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We present results for the short-distance window observable of the hadronic vacuum polar-
ization contribution to the muon g − 2, computed via the time-momentum representation
(TMR) in lattice QCD. A key novelty of our calculation is the reduction of discretization
effects by a suitable subtraction applied to the TMR kernel function, which cancels the
leading x40-behaviour at short distances. To compensate for the subtraction, one must sub-
stitute a term that can be reliably computed in perturbative QCD. We apply this strategy
to our data for the vector current collected on ensembles generated with 2 + 1 flavours of
O(a)-improved Wilson quarks at six values of the lattice spacing and pion masses in the
range 130 − 420 MeV. Our estimate at the physical point contains a full error budget and
reads (ahvpµ )SD = 68.85(14)stat (42)syst · 10−10, which corresponds to a relative precision of
0.7%. We discuss the implications of our result for the observed tensions between lattice
and data-driven evaluations of the hadronic vacuum polarization.
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I. INTRODUCTION

The anomalous magnetic moment of the muon, as a low-energy precision observable, has
long served as a test of the Standard Model (SM) of particle physics. Its experimental
measurement has reached a spectacular precision. With the latest result of the Fermilab
(g−2) experiment at the 0.20 ppm level [1], the stakes for the SM-based theoretical prediction
have been raised even further. The 2020 White Paper (WP2020) of the Muon (g−2) Theory
Initiative [2] arrived at a result with a quoted precision of 0.37 ppm, the uncertainty being
dominated by the hadronic vacuum polarization (HVP) contribution and to a lesser extent
by the hadronic light-by-light contribution. The very recent experimental result [1] is in
tension with the 2020 prediction at the level of five standard deviations. However, several
results and observations of the last three years concerning the HVP contribution have cast
doubt on the reliability of the 2020 prediction [2].

First, while the WP2020 evaluation of the HVP contribution ahvpµ was based solely on
the dispersion relation relating it to the inclusive e+e− → hadrons cross section, a lattice
QCD calculation with subpercent precision published by the BMW collaboration in 2021 [3]
arrived at a result larger by 2.1 combined standard deviations than the WP2020 one. If
one were to replace the WP2020 evaluation of the HVP contribution by that of the BMW
collaboration, the tension between the SM and the latest experimental result for the muon
(g − 2) would shrink to 1.7σ.

Secondly, four lattice collaborations [3–6] have independently computed a partial HVP
contribution known as the ‘window’ or ‘intermediate-distance’ contribution (ahvpµ )ID, con-
sistently obtaining a result larger by about three percent than via the dispersive method:
the tensions between the individual lattice calculations and the dispersion evaluation [7]
range between 3.7σ and 3.9σ. Even more results [3–6, 8–11] are available for partial flavour
contributions, which further corroborate the discrepancy [12].

Thirdly, a new measurement of the e+e− → π+π− cross section by the CMD-3 collab-
oration has appeared, which lies higher than the previous measurements. This new result
is very significant, since in the dispersive evaluation of ahvpµ , the π+π− channel dominates,

with the ρ meson region 600 MeV <
√
s < 900 MeV providing more than half of ahvpµ . If con-

firmed, the CMD-3 result would bridge the difference between the WP2020 and the BMW
calculations of ahvpµ .

The ‘intermediate window’ alluded to above is the second of three subcontributions in
a partition of ahvpµ based on the Euclidean time separation between two electromagnetic

currents [13, 14]. The first of these subcontributions is the short-distance quantity (ahvpµ )SD

extending up to 0.4 fm (with a soft edge), which is the focus of this paper, while the third,
numerically dominant part is the long-distance contribution (ahvpµ )LD. The short-distance

quantity only represents about ten percent of ahvpµ ; in this respect, its determination at a
precision level of two percent would currently be sufficient. However, we argue below that
it is worth aiming at a subpercent precision for (ahvpµ )SD, in order to provide a clue as to the
origin of the well established discrepancy in the intermediate window quantity.

If one assumes that the tension between the lattice and the dispersive determinations of
the intermediate window is due to an underestimate (by an overall factor of about 0.94) of the
experimentally determined R(s) ratio in the interval from 600 to 900 MeV, then one expects
to find an underestimate of the dispersively determined short-distance quantity by more
than one percent. Specifically, based on our own previous calculation [4] and the estimates
given therein of the fractional contributions to (ahvpµ )SD and (ahvpµ )ID associated with the
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interval 600 MeV <
√
s < 900 MeV, the expectation would be an excess of (1.44± 0.37)% of

our lattice result for (ahvpµ )SD over the dispersive one. Thus it is clear that a precision well

under one percent is required on (ahvpµ )SD in order for such a calculation to have an impact.

The existing lattice results [5, 6] for (ahvpµ )SD are consistent with the scenario above; at the

same time, the evidence for a discrepancy with the dispersive value for (ahvpµ )SD lies only at
the 1.4σ level even for the most precise result [5].

There are further hints in favour of the scenario of an underestimated R(s) ratio in the
ρ region. One is the calculation of the hadronic contribution to the running of the electro-
magnetic coupling α(q2). The Mainz/CLS publication of 2022 [15] showed that a tension
develops between photon virtualities of zero and 1 GeV2, while the running is consistent
with the dispersive approach at higher q2; see [3, 16] for the earlier calculation by the BMW
collaboration. This observation points to an origin at

√
s ≲ 1 GeV in the dispersive ap-

proach, or alternatively to an issue with the lattice data at Euclidean times x0 ≳ 1 fm.
Secondly, the fact that the absolute difference in (ahvpµ )ID appears to reside entirely in the
light-quark connected contribution [12] can be interpreted as a further consistency check,
since the on-shell effects of the strange quark start at

√
s = 2mK ≃ 990 MeV. Thirdly, a

dedicated study of the spectral function, smeared by a Gaussian kernel, has recently been
published [17], where the strongest tension (about 2.9σ) between the lattice and the e+e−

data-based result is seen around the ρ peak with a broad smearing kernel of width 630 MeV.
Last but not least, an increase of the phenomenological R(s) ratio by six percent in the
interval 600 MeV <

√
s < 900 MeV would bring the WP2020 prediction for the muon (g−2)

into perfect agreement with the direct experimental measurement. For all these reasons,
we consider such a scenario to be a useful working hypothesis. At the same time, in this
scenario a very convincing explanation (within or outside the Standard Model) would have
to be found why all previous experimental measurements of the π+π− channel and possibly
also π+π−π0 channel are systematically suppressed in the ρ, ω region, well beyond what the
quoted uncertainties would allow for.

The short-distance observable (ahvpµ )SD can be obtained very precisely in lattice QCD as
far as statistical errors are concerned. Some sources of uncertainty that are very relevant to
the calculation of ahvpµ , such as finite-volume effects or a slight mistuning of the light quark

masses, play hardly any role in (ahvpµ )SD. Also the sensitivity to the ‘absolute scale setting’,
meaning the calibration of the lattice spacing in physical units, is very subdominant. The
main source of systematic uncertainty is the presence of enhanced cutoff effects, which must
be removed via a careful continuum extrapolation if one targets subpercent precision. Given
that cutoff effects are enhanced at short distances, we devise a specific observable that
we subtract from (ahvpµ )SD to facilitate the continuum limit, and evaluate this observable

with the help of massless perturbation theory to order α4
s. It is designed to only receive

contributions from virtualities of order Q2, where Q2 is an adjustable parameter chosen to
lie in the perturbative regime.

This paper is organized as follows. In section II, we describe our notation and computa-
tional strategy, our gauge ensembles and fitting procedures. Section III contains our results
for the various contributions computed using lattice QCD, with two further, small effects
evaluated in its last subsection III H. We present our final result in section IV, and discuss
its impact on the current (g − 2) puzzle.
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II. PRELIMINARIES

Here we recall some basic definitions and describe our overall computational strategy.
In particular, we introduce and discuss the decomposition of the short-distance window
observable, which allows us to gain good control over the extrapolation to the continuum
limit through a combination of perturbation theory and lattice calculations.

The electromagnetic current correlator in the time-momentum representation (TMR) is
defined by

δklG(x0) = −
∫
d3x ⟨Jk(x)Jl(0)⟩, (1)

where Jµ(x) = 2
3
ūγµu− 1

3
d̄γµd− . . . In this representation, the hadronic vacuum polarization

contribution to the muon anomalous magnetic moment is given by1

ahvpµ =
( α

πmµ

)2
∫ ∞

0

dx0 K(mµx0) G(x0). (2)

The function K(z) is given analytically in Ref. [18]. Its asymptotic properties are

K(z) ∼
{

π2

9
z4 z ≪ 1,

2π2z2 z ≫ 1.
(3)

The short-distance window contribution is given by

(ahvpµ )SD =
( α

πmµ

)2
∫ ∞

0

dx0 K(mµx0) wSD(x0)G(x0), (4)

where

wSD(x0) = 1 − Θ(x0, d,∆), (5)

Θ(x0, d,∆) ≡ 1

2

(
1 + tanh

x0 − d

∆

)
(6)

is a smooth step function interpolating around x0 ≈ d between zero and unity on a distance
scale ∆, and we choose the currently standard values

d = 0.4 fm, ∆ = 0.15 fm. (7)

For the perturbative evaluation of high-momentum contributions to ahvpµ , it is useful to
introduce the Adler function, defined as the logarithmic derivative of the vacuum polarization
function,

D(Q2) = 12π2Q2 dΠ

dQ2
. (8)

Note that D(Q2) is normalized so as to have the same high-energy asymptotics as the R
ratio, D(Q2) → Nc

∑
f Q2

f . The quantity

Π(Q2) − Π(Q2/4) =
1

12π2

∫ Q2

Q2/4

dτ

τ
D(τ) (9)

1 The kernel K̃(x0) used in our previous publication [4] corresponds to K̃(x0) = K(mµx0)/m
2
µ.
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will play an important role in the following. It can be computed in the Euclidean theory via
the integral [19]

Π(Q2) − Π(Q2/4) =
16

Q2

∫ ∞

0

dx0 G(x0) sin4
(Qx0

4

)
. (10)

Note that the TMR kernel to compute this quantity is positive-definite, proportional to x40
at short distances and remains bounded at long distances.

A. Flavour structure of the current-current correlator

We write the current with the help of a matrix T a acting in flavour space,

Ja
µ = ψ̄T aγµψ, ψ̄ =

(
ū d̄ s̄ c̄ b̄

)
, (11)

and introduce the flavour-specific TMR correlator

δklG
(a,b)(x0) = −

∫
d3x ⟨Ja

k (x)J b
l (0)⟩. (12)

For a = 1, . . . 8, we define T a = λa

2
⊕ 0c ⊕ 0b to be given by the corresponding Gell-Mann

matrix λa acting in the (u, d, s) sector. We also use Jc
µ = c̄γµc (Jb

µ = b̄γµb) to denote the

charm (bottom) current, i.e. T c = diag(0, 0, 0, 1, 0) and T b = diag(0, 0, 0, 0, 1). The index γ
is used to indicate the physical quark charge matrix, T γ = diag(2

3
,−1

3
,−1

3
, 2
3
,−1

3
).

With this flexible notation in place, we can write the electromagnetic-current correlator
as

G(γ,γ) = G(3,3) + 1
3
G(8,8) + 4

9
G(c,c)

conn + 2
3
√
3
G(c,8) + 4

9
G

(c,c)
disc + 1

9
G(b,b)

conn + . . . (13)

As the notation indicates, for the heavy quarks we treat separately quark-connected and
disconnected contributions. The dots stand for contributions that are too small to be of
relevance in this work, namely disconnected diagrams involving the bottom quark and the
top contribution. We use the corresponding notation for the different flavour contributions
to ahvpµ ≡ aγ,γµ as well as for (ahvpµ )SD ≡ (aγ,γµ )SD, in particular

(ad,eµ )SD =
( α

πmµ

)2
∫ ∞

0

dx0 K(mµx0) wSD(x0)G
(d,e)(x0). (14)

B. General computational strategy

For a contribution to (ahvpµ )SD of a given flavour, we introduce the decomposition2

(ad,eµ )SD = (ad,eµ )SDsub(Q2) + wSD(0) b(d,e)(Q2), (15)

2 With the standard choice of parameters of eq. (7), wSD(0) = 0.995195 and dwSD/dx0(0) =

−0.0125807GeV.
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where

b(d,e)(Q2) =
16α2m2

µ

9Q2

(
Π(d,e)(Q2) − Π(d,e)(Q2/4)

)
, (16)

(ad,eµ )SDsub(Q2) =
( α

πmµ

)2
∫ ∞

0

dx0 G
(d,e)(x0) KSD

sub(mµ, Q, x0), (17)

KSD
sub(mµ, Q, x0) =

(
wSD(x0)K(mµx0) − wSD(0)

(16πm2
µ

3Q2

)2

sin4
(Qx0

4

))
. (18)

On the basis of eq. (3), the (leading) x40 part of the weight function defining (ahvpµ )SD is
cancelled in the integral of eq. (17). We expect this cancellation to reduce cutoff effects
in the lattice calculation. On the other hand, the subtracted quantity can be computed
using the Adler function exclusively at virtualities greater or equal to Q2/4. The known
good convergence properties of D(Q2) for Q ≳ 2.5 GeV lead us to expect similarly good
properties for b(d,e). In eq. (16) applied to the isovector channel, we intend to compute b(d,e)

by inserting the massless perturbative Adler function into eq. (9). In other channels, the
finite quark-mass effects in b(d,e) can be computed in lattice QCD up to the charm quark
mass.

On the left hand side of Figure 1 the kernel function KSD
sub(mµ, Q, x0) of eq. (18) is shown

for several choices of the virtuality Q. The very-short distance region of the integrand for
(ahvpµ )SD is excluded in all cases. In the following, more specific aspects of our strategy are
discussed for the most important channels.

1. The isovector contribution: test of massless perturbation theory

We can write

(ad,eµ )SDsub(Q2
ref) − (ad,eµ )SDsub(Q2) = wSD(0)

[
b(d,e)(Q2) − b(d,e)(Q2

ref)
]
. (19)

This equation can serve as a test to compare lattice results for the left-hand side to the
perturbative Adler function based calculation of the right-hand side. For orientation, at
leading order in perturbation theory

b(3,3)(Q2) =
4α2m2

µ

9π2Q2
ln(2)

Q=5GeV
=== 7.422 × 10−10 (free massless quarks). (20)

2. Strategy for the (u, d, s) isoscalar contribution

Knowing (a3,3µ )SD from the lattice, one method of obtaining (a8,8µ )SD is via the decompo-
sition

(a8,8µ )SD = (a3,3µ )SD + ∆ls(aµ)SD. (21)

Only the term ∆ls(aµ)SD needs to be computed anew. It is SU(3)f breaking and therefore
parametrically suppressed at short distances: in the continuum, the linear combination of
correlators G(8,8)−G(3,3) has the leading parametric behaviour αs(m

2
s −m2

l )/|x0| at |x0| → 0,
thus making the corresponding integrand for (ahvpµ )SD very suppressed at short distances.

Therefore no help from perturbation theory is needed to compute ∆ls(aµ)SD.
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Note that the estimator (21) is entirely equivalent to proceeding via eq. (15), with
b(8,8)(Q2) evaluated via b(8,8) = b(3,3) + ∆lsb , where b(3,3) is taken from massless pertur-
bation theory and ∆lsb from the lattice. However, it appears simpler to focus on ∆ls(aµ)SD,
since the latter quantity is expected to be much smaller than the already computed (a3,3µ )SD.

3. Strategy for the charm-connected contribution

Similarly, the charm-connected contribution can be estimated according to eq. (15), where
the subtraction function b(c,c)(Q2) is evaluated according to

b(c,c)conn(Q2) = 2b(3,3)(Q2) + ∆lcb, (22)

where the first term is taken from massless perturbation theory and ∆lcb is evaluated on the
lattice.

C. Lattice setup

We refer to our previous publications [4, 20] for an in-depth overview of our computa-
tional setup. Here, we only point out the refinements that we have implemented in view of
computing the short-distance contribution and ahvpµ .

1. Gauge ensembles

We perform our computation on the 2+1 flavour CLS ensembles with O(a) improved Wil-
son fermions and a tree-level O(a2) improved Lüscher-Weisz gauge action [23, 24]. Twisted-
mass and RHMC determinant reweighting are used to stabilize the simulations and to sim-
ulate the strange quark, respectively [25–28]. Compared to our recent computation of the
intermediate-distance contribution in [4], we have extended the set of gauge ensembles that
is used in our study. By including a second ensemble with physical quark masses we are
able to more tightly constrain mass-dependent cutoff effects which otherwise could spoil our
strategy to control the continuum extrapolation with ensembles at larger-than-physical light
quark masses.

As the sum of the bare sea quark masses is held constant for each value of the bare
coupling on the ensembles that have been used so far, the combination of meson masses
m2

K + 1
2
m2

π is approximately constant along each chiral trajectory. To correct for a small

deviation from mphys
K when approaching mphys

π , due to cutoff effects and higher orders in chiral
perturbation theory, we have performed dedicated measurements to compute the derivatives
of our observables with respect to the quark masses in [4]. This allowed us to constrain
the dependence of (ahvpµ )ID on m2

K + 1
2
m2

π. In view of the large statistical uncertainties of
these derivatives when considering the region of large Euclidean times, we have adapted
our strategy by including four ensembles on a different chiral trajectory where the strange
quark mass is approximately held at its physical value. Since the pion masses on these
additional ensembles are in the range between 200 MeV and 260 MeV, the deviation from
(mphys

K )2 + 1
2
(mphys

π )2 is at the level of a few percent on these ensembles.
An overview of the ensembles used in this work is given in table I.
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TABLE I: Parameters of the simulations: the bare coupling β = 6/g20, the temporal boundary

conditions, open (o) or anti-periodic (p), the lattice dimensions, the lattice spacing a in physical

units based on [21, 22], the pion and kaon masses, the physical size of the lattice and the length of

the Monte Carlo chain in Molecular Dynamics Units (MDU). Ensembles with an asterisk are not

included in the final analysis but used to control finite-size effects. Ensembles with a dagger are

only on the chiral trajectory where ms ≈ mphys
s . Ensemble N452, marked with a plus, is only used

in the computation of isospin breaking effects.

Id β bc
(
L
a

)3 × T
a a [fm] mπ [MeV] mK [MeV] mπL L [fm] MDU

A653 3.34 p 243 × 48 0.0972(10) 430(5) 430(5) 5.1 2.3 20200

A654 p 243 × 48 338(5) 462(6) 4.0 2.3 16000

H101 3.4 o 323 × 96 0.0849(9) 424(5) 424(5) 5.8 2.7 8064

H102 o 323 × 96 358(5) 445(5) 4.9 2.7 7832

H105∗ o 323 × 96 283(4) 470(6) 3.9 2.7 8260

N101 o 483 × 128 282(4) 468(5) 5.8 4.1 6376

C101 o 483 × 96 222(3) 478(5) 4.6 4.1 8000

C102† o 483 × 96 225(3) 506(6) 4.6 4.1 6000

D150 p 643 × 128 131(3) 484(6) 3.6 5.4 1616

B450 3.46 p 323 × 64 0.0751(8) 422(5) 422(5) 5.1 2.4 6448

S400 o 323 × 128 355(4) 447(5) 4.3 2.4 11492

N452+ p 483 × 128 356(4) 447(5) 6.5 3.6 4000

N451 p 483 × 128 291(4) 468(5) 5.3 3.6 4044

D450 p 643 × 128 219(3) 483(5) 5.3 4.8 2000

D451† p 643 × 128 220(3) 510(6) 5.3 4.8 3700

D452 p 643 × 128 156(3) 490(6) 3.8 4.8 4000

H200∗ 3.55 o 323 × 96 0.0635(6) 423(5) 423(5) 4.4 2.0 8000

N202 o 483 × 128 418(5) 418(5) 6.5 3.0 3200

N203 o 483 × 128 349(4) 447(5) 5.4 3.0 6172

N200 o 483 × 128 286(4) 468(5) 4.4 3.0 6848

D251 p 643 × 128 286(3) 467(5) 5.9 4.1 5968

D200 o 643 × 128 202(3) 486(5) 4.2 4.1 8004

D201† o 643 × 128 202(3) 507(6) 4.2 4.1 4312

E250 p 963 × 192 132(2) 495(6) 4.1 6.1 4640

N300 3.7 o 483 × 128 0.0491(5) 425(5) 425(5) 5.1 2.4 8188

N302 o 483 × 128 350(5) 456(6) 4.2 2.4 8804

J303 o 643 × 192 260(3) 480(5) 4.1 3.1 8584

J304† o 643 × 192 263(3) 530(6) 4.2 3.1 6508

E300 o 963 × 192 177(2) 497(6) 4.2 4.7 4548

J500 3.85 o 643 × 192 0.0386(4) 417(5) 417(5) 5.2 2.5 15000

J501 o 643 × 192 337(4) 450(5) 4.2 2.5 15680
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2. O(a) improvement

We perform full O(a) improvement of the action [29] and the observables used in this
work. We use the local (L) and the point-split (C) currents on the lattice, defined via

J (L),a
µ (x) = ψ(x)γµT

aψ(x) , (23)

J (C),a
µ (x) =

1

2

(
ψ(x+ aµ̂)(1 + γµ)U †

µ(x)T aψ(x) − ψ(x)(1 − γµ)Uµ(x)T aψ(x+ aµ̂)
)
, (24)

where Uµ(x) is the gauge link in the direction µ̂ associated with site x. With the local tensor

current defined as Σa
µν(x) = −1

2
ψ(x)[γµ, γν ]T aψ(x), we perform chiral O(a) improvement of

the currents via

J (α),a,I
µ (x) = J (α),a

µ (x) + ac
(α)
V (g0) ∂νΣa

µν(x) , α = L, C , (25)

with two independent sets of non-perturbatively determined coefficients c
(α)
V from [30]

and [31]. In past work, we have employed the symmetric discrete derivative ∂̃νf(x) =
(1/2a) (f(x+ a) − f(x− a)) to compute the time derivative of the tensor current. At very
short Euclidean distances, where the vector-tensor correlator falls off steeply proportional
to x20, the cutoff effects from the discrete derivative can be significant, despite being O(a2).
By rewriting

∂̃0Σ
a
µ0(x) → 1

x20

[
∂̃0(x

2
0Σ

a
µ0(x)) − 2x0Σ

a
µ0(x)

]
, (26)

the derivative acts on a function that varies more slowly and the size of the cutoff effects
at short distances is reduced. Note that a similar effect may be achieved by rewriting
the TMR integral via integration by parts such that the time derivative only acts on the
functions K(mµx0) and wSD(x0) which are defined in the continuum. In this work, we use
the derivative of eq. (26) to reduce the cutoff effects in the short-distance region.

3. Tree-level improvement

As pointed out in section II B, we reduce cutoff effects from very short Euclidean distances
by evaluating a part of (ahvpµ )SD perturbatively, thus cancelling potentially dangerous effects

of O(a2 log(a)). A further reduction of cutoff effects from short distances may be achieved by
computing these to tree-level in perturbation theory [5, 19] and subtracting them from the
non-perturbatively calculated observable. Denoting the tree-level evaluation of an observable
O(a) by Otl(a), we can improve the approach to the continuum limit by either of the
replacements

O(a) → O(a)
Otl(0)

Otl(a)
, O(a) → O(a) − (Otl(a) −Otl(0)) . (27)

For (ahvpµ )SDsub, we find that the multiplicative improvement seems to reduce the cutoff effects
slightly better than the additive version and therefore use it in this work. Note that the
additive improvement may be used to modify ahvpµ via

ahvpµ (a) → ahvpµ (a) − [(ahvpµ )SD,tl(a) − (ahvpµ )SD,tl(0)] . (28)
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We use massless perturbation theory at leading order to compute (ahvpµ )SD,tl
sub . To all orders

in perturbation theory, the ⟨Σµν(x)Jλ(0)⟩ correlator is a pure O(a) artefact in the massless
theory. Therefore, the currents are automatically O(a) improved, whereas the tree-level

values cL,tlV = 0 and cC,tlV = 0.5 would have to be used for massive correlators. We find

that using the non-perturbatively determined values for c
(α)
V , the same ones as in the non-

perturbative computation, leads to a further reduction of cutoff effects. We interpret this as
a cancellation of effects of O(an), n ≥ 2 that are introduced by the derivative of the tensor
current when performing O(a) improvement.

4. Chiral-continuum fit

Cutoff effects are clearly the biggest challenge for a precise computation of (ahvpµ )SD from
lattice QCD. The reliable extrapolation of our results to the continuum limit with a conser-
vative estimate of the corresponding systematic uncertainty is therefore the main challenge
of this work. Even after applying the techniques described above to tame discretization
effects, higher order cutoff effects, compared to a2 scaling, are visible in our data and thus
have to be included in our fits. We note that it is not the relative size of the cutoff effects
but this curvature that makes the extrapolation challenging. Given the very precise data
and the spread of quark masses on the ensembles which are included in our computation,
we can also resolve mass-dependent cutoff effects.

We therefore test a variety of ansätze to describe the dependence of our data on the
lattice spacing and the quark masses. The fit to the quark mass dependence is no particular
challenge since we include two ensembles at physical quark masses and therefore do not need
to extrapolate. We find mild quark mass effects in the short-distance region.

We set the scale using the gradient flow scale t0/a
2 [32] together with its physical value√

tphys0 = 0.1443(7) fm which was determined in [21] from a combination of fπ and fK . As an

alternative, we have in the past directly set the scale with the pion decay constant by the ratio
fphys
π /(afπ). This was found to reduce the slope of both chiral and continuum extrapolations

for ahvpµ in [20]. Since the short-distance contribution has only a mild dependence on mπ that
is significantly different from that of fπ, we do not use fπ-rescaling in this work. However,
we have verified that we would obtain very similar results to the ones quoted in this work,
albeit with larger uncertainties due to the enhanced difficulty in the extrapolation of the
data to the physical point.

We define our scheme for isospin-symmetric QCD via the conditions

mπ = (mπ0)phys, 2m2
K −m2

π = (m2
K+ +m2

K0 −m2
π+)phys, (29)

corresponding to

mπ = 134.9768(5) MeV , mK = 495.011(10) MeV . (30)

We also introduce the dimensionless combinations

Φ2 = 8t0m
2
π, Φ4 = 8t0(m

2
K + 1

2
m2

π) . (31)

To describe the chiral dependence of the observables O computed in this work, we always
include a term that is linear in m2

π and allow for another term that includes a higher order
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correction,

O(Φ2) =O(Φphys
2 ) + γ1

(
Φ2 − Φphys

2

)
+ γ2

(
fch(Φ2) − fch(Φphys

2 )
)

(32)

where fch ∈ {Φ2 log(Φ2) ; Φ2
2 } .

The strange quark mass dependence is parametrized via the parameter Φ4 ∝ m2
K + 1

2
m2

π

which is close to its physical value on all of the ensembles considered in this work. We fit to

O(Φ4) =O(Φphys
4 ) + γ0

(
Φ4 − Φphys

4

)
. (33)

To describe the cutoff effects with sufficient quality, we need to allow for a number of
terms, guided by Symanzik effective theory. Our most general ansatz is

O(Xa) =β2X
2
a + β3X

3
a + β4X

4
a + δ2X

2
a

(
Φ2 − Φphys

2

)
(34)

+ δ3X
3
a

(
Φ2 − Φphys

2

)
+ ϵ2X

2
a

(
Φ4 − Φphys

4

)
,

where Xa =
√
a2/(8t0). It is not possible to constrain all fit parameters at once. We build

a variety of different descriptions of the chiral and cutoff effects by setting one or several of
the parameters γi, βi, δi, ϵ2 to zero.

We note that, in an O(a) improved theory, the prediction from Symanzik effective theory

for the scaling is a2 [αs(1/a)]Γ̂ with Γ̂ the leading anomalous dimension [33, 34]. Any cur-
vature in a2 may therefore be due to the modified scaling behaviour and not due to higher
order cutoff effects.3 The leading anomalous dimension for local quark bilinears with vector
quantum numbers has been computed to be Γ̂ = 0 in the O(a) improved action used in this
work [35]. The lowest anomalous dimension from the gauge action is 0.76 [34] and larger
than the smallest non-zero contribution from the current, which is 0.395. We allow for effects
from beyond leading order terms by including the modification

X2
a → [αs(1/a)]0.395X2

a (35)

in our continuum extrapolations, thereby doubling the number of fit ansätze. We use five-

loop running [36], starting at Λ
(3)

MS
from [37], to determine the running-coupling constant.

Generally, we find that fits with Γ̂ = 0 are favoured over fits with Γ̂ = 0.395. However,
the latter have non-vanishing weights in our averages and prefer continuum extrapolated
results that are shifted to slightly smaller values. The effect of including a non-vanishing
anomalous dimension is found to be significantly smaller than the overall uncertainty in all
cases considered in this work.

We extend our explorations of the parameter space for the chiral and continuum extrap-
olations by performing cuts in the data and repeating the analysis with reduced data sets.
We perform cuts in the lattice spacing by removing the coarsest or the two coarsest lattice
spacings from our analysis. Furthermore, we perform cuts by excluding all ensembles with
mπ < 400 MeV, or with mπ < 300 MeV respectively in the case of contributions that vanish
at the SU(3) symmetric point, from our analysis.

3 Note that this is not related to the log-enhanced cutoff effect that we have eliminated from our calculation

by the changes to the TMR kernel function.
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FIG. 1: Left: Illustration of the modified short-distance kernels according to eq. (17) with varying

virtuality. Right: Integrands for the computation of (ahvpµ )SD on ensemble E250 with near physical

quark masses at a ≈ 0.064 fm. Smaller contributions have been scaled as indicated in the plot.

To assign and compare fit qualities in view of the change of the number of fit parameters
and data points, we apply the Akaike information criterion [38] and the model averaging
method from [39]. We assign a weight

wi = N exp

[
−1

2

(
χ2
i + 2ki − 2ni

)]
(36)

to each fit, where ki is the number of fit parameters and ni is the number of data points in
the fit with minimized χ2

i . The normalization N is such that
∑

iwi = 1.4

We obtain the central value and statistical uncertainty of an observable O by a weighted
average over all analyses

Ō =
∑
i

wiOi . (37)

Our estimate of the systematic error associated with the extrapolation to the physical point
is given by

(δO)2syst =
∑
i

wi(Oi − Ō)2 . (38)

Statistical uncertainties are determined and propagated using the Γ-method in the imple-
mentation of the pyerrors package [41–43].

III. RESULTS

To illustrate the behaviour and the relative size of the contributions to (ahvpµ )SD, we show
in the right panel of Figure 1 integrands of the various contributions according to eq. (14),
i.e., without subtraction, where the smaller contributions are scaled as indicated in the figure
to show them on the same scale. The LC discretization is displayed for the quark-connected

4 See the discussion in [3, 40] concerning slightly modified weights in the presence of cuts in the data and

the differences between them. We find no significant difference in our results when using one of these

modified weights.
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contributions and the CC discretization for the two quark-disconnected contributions. The
charm-connected correlation function contributes significantly to the final result for (ahvpµ )SD.
Except for the two charm-disconnected contributions, the relative statistical uncertainties
are very small.

As outlined above, we non-perturbatively compute the subtracted observables
(ad,eµ )SDsub(Q2) according to eq. (17). After the combination with b(d,e)(Q2), eq. (16), the
dependence on the virtuality Q has to cancel. We perform our calculation for several values
of Q to explicitly test this. For our final result, we choose Q = 5 GeV as a good compromise
between a high enough scale for the perturbative evaluation of the Adler function and a
smoothly varying kernel function KSD

sub(mµ, Q, x0) on the lattice.
If not stated explicitly, all results for the quantities b(d,e), (ad,eµ )SDsub and (ahvpµ )SD are from

here on expressed in units of 10−10.

A. Perturbative evaluation of b(Q2) in the isovector channel

We have used the perturbative coefficients of the Adler function as given in [44] up to α3
s

and taking the O(α4
s) term from [45]. The effect is to multiply the parton-level prediction

by the factor (1 + (αs/π) +
∑4

n=2(αs/π)n dn).
We use the perturbative Adler function in the Nf = 3 massless theory using ΛMS =

0.338(12) GeV [46]. The QCD beta function was taken into account up to three-loop order
included, and we used the corresponding large-Q2 asymptotic solution for αs throughout,
after having checked that using instead the numerical solution for αs makes an entirely
negligible difference. As expected, the convergence of perturbation theory is excellent. For
instance, at Q = 5 GeV, the set of values of the subtraction term, from the parton-level
prediction to the highest-order prediction read

b(3,3)(25 GeV2) = {7.422, 7.971, 8.037, 8.057, 8.068}. (39)

Table II lists the perturbative results for several values of Q2. Secondly, the uncertainty
of ΛMS induces an absolute uncertainty of 0.011 on b(3,3)(25 GeV2). Thirdly, the sea-quark
effect due to the strange quark is small. In the estimates above, the strange-quark mass is
treated as zero. Evaluating the expression in the Nf = 2 massless theory (corresponding to
ms = ∞) with ΛMS = 0.330 GeV [46], we obtain

b(3,3)(25 GeV2) = 8.020 (Nf = 2). (40)

The comparison of Eqs. (39) and (40) shows that the effect of changing ms = 0 to ms ≃
100 MeV must be negligibly small, since it is parametrically suppressed by m2

s/Q
2. Finally,

we have checked that the phenomenologically estimated gluon and quark ‘condensates’ [47]
make a negligible contribution.

Anticipating that the quantity b(3,3)(25 GeV2) is the only perturbative prediction that
enters our final result for (ahvpµ )SD, we take as its full uncertainty the linear sum of the error

from ΛMS and the size of the last (O(α4
s)) perturbative term,

b(3,3)(25 GeV2) = 8.068 ± 0.022. (41)
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Q[GeV] b(3,3)(Q2) b(c,c)(Q2)

3.5 16.740(43)(34) 20(12)

4.0 12.727(26)(22) 16.3(5.1)

5.0 8.068(11)(11) 11.4(1.3)

6.0 5.567(6)(6) 8.57(45)

7.0 4.072(3)(4) 6.66(17)

8.0 3.106(2)(3) 5.31(8)

TABLE II: The perturbatively computed subtraction terms b(3,3)(Q2) and b(c,c)(Q2) (in units of

10−10) for the isovector and the charm correlator respectively. The former is computed using

the Nf = 3 massless perturbative Adler function to O(α4
s) included, the latter with the massive

perturbation theory to O(α2
s) included, in the expansion with respect to the ratio (m2

c/Q
2) to third

order included. The first number in brackets indicates the absolute size of the last O(αn
s ) term

included in the estimate and gives an indication of the uncertainty related to the convergence of

the perturbative series. For b(3,3), the uncertainty induced by that on ΛMS is indicated as well.
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FIG. 2: Illustration of fits to (a3,3µ )SDsub(25GeV2). Left: Best fit, according to its model weight,

to the data for set 1, LL. The data is corrected for deviation from physical Φ4. The coloured

lines show the evaluation of the fit function at finite lattice spacing. The black line, together with

the grey band, show the dependence on Φ2 in the continuum limit. Right: Approaches to the

continuum limit for four sets of data based on the improvement schemes of set 1 and 2 and the LL

and LC discretizations of the current based on a scan over fit models for (a3,3µ )SDsub(25GeV2). Each

line shows the result from one single fit and the opacity of the lines corresponds to the weight of

the fit in the model average. Dashed vertical lines indicate the lattice spacings used in this work.

B. Non-perturbative evaluation of (ahvpµ )SDsub(Q
2) in the isovector channel

In the short-distance regime, no signal-to noise problem hinders the computation in the
isovector channel and the precise lattice data can be integrated by summation. We evaluate
(ahvpµ )SDsub at several values of Q2 to be able to monitor the convergence of the sum in eq. (15)

and to investigate whether the choice of Q2 has an influence on the systematic uncertainties
of the lattice evaluation.

The small finite-volume effects are corrected using the method by Hansen and Patella
[48, 49], see [4] for the details of our implementation. We find the size of the correction
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to be at most two permille on the ensembles included in our computation. Finite-volume
corrections due to kaon loops are non-negligible close to the SU(3) symmetric point, where
pion and kaon masses are of similar order. We use the same procedure as for the effects
from pions to estimate the corresponding correction. Both contributions and their sum are
given in table V. A flat 25% systematic uncertainty is assigned to the corrections.

As explained above, we scan a variety of ansätze for the chiral-continuum extrapolation
to determine (a3,3µ )SDsub at the physical point. The best fit according to the AIC for the data
of set 1 with the LL discretization is shown on the left-hand side of Figure 2. The minimized
χ2 is 7.64 for 11 degrees of freedom (dof). We show the dependence of (a3,3µ )SDsub(25 GeV2)
on the light quark mass proxy Φ2, where the data has been corrected for deviations from
Φphys

4 and cuts to mπ < 400 MeV and a < 0.09 fm have been applied. The data and the fit
function are shown for the five values of the inverse gauge coupling that are included in this
fit. As visible from the figure, the quark mass effects are mild but depend on the lattice
spacing. The fit also includes cutoff effects proportional to a2Φ4 which are not visible in the
plot.

On the right-hand side of Figure 2, we show the approach to the continuum limit at
physical quark masses, as determined from the scan over all fit models for both discretizations
of the current and both improvement schemes. Each line corresponds to one fit and the
opacity is related to the model weight of the fit according to the AIC. The relative size of
the cutoff effects, about 10% in the most extreme case, is not larger than in our computation
of the intermediate-distance window observable [4], thanks to some of the improvements
described in section II C. For the same reason, the difference between the two discretizations
of the current is small.

The two sets of improvement schemes lead to cutoff effects that have opposite signs. A
similar behaviour has been observed for the case of the intermediate-distance window, where
the extrapolations of both data sets agreed in the continuum limit, taking into account the
curvature in the extrapolation of the set 2 data. In the case of (a3,3µ )SDsub we observe that most
of the fits from set 2 with a large model weight favour slightly larger values than the fits to
the data of set 1. However, for some fits we observe a strong curvature at very small values
of the lattice spacing such that they are compatible with the more benign extrapolations for
set 1. In the current situation, where we do not have more information on the behaviour
towards the continuum limit, e.g., by adding data at even finer lattice spacings, we decide
to take the discrepancy between the two data sets into account as systematic uncertainty of
our continuum extrapolation.

We perform the model average over the four data sets, using a flat relative weight between
the sets and arrive at

(a3,3µ )SDsub(25 GeV2) = 35.03(4)stat(21)syst(3)scale[22] . (42)

Whereas the systematic uncertainty of 0.21 amounts to about 0.6% of the value of (a3,3µ )SDsub,

we note that it is sub-permille with respect to a3,3µ . The description of the short-distance
cutoff effects therefore does not seem to be a roadblock towards the target precision for the
full HVP.

The qualitative behaviour of the continuum extrapolation does not vary with the choice of
Q2. A smaller value ofQ2, which removes more of the potentially difficult ultra short-distance
region, does not lead to a better agreement of the results based on the two improvement
schemes.
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isovector channel, computed non-perturbatively in lattice QCD vs. using the perturbative Adler

function (see eqs. (9), (16) and (19)). For visibility, the data is slightly displaced horizontally. Right:

Stability of the result for (a3,3µ )SD as a function of the virtuality Q2 chosen in the perturbatively

treated subtraction term. Choosing Q = ∞ corresponds to the entire (a3,3µ )SD being computed in

lattice QCD without any use of perturbation theory.

C. Combination of perturbative and non-perturbative evaluations in the isovector

channel

The non-perturbative evaluation of (ahvpµ )SDsub at several values of Q2 gives us the possibility
to monitor the convergence of perturbation theory and to directly compare the perturbative
and non-perturbative evaluations of the difference in eq. (19). We choose the reference energy
Qref = 8 GeV where the convergence of perturbation theory is expected to be excellent.

In the non-perturbative evaluation, we compute the left hand side of eq. (19). We get
compatible results when performing the difference either in the continuum limit or when
subtracting ensemble by ensemble and extrapolating the difference. We choose the second
version for the comparison with perturbation theory in Figure 3. It can be seen that
both approaches give essentially the same results down to Q = 4 GeV, confirming the good
convergence of the perturbative series.

On the right-hand side of Figure 3 we depict the final quantity (a3,3µ )SD depending on
the choice of Q. Any dependence on Q should be removed after combining lattice and
perturbation theory and indeed all results are entirely compatible with each other. For our
final estimate, we use Q = 5 GeV and obtain

(a3,3µ )SD = 43.06(4)stat(21)syst(3)scale[22] . (43)

We also show a result for the direct evaluation of (a3,3µ )SD, without any subtraction in
the kernel function, in Figure 3, where we have ignored the possibility of cutoff effects of
O(a2 log(a)) [19] being present in the lattice data and employed the same set of continuum
extrapolations as for the subtracted quantity. The agreement with our final result is an
indication that the size of these effects is small for this specific observable.
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four categories entering the model average.

D. Non-perturbative evaluation of ∆ls(aµ)
SD

To compute the isoscalar contribution to (ahvpµ )SD, it suffices to evaluate ∆ls(aµ)SD as
given by eq. (21). The quark-disconnected loops for light and strange quarks, computed as
outlined in [15], enter here and may be precisely determined in the short-distance region.
By definition, the splitting ∆ls(aµ)SD vanishes at the SU(3) symmetric point and is expected
to depend at leading order on ms −ml. We take this knowledge into account for the chiral
and continuum extrapolation. Defining Φδ = Φ4 − 3

2
Φ2, we parametrize

∆ls(aµ)SD(Φδ,Φ4, Xa) = Φδ

(
γ1 + γ2Φδ + β2X

2
a + β3X

3
a + γ0Φ4

)
, (44)

and again build a variety of ansätze by setting coefficients to zero. The ensembles with
SU(3) symmetry are excluded from these fits. All cutoff effects are suppressed by Φδ close
to the SU(3) symmetric point.

On the left-hand side of figure 4 we show the Φ2 dependence for the data and a typical fit
for set 2 and the LL discretization. The constraint ∆ls(aµ)SD = 0 for Φ4 = 3

2
Φ2 at the SU(3)

symmetric point is visible by the intersection of the curves which denote the Φ2 dependence
at finite lattice spacing and in the continuum, respectively. Towards the physical point,
cutoff effects grow since the suppression is lifted. On the right-hand side of the figure, we
show the approach to the continuum for all fits that are contained in the scan over the
different models, evaluated at physical light and strange quark masses. The data from set 1
approach the continuum value from below whereas the cutoff effects for data set 2 have the
opposite sign.

With the result

1
3
∆ls(aµ)SD = −0.495(7)stat(34)syst(4)scale[36] , (45)

from an average over the fit models, eq. (21) and the result for the isovector contribution
from eq. (43), we arrive at

1
3
(a8,8µ )SD = 13.857(14)stat(78)syst(7)scale[81] , (46)
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for the isoscalar contribution. We note that this result has significant correlation with the
result for (a3,3µ )SD, which is taken into account when combining both in (ahvpµ )SD.

For comparison with other lattice results, we combine the results for the isovector and
isoscalar contributions in eqs. (43) and (46) to compute the strange-connected contribution,

1
9
(as,sµ )SD = 9.072(10)stat(58)syst(3)scale[60] . (47)

The disconnected contribution from light and strange quark loops is found to be irrelevant
with respect to the precision quoted here. A direct evaluation of the strange-connected
contribution via the same strategy as for the charm-connected contribution gives a result
that is fully compatible with eq. (47).

E. Evaluation of the charm-connected contribution

To compute the charm-connected contribution on the lattice, we start by evaluating
(ac,cµ )SDsub(Q2). The tuning of the charm quark hopping parameter to match the mass of the
Ds meson of 1968.47 MeV and the determination of the renormalization constant for the
local charm current in a massive renormalization scheme have been described in [4, 20].
After the continuum extrapolation, we perform a small correction to adapt the tuning to
the updated value of the scale setting quantity tphys0 from [21].

In contrast to the isovector contribution, we find very good agreement of the continuum
extrapolations of the four data sets, despite having significantly different cutoff effects. We
illustrate the cutoff effects based on the scan over the fit models for each of the four data
sets on the left-hand side of Figure 5. For our final value, in line with our previous work,
we use only the LC discretization of the current, since it exhibits significantly smaller cutoff
effects.

The effect of massive quarks in the contribution b(c,c) may be computed on the lattice
without potentially dangerous log-enhanced cutoff effects. The size of this contribution
strongly depends on the choice of Q and at large values of Q, the observable is dominated
by distances < 0.3 fm. On the right-hand side of Figure 5 we show the approaches to the
continuum, based on the scan of the fit models. We evaluate ∆lcb(Q

2) for the same values of
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Stability of the result for (ac,cµ )SD as a function of the virtuality Q2 chosen in the subtraction term.

Choosing Q = ∞ corresponds to the entire (ac,cµ )SD being computed in lattice QCD without any

use of perturbation theory.

Q2 as (a3,3µ )SD to explore the parameter space and to be able to compare to the evaluation
of the same observable using massive perturbation theory, see table II.

The perturbative evaluation is based on the expansion in m2
c/Q

2 of the vacuum polar-
ization, computed to O(α2

s) in [50]. We have kept expansion terms up to O((m2
c/Q

2)4) in
the perturbative orders α0

s and αs, while we kept expansion terms up to O((m2
c/Q

2)3) in the
O(α2

s) contribution. When computing b(c,c)(Q2), we evaluate αs as well as the MS charm
mass at a scale µ2 given by the geometric mean of Q2 and Q2/4, using the FLAG’21 [46]
value of ΛMS and starting from the PDG value mc(µ = mc) = 1.27 GeV [51]. The number
indicated in brackets in the b(c,c) column of table II represents the contribution of the O(α2

s)
term as a way to indicate the uncertainty of the prediction. The quark-mass dependent
contribution to b(c,c)(Q2) is compared to lattice data in Fig. 6.

On the left-hand side of Figure 6, we show the comparison of the perturbative prediction
and the lattice result for ∆lcb(Q

2) in the form proposed in eq. (19). We choose Qref = ∞
where ∆lc has to vanish. It is visible that at small Q, despite giving similar central values,
the uncertainty on the perturbative result is significantly larger than the uncertainty on the
lattice evaluation, which is dominated by the systematic uncertainty from the continuum
extrapolation. We note that the relative size of this uncertainty grows with increasing Q,
whereas its absolute size decreases.

For our final result, we combine the non-perturbative evaluations of (ac,cµ )SDsub(Q2) and

∆lcb(Q
2) with the perturbative result for b(3,3)(Q2). The combination for several values of

Q2 is shown on the right-hand side of Figure 6. The residual dependence on Q is negligible
with respect to the uncertainties. For our final result, we again choose Q = 5 GeV and with

4
9
(ac,cµ )SDsub(25 GeV2) = 6.81(9)stat(21)syst(7)scale[25] , (48)

4
9
∆lcb(25 GeV2) = −2.42(4)stat(10)syst(3)scale[11] , (49)

we arrive at

4
9
(ac,cµ )SD = 11.53(13)stat(23)syst(11)scale[30] . (50)
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FIG. 7: Illustration of typical fits to the charm-disconnected contributions. The data is corrected

for deviations from Φphys
4 . The coloured lines show evaluations of the fit function at finite lattice

spacing and the grey area show the result in the continuum limit. Left: Fit to 4
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c,c
µ )SDdisc with

χ2/dof = 17.60/16. Right: Fit to 2
3
√
3
(ac,8µ )SDdisc with χ2/dof = 9.20/12.

F. The charm-disconnected contributions

The quark-disconnected contributions including charm quarks have not been included in
our previous results for ahvpµ [20] and (ahvpµ )ID [4] because they are expected to be numerically
very small and mostly contained in the short-distance region. In this work, we compute the

contributions G(c,8) and G
(c,c)
disc in a partially quenched setup, see Appendix C of [15] for an

explanation of the computational setup. The charm quark hopping parameter is set to the
same value as in the quark-connected case. To avoid mixing with the singlet current at O(a)
in the case of G(c,8), and anticipating smaller cutoff effects in the case of a heavy quark (see
section III E), we evaluate the correlation functions with conserved vector currents at source
and sink.

We find both contributions to be very small and, at finite lattice spacing, non-zero only
below a distance of about 1 fm. Given the smallness of these contributions, we perform the
analysis without subtractions in the kernel function, ignoring the possibility of log-enhanced
cutoff effects.

The charm-charm contribution is dominated by cutoff effects, already visible by com-
paring different discretizations of the current on a single ensemble. We find significantly
different integrands and even a change in sign when employing the LL formulation of the
current instead of CC or LC. Accordingly, the relative size of the cutoff effects is found to be
large in the continuum extrapolation. On the left-hand side of Figure 7 we show an exem-
plary chiral-continuum extrapolation for this contribution. As can bee seen in the figure,
the sign changes from positive to negative when taking the continuum limit. We attribute
the slight light quark mass dependence to the matching of the charm quark via the mass of
the Ds meson and the variation of the strange quark mass in our set of ensembles. At the
physical point we find after averaging over the fit models the value

4
9
(ac,cµ )SDdisc = −0.0010(18)stat(32)syst(1)scale[37] , (51)

and thus only an upper limit on the magnitude of this contribution.
Since the contribution (ac,8µ )SD is SU(3) suppressed, we employ fits according to eq. (44).

An example fit is shown on the right-hand side of Figure 7. Cutoff effects are suppressed close
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to the SU(3) symmetric point but significant at physical quark mass. The chiral-continuum
extrapolated value is compatible with zero. We obtain

2
3
√
3
(ac,8µ )SDdisc = 0.0020(17)stat(25)syst(0)scale[31] , (52)

from averaging over all fit models.
Both contributions are thus negligible compared to (ahvpµ )SD (and our final uncertainty).

Naturally, this carries over to ahvpµ . Summing the two results above and adding the discon-

nected contribution that enters our final result via (a8,8µ )SD, we quote

(ahvpµ )SDdisc = 0.0013(25)stat(41)syst(5)scale[49] (53)

to allow for a comparison with other works.

G. Isospin-breaking corrections

We apply two complementary methods to determine isospin-breaking effects in (ahvpµ )SD.
The first employs massless QCD perturbation theory to compute the leading QED effects.
The second approach is based on the explicit calculation of isospin-breaking corrections due
to unequal up and down quark masses and electric charges, following the same method as
in our previous publication on the intermediate-distance window observable [4].

To compute the leading QED effects at short distances in massless QCD perturbation
theory, we start from the expression for the relative correction to the Adler function (see [52],
where the correction is given for the R ratio)

DQCD,1 internal γ(Q2)

DQCD(Q2)
=
α

π
·
(

3

4
− αs

π
+ O(α2

s)

) ∑
f=u,d,s Q4

f∑
f=u,d,s Q2

f

. (54)

Note that in this notation DQCD(Q2) = 3(1+(αs/π)+O(α2
s))

∑
f=u,d,s Q2

f is the pure massless

QCD expression, while DQCD,1 internal γ(Q2) is the contribution from massless QCD containing
exactly one internal photon line. The ratio (54) amounts to 0.51×10−3 for αs = 0.30 for the
(u, d, s) contribution, and to 0.57 × 10−3 if one restricts one’s attention to the (u, d) sector.
These are very small corrections indeed, yielding the estimate [(a3,3µ )SD+ 1

3
(a8,8µ )SD]1 internal γ =

0.03. For the QED correction to the charm contribution, we use the KS spectral function
expressed in terms of the MS charm mass. This means that the latter mass is kept fixed
as the electromagnetic interaction is ‘turned on’. The free-quark level contribution of the
charm is 4

9
(ac,cµ )SD = 11.6 using the mass of mc(mc) = 1.27 GeV, while the relative QED

correction to that is 0.83 × 10−3. In absolute terms, this means

4
9
(ac,cµ )SD(1 internal γ) = 0.01. (55)

For our second approach we have computed (ahvpµ )SD in QCD+QED on a subset of our
ensembles using Monte Carlo reweighting combined with the leading-order perturbative
expansion of QCD+QED about the isosymmetric theory [53–57]. The same method was
applied in Ref. [4]. In order to determine the dependence of isospin-breaking corrections to
the short-distance window observable on the pion mass and the lattice spacing, we have used
eight ensembles (A654, H102, N101, N452, N451, D450, N203 and N200), covering a much
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FIG. 8: The relative strong and electromagnetic isospin-breaking corrections to the connected

light and strange quark contribution computed using the conserved-local (upper left panel) and

local-local (upper right panel) discretizations of the vector current. The light blue crosses denote

the prediction from massless QCD (see the main text). The dashed line and the grey area show

our final estimate. The two panels at the bottom show the mass splittings of charged and neutral

kaons and pions, respectively. The black stars represent the experimental values.

wider range of pion masses (220−350 MeV) and lattice spacings (0.064−0.097 fm) compared
to our previous calculation [4]. As before, we define our hadronic renormalization scheme in
terms of m2

π0 , m2
K+ +m2

K0 −m2
π+ , m2

K+ −m2
K0 −m2

π+ +m2
π0 and the fine-structure constant

α. Neglecting isospin-breaking effects in the lattice scale and in the quark sea, as well as
quark-disconnected contributions in the calculation of the relevant correlation functions, we
realize our scheme by matching the values of m2

π0 and m2
K+ +m2

K0 −m2
π+ in QCD+QED to

those in the isosymmetric theory and by setting m2
K+−m2

K0−m2
π+ +m2

π0 to its experimental
value. Further technical details are described in section VI of Ref. [4].

Our results for the relative size of the isospin-breaking corrections to the connected light
and strange contributions to (ahvpµ )SD are shown in the upper panel of Figure 8 for the
conserved-local (left) and local-local (right) combinations of vector currents. We make two
observations: first, the relative corrections are very small and typically amount to a few
per-mil. Second, there is no clear dependence of the results on the pion mass and the
lattice spacing, which would allow for a systematic extrapolation to the physical point. On
the other hand, our results for the meson mass splittings mK+ − mK0 and mπ+ − mπ0 ,
shown in the lower panels of Figure 8, and which include an additional ensemble at almost
physical pion mass (D452), show a consistent trend towards the corresponding experimental
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values. We are, therefore, confident that the typical size of isospin-breaking corrections to
(ahvpµ )SD has been determined correctly. Taking into account the spread in the results and
allowing for a generous error, we represent the data shown in the upper panels of Figure 8
by (1.5 ± 1.5) × 10−3. We can then work out the absolute correction to the connected light
and strange quark contribution, by multiplying the sum of eqs. (43) and (47) with 0.0015,
which yields

[(a3,3µ )SD + 1
9
(as,sµ )SD] × 0.0015 = 0.085 . (56)

Adding the QED correction to the charm quark contribution of 0.01 from eq. (55) and
assuming an uncertainty of 100% for the latter, we arrive at

[(a3,3µ )SD + 1
9
(as,sµ )SD + 4

9
(ac,cµ )SD]SIB,QED = 0.095(95) , (57)

which we quote as the total isospin-breaking correction to (ahvpµ )SD. This number is larger

but of the same order of magnitude compared to the QED correction to [(a3,3µ )SD+ 1
3
(a8,8µ )SD+

4
9
(ac,cµ )SD] estimated in massless QCD perturbation theory at leading order and denoted by

the light blue crosses in Fig. 8, which further corroborates our findings.

H. Further, small contributions

In this section, we present our (mostly perturbative) estimates for two small contributions
that we did not evaluate directly in lattice QCD.

For the contribution of the b quark, (ab,bµ )SD, the perturbative spectral function is known
exactly to O(αs) from the calculation of Källén-Sabry (KS) [58], described for instance
in [59]. The O(α2

s) corrections were calculated in [60]. We have evaluated the KS prediction,
improved by substituting the pole quark-mass appearing in R(s) by its MS counterpart and
evaluating the latter at the scale s. Using the PDG bottom mass of 4.18 GeV, this results
in the estimate 1

9
(ab,bµ )SD = 0.31.

We also note the NRQCD based lattice calculation [61], which finds 1
9
ab,bµ = 0.271(37),

while the phenomenological estimate [62] based on sum rules obtains 0.30(2). We have
checked that the bottom contribution to 1

9
(ab,bµ − (ab,bµ )SD) is on the order of 0.003. We thus

arrive at our estimate of
1
9
(ab,bµ )SD = 0.29(3). (58)

As for the effect of the missing charm sea quarks in our lattice calculation, we estimate
its order of magnitude based on perturbation theory, rather than on D meson loops as we
previously did for the intermediate window in [4], since (ahvpµ )SD involves relatively short
distances. Using the perturbative results of [63], we estimate the effect to be at the level of

[(a3,3µ )SD + 1
3
(a8,8µ )SD]pert. charm sea quark effect = 0.02. (59)

Note that the perturbative estimate of the connected charm contribution is in rather good
agreement with the lattice calculation (see the text above eq. (55)). Nevertheless, since eq.
(59) represents only the leading perturbative prediction for the effect under scrutiny, we will
conservatively assign an uncertainty of

∆[(a3,3µ )SD + 1
3
(a8,8µ )SD]charmquenching = 0.10 (60)

to our calculation due to the quenching of the charm quark.
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IV. CONCLUSION

Combining the results of sections III, we arrive at the result

(ahvpµ )SD = 68.85(14)stat(39)syst(15)scale[45] , (61)

where all contributions and sources of uncertainty have been taken into account. As outlined
in the main text, we have evaluated the subtracted quantity of eq. (17) for Q2 = 25 GeV2.
For this choice, 26% of the result in eq. (61) are due to massless perturbation theory applied
in the spacelike domain. On the left-hand side of Figure 9 we show results for (ahvpµ )SD

for several choices of the virtuality, the grey band denoting our final estimate. No residual
dependence on the choice for Q can be resolved. At Q = 4 GeV 41% of the result would
stem from massless perturbation theory, as given by Table II, whereas the contribution at
Q = 8 GeV would only be 10%. We find a noticeable, but not significant difference of our
results using (ahvpµ )SDsub with respect to a direct evaluation of (ahvpµ )SD, as indicated by the
leftmost data point in the figure.

We have shown that, in our data set, (ahvpµ )SD depends much more strongly on the lattice
spacing than on the quark masses (see Fig. 2). The very fine lattices employed here were
thus instrumental in controlling the continuum limit, even though most of them correspond
to heavier-than-physical pion masses. The final uncertainty is dominated by systematic
uncertainties, mostly from the variation of models selected to perform the continuum ex-
trapolation. On the right-hand side of Fig. 9, we show the contributions to the squared
uncertainty. The contribution labelled ‘statistics’ corresponds to the statistical uncertainty
of 0.14 in eq. (61). The dependence on the scale setting quantity, and therefore also the
resulting contribution to the final uncertainty, is dominated by the charm quark contribution
and contains the matching with the mass of the Ds meson.

In table III we collect the dependence of specific (intermediate) results with respect to
the quantities that define our scheme of isospin symmetric QCD. The information can be
used to adapt the results to a different scheme, provided that the differences in the input

quantities are small. For example, a shift in the scale setting quantity
√
tphys0 to the current

Nf = 2 + 1 + 1 FLAG average with the central value
√

(t0)
phys
Nf=2+1+1 = 0.14292 fm would

result in the adapted value (ahvpµ )SD = 69.00(45).
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S

O
√
t0 mπ mK mDs

(a3,3µ )SD −3.47 −0.11 −0.60 –
1
3(a

8,8
µ )SD −0.70 +0.04 −1.55 –

4
9(a

c,c
µ )SD −11.37 −0.07 +3.57 −31.05

(ahvpµ )SD −15.53 −0.14 +1.43 −31.05

TABLE III: Dimensionless scheme dependencies of observable O with respect to the quantity S

according to S ∂O
∂S . The four quantities S define the scheme of isoQCD in this work. Their central

values are
√
t0 = 0.1443 fm, mπ = 134.9768MeV, mK = 495.011MeV, mDs = 1968.47MeV.
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FIG. 10: Comparison of our results for the short-distance window observable (ahvpµ )SD (right panel)

and the light-quark connected contribution (left panel) to other recent lattice calculations by ETM

[5] and RBC/UKQCD [6]. Our results are denoted by green circles and band, while the data-driven

estimate of Colangelo et al. [7] is shown as the red circle and band.

A compilation of recent results for the short-distance window observable [5–7], including
the estimates from this work, is shown in Figure 10. Our result (61) is in good agree-
ment with the dispersive estimate from [7], (ahvpµ )SD = 68.4(5). Our result is also in good

agreement with the lattice result from the ETM collaboration [5], (ahvpµ )SD = 69.27(34). In
the introduction, a schematic scenario was discussed in which the R ratio corresponding to
lattice calculations is enhanced by six percent relative to the e+e− data entering the de-
termination of [7] in the interval 600 MeV <

√
s < 900 MeV. Such an enhancement would

increase (ahvpµ )SD by about one unit. Both the ETM and our result are also consistent with
this scenario, which thus remains a working hypothesis worth challenging.

Our result for the light-quark connected contribution, 10
9

(a3,3µ )SD = 47.84(24) is consistent
with the ETM result [5] 48.24(20) and the RBC/UKQCD result [6] 48.70(52)(59) at their
favoured isospin-symmetric point. The dependence of (ahvpµ )SD on the precise choice of this
point is currently smaller than the statistical errors.

Finally, the subtraction strategy for the short-distance effects adopted here can be reused
for the full ahvpµ (the analogue of eq. (15) being ahvpµ = (ahvpµ )sub(Q2) + b(γ,γ)(Q2)), as well
as for other observables related to the vacuum polarization, such as the running of the
electromagnetic coupling. The appeal of this subtraction is that it removes the leading,
O(x40) term from the kernel, while at the same being safe to compute in perturbation theory,
since it only involves spacelike photon virtualities on the order of Q2.
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Appendix A: Tables

TABLE IV: Pseudoscalar masses in lattice units, including finite-size corrections. Value of the

gluonic observable t0/a
2 and the two dimensionless variables ϕ2 and ϕ4 used in the extrapolation

to the physical point.

id amπ amK t0/a
2 ϕ2 ϕ4

A653 0.21183(105) 0.21183(105) 2.173(07) 0.7801(58) 1.1701(88)

A654 0.16632(131) 0.22727(112) 2.194(10) 0.4854(61) 1.1491(84)

H101 0.18250(71) 0.18250(71) 2.847(06) 0.7586(45) 1.1379(68)

H102 0.15383(80) 0.19135(71) 2.882(12) 0.5457(50) 1.1172(75)

H105 0.12154(115) 0.20223(85) 2.886(09) 0.3411(56) 1.1149(83)

N101 0.12120(56) 0.20146(35) 2.892(03) 0.3399(29) 1.1090(39)

C101 0.09570(78) 0.20584(44) 2.913(05) 0.2134(33) 1.0940(48)

C102 0.09671(78) 0.21761(47) 2.868(05) 0.2146(33) 1.1939(45)

D150 0.05654(94) 0.20835(35) 2.944(04) 0.0753(25) 1.0600(34)

B450 0.16081(50) 0.16081(50) 3.663(13) 0.7578(35) 1.1367(53)

S400 0.13503(46) 0.17022(41) 3.692(08) 0.5385(31) 1.1250(46)

N451 0.11064(45) 0.17822(26) 3.682(07) 0.3606(25) 1.1158(31)

D450 0.08346(51) 0.18393(26) 3.697(06) 0.2060(23) 1.1036(32)

D451 0.08359(30) 0.19402(14) 3.662(04) 0.2047(14) 1.2051(16)

D452 0.05932(59) 0.18645(18) 3.727(04) 0.1049(21) 1.0888(22)

H200 0.13625(64) 0.13625(64) 5.151(33) 0.7649(81) 1.1474(121)

N202 0.13445(42) 0.13445(42) 5.158(19) 0.7459(37) 1.1188(56)

N203 0.11249(27) 0.14395(23) 5.146(08) 0.5209(24) 1.1136(36)

N200 0.09221(29) 0.15065(24) 5.163(07) 0.3512(20) 1.1130(33)

D251 0.09203(16) 0.15041(12) 5.164(05) 0.3499(11) 1.1096(16)

D200 0.06502(28) 0.15630(17) 5.179(06) 0.1752(15) 1.0998(23)

D201 0.06499(43) 0.16309(24) 5.136(08) 0.1736(22) 1.1797(33)

E250 0.04236(23) 0.15936(08) 5.202(04) 0.0747(07) 1.0943(11)

N300 0.10574(30) 0.10574(30) 8.560(32) 0.7657(46) 1.1486(69)

N302 0.08707(54) 0.11363(46) 8.526(25) 0.5171(63) 1.1392(102)

J303 0.06467(22) 0.11963(19) 8.618(14) 0.2883(19) 1.1309(36)

J304 0.06559(20) 0.13187(17) 8.500(14) 0.2925(16) 1.3288(33)

E300 0.04407(15) 0.12386(12) 8.619(06) 0.1339(09) 1.1248(22)

J500 0.08157(17) 0.08157(17) 13.964(31) 0.7432(32) 1.1148(48)

J501 0.06590(23) 0.08796(24) 13.984(49) 0.4859(31) 1.1084(55)
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TABLE V: Finite-size effects for (ahvpµ )SD in the isovector channel, in units of 10−10. The correction

is obtained using the Hansen-Patella method and split according to eq. (15). The first part enters

our calculation in the non-perturbative determination of (a3,3µ )SDsub(25GeV2), the second one in

the determination of ∆lcb(25GeV2). The columns contain the correction due to pions and kaons

wrapping around the torus. On ensembles with SU(3) symmetry, the correction is contained in the

correction due to pions. The column labelled ‘total’ gives the sum of the two contributions. When

including the finite-volume corrections in our analysis, we assign a flat 25% relative uncertainty to

the correction.

Correction for (a3,3µ )SDsub(25GeV2) Correction for wSD(0) b
(3,3)(25GeV2)

id pion kaon total pion kaon total

A653 0.1035(24) - 0.1035(24) 0.00580(13) - 0.00580(13)

A654 0.1608(55) 0.0262(7) 0.1871(62) 0.00910(33) 0.0015(0) 0.01057(35)

H101 0.0415(07) - 0.0415(07) 0.00234(04) - 0.00234(04)

H102 0.0576(07) 0.0112(1) 0.0688(08) 0.00328(04) 0.0006(0) 0.00391(04)

H105 0.1271(53) 0.0085(2) 0.1356(55) 0.00732(31) 0.0005(0) 0.00780(32)

N101 0.0116(03) 0.0003(0) 0.0118(03) 0.00069(02) 0.0000(0) 0.00071(02)

C101 0.0310(11) 0.0002(0) 0.0312(11) 0.00189(07) 0.0000(0) 0.00190(07)

C102 0.0293(09) 0.0001(0) 0.0294(09) 0.00179(06) 0.0000(0) 0.00180(06)

D150 0.0337(15) 0.0000(0) 0.0337(15) 0.00220(10) 0.0000(0) 0.00220(10)

B450 0.0934(13) - 0.0934(13) 0.00524(08) - 0.00524(08)

S400 0.1188(13) 0.0249(2) 0.1437(16) 0.00672(08) 0.0014(0) 0.00811(09)

N451 0.0230(06) 0.0008(0) 0.0239(06) 0.00136(03) 0.0000(0) 0.00141(03)

D450 0.0118(04) 0.0000(0) 0.0118(04) 0.00074(02) 0.0000(0) 0.00074(02)

D451 0.0116(02) 0.0000(0) 0.0116(02) 0.00073(01) 0.0000(0) 0.00073(01)

D452 0.0399(15) 0.0000(0) 0.0399(15) 0.00254(10) 0.0000(0) 0.00254(10)

H200 0.2425(39) - 0.2425(39) 0.01356(21) - 0.01356(21)

N202 0.0202(03) - 0.0202(03) 0.00115(02) - 0.00115(02)

N203 0.0309(04) 0.0046(1) 0.0356(04) 0.00178(03) 0.0003(0) 0.00204(03)

N200 0.0662(08) 0.0036(0) 0.0698(08) 0.00385(04) 0.0002(0) 0.00405(04)

D251 0.01122(09) 0.0003(0) 0.01148(09) 0.000674(05) 0.0000(0) 0.000689(05)

D200 0.0431(06) 0.0002(0) 0.0432(06) 0.00264(04) 0.0000(0) 0.00265(04)

D201 0.0427(10) 0.0001(0) 0.0428(10) 0.00262(06) 0.0000(0) 0.00263(06)

E250 0.0183(03) 0.0000(0) 0.0183(03) 0.00123(02) 0.0000(0) 0.00123(02)

N300 0.1027(09) - 0.1027(09) 0.00576(05) - 0.00576(05)

N302 0.1358(36) 0.0254(6) 0.1612(41) 0.00769(22) 0.0014(0) 0.00911(25)

J303 0.0768(09) 0.0024(0) 0.0792(09) 0.00450(04) 0.0001(0) 0.00463(04)

J304 0.0726(08) 0.0012(0) 0.0738(08) 0.00426(05) 0.0001(0) 0.00433(05)

E300 0.0293(03) 0.0000(0) 0.0293(03) 0.00185(02) 0.0000(0) 0.00186(02)

J500 0.0836(11) - 0.0836(11) 0.00470(06) - 0.00470(06)

J501 0.1210(24) 0.0204(7) 0.1414(30) 0.00687(13) 0.0011(0) 0.00801(16)
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TABLE VI: Values of the subtracted isovector and charm-connected contributions with Q2 =

25GeV2 in units of 10−10, for the local-local (LL) and for the local-conserved (CL) discretizations of

the correlation function, as described in the main text. The finite-size correction has been applied

to the isovector contribution.

(a3,3µ )SDsub - Set 1 (a3,3µ )SDsub - Set 2 4
9(a

c,c
µ )SDsub - Set 1 4

9(a
c,c
µ )SDsub - Set 2

id (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

A653 39.138(75) 40.010(45) 28.547(47) 34.913(31) 12.892(38) 8.860(20) 1.240(25) 4.875(14)

A654 39.171(82) 40.102(56) 29.198(60) 35.484(44) 13.039(62) 9.061(36) 1.361(29) 5.005(23)

H101 38.650(41) 39.252(30) 31.316(28) 35.656(25) 11.406(43) 8.455(27) 3.683(29) 5.405(20)

H102 38.668(40) 39.293(29) 31.712(47) 35.985(36) 11.503(56) 8.556(37) 3.754(34) 5.479(27)

H105 38.695(63) 39.357(58) 32.018(58) 36.279(56) – – – –

N101 38.823(34) 39.495(22) 32.144(17) 36.412(22) 11.687(41) 8.736(25) 3.881(29) 5.611(19)

C101 38.782(38) 39.461(26) 32.366(24) 36.588(20) 11.740(41) 8.797(28) 3.924(30) 5.654(21)

C102 38.834(36) 39.526(24) 32.314(18) 36.605(16) – – – –

D150 38.738(35) 39.427(22) 32.660(18) 36.832(14) – – – –

B450 37.916(31) 38.351(30) 32.874(31) 35.804(29) 10.313(36) 8.058(24) 5.018(30) 5.729(20)

S400 37.993(38) 38.445(37) 33.210(41) 36.106(38) 10.245(45) 8.126(30) 5.024(34) 5.789(25)

N451 38.202(15) 38.678(13) 33.582(16) 36.485(13) – – – –

D450 38.232(11) 38.722(08) 33.817(12) 36.703(08) 10.684(32) 8.478(21) 5.315(29) 6.062(18)

D451 38.265(12) 38.762(08) 33.806(12) 36.723(09) – – – –

D452 38.218(15) 38.713(13) 33.995(15) 36.853(13) 10.790(31) 8.558(21) 5.384(30) 6.124(18)

H200 36.992(82) 37.229(82) 34.122(81) 35.725(80) 9.133(49) 7.633(39) 6.045(34) 6.075(32)

N202 37.169(32) 37.409(32) 34.274(34) 35.878(33) 9.159(41) 7.657(31) 6.064(33) 6.095(27)

N203 37.303(24) 37.561(22) 34.531(26) 36.140(23) 9.279(33) 7.762(25) 6.168(28) 6.188(22)

N200 37.383(29) 37.647(28) 34.764(30) 36.361(28) 9.445(25) 7.929(18) 6.306(22) 6.331(16)

D251 37.437(12) 37.703(10) 34.797(14) 36.395(10) – – – –

D200 37.482(23) 37.757(22) 34.992(24) 36.582(22) 9.605(34) 8.083(28) 6.434(29) 6.461(24)

D201 37.483(19) 37.764(18) 34.968(21) 36.577(19) – – – –

E250 37.493(10) 37.773(08) 35.122(13) 36.703(09) 9.671(25) 8.162(19) 6.493(24) 6.530(18)

N300 36.064(36) 36.124(41) 34.866(35) 35.432(40) 7.916(41) 7.074(35) 6.561(36) 6.281(32)

N302 36.219(49) 36.295(48) 35.090(49) 35.667(49) 8.153(25) 7.305(22) 6.778(22) 6.496(20)

J303 36.496(37) 36.579(31) 35.468(35) 36.039(29) 8.164(33) 7.401(29) 6.799(29) 6.586(26)

J304 36.485(28) 36.568(28) 35.437(28) 36.015(27) – – – –

E300 36.603(18) 36.697(16) 35.646(19) 36.221(16) 8.461(15) 7.613(13) 7.057(13) 6.780(12)

J500 35.529(32) 35.517(30) 35.008(29) 35.200(30) 7.118(59) 6.643(53) 6.499(56) 6.248(50)

J501 35.704(42) 35.696(45) 35.227(40) 35.418(44) – – – –
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TABLE VII: Values of the ∆ls(aµ)
SD contribution in units of 10−10, for the local-local (LL) and for

the local-conserved (CL) discretizations of the correlation function, as described in the main text.

The finite-size correction has been applied.

−1
3∆ls(aµ)

SD - Set 1 −1
3∆ls(aµ)

SD - Set 2

id (LL) (CL) (LL) (CL)

A654 0.048(14) 0.105(14) 0.435(15) 0.401(14)

H102 0.044(10) 0.074(10) 0.257(10) 0.244(10)

H105 0.126(20) 0.187(20) 0.546(19) 0.520(19)

N101 0.147(05) 0.208(05) 0.562(03) 0.535(05)

C101 0.182(12) 0.264(11) 0.720(11) 0.691(10)

C102 0.223(08) 0.318(06) 0.823(06) 0.790(06)

D150 0.215(10) 0.315(07) 0.883(07) 0.848(06)

S400 0.073(12) 0.097(12) 0.239(12) 0.234(12)

N451 0.172(04) 0.217(04) 0.468(04) 0.458(04)

D450 0.248(04) 0.309(03) 0.656(03) 0.643(03)

D451 0.299(05) 0.368(03) 0.754(03) 0.738(03)

D452 0.280(06) 0.350(05) 0.763(05) 0.746(05)

N203 0.092(12) 0.110(12) 0.202(12) 0.204(11)

N200 0.212(13) 0.240(12) 0.409(12) 0.407(12)

D200 0.303(11) 0.343(11) 0.581(11) 0.578(10)

D201 0.356(06) 0.400(05) 0.660(05) 0.656(05)

E250 0.355(13) 0.402(12) 0.688(12) 0.685(11)

N302 0.141(15) 0.148(14) 0.201(14) 0.200(14)

J303 0.301(12) 0.318(11) 0.416(12) 0.418(11)

J304 0.415(08) 0.435(08) 0.558(08) 0.558(07)

E300 0.419(05) 0.442(04) 0.573(05) 0.576(04)

J501 0.163(12) 0.163(13) 0.196(12) 0.192(13)
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TABLE VIII: Values of the ∆lcb contribution with Q2 = 25GeV2 in units of 10−10, for the local-

local (LL) and for the local-conserved (CL) discretizations of the correlation function, as described

in the main text. The finite-size correction has been applied.

−4
9∆lcb - Set 1 −4

9∆lcb - Set 2

id (LL) (CL) (LL) (CL)

A653 -0.194(28) 1.936(16) 4.886(14) 3.269(12)

A654 -0.196(33) 1.886(20) 4.907(16) 3.305(14)

H101 0.435(24) 2.147(15) 3.854(15) 3.294(11)

H102 0.418(28) 2.122(17) 3.887(17) 3.319(14)

N101 0.380(24) 2.074(14) 3.886(14) 3.319(11)

C101 0.374(24) 2.058(15) 3.912(15) 3.338(11)

B450 0.857(23) 2.302(14) 3.272(18) 3.275(12)

S400 0.963(24) 2.319(15) 3.314(18) 3.314(13)

D450 0.806(20) 2.199(12) 3.277(17) 3.270(11)

D452 0.768(20) 2.171(12) 3.284(17) 3.270(11)

N202 1.342(21) 2.446(14) 2.790(17) 3.182(13)

N203 1.304(16) 2.418(11) 2.772(15) 3.175(10)

N200 1.261(14) 2.367(09) 2.756(13) 3.151(09)

D200 1.225(18) 2.329(14) 2.742(16) 3.136(12)

E250 1.218(14) 2.309(09) 2.746(14) 3.130(09)

N300 1.823(17) 2.581(13) 2.499(15) 3.018(12)

N302 1.761(11) 2.517(09) 2.447(10) 2.968(09)

J303 1.832(16) 2.525(14) 2.512(14) 2.987(13)

E300 1.692(11) 2.440(08) 2.409(11) 2.919(07)

J500 2.144(15) 2.647(11) 2.472(15) 2.892(11)
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TABLE IX: Values of the charm-disconnected contributions in units of 10−10, for the conserved-

conserved (CC) discretization of the correlation function, as described in the main text.

4
9(a

c,c
µ )SDdisc

2
3
√
3
(ac,8µ )SDdisc

id Set 1 Set 2 Set 1 Set 2

A654 0.0122(04) 0.0055(02) -0.0086(07) -0.0035(04)

H102 0.0097(06) 0.0050(03) -0.0036(06) -0.0018(03)

H105 0.0112(06) 0.0058(03) -0.0114(12) -0.0059(08)

N101 0.0113(06) 0.0059(03) -0.0118(10) -0.0058(06)

C101 0.0104(08) 0.0054(04) -0.0151(19) -0.0072(11)

C102 0.0127(08) 0.0064(05) -0.0166(21) -0.0082(13)

D150 0.0119(12) 0.0063(07) -0.0211(49) -0.0119(30)

S400 0.0101(05) 0.0058(03) -0.0051(05) -0.0030(04)

N451 0.0102(08) 0.0060(05) -0.0054(11) -0.0028(07)

D450 0.0109(11) 0.0063(07) -0.0122(26) -0.0070(17)

D451 0.0096(10) 0.0053(06) -0.0122(21) -0.0072(15)

D452 0.0091(08) 0.0050(05) -0.0114(27) -0.0060(18)

N203 0.0078(10) 0.0052(07) -0.0043(07) -0.0029(06)

N200 0.0091(10) 0.0061(07) -0.0064(13) -0.0046(10)

D200 0.0070(10) 0.0045(07) -0.0074(20) -0.0049(16)

D201 0.0076(14) 0.0051(10) -0.0074(27) -0.0053(22)

E250 0.0092(09) 0.0062(06) -0.0095(24) -0.0057(20)

N302 0.0064(19) 0.0049(16) -0.0004(15) -0.0001(14)

J303 0.0048(14) 0.0036(12) -0.0044(18) -0.0035(17)

J304 0.0056(12) 0.0043(10) -0.0041(16) -0.0028(15)

E300 0.0040(19) 0.0029(16) -0.0042(29) -0.0029(26)

J501 0.0009(22) 0.0008(20) -0.0009(18) -0.0007(18)
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[19] M. Cè, T. Harris, H. B. Meyer, A. Toniato and C. Török, Vacuum correlators at short

distances from lattice QCD, JHEP 12 (2021) 215 [2106.15293].
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[32] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 1008 (2010) 071

[1006.4518].

[33] N. Husung, P. Marquard and R. Sommer, Asymptotic behavior of cutoff effects in Yang–Mills

theory and in Wilson’s lattice QCD, Eur. Phys. J. C 80 (2020) 200 [1912.08498].

[34] N. Husung, P. Marquard and R. Sommer, The asymptotic approach to the continuum of

lattice QCD spectral observables, Phys. Lett. B 829 (2022) 137069 [2111.02347].

[35] N. Husung, SymEFT predictions for local fermion bilinears, PoS LATTICE2023 (2024)

364 [2401.04303].

[36] Baikov, P. A. and Chetyrkin, K. G. and Kühn, J. H., Five-Loop Running of the QCD
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[60] Chetyrkin, K. G. and Kühn, Johann H. and Steinhauser, M., Heavy quark vacuum

polarization to three loops, Phys. Lett. B 371 (1996) 93 [hep-ph/9511430].

[61] HPQCD collaboration, B. Colquhoun, R. J. Dowdall, C. T. H. Davies, K. Hornbostel and

G. P. Lepage, Υ and Υ′ Leptonic Widths, abµ and mb from full lattice QCD, Phys. Rev. D 91

(2015) 074514 [1408.5768].

[62] J. P. A. Erler, P. Masjuan and H. Spiesberger, Heavy Quark Masses (from QCD Sum Rules)

and their impact on the (g − 2)µ, PoS CHARM2020 (2021) 012.
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