CERN Accelerating science

002886981 001__ 2886981
002886981 003__ SzGeCERN
002886981 005__ 20240125104842.0
002886981 0247_ $$2DOI$$9IEEE$$a10.1109/NSSMICRTSD49126.2023.10337861
002886981 0248_ $$aoai:cds.cern.ch:2886981$$pcerncds:CERN
002886981 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2739595$$d2024-01-19T15:11:02Z$$h2024-01-20T05:00:02Z$$mmarcxml
002886981 035__ $$9Inspire$$a2739595
002886981 041__ $$aeng
002886981 100__ $$aPiller, M$$uCERN$$uGraz U.$$vInstitute of Electronics, Graz University of Technology, Graz, Austria
002886981 245__ $$9IEEE$$aFastIC ASIC readout performance for Cherenkov based TOF-PET imaging
002886981 260__ $$c2023
002886981 300__ $$a1 p
002886981 520__ $$9IEEE$$aThe emerging field of ultra-fast timing has enormous potential in high-energy physics, nuclear medicine, and imaging, and is driving advances in detector and readout electronics. To achieve improved time resolution, significant efforts have been devoted to this field, resulting in impressive coincidence time resolution (CTR) values for silicon photomultiplier (SiPM) and scintillator crystals using state-of-the-art high-frequency (HF) readout. However, scaling this readout method for system-level applications is not yet feasible, hence requiring dedicated application-specific integrated circuits (ASICs). In this study, we evaluate the performance of the FastIC, an 8-channel readout ASIC suitable for TOP-PET application, in terms of CTR. The study employs Cherenkov photons produced in bismuth germanium oxide (BGO) scintillator crystals and novel SiPMs with metal-trenching. We obtain CTR values of 257±5 ps and 152±4 ps, respectively, for 2x2x20mm³ and 2x2x3mm³ BGO crystals using HF readout as a reference, with minimal electronic interference, by exploiting the full potential of SiPMs with metal trenching. In comparison, the CTR values obtained using the FastIC for the same crystals were 490±3 ps and 330±4 ps, respectively. We also assess the limits of the FastIC and suggest areas for further improvements.
002886981 542__ $$dIEEE$$g2023
002886981 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002886981 6531_ $$9author$$aElectric potential
002886981 6531_ $$9author$$aScintillators
002886981 6531_ $$9author$$aImage resolution
002886981 6531_ $$9author$$aSemiconductor detectors
002886981 6531_ $$9author$$aCrystals
002886981 6531_ $$9author$$aHafnium
002886981 6531_ $$9author$$aSilicon
002886981 690C_ $$aARTICLE
002886981 690C_ $$aCERN
002886981 700__ $$aMariscal-Castilla, A$$uBarcelona U.
002886981 700__ $$aTerragni, G$$uCERN$$uTU Vienna$$vVienna University of Technology, Vienna, Austria
002886981 700__ $$aPenna, M$$uFond. Bruno Kessler, Trento
002886981 700__ $$aMerzi, S$$uFond. Bruno Kessler, Trento
002886981 700__ $$aMoretti, E$$uFond. Bruno Kessler, Trento
002886981 700__ $$aGola, A$$uFond. Bruno Kessler, Trento
002886981 700__ $$aMichalowska-Forsyth, A$$uGraz, Tech. U.
002886981 700__ $$aGascon, D$$uBarcelona U.
002886981 700__ $$aBallabriga, R$$uCERN
002886981 700__ $$aHillemanns, E  Auffray$$uCERN
002886981 700__ $$aGomez, S$$uBarcelona, Polytechnic U.$$uBarcelona U.$$vInstitute of Cosmos Sciences (ICCUB), University of Barcelona, Barcelona, Spain
002886981 700__ $$aKratochwil, N$$uCERN
002886981 773__ $$wC23-11-04$$y2023
002886981 962__ $$b2876041$$nvancouver20231104
002886981 960__ $$a13
002886981 980__ $$aARTICLE
002886981 980__ $$aConferencePaper