about
every 0.1 s. This switching mechanism is known to induce noise for a couple of bunch crossings, thus it is
done in the LHC abort gap [2]. The ‘SHAFT board’ [18, 19] that is responsible for handling the different
Tile calibration signals during data-taking, sends the pulse to trigger the sending of the switching command
via TTC to be distributed over the full detector. The digitized signals are sent to an off-detector readout
buffer through CAN bus.

The front-end electronics of a single super-drawer are supplied by a low-voltage power supply (LVPS)
source, which is positioned in an external steel box mounted just outside the super-drawer. The HV is
set and distributed to each PMT using dedicated boards positioned inside the super-drawers next to the
front-end electronics.

2.3 Calibration systems

The ATLAS physics performance goals for hadronic jets measurements require a tolerance of 2% on the
non-linearity of the detector response for jets up to 4 TeV. To achieve this in the ATLAS environment and
over an extended period of time requires calibration of the calorimeter response with the same precision.
Four systems, the electronic charge injection system, the integrator readout, the caesium radioactive
𝛾-source system [20] and the laser system [21] are used, as depicted in Figure 3. They probe the three
steps in the signal reconstruction of TileCal and MBTS cells (see Section 4.3): production and collection
of light in scintillator tiles and fibres, conversion of light to electrical signal in PMTs, and calibration of
electrical signals in the electronic readout. The aim is to maintain a uniform and stable response of the
measurements of the energy deposited in all cells accounting for changes in the optics and electronics. The
calibration systems allow the scale of the cell energy measurement to be set, as described in Section 3, and
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the determinations obtained using experimental and simulated data to be compared. The caesium source,
MB currents and the laser system allow to determine the degradation of the TileCal and MBTS signals due
to their exposure to a high radiation level produced during the LHC operations. The latter is discussed in
Section 5. Moreover, the three complementary calibration systems also aid in identifying the source of
problematic channels (see Section 6.2). Problems originating strictly in the readout electronics are seen by
both the laser and CIS, while problems related solely to the PMTs are detected exclusively by the laser
system.

2.3.1 Charge Injection system

The charge injection system calibrates the front-end electronics. The calibration is performed by injecting
a full dynamic range of input charge signals, similar to what the detector experiences in physics runs, to the
readout electronics of all channels through the respective 3-in-1 cards. The magnitude of each injected
charge is controlled by a 10-bit digital to analogue converter (DAC) with a conversion factor of 0.801 pC
per DAC setting count. The DAC setting is increased from 0 to 15 with a step size of 1 for the HG readout,
and varied from 32 to 992 with a step size of 32 for the LG. The two readouts provide a comprehensive test
of the electronics response over the full range of energies expected during regular running of the LHC. As
discussed in Section 2.3.2, a part of this system is also used to calibrate the gain conversion constant of the
integrator readout (see Figure 3).

2.3.2 Integrator readout of minimum-bias collisions

The integrator readout measurements of the PMT current induced by MB 𝑝𝑝 interactions are used to
monitor the variations of the sub-detector response over time. The current, proportional to the LHC
luminosity, varies with the position of the cell. To avoid saturation and maintain an adequate resolution,
the integrator gain can be selected by choosing one of the six predefined resistors that also define the
integration time. The PMT current is obtained from the ADC voltage measurement as

𝐼 [nA] = ADC [mV] − ped [mV]
Int. gain [MΩ] (1)

where ped is the pedestal, measured with circulating beams before collisions to account for beam background
sources such as beam halo and beam-gas interactions, and Int. gain is the integrator gain constant determined
by an internal calibration circuit with a high precision DAC on the 3-in-1 card.

Dedicated runs are periodically taken to calculate the values for each of the six gain settings by fitting
the linear relationship between the injected current and measured voltage response. For an instantaneous
luminosity between 1 × 1030 and 3 × 1034 cm−2s−1, the non–linearity of the integrator response is < 1%.
The deviation from stability of the integrator gains is better than 0.05% for individual channels and better
than 0.01% on average.
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2.3.3 Caesium system

The caesium system employs three 137Cs radioactive 𝛾-sources, one for the LB, one for the EBA and one
for the EBC modules [20]. A hydraulic system moves the source through the calorimeter using a network
of stainless steel tubes parallel to the beam line running through small holes in each tile scintillator (see
Figure 1(b)). It produces 0.662 MeV photons that generate scintillation light in each tile. The average
activity of the three sources was approximately 323 MBq in March 2015 and dropped to approximately
296 MBq in December 2018 (about −2.3% per year). To collect a sufficient signal, the electrical readout of
the caesium calibration is performed using the integrator readout path (see Figure 3). The readout employs
a resistor of 28.81 MΩ with corresponding integration time of 13.9 ms. The caesium system allows the
cells’ response to be equalised and the combined variations of the optical components and the PMTs to be
monitored.

2.3.4 Laser system

The laser calibration system consists of a single laser source, located off detector, able to produce controlled
short light pulses that are simultaneously distributed by optical fibres to the photocathode of all 9852 PMTs.
During the LHC long shutdown before the start of Run 2, a new laser system [21, 22] was developed to
correct shortcomings in electronics and light monitoring of the first system used during Run 1, which in
turn resulted in an improved long term reliability. The new system has been used since the beginning of
Run 2. The intrinsic stability of the laser light was found to be within 3%, so to measure the PMT gain
variations to a better precision using the laser source, the response of the PMTs is normalised to the signal
measured by a dedicated photodiode. Its stability is monitored by an 𝛼-source and, in 2015, the variation
over one month was shown to be 0.5%, and the linearity of the associated electronics response was within
0.2%. As shown in Figure 3, the laser system monitors the PMTs and electronic components of the digital
readout. Since the optical fibres have the same length, the system is also used to equalise the timing of the
digitizers (see Section 3.1.1).

3 Reconstruction and calibration of signals in physics events

To reconstruct physics events, the energy deposited in a cell is obtained by summing the energy measurements
from the connected PMT channels, with each channel energy 𝐸 given by

𝐸 [GeV] = 𝐴 [ADC]
𝐶ADC→pC × 𝐶pC→GeV × 𝐶Cs × 𝐶MB × 𝐶Las

. (2)

The signal amplitude 𝐴 is determined by using the seven signal samples of the digital readout (Section 2.2)
as discussed in Section 3.1. The calibration constant 𝐶ADC→pC converting the signal from ADC channel
units to pC units is estimated using the CIS system as reported in Section 3.2. The factor 𝐶pC→GeV was
determined by measuring the response of the sub-detector to electrons with test beams (TBs) (Section 3.3).
It allows the signals to be expressed in GeV and the experimental energy determinations to be compared
with the ones obtained using simulated events. The factors 𝐶Cs, 𝐶MB and 𝐶Las, discussed in Section 3.4,
Section 3.5 and Section 3.6 respectively, are used to monitor the stability of the responses and provide
corrections for each channel during the ATLAS operations. The procedure is described in Section 3.7. In
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the case of simulated events, the cell energy deposited is also obtained using Eq. (2) with the 𝐶Cs, 𝐶MB and
𝐶Las constants being equal to 1. The procedure is discussed in Section 3.8.

3.1 Signal amplitude

The optimal filtering (OF) algorithm is used to reconstruct the amplitude 𝐴 in units of ADC counts, the
time offset 𝜏 relative to the 40 MHz clock and the pedestal, 𝑝, of the pulse of the shaped PMT signal [23,
24]. The method linearly combines the seven signal samples 𝑆𝑖, 𝑖 = 1, ..., 7 of the digital readout, which
are read with 25 ns spacing:

𝐴 =

𝑛=7∑︁
𝑖=1

𝑎𝑖𝑆𝑖 , 𝐴𝜏 =

𝑛=7∑︁
𝑖=1

𝑏𝑖𝑆𝑖 , 𝑝 =

𝑛=7∑︁
𝑖=1

𝑐𝑖𝑆𝑖 . (3)

The coefficients 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are optimised using TB data to minimise the bias on the reconstructed
quantities introduced by the electronic noise (see Section 7.4.1) [24]. The normalised pulse shape function,
taken as the average pulse shape from test beam data, is used to determine the coefficients. As shown in
Figure 4, separate functions are defined for HG and LG modes. The pulse shape and coefficients are stored
in a dedicated database. The values of 𝐴, 𝜏 and 𝑝 are obtained by solving the set of equations in Eq. (3).
The signal reconstruction is performed twice: i) in real time by the RODs (referred to as online) for use in
the trigger, and ii) after the data have been recorded (referred to as offline) for use in the data analysis.

The expected time of the pulse peak is calibrated such that, for particles originating from collisions at the
interaction point, the pulse should peak at the central (fourth) sample, synchronous with the LHC clock.
The reconstructed value of 𝜏 represents the time offset in nanoseconds between the expected pulse peak
and the time of the actual reconstructed signal peak, arising from fluctuations in particle travel time and
uncertainties in the electronics readout (see Section 3.1.1).
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There are two versions of the optimal filtering algorithm, iterative and non-iterative. The coefficients 𝑎𝑖,
𝑏𝑖 and 𝑐𝑖 are functions of the pulse’s true time offset relative to the 40 MHz clock. This time offset is
known only approximately a priori before the reconstruction. The iterative OF method takes the time of
the maximum sample as an initial value of the time offset. In the subsequent iterations, the input time
offset is taken to be equal to 𝜏 calculated in the previous iteration. The algorithm converges to the actual
time offset value with an accuracy better than 0.5 ns in the absence of pile-up pulses (see Section 7.4.2).
Typically, three iterations are needed to converge. This method is used when reconstructing events occurring
asynchronously with the LHC clock, such as cosmic-ray muons. With an increasing number of events per
bunch crossing, the non-iterative method, which is more robust against pile-up, is used. The out-of-time
pile-up, see Section 7.3.2, can lead to a reconstructed time offset value far from the expected one, biasing
the energy measurement when the iterative method is used. The non-iterative OF method performs only
a single iteration of the optimal filtering method and uses as input the time offset determined for each
TileCal channel from prior timing calibration runs. This is the time offset expected for in-time pulses from
the collisions of interest. By forcing the time offset to its predetermined expected value, the non-iterative
optimal filtering method better reconstructs the energy of the in-time pulse from a collision of interest in
the presence of out-of-time pile-up. This method is also more robust against electronic noise for very low
amplitude signals.

In real time, or online, the digital signal processor (DSP) in the ROD performs the signal reconstruction using
the OF technique and provides the channel energy and time to the High-Level Trigger [9]. The conversion
between signal amplitude in ADC counts and energy units of GeV is done by applying channel-dependent
calibration constants that are described in the following sections. The DSP reconstruction is limited by the
use of fixed point arithmetic, which has a precision of 0.0625 ADC counts (approximately 0.75 MeV in
HG), and imposes precision limitations for the channel-dependent calibration constants. The offline signal
is reconstructed using the same iterative or non-iterative OF technique as online but using floating point
arithmetic.

To avoid saturation of the output ROD bandwidth in high instantaneous luminosity conditions, all LG
channels and only HG channels for which the difference between the maximum and minimum 𝑆𝑖 is larger
than five ADC counts (approximately 60 MeV) have the raw data transmitted from the ROD for offline
signal reconstruction. Otherwise, the ROD signal reconstruction results are used for the offline data
processing.

3.1.1 Channel timing calibration

To allow for optimal energy reconstruction by the non-iterative OF method and to enable precise time-of-
flight measurement in certain physics analyses, the time difference between the digitising sampling clock
and the peak of the PMT pulses must be minimised and measured with a precision of 1 ns. To achieve
this, the clock phases in the DMUs in the front-end hardware (see Section 2.2) are adjusted in multiples of
104 ps. The hardware time offset can be set for groups of six channels.

The initial time calibration for Run 2 was performed using the relative timing differences per channel
relative to the end of Run 1 measured by the laser system (see Section 2.3.4). The calibration was later
refined using beam-splash events from a single LHC beam utilising the same method as before the start of
Run 1 [11]. Finally, the time calibration is established with the 𝑝𝑝 collision data. To avoid possible bias from
non-collision beam backgrounds, only channels belonging to reconstructed jets satisfying standard quality
criteria [25, 26] are considered in each event. Given that the timing is slightly dependent on the energy
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Figure 5: (a) The reconstructed time of laser events as a function of the luminosity block. Data from six channels
belonging to the same digitizer are superimposed. The timing jump lasted the entire duration of the run and all events
are centered around +15 ns. The dashed line indicates the expected mean time value. (b) The 2D histogram shows
the average channel time in physics events on a colour scale as a function of module number (𝑥-axis) and channel
number (𝑦-axis).

deposited in a cell, in the case of HG signals, the offset is determined in the range 2 GeV < 𝐸 < 4 GeV. In
the case of LG signals the behaviour is smoother and a broader energy range of 15 GeV < 𝐸 < 50 GeV
is chosen. The distributions show that more than 99.5% of the reconstructed 𝜏 values are found to be
between −10 ns and +10 ns. A non-zero value of the phase 𝜏 causes the reconstructed amplitude to be
underestimated. A correction (parabolic correction) based on the phase is applied when the phase is
reconstructed within half the LHC bunch spacing (12.5 ns) and the channel amplitude is larger than 15
ADC counts, to reduce contributions from noise [6]. After applying the correction, the reconstructed
amplitudes are found to underestimate the actual signal by less than 1% in magnitude within time phases of
±10 ns. Pile-up is included in simulated events, such that the signal amplitude reconstruction proceeds in
the same way for simulated and real events (see Section 3.8).

3.1.2 Channel timing monitoring

As discussed, the time settings in each channel are adjusted so that the channel signal pulse produced by
a collision particle peaks at the central sample of the digital readout. Two complementary procedures
are developed to monitor the time calibration. The first one exploits the laser calibration events recorded
during the empty bunch crossings of physics runs with a frequency of about 3 Hz. This tool provides
the reconstructed time as a function of the luminosity block in each channel. The second tool directly
uses physics events. Only HG signals are monitored. Both tools were systematically used in all runs and
revealed three main types of problems: the so-called timing jumps, bunch-crossing offsets, and bad or
unstable channels.

In a timing jump, the reconstructed time suddenly changes for a group of six channels belonging to the
same digitiser board. An example of such a case, identified by both monitoring tools, is shown in Figure 5.
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Figure 6: (a) The reconstructed time of laser events as a function of the luminosity block. Data from three channels
belonging to the same DMU are superimposed. The majority of events, centred around zero, are well timed in. The
events affected by the the bunch-crossing offset are centred at +25 ns. (b) The reconstructed time in physics events in
the same three channels with (corrected) and without (original) applying the algorithm mitigating the bunch-crossing
offset events. The algorithm significantly reduces events centred around +25 ns.

Timing jumps are corrected by adjusting the corresponding time constants in the affected period. The
observed frequency of timing jumps was much lower than in Run 1 [6] due to the improved stability of the
LVPS, and they have no direct impact on the overall timing performance.

The bunch-crossing offsets correspond to the cases where channels have reconstructed times occasionally
deviating by one or two bunch crossings, i.e. ±25 or ±50 ns. This feature affects three channels connected
to the same DMU [15] described in Section 2.2. The magnitude of the observed offsets and affected
events are fully correlated across the three channels. The problem is intermittent and affected events occur
typically at a percent-level rate. The bunch-crossing offsets are identified with laser and physics events.
An example is shown in Figure 6(a). In order to mitigate this problem, the affected channels are flagged
in the conditions database (Section 6.4) and a dedicated software algorithm was developed to identify
individual problematic events in the affected channels and exclude them from further data processing.
Figure 6(b) compares the reconstructed time in physics events with and without this algorithm applied. A
significant fraction of affected events close to +25 ns is removed. This algorithm was used during the data
reprocessing campaign.

Some channels have a distorted pulse shape resulting in a wrong reconstructed time or they exhibit
instabilities in the reconstruction. This is typically caused by a malfunctioning or damaged hardware
component in a given channel. A special flag is assigned to such channels to prevent the incorrect time
from further propagation in the object reconstruction and subsequent data analysis. In total, 35 channels
were flagged as having bad or unstable timing at the end of Run 2.

14



 
2015
Oct

 
2016
Jan

 
2016

Apr
 

2016
Jul

 
2016
Oct

 
2016
Dec

 
2017

Apr
 

2017
Jul

 
2017
Oct

 
2017
Dec

 
2018

Apr
 

2018
Jul

 
2018
Oct

C
IS

 C
a
lib

ra
ti
o
n
 [
A

D
C

 c
o
u
n
t/
p
C

]

79

79.5

80

80.5

81

81.5

82

82.5

83

83.5

0.7%↵Absolute Systematic Uncertainty 

9710 channel average (RMS = 0.04%)

Typical Channel (Long Barrel, CSide) (RMS = 0.03%)

ATLAS

Tile Calorimeter

HG ADCs

Aug 2015Nov 2018

(a)

 
2015
Oct

 
2016
Jan

 
2016

Apr
 

2016
Jul

 
2016
Oct

 
2016
Dec

 
2017

Apr
 

2017
Jul

 
2017
Oct

 
2017
Dec

 
2018

Apr
 

2018
Jul

 
2018
Oct

C
IS

 C
a
lib

ra
ti
o
n
 [
A

D
C

 c
o
u
n
t/
p
C

]

1.26

1.27

1.28

1.29

1.3

1.31

1.32

1.33

0.7%↵Absolute Systematic Uncertainty 

9771 Channel Average (RMS = 0.03%)

Typical Channel (Long Barrel, CSide) (RMS = 0.02%)

ATLAS

Tile Calorimeter

LG ADCs

Aug 2015Nov 2018

(b)

Figure 7: The charge injection system constants (𝐶ADC→pC) for the (a) high-gain and (b) low-gain ADCs, as a function
of time, observed during the entire Run 2 (between CIS calibration runs taken on August 2015 and November
2018). Values for the average over all channels and for one typical channel are shown. The RMS values indicate
the fluctuations present in calibrations. In addition, there is a 0.7% systematic uncertainty present in individual
calibrations, represented by the shaded error band. This uncertainty comes from the observed peak output amplitudes
and is taken as characteristic of the channel-to-channel variation from this source, prior to any calibration. Only good
channels not suffering from damaged components relevant to the charge injection calibration are included.

3.2 The conversion factor from ADC counts to pC

The CIS system described in Section 2.3.1 is used to determine the factor 𝐶ADC→pC. Runs are typically
taken daily for both gains in the absence of colliding beams. The procedure of injecting charges, sampling
the analogue pulse, and measuring the fitted amplitude is repeated as the DAC value is increased. The
relation between the reconstructed amplitude (in ADC counts) discussed in Section 3.1 and injected charge
(in pC) is obtained by performing a single parameter linear fit for specific ranges of charge (3–10 pC for HG
ADCs, 300–700 pC for LG ADCs).4 The slope of the linear fit yields the calibration constant 𝐶ADC→pC for
the ADC of each channel in units of ADC/pC. For channels where the calibration constant varies by more
than 1.0%, the constant is updated for the energy reconstruction.

Figure 7 shows the stability of the charge injection constants, as a function of time, observed during
the entire Run 2 for the HG and LG ADC channels. There is a 0.7% systematic uncertainty present
in individual calibrations, represented by the shaded error band. This uncertainty is determined as the
characteristic channel-to-channel variation. It can be seen that the detector-wide mean CIS constant over all
non-problematic channels falls within the systematic error band of the typical channel plotted, throughout
Run 2. Figure 8 shows the change in the average CIS constant in per cent for every channel in the detector
between August 2015 (at the beginning of Run 2) and October 2018 (at the end of Run 2). In all figures
shown, channels that are unresponsive or have CIS constants that fluctuate run-to-run are not included. For
the duration of Run 2 the CIS constants of only 32 channels in the detector changed by more than ±4%.

4 The lower limit of each fit range is chosen to ensure the precision of each injection to be at least 0.04%, which ensures a
measured error value of less than 0.5%. The upper limit on the HG fit range eliminates injections that saturate the ADC, as the
amplitude of charge values >10 pC are all read out at 1023 ADC.
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Figure 8: Variations in the detector-wide CIS constants (in per cent) between August 2015 and October 2018. The
RMS variation is approximately 0.35%. Only good channels not suffering from damaged components relevant to the
charge injection calibration are included. The first and last bins contain overflow and underflow, respectively.

3.3 Signal measurement in GeV

The electromagnetic (EM) scale calibration constant 𝐶pC→GeV, converting the cell signals measured as an
electric charge in pC to GeV, is obtained from the measured amplitude 𝐴 [ADC] of the signal produced by
electrons at dedicated test beam campaigns using 11% of the production modules [11, 27]:

𝐶pC→GeV =
𝐴 [ADC]

𝐶ADC→pC × 𝐸𝑒

(4)

At TBs, the electrons hit the centre of the A cells at an angle of 20◦ relative to the cell surface normal. The
energy 𝐸𝑒 of the incident electron is completely deposited in the hit cell. The calibration constant𝐶ADC→pC,
obtained using CIS measurements, allows the measured amplitude in ADC counts to be converted to
pC (Section 3.2). The value of 𝐶pC→GeV amounts to 1.050 ± 0.003 pC/GeV with an RMS spread of
(2.4 ± 0.1)%.

To transport to ATLAS the value of the EM scale determined at the TB, at the start of Run 2, the response
of all TileCal cells was equalised using the same procedure as before the electron runs at the TB and the
start of Run 1 [6]. In February 2015, ahead of the start of collisions, the HV of each PMT was adjusted so
that the integrator response to the 137Cs source in the PMTs was equal to that observed before the start of
Run 1 and also equal to the response measured during TB campaigns. Corrections were applied taking into
account the activity decrease of the 137Cs source, which is about 2.3% per year. After the equalisation, the
HV applied to the PMTs was kept unchanged during the entirety of Run 2.

Since the scintillator tile response depends on the impact point position of the particle on the tile, as well as
on the tile size, correction factors are applied for each layer of the calorimeter. Those values are determined
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Figure 9: (a) The average response variation of the TileCal cells to the 137Cs source relative to the expected value,
Δ𝑅Cs, as a function of time. The average runs over all cells in three radial layers. The increasing response corresponds
to the periods without collisions. The LHC delivered integrated luminosity is shown by the shaded area. (b) The
average response variation of the TileCal cells to the 137Cs source relative to the expected value, Δ𝑅Cs, after Run 2
data-taking, as a function of the cell position in 𝜂, for three different layers.

from TB data, measuring the response to muons impinging on the calorimeter with a direction parallel to
the 𝑧-axis (beam axis in Figure 2), and from the measurements obtained using a 90Sr source [27].

3.4 Monitoring of the PMT, tile and fibre response with the caesium system

Since a caesium scan [20] needs a pause in the 𝑝𝑝 collisions of at least six hours, this calibration cannot
be performed very often. Moreover, during the LHC technical stop at the beginning of the data-taking
period in 2016, a few traces of liquid coming from the caesium hydraulic system were found in the detector
cavern. Since then until the end of Run 2, caesium scans were restricted to the end of year technical stops
due to risk of the liquid leak and were performed only a few times per year in Run 2.

Figure 9(a) shows the response deviation from the expected value, Δ𝑅Cs in per cent, as a function of time,
averaged over all cells in a given radial layer. These drifts are a combination of different sources (scintillator
tiles, WLS fibres and PMTs) as detailed in Section 5.1. Due to higher radiation exposure, the most affected
cells are located at the inner radius in layer A. Figure 9(b) shows the difference in cell responses recorded
over the period of Run 2 (between February 2015 and October 2018), for cells located at different 𝜂. It can
be seen that the degradation is not uniform across 𝜂, an effect of the different radiation doses received. At
the end of Run 2, the most irradiated cells in layer A had their response drifted downward by 18%, while
central cells in outer layer D drifted up by 2%.

In each channel, the calibration constant, 𝐶Cs in Eq. (2) is related to Δ𝑅Cs according to

𝐶Cs = 1 + Δ𝑅Cs. (5)

The precision of the caesium calibration in a typical cell is approximately 0.3%. For cells on the extreme
sides of a partition, the precision is 0.5% due to larger uncertainties associated with the source position.
The precision for the narrow C10 and D4 ITC cells is 3% and 1%, respectively.
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Figure 10: The variation of the average response to MB events Δ𝑅MB for the cells in the gap/crack region of the
extended barrel as a function of time. This quantity is derived relative to the luminosity measured using the inner
tracker. The error bars correspond to the RMS of all the response distributions. The results are normalised to the
values measured in the first run of Run 2 (16th July 2015). The integrated luminosity delivered by the LHC is shown
by the shaded area.

3.5 Monitoring of the PMT, tile and fibre response with minimum-bias collisions

Corrections based on MB measurements are applied during the reprocessing of the data. Since the MB
response is proportional to the instantaneous luminosity, the cell response to MB events is normalised to
luminosity measurements obtained using the inner tracker [8]. The response deviation in each cell type,
Δ𝑅MB, is determined relative to a nominal value and then turned into a calibration constant, 𝐶MB in Eq. (2),
as described in Section 3.7. The precision of the measurements is approximately 1.2%. As an example,
Figure 10 shows the variation of the average response to MB events for the cells in the gap/crack region of
the Extended Barrel as a function of time. These cells are exposed to high radiation doses.

3.6 Monitoring of the PMT response with the laser system

The laser system is used to monitor the variation of the PMT response [21]. Deviation in each channel
response relative to its nominal value, Δ𝑅Las, is translated into a calibration constant, 𝐶Las in Eq. (2) using
the equation

𝐶Las = 1 + Δ𝑅Las. (6)
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Figure 11: The mean response variation Δ𝑅Las in the PMTs for each cell type, in percent, averaged over 𝜙, observed
during the entire 𝑝𝑝 collisions data-taking period in 2018 (between standalone laser calibration runs taken on 18
April 2018 and 22 October 2018). For each cell type, the response variation is defined as the mean of a Gaussian
function fit to the response variations in the channels associated with given cell type. A total of 64 modules in 𝜙 are
used for each cell type, with the exclusion of known bad channels.

The laser calibration runs are usually taken daily for both gains, in the absence of colliding beams
(standalone runs). To address the fast drift of PMT response caused by the large instantaneous luminosity,
the laser calibration constants were updated every 1–2 weeks.

Figure 11 showns the mean of the Δ𝑅Las values for each cell type (average over 𝜙) measured with the
laser system during the entire 𝑝𝑝 collisions period in 2018. The most affected cells are those located
at the inner radius and in the gap and crack region with down-drift up to 4.5% and 6%, respectively.
Those cells are the most irradiated and their readout PMTs experience the largest anode current. The
EB partitions experience larger current draws than the LBs due to higher exposure. Figure 12 shows the
time evolution of the mean response variation in the PMTs of each layer observed during the entire Run 2.
The PMT response exhibits a correlation with the LHC operation, as detailed in Section 5.1. For data
taken in 2015 and 2016, the laser calibration constants were calculated and applied for channels with
PMT response variations larger than 1.5% (2%) in the LB (EB). In 2017 and 2018, the thresholds on
PMT response variations were removed and all channels were corrected weekly. The total statistical and
systematic errors in the laser calibration constants depend on the integrated luminosity L and are found to
be 𝜎/𝐶Las = 0.16%(0.32%) · L (fb−1) ⊕ 0.5% for the LB (EBs).
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by the shaded area.

3.7 The calibration procedure

During Run 2, data from the four sub-detector calibration systems CIS, caesium, integrator readout and
laser, were used to correct for the response variation of the different calorimeter components. The detector
calibration constants entering in Eq. (2) 𝐶ADC→pC, 𝐶Cs, 𝐶MB and 𝐶Las are stored in a database consulted
during online and offine energy reconstruction and are defined within a time interval or a range of run
numbers or a range of luminosity blocks where they are applicable.

The calibration activities started in 2015 with the equalisation of the detector calibration through HV
adjustments to all PMTs and the channel timing calibration, as discussed in Sections 3.3 and 3.1.1,
respectively. Afterwards, regular updates of the caesium, laser and CIS calibration constants in Eq. (2)
were performed during the data-taking period for prompt data processing. The laser system was used
to calibrate the response of the PMTs and readout electronics by frequently updating the 𝐶Las factors
calculated relative to the previous caesium scan. When the rare caesium scans were performed, the values
of the 𝐶Cs constants were updated, the laser reference signals for each PMT were written to the database
and the laser constants were reset to 1. This procedure permitted the overall response of the detector to be
calibrated with a negative offset smaller than 1% in absolute value for most of the detector cells, which
have not been harmed by significant radiation damage. Due to the accumulated radiation exposure, since
2016 it is not possible to correct for the response reduction of the most exposed cells with an accuracy
down to 2% by relying exclusively on the sparse caesium scans and laser measurements.

Every year, the data recorded by the ATLAS detector are reprocessed to apply finer calibrations and
improved algorithms in the ATLAS reconstruction chain, as well as to rectify any missed or previously
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unattainable corrections during prompt data processing. In particular, in the LHC Long Shutdown 2 at
the end of Run 2, the full Run 2 data set was reprocessed. For the TileCal calibration, the reprocessing
campaigns also included the determination of the calibration constant 𝐶MB appearing in Eq. (2) from the
analysis of the acquired collision data. The correction was introduced to address the residual miscalibration
effects due to scintillator and WLS fibre degradation beyond the PMT response variation, more precisely
calibrated with the laser system, as follows:

𝐶MB = 1 + ⟨Δ𝑅MB − Δ𝑅Las⟩. (7)

The cell response variations to MB events, Δ𝑅MB, are calculated yearly relative to their nominal values at
the beginning of the data-taking campaign and close to the Cs scan, when 𝐶MB is reset to 1. These are
computed as an average of the values per cell type since the optics response variations are found to be
similar accross the different detector modules. They were introduced for the E-cells and a few cells mostly
in layer A (A13 in 2016, A12 and A13 in 2017, and A12, A13, A14 and especially narrow C10 in 2018),
which show larger response variations during LHC operation.

3.8 Signal reconstruction of simulated events

In physics analysis, the measured energy is compared with that obtained by analysing simulated events.
The ATLAS Monte Carlo (MC) simulation [28] relies on the Geant4 toolkit [29] to model the detector
and the interactions of particles with the detector material. The MC process is divided into four steps:
event generation, simulation, digitisation, and reconstruction. Various event generators are used for
the ATLAS physics analyses and performance studies, see Section 7. During Run 2, ATLAS used the
‘FTFP_BERT_ATL’ physics model to describe the hadronic interactions with matter, where at high energies
the hadron showers are modelled using the Fritiof string model. The Bertini intra-nuclear cascade model is
used for lower-energy hadrons [30]. The transition between those two models takes place in the energy
region 9–12 GeV [31].

The input to the digitisation is a collection of hits in the active scintillator material, characterised by
energy, time and position. The amount of energy deposited in the scintillator is divided by the calorimeter
sampling fraction to correct for energy deposited in the inactive material. To obtain the channel energy at
the electromagnetic scale [32] the sampling fraction is obtained by simulating electrons with the same
kinematics features as the ones used at the TBs (Section 3.3). In the case of a cell read out by two PMTs,
the energy is shared between the two PMTs according to the distance in 𝑟𝜙 of each hit from the edges of
the cell. Moreover, the cell energy response has an azimuthal dependence as measured using 𝑊 → 𝜇𝜈

events in the 2012 𝑝𝑝 collision data [33]. This dependence is implemented in the MC simulations.

To follow the same procedure used in the reconstruction of experimental events, in the digitisation step, the
channel energy in GeV is converted into its equivalent charge using the electromagnetic scale constant
measured at TBs. The charge is subsequently translated into the signal amplitude in ADC counts using the
corresponding calibration constant as explained in Section 3.2. The amplitude is convoluted with the pulse
shape and digitized every 25 ns as in real data. The effects of the electronics are emulated and added to the
digitized samples as described in Section 7.4.1. The generation of the simulated event samples includes the
effect of multiple 𝑝𝑝 interactions per bunch crossing, and the effect on the detector response as described
in Section 7.4.2, due to neighbouring bunch crossings on the one containing the analysed interaction.
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4 Trigger signals

A two-level trigger system [9] was used by ATLAS in Run 2 to reduce the event rate from a maximum raw
rate of 40 MHz to 1 kHz, which is written to disk. The Level-1 trigger is implemented in hardware and uses
a subset of calorimeter and muon sub-detector information to accept events at a rate below 100 kHz. The
data are searched for signatures such as large energy deposits (Level-1 calorimeter trigger) or high-pT muon
tracks (Level-1 muon trigger). This is followed by a software-based high-level trigger (HLT), implemented
in a large dedicated computer farm adjacent to the cavern, which reduces the accepted event rate to 1 kHz
on average depending on the data-taking conditions. The TileCal data subsets used in the L1 trigger are
discussed in the next sections. As discussed in Section 4.3, information collected by the TileCal is also
used to select events during low luminosity LHC runs.

4.1 Level-1 calorimeter trigger

The Level-1 calorimeter trigger exploits the tower structure in the 𝜂−𝜙 plane of the TileCal (see Figure 1(b))
and the LAr calorimeter. The TileCal information used in L1 comes from the adder boards, referred to in
Section 2.2. These boards sum the 3-in-1 card low-gain analogue signals of the six channels connected to
cells with the same 𝜂 and 𝜙 in the layers A, BC and D of the LB and in the layers A, B and D of the EB.

4.2 Tile muon trigger

The tile muon trigger uses information from the TileCal outermost layer cells (D cells) of the EB to reduce
the rate of the ATLAS L1 muon trigger [1] background events due to low momentum protons emerging
from the endcap toroid and beam shielding. Figure 13 shows that muons arising from 𝑝𝑝 collisions with
1.0 < |𝜂 | < 1.3, cross the D5 and D6 cells of the TileCal extended barrel before reaching the endcap
muon chambers (TGC) [1]. This is not the case for background events. The requirement of a coincidence
between the TileCal and the muon sub-detector signals reduces the background rate.

The tile muon trigger is based on the information of 2 × 64 TileCal azimuth sectors, each corresponding to
one EB module, and 2 × 24 TGC chamber sectors. To provide the TileCal and TGC sector matching, a tile
muon digitiser board (TMDB) is required to process the D5 and D6 signals from eight TileCal modules
and interface with three Level-1 TGC sector logic blocks [34, 35] (Figure 14). To cover the entire detector,
16 TMDBs housed in a VME 9U crate in the ATLAS service cavern are required.

For each TileCal sector, the TMDB provides four energy values, one for each of the two PMT’s of the
D5 and D6 cells. The analogue signals are digitized at a frequency of 40 MHz and a window of seven
samples in time is used to represent the readout pulses. The energies are estimated by performing an inner
product between the matched filter (MF) coefficients and the incoming time samples in ADC counts [36].
Compared to the OF method discussed in Section 3.1, this method maximises the signal-to-noise ratio for
muon signals while increasing detection efficiency. The presence of a signal produced by a muon in the D5,
in the D6, and in the D5 and D6 cells is obtained by comparing the four energy determinations with the
corresponding threshold values. The MF coefficients and threshold values are loaded in the TMDB. The
board transmits the 𝜂 and 𝜙 coordinates of the identified cells to the three TGC logic blocks through three
Gigabit links (GLink). The information is also transmitted to neighbour receiver boards to accommodate
the non-perfect matching between the eight TileCal modules and the three muon sector logic blocks. Each
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Figure 14: The basic architecture of the tile muon trigger system.

TGC sector Logic board performs the coincidence. The performance of the tile muon trigger systems is
discussed in Section 7.5.

4.3 Minimum-bias trigger scintillators

During low luminosity LHC runs, the MBTS system allowed the online selection of events with the highest
efficiency and the lowest possible bias [12]. The system consists of 2 cm thick polystyrene scintillator
counters made by PS-PTP-POPOP polyethylene located on both sides, A-side and C-side, of the inner
sub-detector at a distance of 3.6 m from the interaction point. Each side is composed of eight inner counters
(2.76 ≤ |𝜂 | < 3.86) and eight outer counters (2.08 ≤ |𝜂 | < 2.76) instrumented with WLS fibres embedded
in grooves at the edges of the counters. The light going through the fibres is directed to PMTs [5] where
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Inner Layer
Outer Layer

Figure 15: The layout of one side of the MBTS sub-detector in the period 2015–2017. The energy deposited in each
sensitive region is read by one readout channel. Due to the large reduction of the scintillator response, the number of
sensitive regions in the outer layer was doubled in 2018.

the signal readout is done using the same electronics as the TileCal cells (Section 2.2). The signals from
the shaper output (Section 2.2) are fed into leading edge discriminators and sent as 25 ns NIM pulses to the
Central Trigger Processor [37]. As shown in Figure 15, in the period 2015–2017 there are twelve readout
channels in total in each side. Each inner counter is connected to one PMT and adjacent pairs of outer
counters are read by a single PMT grouping the corresponding WLS fibres.

Due to the high irradiation dose, the performance of the scintillators, fibres and PMTs of the MBTS
degraded throughout Run 2 and a large signal reduction was observed. This is discussed in detail in
Section 5.3. The MBTS efficiencies, observed at the beginning of Run 2 and after two years of LHC
operations, are reported in Section 7.6. Due to the very large degradation of the response, the MBTS
counters, installed before the start of Run 2, were replaced at the beginning of Run 3.

5 Radiation exposure effects

The LHC operation affects the performance of the TileCal and of the MBTS. Prolonged exposure to
intense radiation causes a decrease in the optical transmission of the scintillator tiles and of the WLS
fibres, inducing a decrease in pulse height and a deterioration of the energy resolution of the detector.
The accumulated charge affects the gain of the PMTs (see Section 5.1). The laser measurements allow
the effects of the PMTs on the calorimeter response to be determined while the caesium system and
the MB events probe the effects of PMTs, tiles and fibres, as described in Section 3. Combining their
information allows to study the degradation of the optical system (tiles and fibres) of the TileCal, presented
in Sections 5.2 and 5.3.
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5.1 Comparison of laser, caesium and minimum-bias measurements

The effects of the LHC conditions on the cell response during Run 2 are discussed in this section. Figure 16
shows the relative response variations of the A13 calorimeter cells to caesium, MB events and laser pulses,
respectively Δ𝑅Cs, Δ𝑅MB and Δ𝑅Las, as a function of time in Run 2. The assessment of these quantities is
detailed in Sections 3.4 and 3.5 and Section 3.6. The cell A13 is located in the EB, and due to the smaller
amount of upstream material, it is exposed to one of the highest radiation doses as shown in Figure 2.

The PMT gain, monitored with the laser system, is known to decrease with increasing light exposure due
to lower secondary emissions from the dynode surfaces [38]. The decrease in gain depends on several
factors, including temperature, intensity and duration of light exposure, as well as the previous history
of the PMT. When a PMT is initially exposed to light after a long ‘no light’ period, its gain decreases
rapidly and then slow stabilisation occurs [39]. This behaviour is demonstrated in Figures 12 and 16.
The data-taking in each year started after periods of inactivity. The recovery periods, in which the PMT
response to the laser tends towards the initial conditions, coincide with the periods in which the LHC was
not colliding protons. This is consistent with the known behaviour of fatigued PMTs that gradually return
to their original operating condition after the exposure is removed [40]. A global PMT gain increase of
0.9% per year is observed without any exposure (e.g. between data-taking periods).

As already discussed, the responses to the caesium system and MB events are sensitive to both the PMT gain
changes and the scintillator/fibre degradation. The transparency of these systems is reduced after radiation
exposure [41]. In the TileCal this is evident in the continued downward response to caesium (or MB events)
with increasing integrated luminosity of the collisions, despite the eventual slow recovery of the PMTs as
described above. In the absence of the radiation source the annealing process is believed to slowly restore
the scintillator material, hence improving the collected light yield. This can be seen in Figures 9(a), 10
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Figure 17: The measured relative light yield 𝐼/𝐼0 (Eq. (8)) of the TileCal cells at the end of Run 2. The uncertainty
is of the order of 1%.

and 16. The rate and amount of scintillator damage and recovery are complex combinations of factors,
such as particle energies, temperatures, exposure rates and duration, and are difficult to quantify.

To disentangle the effects of PMT and scintillator changes one can study the laser compared to MB or
caesium responses. It can be seen in Figure 16, that the responses to caesium, laser and MB integrator
systems show similar behaviour in 2015. This indicates no effect of scintillator/fibre irradiation. In
2016–2018, when the LHC delivered significantly larger luminosity, the response to MB (and caesium)
events compared to the laser system diverges, indicating the degradation of the scintillators and the fibers.
At the end of Run 2, the maximum response loss in A13 is approximately 16%, where around 8% is
associated with PMT response loss and the remaining 8% with scintillator degradation.

5.2 Degradation of scintillator tiles and WLS fibres

Scintillator tile and WLS fibre ageing effects were determined during Run 2 using the signals produced by
the 137Cs source, MB collision events and the laser pulses. The relative light yield 𝐼/𝐼0 of the cells due to
scintillator and fibre degradation is defined as:

𝐼/𝐼0 = (1 + Δ𝑅Cs/MB − Δ𝑅Las). (8)

Figure 17 shows the relative light yield measured at the end of Run 2 averaged over all TileCal barrel
cells [42]. The innermost layer A and the B11 and C10 cells have a light yield loss between 4 and 10%.
The uncertainty is around 1% and the measurements are not yet sensitive to light yield degradation of

26



0 100 200 300 400 500 600

|z| [cm]

100

150

200

250

300

350

400

450

r 
[c

m
]

5−10

4−10

3−10

2−10

1−10

1

10

]
-1

T
ot

al
 io

ni
si

ng
 d

os
e 

[G
y/

fb

ATLAS Simulation  = 13 TeVsGEANT4, 

A1  
1.9e-1

A2  
2.0e-1

A3  
2.0e-1

A4  
2.1e-1

A5  
2.1e-1

A6  
2.2e-1

A7  
2.2e-1

A8  
2.3e-1

A9  
2.6e-1

A10 
2.7e-1

B1  
2.9e-2

B2  
3.1e-2

B3  
3.2e-2

B4  
3.2e-2

B5  
3.3e-2

B6  
3.5e-2

B7  
3.6e-2

B8  
4.1e-2

B9  
7.4e-2

C1  
4.0e-3

C2  
4.3e-3

C3  
4.4e-3

C4  
4.4e-3

C5  
4.5e-3

C6  
4.7e-3

C7  
6.2e-3

C8  
2.7e-2

D0  
7.0e-4

D1  
7.6e-4

D2  
7.8e-4

D3  
7.0e-3

A12 
5.3e-1

A13 
4.1e-1

A14 
2.6e-1

A15 
1.0e-1

A16 
3.2e-2

B11 
1.1e-1

B12 
4.8e-2

B13 
2.6e-2

B14 
1.0e-2

B15 
6.2e-3

D5  
9.2e-3

D6  
1.5e-3C10 

1.3e-1

D4  
5.4e-2

E1  
3.6e-1

E2  
7.6e-1

E3  
2.3e+0

E4  
9.3e+0

Figure 18: Simulated ionisation dose deposited in the scintillator tiles of the cells and in the gap/crack scintillators in
4 × 4 cm2 bins in 𝑟 × 𝑧. The study was performed using 50 000 inelastic 𝑝𝑝 collisions at

√
𝑠 = 13 TeV generated

with Pythia 8. The response of the detector was obtained using the simulation program Geant4. The results are
normalised to a cross-section of 𝜎inel = 78.42 mb and an integrated luminosity of 1 fb−1 [43, 44].

B/BC and D cells. The observed light response degradation is more important in the innermost cells,
subjected to larger particle fluence and thus more ionising dose. The ionisation doses deposited in the
different calorimeter cells are obtained from simulation of 𝑝𝑝 collisions at a centre-of-mass energy of√
𝑠 = 13 TeV using the Pythia 8 event generator and Geant4 [43, 44]. Figure 18 shows the simulated

ionising dose corresponding to an integrated luminosity of 1 fb−1. The largest doses, up to 20 Gy/fb−1,
occur in the E cells. The most irradiated cells in the calorimeter barrel are the A12 and A13 cells, with
doses of 0.5 and 0.4 Gy/fb−1, respectively.

To further investigate the effects of radiation exposure on the performance of the TileCal active material,
𝐼/𝐼0 was monitored during Run 2. The study allows the light yield till the end of LHC operations and
during the HL-LHC data-taking period to be estimated. Figure 19 shows these measurements as a function
of the integrated delivered luminosity and the average simulated dose deposited for A13 cells. The Run 2
integrated dose is obtained by normalising the cell averaged dose coefficients presented in Figure 18 to
the measured integrated luminosity delivered by the LHC [8]. The loss of light yield is quite smooth and
increases with exposure to radiation. In the study, the damage as a function of dose 𝑑 is modelled by an
exponential function:

𝐼/𝐼0 = 𝑝0𝑒
−𝑑/𝑝1 (9)

The parameters 𝑝0 and 𝑝1 are obtained by minimising the 𝜒2 function considering only the statistical
uncertainty in 𝐼/𝐼0. The systematic uncertainties in the caesium, MB and laser calibration systems (around
0.5%, 1.2% and 0.5%) are propagated to the 𝐼/𝐼0 uncertainty. This uncertainty is represented by the opaque
band, which additionally covers the spread of the dose within the large cell volume (around 50%). Based
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text). The surrounding semi-transparent band is the total uncertainty on this extrapolation, obtained by propagating
the uncertainty sources of the study. Results from measurements of bare scintillators performed one month after
irradiations made in the laboratory before the detector construction are also shown [45]. An exponential function is
fitted to the data obtained from irradiations with 𝛾s (open squares) and hadrons (full squares). Dashed vertical lines
represent the expected dose by the end of the LHC (450 fb−1) and HL-LHC (4000 fb−1) [46].

on the fit result, the extrapolated light output of the A13 cells is 76+9
−24% at the end of the LHC operation

(dose around 180 Gy).

While it is important to carefully monitor the performance of the TileCal active material and make
predictions well ahead of time, doing such an extrapolation with current data is affected by uncertainties
not taken into account in this study. For instance, no explicit recovery is incorporated in the degradation
model for long shutdown times. Furthermore, dose rate conditions may affect significantly the degradation
rate. Measurements from the CMS-HCAL Collaboration [47] conclude that smaller dose rates produce
larger degradation rates. In this scenario, the degradation rate, with respect to dose, of TileCal cells would
substantially decrease in the HL-LHC phase given the increase of collision (dose) rate. To estimate the
decrease of the degradation effects, fits of the function in Eq. (9) are performed to the relative light yield
determinations as a function of the simulated dose for the TileCal cells exhibiting the largest degradation, i.e.
those in the A layer, B11 and C10, see Figure 17. The obtained fitted parameters, driving the degradation
rate, 𝑝1, are represented as a function of the average dose rates of the cells in Figure 20. The average
dose rates correspond to the cell averaged dose coefficients presented in Figure 18 multiplied by the LHC
average instantaneous luminosity in Run 2. The results obtained by CMS [47] are also shown in the figure
and, despite the differences between the calorimeter arrangement and scintillator material, the agreement
between TileCal and CMS-HCAL is good. The TileCal data are fitted with a power law function to model
the dose rate dependency of the cell ageing allowing an extrapolation to the HL-LHC that takes into
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account an expected dose rate being seven times larger (dashed vertical line). The obtained 𝑝1 value for the
A13 cells in the HL-LHC phase is 1724 Gy. This extrapolation is also drawn in Figure 19 (solid curve).
According to this study, one expects for the A13 cells a normalised light response of 37+17

−27% at the end of
the HL-LHC runs, approximately two times larger than the value obtained without taking into account the
different dose rate expected at HL-LHC (dashed curve). In the figure, the extrapolated curve can also be
compared with the results of laboratory irradiations [45] where the dose rates were enormously higher and
the scintillators were measured one month after irradiations, having recovered most of the suffered damage.
Also the results obtained by analysing the MBTS data discussed in Section 5.3 highlight the reduction of
the response degradation by increasing the dose rate.

5.3 Degradation of the MBTS system

The counters of the MBTS system are read out using the same electronics as the TileCal. Due to high
irradiation dose, scintillator, fibre and PMT performances degraded throughout Run 2 and large MBTS
signal reductions were observed. The average total ionising doses, estimated by using the method described
in Section 5.2, are 0.62 × 103 Gy/fb−1 for inner counters and 0.83 × 102 Gy/fb−1 for outer counters [43,
44]. The degradation of the MBTS system is determined using laser and MB data collected during 𝑝𝑝

collision runs. The PMTs were operated at 500 V. The MBTS response is obtained by normalising the
measured MB currents to the ATLAS instantaneous luminosity [8].

Figure 21(a) shows the response variation of the inner and outer counters relative to the first run of Run 2,
as a function of time. The relative variations of the PMT responses as measured by the laser system are
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Figure 21: (a) The average response variation of the MBTS inner (down triangles) and outer (up triangles) counters
as a function of time during Run 2. The circle (diamond) markers show the relative response of the PMTs of the
inner (outer) counters. The LHC delivered luminosity is shown by the shaded area. (b) The average relative light
yield (𝐼/𝐼0) of scintillators and fibres of inner (down triangles) and outer (up triangles) counters as a function of total
ionising dose during Run 2. The values are the averages of the corresponding determinations obtained for the inner
and outer counters. The uncertainties correspond to the RMS of the counter response distributions. The function
obtained by fitting the inner MBTS data points is also shown (solid curve).

also shown.

At the beginning of Run 2, the MB PMT currents were at the level of 15 and 10 nA/1030s−1cm−2 for the
inner and outer counters respectively. By end of 2015 (3.2 fb−1 of integrated luminosity), the inner (outer)
counters have lost almost 55% (35%) of their response. This difference is due to the larger irradiation
density of the inner counters, being closer to the beam line. At the beginning of each new year’s data-taking
period, a relative recovery of the response of about 30% is observed. This is due to the technical stop
periods where the scintillators and fibres are not irradiated further and partially recover some of their
efficiency.

Laser data allowed the PMT variations over the Run 2 period to be evaluated. The inner and outer counters
show a rapid decrease of the average PMT response by about 20% at the beginning of Run 2. This
degradation is expected as the PMTs are receiving high light output from the scintillators at that time,
inducing a large anode current and a significant amount of charge being integrated. After this rapid
decrease, the responses of the PMTs become more stable and a general up-drift can be noticed. This
behaviour is understood by the rapid degradation of the MBTS scintillators/fibres that results in much
less light received by the PMTs. Consequently the integrated PMT anode currents decrease causing the
down-drift to cease and eventually to reverse its course.

To measure the light yield degradation of the MBTS scintillators and fibres, PMT variations are factored
out from MB data as expressed in Eq. (8). The results as a function of the total ionising dose are shown
in Figure 21(b). The decline appears to follow an exponential decay curve up to 15 kGy with similar
degradation rate for inner and outer counters. With the increase of the doses, the inner counters continue
to decrease exponentially with a slowing rate caused presumably by saturation effects in the scintillating
material.
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6 Data quality analysis and operation

A collection of tools continuously monitors the detector hardware and data acquisition systems during
their operation. Some are fully automated to effectively address problems in real time (online) to protect
hardware and scrutinise the quality of the output data. In the following, the Detector Control System
(DCS), Section 6.1, and the use of calibration runs to check for faulty hardware components, Section 6.2,
are discussed. Online data quality assessment and monitoring are presented in Section 6.3. After data are
recorded, offline monitoring tools provide key information for analysers to improve data quality and to
address more challenging data corruption issues. For cases of (semi-) permanent problems, data quality
flags are assigned to portions of the affected data, indicating whether those data are usable for physics
analyses with care (on an analysis-dependent basis) or must be discarded entirely.

6.1 Detector control system

The ATLAS detector control system (DCS) ensures the coherent and safe operation of the whole
experiment [48]. The TileCal DCS [49] is part of the ATLAS DCS being responsible for the control of the
low- and high-voltage systems and the detector’s infrastructure. The DCS executes actions initialised by
the operator or automatic actions based on conditions for the monitored data, such as automatic recovery of
power supplies from an abnormal shutdown or shutdown electronics due to high temperature or over-current.
Alarms and other notifications (email, SMS) are triggered to alert the experts about any abnormality. The
relevant monitored data and all alarms are stored in databases, allowing easy access to the data. For
example, the DCS is able to adjust the various high-voltage levels for each of the TileCal’s PMTs, in the
range of [HVinput + 1 V, HVinput + 360 V] [50], while monitoring it with 0.1 V accuracy. Keeping a stable
applied voltage is the main goal of the high-voltage system since the gain of the PMT is a function of the
applied voltage, HV:

𝐺 = 𝛼 × HV𝛽 (10)

where 𝛼 and 𝛽 are characteristic parameters of each PMT. In the TileCal LB and EB, the average HV is
640 V and 700 V, respectively, while the average 𝛽 is 7.07 and 6.95. Therefore, a variation in voltage of
1 V causes a gain variation of 1.1% (1%) in the LB (EB).

The archived DCS data allow the stability of the HV applied to the TileCal’s PMTs to be studied. During
Run 2, 99.7% of the PMT channels operated with stable HV. A portion of the faulty channels may be due
to monitoring problems. However, hardware failures are the most common cause.

The ATLAS DCS is based on a supervisory control and data acquisition (SCADA) [51] commercial
software. The DCS uses a set of guidelines and software framework components that allow an easy and
coherent integration of the ATLAS detectors as a single control system. The TileCal DCS is distributed
among two of the three functional levels of the DCS back-end (BE) hierarchy, as can be seen in Figure 22.
It is distributed among six SCADA systems. Four of them are identical and independent in functionality,
each being responsible for the low and high-voltage systems of one TileCal partition. The infrastructure
supervises the detector’s common components (detector cooling, calibration systems, etc) while the
sub-detector control station acts as the top layer of the TileCal hierarchy combining all the SCADA systems.
A finite state machine (FSM) toolkit [52] is used to model the DCS BE hierarchy. This allows for full
control of the detector and, at the same time, visualisation of either the global detector state and the status
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Figure 22: The hierarchy of the TileCal DCS within the ATLAS DCS [49].

at the top level or the individual voltages at the lower level. Due to its simplicity of usage, the FSM is the
most commonly used tool by detector experts and users. In preparation for Run 2, the DCS went through
important updates and upgrades [49]. The main improvement was the migration of the non-SCADA
software to a fully Linux based system. For example, the OLE (object linking and embedding) for process
control data access was migrated to Open Platform Communications Unified Architecture. Apart from
the changes required by software migration, it was also necessary to replace control blocks due to the
replacement of hardware (a new 200 V DC system and new laser calibration system).

6.2 Calibration run validation

The analysis of calibration runs mainly allows checks for faulty hardware components. During the long
shutdowns, the faulty components are included in the repair list of the maintenance team. The following
types of calibration runs are monitored:

• Laser calibration runs. There are two types of laser runs: ‘Laser LG’ and ‘Laser HG’, which use two
different intensities of the laser signal.

• Charge injection runs. Three types of runs are used: ‘CIS’ calibration runs where a scan with the
variable injected charge and phase is performed, and ‘MonoCIS LG’ and ‘Mono-CIS HG’ runs with
a constant value of injected charge.

• Pedestal runs with no beams circulating in the LHC and thus with no signal in the detector.

Raw data from calibration runs are reconstructed offline using the dedicated software based on the ATLAS
data processing framework Athena [10]. It produces plots and histograms that undergo futher tests to
identify potential problems. Two types of tests are employed. The first checks the consistency of data
(e.g. parity bits, data header, etc) sent by individual DMU chips. The second type of tests monitors the
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quality of the signal read from individual channels (e.g. digital errors, RMS of signal amplitude, timing
shifts, etc). The first type of tests provides a result for each DMU on the module while the second type
provides a result for each channel. Some tests are run for all types of calibration runs while other tests are
run-type specific. Each test takes some specific value obtained for each channel or DMU and compares it
to a predefined threshold or a range of values. Based on this comparison it assigns a status (called data
quality monitor or DQM status) to each channel (or DMU). The status is Green if the expected value is
observed. If a problem is found, the status can be Yellow or Red depending on its severity. Statuses of
individual channels or DMUs are then propagated into the DQM module test status:

• Green status: all channels/DMUs test results are within expected range.

• Yellow status: some problems, usually no more than one channel affected.

• Orange status: more serious problems, usually two or more channels affected.

• Red status: serious problems.

• Undefined status: there is not enough data to evaluate the test.

The module’s overall DQM status is then treated as the worst status of all module tests.

6.3 Online data quality assessment and monitoring

Data quality monitoring begins in real time in the ATLAS control room. Online shifters on duty serve as a
first line of defence to identify serious detector-related issues. During periods of physics collisions, the
TileCal has experts in the ATLAS control room 24 hours per day and a handful of remote experts available
on call to assist in advanced interventions. The primary goal is to quickly identify and possibly correct any
problem that cannot be fixed later in software, and that can result in overall data loss.

The ATLAS data quality framework is designed to perform automatic checks of the data and to alert
experts to potential problems that warrant further investigation [53]. This framework allows data quality
monitoring at various levels of the ATLAS data flow. The subset of data reconstructed online is quickly
made available to the online shifters via display tools. The automatic tests performed on the reconstruction
output include compatibility checks between the observed distributions from the monitoring data and
reference histograms taken from a past run that is both free of data quality issues and taken with similar
machine operating conditions. Other tests might involve checks on the number of bins in a histogram above
a predefined threshold, or checks on the gradient of a distribution. For example, histograms that monitor
readout errors should always be empty under ‘ideal’ conditions. If a bin in such a histogram has a non-zero
number of entries, a flag would be raised to alert the shifter to the problem. Online event reconstruction
also allows control room experts to monitor reconstructed physics objects, such as jets or missing transverse
momentum, permitting real-time monitoring of combined performance in addition to detector status. The
data quality monitoring framework takes the results of tests on individual histograms and propagates them
upwards through a tree, resulting in a set of top-level status flags, which can be viewed on the data quality
monitoring display. Monitoring histograms are updated to include additional data every few minutes as
newly available data are reconstructed. In this way, online monitoring allows hardware- or software-related
issues to be caught in real time and rectified to minimise their impact on collected data.

In addition to the global ATLAS data quality monitoring, TileCal specific data are reconstructed and
validated. This allows more events to be reconstructed and more detailed monitoring histograms to be
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produced. Online reconstruction is done in the same way as it is done offline (see Section 6.4). TileCal
specific automatic checks are focused mainly on monitoring histograms that accumulate entries per
luminosity block (one luminosity block nominally spans one minute). These allow detection of problems
and to address them within that period during the run. For example, if a test detects that the fraction of
corrupted data in a single TileCal module goes above a certain threshold, a request to power-cycle the
corresponding module is issued. Then the DCS decides if a power-cycle should be performed immediately
or be ignored because the module is in the exclusion list or was recently power-cycled. During physics
runs, in addition to collisions data, the TileCal also collects special laser data when every TileCal PMT
receives laser light. These laser data are reconstructed online to monitor timing and address timing jumps,
as described in Section 3.1.2.

Common problems identified by TileCal experts during the online shifts include hardware failures that
do not automatically recover, or software configuration problems that might present themselves as data
corruption flags from the ROD data integrity checks. The trigger efficiency and data acquisition, as well as
higher-level reconstruction data quality, might be influenced by such problems.

6.4 Offline data quality review

Once the data are recorded, a two-stage offline DQ assessment ensues [7]. Soon after the data are taken, a
small fraction is quickly reconstructed using the ATLAS Athena software framework [10]. Reconstructed
data are then used by the offline data quality experts with more complex tools to evaluate the quality of the
data. The experts are given 48 hours to identify, and, where possible, to correct problems, before the bulk
reconstruction of the entire run is made. The TileCal offline experts can update the conditions database,
where information such as the calibration constants and status of each channel is stored. Channels that
suffer from high levels of noise have calibration constants in the database updated accordingly. For channels
that suffer from intermittent data corruption problems, data quality flags are assigned to the affected data to
exclude the channels in the full reconstruction during the problematic period. This 48-hour period is also
used to identify cases of digitiser timing jumps and to add the additional time phases to the time constants
of the digitiser affected to account for the magnitude of the time jump.

Luminosity blocks can be flagged as defective to identify periods of time when the TileCal is not operating
in its nominal configuration. These defects can either be tolerable whereby corrections are applied but
additional caution should be taken while analysing these data, or intolerable in which case the data are not
deemed suitable for physics analyses. Defects are entered into the ATLAS data quality defect database [54]
with the information propagating to analyses and to integrated luminosity calculations. Removing all data
within that time can accumulate to a significant data loss. For rare situations where only a few events are
affected by the data corruption, an additional error-state flag is introduced into the reconstruction data.
This flag is used to remove such events from the analysis. Once all offline teams perform the review,
the entire run is reconstructed using the most up-to-date conditions database. Subsequently the data can
be re-reconstructed when reconstruction algorithms are improved and the conditions database is further
refined to improve the description of the detector. These data reprocessing campaigns typically occur
several months after the data are taken.
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Table 2: The TileCal DQ efficiency during stable-beams 𝑝𝑝 collision physics runs at
√
𝑠 = 13 TeV for each year of

Run 2 and for the entire Run 2. For completeness the corresponding ATLAS efficiencies are reported [7].

2015 2016 2017 2018 Entire Run2

TileCal DQ efficiency [%] 100.00 99.31 99.41 100.00 99.65
ATLAS DQ efficiency [%] 88.79 93.07 95.67 97.46 95.60
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Figure 23: The fraction of channels and cells removed from the reconstruction (masked) as a function of time during
Run 1 and Run 2. The number of masked cells (channels) at the end of Run 2, 3 December 2018, is about 0.5% (1%).
The hatched area represents the maintenance periods of the detector.

6.5 Summary of TileCal operations in Run 2

The TileCal operated very smoothly during Run 2. In 2015, there were no data lost due to DQ issues in the
TileCal. In 2016 most of the inefficiency attributed to the TileCal was due to data lost in two cases when
four consecutive modules were disabled due to a failure in the ROD-ROS links. These events induced
a loss of 61 pb−1 and 42 pb−1 (0.29% of the total integrated luminosity of 35.5 fb−1 in 2016). Most of
the data loss from the TileCal during 2017 corresponded to a single run when four consecutive modules
were disabled for eight hours due to an auxiliary board [3] issue. During the attempt to fix the auxiliary
board the entire LBA partition went off for two hours. This event induced a loss of 265 pb−1 (0.57% of the
total integrated luminosity of 46.4 fb−1 in 2017). In 2018, there was no data lost due to DQ issues in the
TileCal. The DQ efficiency for each year of Run 2 and for the entire Run 2 are summarised in Table 2.

Failure of some components, like cooling or an interface card, causes the exclusion of all channels (thus all
cells) of a module from the reconstruction. Failure of other components affects only a part of a module.
For example, a failure of a HV card renders every second channel of a half-module non-operational, while
keeping all readout cells operational thanks to the readout redundancy. The next example is a failure of a
digitiser [3]. In this case, six corresponding channels and two or three cells are excluded. Figure 23 shows
the fraction of channels and cells removed (masked) as a function of time in Run 1 and Run 2. The shaded
regions correspond to maintenance periods. The most common issues, which are addressed and repaired
during this time, correspond to cooling, HV, front-end electronics or the trigger. Regular maintenance
helped to keep the fraction of inefficient cells below 1.1%.
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7 Performance studies

The studies reported in this section allow the performance of the reconstruction and calibration methods
described in the previous sections to be verified. The results obtained by analysing isolated muons, single
hadrons and jets are discussed. The cell noise levels obtained by analysing experimental and simulated
data are compared. The performance of the minimum-bias trigger system and the improvements made
to the ATLAS muon trigger system by implementing the information provided by the TileCal are also
presented.

7.1 Energy response to single isolated muons

The interaction of muons with matter is a well-understood process [55, 56], and events with muons allow
comparison of the equalisation of the cell response, its stability and the EM scale setting. In this Section,
results of the studies of the calorimeter response to muons produced by 𝑊 → 𝜇𝜈 decays from 𝑝𝑝 collisions
are reported. These muons have momenta in the range 20 to 80 GeV and lose energy in the TileCal
primarily due to ionisation. The energy loss per unit path is close to the minimum ionising level for the
momenta considered and hence small compared to the muon energy over the full path traversed in the
calorimeter. This makes the muons from 𝑊 → 𝜇𝜈 ideal test particles to scan the entire TileCal volume.

In the analysis, the muon tracks measured by the pixel and SCT detectors are extrapolated through the
calorimeter volume taking into account detector material and the magnetic field [57]. To compute the
path, Δ𝑥, travelled by the muon in a cell, a linear interpolation is performed to determine the entry and
exit points of the muon in the crossed cell. The path and the energy deposited in the cell, Δ𝐸 , are used
to compute the muon energy loss per unit distance, Δ𝐸/Δ𝑥. The distributions of this quantity can be
described by a Landau function convoluted with a Gaussian distribution, where the Landau part describes
the actual energy loss and the Gaussian part accounts for resolution effects. However, due to long tails from
rare energy loss mechanisms, such as energetic delta electrons and bremsstrahlung, the fits show small
𝜒2 probability values. For this reason the truncated mean ⟨Δ𝐸/Δ𝑥⟩𝐹=1%, calculated without considering
1% of the events in the high tail of the distributions, is used to define the muon response. The truncated
mean shows slight non-linear behaviour with Δ𝑥. This effect and other non-uniformities, such as pile-up,
the differences in momentum and incident angle spectra are, to a large extent, reproduced by the MC
simulation. To compensate for these effects, the ratio of the ⟨Δ𝐸/Δ𝑥⟩𝐹=1% obtained using experimental
and simulated data:

𝑅 ≡
⟨Δ𝐸/Δ𝑥⟩data

𝐹=1%

⟨Δ𝐸/Δ𝑥⟩MC
𝐹=1%

(11)

is then used in the analysis. Differences between the 𝑅 values obtained for different cells may indicate cell
miscalibration. Deviations of the values from unity may indicate an inaccurate setting of the EM energy
scale.

7.1.1 Selection of isolated muons

The results presented here were obtained by analysing proton–proton collision data collected in 2015–2016,
2017 and 2018. The 2015 and 2016 samples were merged together due to low numbers of events in each
of them. Events were collected using the L1 muon trigger that accepts events with muons originating
from the interaction point [58]. Three further kinematic cuts are used to select 𝑊 → 𝜇𝜈 events and
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to suppress background from multĳet processes: number of muon tracks 𝑁𝜇 = 1, transverse mass 5

40 GeV ≤ 𝑚T ≤ 140 GeV and missing transverse momentum [59] 30 GeV ≤ 𝐸miss
T ≤ 120 GeV. The

muons with momentum 20 GeV ≤ 𝑝 ≤ 80 GeV are retained. The lower limit reduces multiple scattering
effects while the upper limit ensures that muons lose their energy primarily via ionisation. The contribution
from nearby particles in the energy deposited in a cell is suppressed by only considering well isolated
muon tracks [6]. The selection requirements Δ𝑥 > 100 mm and Δ𝐸 > 60 MeV are applied to reduce noise
contributions. The cells with |𝜂 | < 0.1 are not considered in the analysis since in the TileCal the scintillator
tiles are oriented radially and the energy deposited by muons with a trajectory close to this direction is
measured with poor accuracy due to large variations of sampling fraction as function of the impact point.
The number of retained tracks is about 300 million.

The MC simulation uses the Geant4 toolkit that provides the physics models of particle interactions
with material, the ATLAS geometry description and the tracking tools as described in Section 3.8. The
simulated 𝑊 → 𝜇𝜈 events were generated using Sherpa [60] at next-to-leading order interfaced with
Pythia 8 [61] for the parton showering. The number of simulated events is approximately 200 million. The
energy deposited in the cells was digitized and reconstructed using the same procedure as applied in the
case of experimental data. The retained events pass the same criteria used in the selection of experimental
data. The relevant kinematic distributions show good agreement between data and MC with observed
discrepancies only in bins whose contents are a negligible proportion of the total yield. Using MC events,
the purity of the selected track sample is estimated to be 98%.

7.1.2 Cell response uniformity

As shown in Figure 24, in the calorimeter one can distinguish 74 rings of cells, 46 in the LB and 28 in EB,
each consisting of 𝑁𝑟 = 64 cells with the same values of the coordinates 𝑟 and 𝑧 and different value of 𝜙.
Due to the symmetry of the calorimeter and of the particles produced in 𝑝𝑝 collisions, one expects that the
ratios in Eq. (11) computed using muons crossing any cell 𝑐 of the same ring 𝑟 , 𝑅𝑟 ,𝑐, are equal.

The estimated value for the ratio defined by Eq. (11) for a given ring, 𝑅𝑟 , is determined by maximising the
Gaussian likelihood function:

L =

𝑁𝑟∏
𝑐=1

1
√

2𝜋
√︃
𝜎2
𝑟 ,𝑐 + 𝑠2

𝑟

exp

[
−1

2

(
𝑅𝑟 ,𝑐 − 𝑅𝑟

)2
𝜎2
𝑟 ,𝑐 + 𝑠2

𝑟

]
(12)

where 𝜎𝑟 ,𝑐 is the statistical uncertainty in the determination of 𝑅𝑟 ,𝑐. The other parameter determined in the
likelihood function maximisation, 𝑠𝑟 , describes the response non-uniformity of the cells due to differences
in the optical and electronic read-out systems not described in the simulation and potential miss-calibration
of cells of the ring. The parameter, 𝑠𝑟 , is estimated to be 2.4%. The cell non-uniformity was previously
measured in ATLAS using cosmic rays [6] and at test beams [11] using electrons incident at the centre of
A cells with an angle of 20◦. Similar results are obtained. The analysis shows no problematic cells with a
value of 𝑅𝑟 ,𝑐 that deviates significantly from 𝑅𝑟 .

5 The transverse mass 𝑚T of a single heavy particle in a semi-invisible decay into particles 1 and 2 is defined by 𝑚T =

2𝑝T,1𝑝T,2 (1 − cos𝜙12) in the approximation of massless decay products (𝑚1 = 𝑚2 = 0), with 𝑝T,1(2) denoting the transverse
momentum magnitude of the particle 1 (2) and 𝜙12 the azimuthal distance between the decay products [56].
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Table 3: The response ratio 𝑅𝑙 of the cells of different radial layers in the LB and EB obtained by analysing 2015–2016,
2017 and 2018 data. Statistical (first value) and systematic (second value) uncertainties are shown.

Layer 𝑅𝑙 (2015 − 2016) 𝑅𝑙 (2017) 𝑅𝑙 (2018)
LB-A 0.988 ± 0.001 ± 0.003 0.996 ± 0.002 ± 0.007 0.996 ± 0.001 ± 0.004
LB-BC 0.984 ± 0.001 ± 0.001 0.993 ± 0.001 ± 0.002 0.992 ± 0.001 ± 0.003
LB-D 1.014 ± 0.001 ± 0.004 1.019 ± 0.001 ± 0.003 1.024 ± 0.001 ± 0.002
EB-A 1.006 ± 0.003 ± 0.006 1.029 ± 0.002 ± 0.006 1.016 ± 0.002 ± 0.006
EB-B 0.978 ± 0.002 ± 0.002 0.990 ± 0.001 ± 0.006 0.989 ± 0.001 ± 0.004
EB-D 0.982 ± 0.001 ± 0.004 0.990 ± 0.001 ± 0.007 0.997 ± 0.001 ± 0.004

Figure 24 shows the estimates of 𝑅𝑟 obtained for the different rings by analysing 2017 data. For a given
radial layer, the values are uniform within about 1%. Similar results are found by analysing the 2015–2016
and 2018 data.

7.1.3 Radial layer calibration

The estimated response 𝑅𝑙 for the six radial layers 𝑙: LB-A, LB-BC, LB-D, EB-A, EB-B, and EB-D are
obtained from the truncated mean ratios (Eq. (11)) of the experimental and simulated Δ𝐸/Δ𝑥 distributions
of all the cells belonging to the layer. The results obtained by analysing the data collected in the three
periods are reported in Table 3. The statistical and systematic uncertainties are shown separately. To
estimate systematic uncertainties, the selection parameters were varied around their nominal values
(see Section 7.1.1). The systematic uncertainties dominate. In each year the standard deviation of the
distributions of the measurements listed in the Table is 1.5%. The maximum deviation of the values of 𝑅𝑙

from 1 is 0.029.

7.1.4 Time stability

The determination of the stability of the 𝑅𝑟 values discussed in Section 7.1.2 allows quantification of how
well the calibration compensates for time-dependent variations of the calorimeter response. For the cells of
each ring 𝑟, a determination is obtained by maximising the likelihood function:

L = exp(−1
2
( ®𝑅𝑟 − ®̂𝑅𝑟 )𝑇 [𝐶𝑟 ]−1( ®𝑅𝑟 − ®̂𝑅𝑟 )) (13)

The components of the vector ®𝑅𝑟 = (𝑅1
𝑟 , 𝑅

2
𝑟 , 𝑅

3
𝑟 ) are the responses of the cells of a ring 𝑟 obtained by

maximising the likelihood function (Eq. (12)) using data collected in 2015–2016 (𝑅1
𝑡 ), 2017 (𝑅2

𝑡 ) and
2018 (𝑅3

𝑡 ) respectively. The components of the vector ®̂𝑅𝑟 = (�̂�1
𝑟 , �̂�

2
𝑟 , �̂�

3
𝑟 ) are the corresponding parameter

estimates. The covariance matrix 𝐶𝑟 takes into account correlations between the determinations performed
in the different periods.

Figures 25(a) and 25(b) show the relative variations of the ring responses between 2015–2016 and 2017:

Δ𝑟 (2015–2016 → 2017) ≡ �̂�𝑟 (2017) − �̂�𝑟 (2015–2016)
�̂�𝑟 (2015–2016)

(14)
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and between 2017 and 2018:

Δ𝑟 (2017 → 2018) ≡ �̂�𝑟 (2018) − �̂�𝑟 (2017)
�̂�𝑟 (2017)

(15)

respectively. The uncertainties are obtained by combining statistical and systematic effects in quadrature
and taking into account correlation effects. In both cases the most probable value is +0.5%. The 95%
confidence intervals of the variations of the cell response between 2015–2016 and 2017 and between 2017
and 2018 are found to be [−1.3%, 3.3%] and [−2.4%, +2.5%] respectively.

7.2 Energy response to single isolated hadrons

The calorimeter energy response is probed by measuring the energy deposited in the calorimeter by isolated
hadrons produced in the 𝑝𝑝 collisions. The determination is obtained using the ratio:

𝑅 = 𝐸/𝑝 (16)

where 𝐸 is the energy measured by the calorimeters and 𝑝 the momentum measured by the inner detector.
The particles have a momentum below 20 GeV and the precision of the measurement is dominated by the
energy resolution [1]. The events analysed were produced in 𝑝𝑝 interactions in 2017 at a centre-of-mass
energy

√
𝑠 = 13 TeV with an average of the mean number of interactions per bunch crossing within a

luminosity block, ⟨𝜇⟩, of about 2.

At the trigger level, the events were selected requiring at least one counter with a signal above the threshold
value in each side of the MBTS system (see Section 4.3). Each event is required to have a well reconstructed
vertex with at least four well reconstructed associated tracks with 𝑝T > 400 MeV. Each track selected for
this study is required to have 𝑝T > 500 MeV and |𝜂 | < 2.5. The reconstruction of the momentum 𝑝 is
described in [1]. To select isolated single charged hadrons, no other track is allowed within a cone of
Δ𝑅 < 0.4 centred on the considered track. The energy measurement 𝐸 is obtained using ensembles of
cells (topological clusters) [62]. A cluster of cells 𝑖 is associated with the track 𝑘 if:

Δ𝑅 =

√︃
(Δ𝜂(track𝑘 𝑗 , cluster𝑖))2 + (Δ𝜙(track𝑘 𝑗 , cluster𝑖))2 < 0.2 (17)

where Δ𝜙(track𝑘 𝑗 , cluster𝑖) is the smallest angle in the transverse plane between track 𝑘 and cluster 𝑖. The
𝜂(track𝑘 𝑗) and 𝜙(track𝑘 𝑗) are the values of the extrapolated track in the layer 𝑗 of the cluster with the
largest deposited energy. The energy of a track corresponds to the sum of the energy deposited in all the
cells of the clusters associated with the track [63]. The cell energies are reconstructed and calibrated at EM
scale using the procedures described in Sections 2 and 3.

Additional requirements are applied to ensure that tracks reach and deposit their energy in the TileCal
layers, and to reduce the contamination from neutral particles and muons. These are:

• Momentum of the track, 𝑝track, larger than 2 GeV and |𝜂track | < 1.7.

• The energy deposited by the hadron in the LAr EM calorimeter [64], 𝐸LAr < 1 GeV, compatible
with that of a minimum ionising particle (MIP), so that the hadron deposits almost all its energy in
the TileCal.

• The energy deposited in TileCal is required to be at least 70% of the total energy deposited in the
calorimeters, 𝐸Tile/(𝐸LAr + 𝐸Tile) > 0.7.
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Figure 26: The distribution of the ratio of the energy of isolated hadrons measured by the calorimeters divided by the
momentum of the track measured by the inner detector (𝐸/𝑝). The distribution obtained by analysing simulated data
is also shown. The distributions are normalised to an integrated area of one. The ratios of the experimental values to
the simulated ones are plotted in the lower panel. The MC statistical uncertainties are shown.

The last two criteria effectively reduce the contribution from neutral particles decaying electromagnetically
since these events deposit most of their energy in the EM calorimeter [63]. The experimental results
are compared with those obtained analysing simulated data. The simulation program Pythia 8.186 [61]
was used to generate multĳet events with the A14 set of tuned parameters (tune) [65] and the NNPDF23
leading-order parton distribution function set. The detector response was simulated using the Geant4
simulation program. The transverse momentum of the tracks was re-weighted to match the observed
spectrum in data. The same selection criteria and signal reconstruction procedures used in the analysis of
the experimental data are used in the analysis of the simulated data.

Good agreement is found between the experimental and simulated results. The 𝐸/𝑝 distribution of the
selected events is shown in Figure 26. The mean of the distribution obtained by analysing experimental
(simulated) data is ⟨𝐸/𝑝⟩ is 0.5896 ± 0.0001 (0.593 ± 0.001). Only statistical uncertainties are quoted.
The values are smaller than one because of the non-compensating nature of the calorimeter. Also energy
leakage affects the result. Figure 27 shows the distributions of ⟨𝐸/𝑝⟩ as a function of the hadron 𝑝, 𝜂 and
𝜙. The 𝑅 values obtained by comparing experimental and simulated events in three 𝜂 regions (|𝜂 | < 0.7,
0.7 ≤ |𝜂 | ≤ 1.0 and 1.0 < |𝜂 | ≤ 1.7) are reported in Table 4. For each of three pseudorapidity regions,
the values refer to isolated hadrons with momenta 2.0 GeV ≤ 𝑝 < 3.0 GeV, 3.0 GeV ≤ 𝑝 < 4.0 GeV,
4.0 GeV ≤ 𝑝 < 5.0 GeV, 5.0 GeV ≤ 𝑝 < 7.0 GeV and 𝑝 ≥ 7 GeV respectively.

Two sources of systematic uncertainty are identified. The first one is from the contamination of neutral
particles. The effects on the ratio of the experimental and simulation results are estimated by varying
the selection criteria for 𝐸LAr and 𝐸Tile/(𝐸LAr + 𝐸Tile). To this end, different cuts on the reconstructed
number of clusters are also applied. A systematic uncertainty of about 1%, almost independent of 𝜂, is
found. It corresponds to the maximum difference of the results obtained by applying the different cuts. In
particular for large values of |𝜂 |, another source of systematic uncertainty comes from the description in
the simulation of the dead material in front of TileCal. Effects of few percent are observed by varying
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Figure 27: The average ratio of energy to momentum (⟨𝐸/𝑝⟩) measurements as a function of (a) 𝑝, (b) 𝜂 and (c)
𝜙. The ratios of experimental to simulated data are plotted in the lower panels. MC statistical and experimental
systematic uncertainties are shown.
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Table 4: Ratios of the ⟨𝐸/𝑝⟩ values obtained from experimental and simulated data. The results were obtained
by analysing isolated hadrons with different pseudorapidity and momentum values. Statistical and systematic
uncertainties are combined in quadrature.

|𝜂 | < 0.7 0.7 ≤ |𝜂 | ≤ 1.0 1.0 < |𝜂 | ≤ 1.7

2.0 GeV ≤ 𝑝 < 3.0 GeV 0.98 ± 0.01 0.97 ± 0.01 1.03 ± 0.05
3.0 GeV ≤ 𝑝 < 4.0 GeV 0.98 ± 0.01 0.97 ± 0.01 1.00 ± 0.03
4.0 GeV ≤ 𝑝 < 5.0 GeV 0.97 ± 0.02 0.98 ± 0.02 0.99± 0.02
5.0 GeV ≤ 𝑝 < 7.0 GeV 0.98 ± 0.01 0.96 ± 0.02 0.97 ± 0.02
𝑝 ≥ 7.0 GeV 1.01 ± 0.03 1.02 ± 0.05 0.98 ± 0.02

the energy deposited in the gap/crack scintillators in the dead material region. Statistical and systematic
uncertainties are combined in quadrature in Table 4. The comparison between the results obtained by
analysing experimental and simulated data shows a good reconstruction of the energy at the EM scale of
low momentum hadrons with an uncertainty better than 5%.

7.3 Timing performance with collision data

Correct channel timing obtained by analysing jets as discussed in Section 3.1.1 is essential for energy
reconstruction, particle identification and searches for hypothetical long-lived particles. The performance
of time calibration is presented in this section.

7.3.1 Mean time and time resolution

Figure 28 compares the mean of the cell time (average of the reconstructed times of channels associated
with that cell) as a function of the cell energy measurements of all TileCal cells in each of the four years of
Run 2, 2015, 2016, 2017 and 2018. For each energy bin, the mean cell time corresponds to the mean value,
𝜇, of a Gaussian function fit to the cell time distribution in the range of 𝜇 ± 2𝜎 (𝜎 is the standard deviation
of the Gaussian function). To do this, an iterative procedure is applied. The mean cell time decreases with
the cell energy, reaching the plateau at energies above 40 GeV. The time behaviour remains essentially
unchanged during the whole Run 2. The differences appear only in the two lowest energy bins, below
4 GeV, dominated by pile-up conditions. At higher energies, the year-to-year differences are within 0.05 ns
in agreement with previous results [66].

Time resolution corresponds to the 𝜎 of the Gaussian function fit to the cell time distribution discussed
above. The values of time resolution and of the root mean square (RMS) of the cell time distribution in
each cell energy bin obtained using 2018 data are shown in Figure 29(a). The time resolution is relatively
stable between individual runs. The RMS values, being more affected by the tails of the time distribution
driven by the pile-up conditions in the given run, are more unstable. The fit functions

𝜎 =

√︃
𝑝2

0 + (𝑝1/
√
𝐸)2 + (𝑝2/𝐸)2 (18)

are superimposed on HG and LG resolution data in the figure. The fit functions obtained for the four
different data-taking years of Run 2 are compared in Figure 29(b). Since the calibration procedure for the
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Figure 28: The mean reconstructed cell time as a function of the cell energy. Results obtained in Run 2 (2015, 2016,
2017 and 2018), are shown. Statistical uncertainties are smaller than the size of the markers. The discontinuity close
to 22 GeV corresponds to the ADC high-/low-gain transition.

HG setting remained unchanged during the whole Run 2, the differences in time resolution for cell energies
smaller than 22 GeV are mainly caused by different pile-up conditions. The best resolution is observed in
2015. The difference relative to other years is 10% for cell energies around 20 GeV at LG.

The time calibration for LG was the same during the years 2016–2018. The time resolution is slightly worse
in 2015 due to an older calibration procedure. It relied on the HG time calibration taking into account
a constant offset due to faster signal propagation at LG instead of direct determination of the LG time
calibration constants. The updated procedure, as described in Section 3.1.1, improves the time resolution
for LG by up to 5% despite higher pile-up in 2016–2018 compared to 2015.

7.3.2 Effect of pile-up on the time resolution

The dependence of time resolution on pile-up was investigated by analysing the data on a run-to-run basis.
The mean number of reconstructed primary vertices per bunch crossing within a luminosity block, 𝑁PV, is
used as a proxy for the pile-up conditions in each run. Results are shown in Figure 30. Low pile-up runs
show slightly better time resolution than runs with higher pile-up. This feature is fully compatible with the
differences in the time resolution reported in Figure 29(b).

7.3.3 Run-to-run differences

The differences in the mean reconstructed time were also investigated on run-to-run basis. These differences
are due to a phase between the LHC clock signal and the bunch-crossings in ATLAS that can vary slightly
in time. Large run-to-run differences can negatively influence the time resolution integrated over several
runs. While the run-to-run RMS was rather large in 2015 (up to 0.1 ns), it significantly improved since the
beginning of 2016 and stayed at the level of 0.03 ns or better. This value is negligible compared to the time
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Figure 29: (a) The time resolution (full circles) and RMS of the time distribution (open squares) as a function of the
cell energy. The results were obtained by analysing 2018 data. Statistical uncertainties are smaller than the size of
the markers. The fits of the function in Eq. (18) are superimposed on high- and low-gain resolution data as indicated
by solid and dashed curves, respectively. (b) A comparison of the time resolution fit functions obtained by analysing
2015, 2016, 2017, 2018 data samples [66] as a function of the cell energy. The 2017 high-gain fit is affected by a
worse time resolution in the lower energy bin that leads to slightly different fit parameters 𝑝0 and 𝑝1 (see Eq. (18))
compared to the results of the other years. The effect translates into an increase of the 2017 and 2015 resolution ratio
near the high-gain end point. The lower panel shows the fitted time resolution obtained by analysing 2016, 2017 and
2018 data relative to the values obtained analysing 2015 data.

resolution constant term 𝑝0 shown in Figure 29(a) and the run-to-run differences have no impact on the
time resolution even if integrating over many runs.

ATLAS monitors this phase with the beam pick-up based timing system (BPTX) [67].6 The improvement
in the run-to-run RMS observed in the TileCal is in line with the automated correction for large phases
based on BPTX measurements that was adopted in ATLAS in 2016.

7.4 Electronic and pile-up noise

The total noise per cell is calculated taking into account two components, electronic noise and a contribution
from pile-up interactions (pile-up noise). These two contributions are added in quadrature to estimate
the total noise (see Section 7.4.2). The total cell noise is used as input to the topological clustering
algorithm [62]. See also Section 7.2.

6 The BPTX stations are beam position monitors installed in the LHC tunnel 175 m away from the ATLAS interaction point.
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Figure 30: The cell time resolution (𝜎) determined in the energy range 8 GeV < 𝐸cell < 10 GeV as a function of the
mean number of reconstructed primary vertices per bunch crossing within a luminosity block, 𝑁PV, in the run. Each
point corresponds to one run and is obtained using all the cells of the detector. In the analysis, only runs with 25 ns
bunch spacing and the number of bunches in the LHC larger than 1000 are used. The worse resolution in 2015 is
compatible with the larger run-to-run differences provided the phase changes are not strictly coupled to individual
run boundaries, as discussed in Section 7.3.3.

7.4.1 Electronic noise

The electronic noise is measured by fluctuations of the channel pedestal 𝑝 (Eq. (3)) and is largely independent
of LHC beam conditions. The distributions are obtained using dedicated runs with no beam in the LHC.
The reconstruction of pedestal data mirrors that of the data-taking period, using the non-iterative OF
technique. The cell electronic noise is given by

𝜎electronic =

√√√
𝑁𝑐∑︁
𝑖

(𝜎𝑖
electronic)2 (19)

where 𝜎𝑖
electronic is the standard deviation (RMS) of the distribution of pedestal values of channel 𝑖 and 𝑁𝑐

is the number of channels in the cell. Most of the TileCal cells are read out by two channels. Both are read
out in HG and LG. Therefore, for each cell there are four combinations (low–low, low–high, high–low and
high–high). The high–high combination is typically used when the deposited energy in a cell is below
15 GeV while above that the low–low one is most commonly used. In the region around 15 GeV the
combination of low–high/high–low is used. Figure 31 shows the 𝜙-averaged electronic noise (RMS) for all
cells as a function of 𝜂, for the high–high gain combination, measured in a single representative run taken
in 2017. Different calorimeter layers are presented. The average cell noise for regular cells is approximately
20.5 MeV with a standard deviation of 2.5 MeV. However, cells located in the region |𝜂 | ≈ 1 show noise
values closer to 27.5 MeV. These cells are formed by channels physically located near the LVPS. Detailed
discussions of the electronic noise is given in Ref. [6].
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Figure 31: The 𝜙-averaged electronic noise as a function of 𝜂 of the cell, with both contributing read-out channels
in high-gain mode. For each cell type the average value over all modules is taken. The statistical uncertainties are
smaller than the marker size. Values are extracted using a single representative pedestal calibration run taken in 2017.
The different cell types are shown separately for each layer. The transition between the long and extended barrels can
be seen in the range of 0.7 < |𝜂 | < 1.0.

7.4.2 Pile-up noise

The total noise is the sum of all sources of noise contributing to the signals in TileCal cells. The
electronic noise introduced in Section 7.4.1 and the pile-up noise described in this section are the two
main contributions. Pile-up noise has two components that lead to the overlay of multiple signals, they
are called in-time and out-of-time pile-up. In-time pile-up results in the overlay of signals from multiple
proton–proton interactions within the triggered bunch crossing. On the other hand, out-of-time pile-up is
the contribution of signals from neighbouring bunch crossings. It is present if the width of the electrical
pulse, shown in Figure 4, is larger than the bunch spacing. During Run 2, the TileCal operated in high
pile-up conditions with a proton bunch spacing of 25 ns used in most runs. The mean number of interactions
per bunch crossing within a luminosity block, ⟨𝜇⟩, ranged from about 8 to 70. At low ⟨𝜇⟩, the total noise
in TileCal cells is dominated by the electronic noise component. However, for larger values of ⟨𝜇⟩, the
pile-up noise becomes the largest contribution resulting from both in-time and out-of-time pile-up.

Pile-up noise is studied in zero-bias data selected by a random trigger. The trigger accepts events from
collisions occurring a fixed number of LHC bunch crossings after an accepted high-energy L1 trigger
whose rate scales with luminosity [9]. This triggering provides a data sample that is not biased by
any residual signal in the calorimeter system. The study is performed using events from several runs
collected in 2016 with 14 < ⟨𝜇⟩ < 44 providing a number of events comparable with available MC
simulations. Minimum-bias MC samples for pile-up noise studies were generated with Pythia 8 using
the NNPDF3.0NNLO parton distribution fuction set and the A3 minimum-bias tune [68, 69] and with
0 < ⟨𝜇⟩ < 50.

Figure 32 shows the energy distribution in A12 cells located in the 1.1 < |𝜂 | < 1.2 region of the detector.
Those cells receive the highest radiation dose in layer A (see Figure 18). The energy distributions are
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Figure 32: Normalised energy distributions in cells A12 (1.1 < |𝜂 | < 1.2) observed in 𝑝𝑝 collision data with 25 ns
bunch spacing at

√
𝑠 = 13 TeV collected in 2016 in the zero-bias stream and in the Pythia 8 MC simulation with the

A3 minimum-bias tune. An integration over all modules is performed. The depicted distributions correspond to
two different pile-up conditions with ⟨𝜇⟩ = 20 (squares) and ⟨𝜇⟩ = 30 (circles). The ratio of the data to the MC
simulation is shown in the lower panel.

centred around zero in absence of high-energy signals. Increasing pile-up widens the energy distribution
both in data and MC simulation. Reasonable agreement between data and the simulation is found above
approximately 200 MeV. However, below this energy, the simulated energy distribution is narrower than in
data. The total noise measured as the standard deviation (RMS) of the total energy distribution in A12
cells is lower by about 7% in MC simulation compared to data.

Figure 33 shows the total noise (electronic noise and the contribution from pile-up) in different TileCal
layers, for events with ⟨𝜇⟩ = 30, as the function of 𝜂 obtained using experimental and simulated data. The
electronic noise component is small and almost flat for standard cells, as seen in Figure 31. Due to the
distribution of upstream material and the distance of cells from the interaction point, the pile-up seen in the
TileCal is not expected to be uniform. The total noise is approximately constant with 𝜂 in the LB, while
the variations in the EB are due to larger amounts of various absorbers traversed by soft particles. The
largest effect of pile-up is seen in the cells of layers A and E that are the closest to the collision point and
experience the highest particle flux (see Figure 18). The pile-up noise diminishes for cells in the outermost
layers B and D. The simulation models the 𝜂 dependence of the noise. However, for all 𝜂 values, the
simulation predicts 20% lower noise than the data as shown in Figure 33. The largest part of the difference
comes from the negative energy tail seen in Figure 32, which is a feature of the energy reconstruction
caused by out-of-time pile-up. The total noise measured in MC is used as input to the topological clustering
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Figure 33: The total noise in TileCal cells, as a function of 𝜂, observed in 𝑝𝑝 collision data with 25 ns bunch spacing
at
√
𝑠 = 13 TeV collected in 2016 in the zero-bias stream with an average number of interactions ⟨𝜇⟩ = 30 per bunch

crossing and in the Pythia 8 MC simulation with the A3 minimum-bias tune. The noise is estimated as the standard
deviation (RMS) of the measured cell energy distribution. The data (MC simulation) are plotted with closed (open)
markers. The cells of different layers are shown with different colours.

algorithm for data and MC.

The pile-up noise is measured in all TileCal cells using the dependence of the total noise on ⟨𝜇⟩. As an
example the results of the experimental and simulated data for the cells A5, B5, D2, A13, B13, D6 and E3
are shown in Figure 34. The results for cells of the same type located in Side C (𝜂 < 0) and Side A (𝜂 > 0)
are averaged assuming similar pile-up in both sides of the TileCal. The total noise, 𝜎total, distribution is
fitted using the function:

𝜎total =
√︃
𝜎2

electronics + ⟨𝜇⟩𝜎2
pile-up (20)

where 𝜎electronics and 𝜎pile-up are the electronic and pile-up noise respectively. The statistical errors in
the measured total noise are obtained using pseudo experiments from MC simulation [70]. The use of
statistical errors in the fit increases its reliability. Electronic noise 𝜎electronics that corresponds to ⟨𝜇⟩ = 0,
is measured in pedestal calibration data as discussed in Section 7.4.1. Pile-up noise is derived from a fit
using 𝜎pile-up as the free parameter. The fit functions are overlayed on the experimental and simulated data
points in the figure. The experimental (simulated) determinations of 𝜎pile-up are 25.5 (23.0) MeV for cell
A5, 16.5 (14.2) MeV for the cell BC5, 4.5 (2.95) MeV for the cell D2, 43.9 (40.5) MeV for cell A13, 18.2
(15.1) MeV for cell B13, 7.54 (6.41) MeV for cell D6 and 129.0 (100.6) MeV for cell E3.

The determined pile-up noise is uploaded to the conditions database, for use by the physics object
reconstruction algorithms to calculate total noise for any ⟨𝜇⟩ condition. This is used online by the HLT and
offline by the algorithm building topological clusters used to reconstruct jets [62].
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Figure 34: The total noise in TileCal cells, as a function of the average number of interactions per bunch crossing ⟨𝜇⟩,
observed in 𝑝𝑝 collision data with 25 ns bunch spacing at

√
𝑠 = 13 TeV collected in 2016 in the zero-bias stream

with an average number of ⟨𝜇⟩ equal to 30, and in Pythia 8 MC simulation with the A3 minimum-bias tune. The
noise is estimated as the standard deviation of the energy distribution per cell. The data (MC simulation) are plotted
with closed (open) markers. The noise is shown for cells located in the region (a) 0.4 < |𝜂 | < 0.5 in the LB and (b)
1.2 < |𝜂 | < 1.3 in the EB. Due to statistical limitations, the total noise measured in data is shown only for ⟨𝜇⟩ > 15.
The fit functions from Eq. (20) are overlayed on the experimental and simulated data points (dashed curves) in the
figure.

7.5 Performance of the tile muon trigger system

The tile muon boards, described in Section 4.2, were installed and integrated into the ATLAS data
acquisition system during the LHC technical stop in 2015. The system has been operating since the
beginning of 2018. This section presents results of the tile muon system performance studies using data
collected in 2018.

The 𝜂 distribution obtained using the tile muon trigger can be compared with the one obtained using the L1
muon trigger in Figure 35. The data show that the tile muon trigger coincidence reduces the acceptance rate
in the region 1.0 < |𝜂 | < 1.3 by about 50%. The total muon trigger rate is reduced by about 6%. Studies
made using 𝑍 → 𝜇𝜇 events show that the tile muon trigger inefficiency is less than 2.5%, compatible with
the expected geometrical inefficiency due to the thin gaps between TileCal modules [36].

7.6 Performance of the minimum-bias trigger scintillators

The events used to study the response of the TileCal to isolated hadrons (Section 7.2) were collected in
2017, more than two years after the start of Run 2. As already discussed they were selected with the MBTS
system (Section 4.3) requiring a signal over threshold in at least one MBTS counter in either of the two
sides of the detector.

The MBTS trigger efficiency is measured as a function of the multiplicity of tracks reconstructed in the
inner detector [71]. Figure 36(a) shows the results obtained using data collected in 2015 at the beginning of
Run 2. The trigger efficiency of the events with only one charged particle with 𝑝T > 500 MeV emitted in
the range of |𝜂 | < 2.5 is almost 99%. It reaches 100% for events with more than 10 particles. At the same
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of the tracks is reconstructed using online information. The asymmetry of the distribution is due to the different
acceptance of the muon spectrometer within the toroidal magnetic field.

time, only about 20% of events triggered by the MBTS do not have reconstructed tracks, which means that
the fraction of false triggers is even lower, since this category also contains real 𝑝𝑝 interactions where no
particles are produced in the acceptance of the inner detector. The measurements were performed after
a long shutdown period in which new scintillating counters were installed and the performance of the
detector was not yet affected by the radiation effects discussed in Section 5. In 2015, the PMT HV was set
around 700 V, and the counter threshold value was about 100 mV. In 2017, after more than two years of
operation, the MBTS counter response degraded and the data used to study the response of the TileCal
to isolated hadrons (see Section 7.2) were collected with the PMTs HV increased to 750–800 V and the
threshold value reduced down to around 50 mV. As shown in Figure 36(b) the trigger efficiency drops from
99% to 80% for events with the lowest multiplicity. It is about 95% for events with 10 charged particles
and does not reach 100% even for events with 40 charged particles.
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Figure 36: (a) The efficiency of the MBTS trigger during 𝑝𝑝 collisions at
√
𝑠 = 13 TeV as a function of the multiplicity

of charged particles compatible with the beam line, 𝑛BL
sel , with 𝑝T > 500 MeV and |𝜂 | < 2.5 reconstructed in the

inner detector. The data were collected in 2015. The statistical uncertainties are shown as vertical bars, the sum in
quadrature of statistical and systematic uncertainties is shown as the height of the shaded rectangles [71]. Systematic
uncertainties dominate. (b) The efficiency of the MBTS trigger during 𝑝𝑝 collisions at

√
𝑠=13 TeV as a function

of the multiplicity of charged particles compatible with the beam line, 𝑛BL
sel , with 𝑝T > 500 MeV and |𝜂 | < 2.5

reconstructed in the inner detector. Results from the analysis of data collected in 2017 are compared with those from
2015 presented in (a). The statistical uncertainties are shown as vertical bars, the sum in quadrature of statistical and
systematic uncertainties of the 2017 data are shown by the shaded rectangles. For 2017 data, statistical uncertainties
dominate, while the uncertainties for 2015 data in (b) are smaller than the size of the symbols because of the much
larger range of the vertical axis than in (a).

7.7 Summary of performance studies

Muons produced by𝑊 → 𝜇𝜈 decays in 𝑝𝑝 collisions were used to check the calibration of the TileCal. The
non-uniformity of the cell response, due to variations in the optical components, electronics of the read-out
systems and potential cell miscalibration, is determined. A value of 2.4% is found by analysing the events
of the three periods 2015–2016, 2017 and 2018. The analyses show no clear evidence of problematic cells.
The radial layer intercalibration of the TileCal was also evaluated. For all layers the results are consistent
with a correct setting of the scale used to reconstruct the jet energy within 2% in all three periods. Good
stability of the detector response over time was observed. The studies show 95% confidence intervals for
the variations of the cell response between 2015–2016 and 2017 and between 2017 and 2018 of [−1.3%,
3.3%] and [−2.4%, 2.5%], respectively.

The measurements of the 𝐸/𝑝 ratio using isolated hadrons show good uniformity of the response across the
azimuth angle 𝜙. An agreement between experimental and simulated results of better than 5% is observed,
confirming the goodness of the calibration of the cell energy at the EM scale.

The time calibration was extensively checked and monitored during Run 2. Using jet measurements,
the resolution of the time determination in the TileCal cells is found to be better than 1 ns for energies
deposited in the cells larger than 5 GeV. The huge reduction of the timing jumps, the most critical issue in
Run 1, allowed the investigation of and the correction for other timing-related problems as specified in
Section 3.1.1. In the HG regime, despite significantly larger pile-up, a slightly better time resolution is
obtained in Run 2. The time resolution for LG benefits from an improved calibration procedure.
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Noise measurements were compared with the simulated expectations. In the case of the A12 cells that
receive the highest radiation dose in the regular TileCal cells, the noise is lower by about 7% in MC
simulation compared to data.

In 2015, at the beginning of Run 2, the MBTS trigger efficiency was measured to be larger than 98.5%. In
2017, the responses of the radiation-damaged detectors were found to be 0.5% (inner counters) and 10%
(outer counters) of the corresponding values measured in 2015. Despite this large response deterioration,
in 2017 the MBTS trigger efficiency was larger than 80%.

The tile muon trigger system uses the TileCal information combined with the TGC muon chambers to
reduce the background muon trigger rate due to low momentum protons emerging from the endcap toroid
and the beam shielding. The total muon trigger rate reduces by about 6%. The 𝑍 → 𝜇𝜇 events show that
the tile muon trigger efficiency is about 97.5%, compatible with the expected geometrical inefficiency due
to thin gaps between TileCal modules [58].

8 Conclusion

This paper presents a description of the ATLAS tile calorimeter signal reconstruction, calibration, data
quality monitoring, and performance during the Run 2 data-taking period of the LHC (2015–2018).

A precision of about 1% was demonstrated for the individual calorimeter calibration systems. Information
collected from the D layer of the EB and the MBTS used for trigger purposes have been presented. The
investigation of ageing and radiation damage effects allows the expected light yield of the calorimeter to be
extrapolated to the end of the data-taking period at the LHC (HL-LHC). The cells exposed to the most
severe radiation conditions are expected to degrade to 76+9

−24% (37+17
−27%). The radiation damage to the

MBTS is also assessed. Data quality activities lead the TileCal to contribute with an efficiency of 99.65%
to high-quality ATLAS data-taking and with less than 1.1% of all cells deemed non-operational at the end
of each data-taking year. Thorough monitoring of cell performance allows for quick and efficient repairs
during yearly maintenance periods.

Performance is assessed with isolated muons, hadrons and jets. The proton–proton collisions at the LHC
at a centre-of-mass energy of 13 TeV are used in the analyses. The results obtained by analysing muon
data are consistent with a correct setting of the EM scale used to reconstruct the jet energy within 2%
during all of the Run 2 period. The MC modelling of the single pion energy response is shown to agree
with the data collected within the assigned uncertainties. The timing performance determined from jet
measurements is stable in time, with small increases due to pile-up effects, but stays well below the 0.7 ns
resolution throughout data-taking. Large increases in noise, coming from increased pile-up conditions
during Run 2, are extracted and modelled for each TileCal cell. Despite radiation damage, the MBTS
allows the online selection of events with the highest efficiency and the lowest possible bias, as well as
calorimeter performance studies. Coincidence of the D cells of the EB with the muon trigger system results
in a 50% reduction of the excess trigger rates induced by low energy background protons.

Overall, during the LHC Run 2, the TileCal performed in accordance with expectations.
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