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1 Introduction

How do neutrinos interact with matter? While the answer to this question is well understood
at the qualitative level, making quantitative predictions for neutrino-nucleus cross sections
has proven to be a daunting task and is a leading source of systematic uncertainty in present
and upcoming precision neutrino experiments. It may therefore seem foolish to even try
to complicate matters further by considering the possible impact of physics beyond the
Standard Model (SM). In this paper, we will nevertheless take a step forward in precisely
this direction. Working in the context of effective field theory (EFT), we will compute
neutrino-nucleus interaction cross sections including new couplings with arbitrary Lorentz
structure. These results can form the cornerstone of future experimental searches for “new
physics” in the neutrino sector, as well as for phenomenological work relating extensions
of the SM to observables.

Our starting point is SM Effective Field Theory (SMEFT) [1, 2], which is defined by
requiring the same gauge symmetries and the same particle content as in the SM, but
adding non-renormalizable operators to parameterize the low-energy footprint of particles
much heavier than the electroweak scale. But while SMEFT is a suitable framework for
new physics searches at the electroweak scale — that is, at the LHC — for lower-energy
probes such as hadron/meson decay and accelerator-based neutrino experiments, it is more
appropriate to work with a different EFT, one in which electroweak-scale degrees of freedom
(W , Z, Higgs, top) have been integrated out. This theory is called Weak Effective Field
Theory (WEFT) or Low-Energy Effective Field Theory (LEFT) in the literature. It can be
ultra-violet (UV) completed by SMEFT, and the two theories can be related to one another
by renormalization group running and parameter matching at the electroweak scale [3–15].
(This is of course assuming that there are no new particles at the electroweak scale or below.
If new physics exists already at a scale lower than the W boson mass, WEFT would be
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consistent up to the scale of the new physics, and it would need to be UV-completed by an
extension of SMEFT that includes the new light degrees of freedom.) At even lower energy
scales, namely in the regime of quasi-elastic (QE) scattering, the relevant hadronic degrees
of freedom are nucleons instead of quarks. QE scattering makes a significant and often
dominant contribution to the total detection rate in current and future accelerator-based
long-baseline experiments with GeV-scale beams.

Calculating neutrino cross-sections in the QE regime requires first describing the in-
teractions of the neutrino with individual nucleons, and then taking into account nuclear
effects. Accurate predictions at low and moderate neutrino energies have been achieved
through “ab-initio” methods like Green’s Function Monte Carlo and the Coupled Cluster
approaches [16–19]. For higher neutrino energies, relevant for accelerator neutrino experi-
ments, alternative approaches utilize the factorization of the nuclear final state. The spectral
function (SF) formalism [20–22], adopted in this work, incorporates relativistic effects in
both kinematics and the interaction vertex, while providing a precise depiction of nuclear
dynamics. While the findings presented here are specifically focused on the QE region,
the SF approach has been generalized to describe multiple reaction mechanisms. Previous
works [23, 24] demonstrate its application to phenomena like meson exchange currents and
pion production. Additionally, alternative methods such as SuSA-v2 and the relativistic
mean-field approach also provide predictions of neutrino-nucleus cross sections up to high
neutrino energies, encompassing a diverse array of reaction mechanisms [25–28].

The calculation of neutrino cross sections in the QE regime for arbitrary WEFT interac-
tions and including nuclear effects, as well as the discussion of the associated uncertainties,
are the main topics of this paper. The most important novel challenge we face is that
nucleon-level form factors have to be precisely known for arbitrary WEFT inteactions.

In the past, physics beyond the SM in the neutrino sector has often been discussed in the
framework of “non-standard interactions”, which is similar to WEFT: the relevant degrees
of freedom are those present below the electroweak scale (but above the QCD scale), and
the new operators are dimension-six four-fermion interactions [29–39]. However, this widely
used formalism has several shortcomings (see e.g. the discussion in [12]): (i) it typically does
not take into account renormalization group effects and the necessity of an embedding into a
theory that respects electroweak symmetry. This means that correlations between operators
that would arise from such an embedding are typically neglected. (ii) even more problematic,
some authors treat operators affecting neutrino production and those affecting neutrino
detection separately, even though in many cases, they are the same. First steps in resolving
these shortcomings have been taken in refs. [12, 40], which introduce a comprehensive EFT
framework for neutrino oscillations, offering a systematic approach applicable to experiments
with extended baselines and diverse neutrino production and detection processes. The
practicality of this formalism has been demonstrated in ref. [15] by applying it to the FASERν

neutrino experiment at the LHC, which showcases the capability of FASERν to probe new
physics scales up to ∼ 10 TeV for certain operators.

In the following, we will first briefly introduce the effective field theory that we work
in (section 2.1) and then proceed to the calculation of first the neutrino-nucleon interaction
amplitudes for all EFT operators (section 2.2), and then the interaction cross sections
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including nuclear effects (section 2.3). We will present our results in section 3 and discuss
their uncertainties, before summarizing and concluding in section 4.

Our main cross-section results in tabulated form are available from GitHub [41].

2 Formalism

2.1 Weak Effective Field Theory

In this section we introduce the effective field theory (EFT) formalism in which we will
calculate neutrino-nucleus cross section in the presence of physics beyond the SM. In particular,
we are interested in Weak Effective Field Theory (WEFT), valid below the electroweak scale,
with the electroweak gauge bosons, the Higgs boson, and the top quark integrated out. The
part of the WEFT Lagrangian that is relevant to neutrino-nucleus interactions is given by [15]:

LWEFT ⊃ − 2Vud

v2

{
[1 + ϵL]αβ(q̄uγµPLqd)(ℓ̄αγµPLνβ) + [ϵR]αβ(q̄uγµPRqd)(ℓ̄αγµPLνβ)

+ 1
2[ϵS ]αβ(q̄uqd)(ℓ̄αPLνβ) − 1

2[ϵP ]αβ(q̄uγ5qd)(ℓ̄αPLνβ)

+ 1
4[ϵT ]αβ(q̄uσµνPLqd)(ℓ̄ασµνPLνβ) + h.c.

}
. (2.1)

Here, v ≡ (
√

2GF )−1/2 ≈ 246 GeV is the vacuum expectation value (vev) of the Higgs field,
Vud is the ud element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, PL,R = 1

2(1 ∓ γ5)
are chirality projection operators, and σµν = i

2 [γµ, γν ]. The qu and qd fields describe up
and down quarks, respectively. The charged leptons are labeled ℓα (with α their flavor
index), and the neutrino fields in the flavor basis are να. They can be connected to the
mass eigenstates νk using the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:
να =

∑3
k=1 Uαkνk. The first term of eq. (2.1) describes the SM charged current (CC)

interaction between neutrinos, charged leptons and quarks, while the subsequent terms add
the new left-handed (L), right-handed (R), scalar (S), pseudo-scalar (P ) and tensor (T )
interactions to the Lagrangian. These terms are dimension-six, and their dimensionless
Wilson coefficients [ϵX ]αβ (with X = L, R, S, P, T ) describe the interaction strengths of the
new operators relative to SM weak interactions.

It is worth emphasizing that the SM parameters entering this Lagrangian, namely v

and Vud can also be impacted by new physics. For instance, modifications to the decay rate
of muons will affect the measurement of the Fermi constant, GF , from which v is derived.
Similarly, new physics in nuclear beta decays can affect the extraction of Vud. As discussed
in the literature [4, 9, 42, 43], these possible biases can be reabsorbed into a redefinition
of ϵL. We give these redefinitions explicitly in appendix A. Experimental data analyzed
with v and Vud set to the measured values as reported for instance by the Particle Data
Group (PDG) [44] would therefore constrain this redefined ϵL. In the following, ϵL will
be understood in that sense.

2.2 Neutrino-nucleon scattering

We are interested in studying the effects that the new interactions introduced in the Lagrangian
of eq. (2.1) have on charged current quasi-elastic (CCQE) neutrino interactions. At the
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nucleon level, the interactions we are interested in are

νβ + n → ℓ−α + p+ (2.2)

for neutrinos, and

ν̄β + p+ → ℓ+
α + n (2.3)

for anti-neutrinos.The structure of the WEFT Lagrangian implies that the amplitudes related
to the neutrino-nucleon interactions take the form

Mαβ = δαβAL,α +
∑

X=L,R,S,P,T

[ϵX ]αβAX,α , (2.4)

where the AX,α are the reduced matrix elements from which the WEFT coefficients have been
factored out. In other words, AX,α gives the amplitude for a neutrino to produce a charged
lepton of flavor α via an interaction of type X, assuming this interaction is as strong as SM
weak interactions. We discuss these amplitudes in detail below. Note that no summation
over α is implied in eq. (2.4). For anti-neutrinos eq. (2.4) holds after changing ϵ → ϵ∗, and
replacing AX,α by the corresponding anti-neutrino amplitudes. The total neutrino-nucleon
scattering cross section is

σtot
αβ = 1

2κ

∑
spins

∫
dΠ |Mαβ |2 (2.5)

= σ̂LL,αδαβ +
∑
X

[ϵX ]αβσ̂int
LX,αδαβ +

∑
X

[ϵX ]∗αβ(σ̂int
LX,α)∗δαβ +

∑
X,Y

[ϵX ]αβ [ϵY ]∗αβσ̂NP
XY,α ,

where the definition κ = 4Eνmn,p has been introduced, with mn,p the mass of the target
nucleon. Moreover,

∫
dΠ =

∫ [∏
j d3pj/(2π)3] × (2π)4δ(4)(pi − pf ) denotes the phase space

integral. The integral runs over the three-momenta of all final-state particles (indexed by
j), and the δ-function ensures energy momentum conservation, with pi the total initial-state
momentum and pf the total final-state momentum. Note that on the right-hand side of
eq. (2.6), again no sum over flavor indices is implied. Setting ϵX = 0 recovers the SM
cross section,

σ̂LL,α ≡ 1
2κ

∑
spins

∫
dΠ |AL,α|2 . (2.6)

The terms describing the interference between the new physics and the SM amplitude are

σ̂int
LX,α ≡ 1

2κ

∑
spins

∫
dΠ(AL,αA∗

X,α) , (2.7)

while the terms quadratic in the new physics interactions are

σ̂NP
XY,α ≡ 1

2κ

∑
spins

∫
dΠ(AX,αA∗

Y,α) . (2.8)

In these relations the pre-factor of 1
2 comes from averaging over initial state spins.
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Let us now compute the reduced matrix elements for the CCQE interaction νβ + n →
ℓ−α + p+. They can be expressed as

AL,α = −2Vud

v2

[
ūℓα(pℓα)γµPLuν(pν)

]
⟨p(pp)|q̄uγµPLqd|n(pn)⟩ ,

AR,α = −2Vud

v2

[
ūℓα(pℓα)γµPLuν(pν)

]
⟨p(pp)|q̄uγµPRqd|n(pn)⟩ ,

AS,α = −Vud

v2

[
ūℓα(pℓα)PLuν(pν)

]
⟨p(pp)|q̄uqd|n(pn)⟩ ,

AP,α = Vud

v2

[
ūℓα(pℓα)PLuν(pν)

]
⟨p(pp)|q̄uγ5qd|n(pn)⟩ ,

AT,α = −Vud

2v2

[
ūℓα(pℓα)σµνPLuν(pν)

]
⟨p(pp)|q̄uσµνqd|n(pn)⟩ ,

(2.9)

where the ui are the spinor wave functions of the leptons and hadrons (not to be confused
with the up-quark field, u). The reduced matrix elements for the corresponding anti-neutrino
interaction ν̄β + p → ℓ+

α + n, are obtained by replacing uℓα → vν , uν → vℓα , and taking the
complex conjugate of the hadronic current as well as the CKM element Vud. Note that, as
long as neutrino masses are neglected, these amplitudes do no longer depend on the neutrino
flavor as this dependence has been factored out in eq. (2.4). The hadronic matrix elements
can be parameterized in terms of a set of Lorentz-invariant form factors, one corresponding
to each possible quark bilinear [45, 46]:

⟨p(pp)|q̄uγµqd|n(pn)⟩= ūp(pp)
[
GV (Q2)γµ+i

G̃T (V )(Q2)
2MN

σµνqν− G̃S(Q2)
2MN

qµ

]
un(pn) , (2.10)

⟨p(pp)|q̄uγµγ5qd|n(pn)⟩= ūp(pp)
[
GA(Q2)γµγ5+i

G̃T (A)(Q2)
2MN

σµνqνγ5−
G̃P (Q2)

2MN
qµγ5

]
un(pn) ,

(2.11)

⟨p(pp)|q̄uqd|n(pn)⟩= GS(Q2) ūp(pp)un(pn) , (2.12)

⟨p(pp)|q̄uγ5qd|n(pn)⟩= GP (Q2) ūp(pp)γ5un(pn) , (2.13)

⟨p(pp)|q̄uσµνqd|n(pn)⟩= ūp(pp)
[
GT (Q2)σµν−

i

MN
G

(1)
T (Q2)(qµγν−qνγµ)

− i

M2
N

G
(2)
T (Q2)(qµPν−qνPµ)− i

MN
G

(3)
T (Q2)(γµq/γν−γνq/γµ)

]
un(pn) , (2.14)

where up and un are the proton and neutron spinors, q = pp−pn is the transferred momentum,
Q2 ≡ −q2, P = pn + pp, and MN ≡ (mn + mp)/2 is the average nucleon mass.

The crucial task now is to obtain the form factors GX .

1. Vector current. In this case, there are three contributions, parameterized by the
vector form factor GV (Q2), the induced tensor-vector form factor G̃T (V )(Q2), and the
induced scalar form factor G̃S(Q2), respectively. In the literature, GV (Q2) is sometimes
called the Dirac form factor, and G̃T (V )(Q2) is sometimes called the Pauli form factor,
anomalous magnetic moment form factor, or weak magnetism form factor. Naively,
all terms in eq. (2.10) could be expected to be O(1). (The prefactors ∼ O(q/MN )
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accompanying G̃S(Q2) and G̃T (V )(Q2) are O(1) for GeV-scale neutrino scattering.)
However, in the isospin-symmetric limit (neglecting the differences between the up and
down quark masses), G̃S(Q2) vanishes, as can be seen by replacing pp ↔ pn and showing
that this leads to a sign change in the induced scalar current. Isospin symmetry thus
requires G̃S(Q2) = 0. (In the language of ref. [45], the induced scalar current is a second-
class current which vanishes in the isospin-symmetric limit). Corrections to isospin
symmetry are of O(10−3) and can be safely neglected here in view of uncertainties on
other terms that are much larger.

The vector [GV (Q2)] and induced tensor-vector [G̃T (V )(Q2)] form factors are related to
the electromagnetic form factors of the nucleon N = p, n by [47]

GV (Q2) = F p
1 (Q2) − F n

1 (Q2) , (2.15)
G̃T (V )(Q2) = F p

2 (Q2) − F n
2 (Q2) . (2.16)

F N
1 (Q2)] and F N

2 (Q2), in turn can be related to the Sachs electric and magnetic form
factors:

Gp
E(Q2) = F p

1 (Q2) − Q2

4M2
N

F p
2 = GD(Q2) ,

Gn
E(Q2) = F n

1 (Q2) − Q2

4M2
N

F n
2 = 0 ,

Gp
M (Q2) = F p

1 (Q2) + F p
2 (Q2) = µpGD(Q2) ,

Gn
M (Q2) = F n

1 (Q2) + F n
2 (Q2) = µnGD(Q2) ,

(2.17)

where µp = 2.79284 is the proton magnetic moment in units of the nuclear magneton,
and µn = −1.91304 is the equivalent for neutrons [48]. Finally, we can parameterize
GD(Q2) as a dipole function,

GD(Q2) = 1(
1 + Q2

M2
V

)−2 , (2.18)

with MV = 0.84 GeV.

Precise knowledge of the nucleon vector form factors can be obtained through high-
statistics electron scattering experiments.

2. Axial current. Of the three terms contributing to the axial current, one — namely
the induced tensor-axial form factor, G̃T (A) — vanishes in the isospin-symmetric
limit [45]. The nucleon axial form factor, GA, which is not accessible in electron-
scattering experiments, introduces significant systematic uncertainties in neutrino-
nucleus cross-section calculations. Existing experimental constraints on GA primarily
rely on beta decay measurements, on neutrino scattering on nuclear targets, and on pion
electro-production. However, the accuracy of these measurements remains relatively
poor compared to measurements of the vector form factors. Beta decay experiments are
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sensitive only to the absolute normalization of the nucleon axial coupling, gA ≡ GA(0),
while neutrino scattering and pion electro-production experiments face challenges due
to limited statistics and uncertainties in the nuclear modeling.

Historically, the most common parametrization used for the axial form factor is the
dipole form:

GA(Q2) = gA(
1 + Q2

m2
A

)2 , (2.19)

where the axial mass is mA ≃ 0.961 GeV, used by GENIEv3 neutrino generator for their
nominal 10a0211a model [49]) and gA = 1.2728 ± 0.0017 [50]. This parametrization,
however, proves incapable of capturing the observed shape of the axial form factor. The
so-called z-expansion parametrization [51],

GA(Q2) =
∞∑

k=0
ak [z(Q2)]k , (2.20)

substantially improves the accuracy of the fit to data [52, 53]. Here, z(q2) is an analytic
function [53–55] motivated by QCD assumptions, while the coefficients ak can be
obtained from lattice QCD or by fitting to neutrino-nucleus scattering and/or pion
electro-production data.

The different parametrizations of the axial form factor — the dipole (dip) form factor
from eq. (2.19), the z-expansion fit to neutrino-deuteron scattering data (D2), and the
z-expansion fit to lattice QCD results — differ substantially, which reflects the large
uncertainty the axial form factor introduces to the cross section. The top panel of
figure 1 compares the different parametrizations and reveals discrepancies by almost an
order of magnitude at large momentum transfer. This illustrates how important it is to
quantitatively assess these systematic uncertainties. For the SM case such a study has
been carried out in ref. [51]. In the present paper, we analyze for the first time how
form factor uncertainties affect the study of new interactions beyond the SM.

3. Pseudoscalar current. By using the partial conservation of the axial current (PCAC)
and applying it to the axial current matrix element of the nucleon, one can find a
relation between the axial, induced-pseudoscalar, and pseudoscalar form factors [57]:

GP (Q2) = MN

mq
GA(Q2) + Q2/2MN

2mq
G̃P (Q2) . (2.21)

Here, mq = 3.410(43) MeV is the average light quark mass, taken from lattice calculations
(2019 FLAG review, Nf = 2 + 1 + 1 [58–60]). Note the large prefactors proportional to
MN /mq and Q2/(MN mq), which are both of order 103. These prefactors lead to an
enhancement of, e.g., GP (Q2) compared to other form factors.

We can moreover use the pion pole dominance (PPD) ansatz to derive an approximate
relation between the induced-pseudoscalar and axial form factors. More precisely, we
use the fact that GP (Q2) is dominated by the pion-pole contribution because the
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Figure 1. The nucleon form factors appearing in eqs. (2.10)–(2.14) as a function of Q2 = −q2.
For the form factors affected by the uncertainty in GA(Q2), the left panel shows results for three
different parametrizations, namely the dipole form factor with mA = 0.961 GeV (thin solid lines), the
z-expansion fitted to neutrino-deuterium scattering data (“D2”, shaded bands) [53], and a z-expansion
fit to lattice QCD calculations by the RQCD Collaboration (hatched bands) [56]. In the latter two
cases, the width of the colored bands indicates the uncertainties quoted in the respective references.
The remaining form factors are shown in the right panel. Note the sign change from negative to
positive for G

(1)
T and from positive to negative for G

(2)
T .

pseudoscalar current has the same quantum numbers as the pion. This suggests to
write GP (Q2) = GP (0) m2

π/(Q2 + m2
π), where mπ is the pion mass. Moreover, in the

low-Q2 limit, eq. (2.21) implies GP (Q2) ≃ (MN /mq)GA(Q2). Plugging both relations
into eq. (2.21) leads to [14, 61, 62]:

G̃P (Q2) = − 4M2
N

Q2 + m2
π

GA(Q2) . (low-Q2 limit) (2.22)

For higher accuracy, we will instead use the z-expansion parametrization [51] also for
the pseudoscalar form factors, and write:

G̃P (Q2) = − 4M2
N

Q2 + m2
π

∞∑
k=0

aP̃
k z(Q2)k , (2.23)

and

GP (Q2) = MN

mq

m2
π

Q2 + m2
π

∞∑
k=0

aP
k z(Q2)k , (2.24)

where the aP̃
k and aP

k coefficients are found by fitting to lattice QCD results. The first
few coefficients in the expansion, taken from ref. [56], are shown in table 1. We have
checked that these lattice QCD results satisfy the PPD and PCAC relations.

4. Scalar current. We can find the scalar form factor by using the conservation of the
vector current (CVC), which relates the divergence of the vector current in (eq. (2.10))

– 8 –
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X aX
0 aX

1 aX
2 aX

3 aX
4 aX

5 aX
6

A 1.009 −1.756 −1.059 1.621 3.919 −5.739 2.005
P̃ 1.008 −1.831 −1.713 4.994 −1.522 −1.984 1.047
P 1.066 −1.461 −1.053 −2.504 12.446 −12.260 3.766

Table 1. The coefficients of the z-expansion parametrization of the axial (first line) induced
pseudoscalar (second line) and pseudoscalar (last line) form factors, determined by the lattice QCD
calculations from ref. [56].

to the scalar current (eq. (2.12)) and leads to [57]

GS(Q2) = −δMQCD
N

δmq
GV (Q2) + Q2/2MN

δmq
G̃S(Q2) , (2.25)

where δMQCD
N = mn − mp = 2.58(18) MeV is the difference between the neutron and

proton mass in pure QCD [57]) and δmq = md − mu = 2.527(47) MeV [58]. Note that
the induced tensor-vector form factor, G̃T (V ), does not appear in eq. (2.25) because the
divergence of the corresponding term in eq. (2.10) vanishes.
The induced scalar form factor G̃S(Q2) poses a problem as no robust measurements
or lattice calculations for it exist. This is not surprising, given that, using Weinberg’s
language from ref. [45], it corresponds to a second-class current (that is, a current that
violates G parity). Such currents vanish in the isospin-symmetric limit, so their physical
effects are always suppressed by small isospin-breaking factor such as δMN or δmq.
In eq. (2.25), however, G̃S(Q2) appears with a prefactor that is enhanced by 1/δmq,
compensating for the smallness of the form factor.
In the absence of robust measurements or lattice calculations for G̃S(Q2), we consider
two approaches. The first is to simply set G̃S(Q2) = 0. The second one is based on the
constituent quark model (CQM) which relates G̃S to the vector form factor, but suffers
from large theoretical uncertainties. The CQM prediction is [63]

G̃S(Q2) = 2MN

(mu + md)CQM

(
δMQCD

N

2MN
gA − δmq

(mu + md)CQM

)
GV (Q2) , (2.26)

where in the constituent quark model one takes mu = md = mp/3.

5. Tensor current. Unlike the vector, axial-vector, scalar, and pseudoscalar currents,
constraining the matrix elements of the antisymmetric tensor current is much more chal-
lenging. While the relevant form factors are not easily determined through experimental
data, Ward identities, or low-energy theorems, lattice QCD techniques and theoretical
considerations can nevertheless provide valuable insights. In the following, we draw
from ref. [64]. In the isospin-symmetric limit, which we adopt here, the G

(3)
T (Q2) form

factor vanishes, and the following relation between the charged and neutral currents
holds [58]:

⟨p(pp)|ūσµνd|n(pn)⟩ = ⟨p(pp)|ūσµνu − d̄σµνd|p(pp)⟩
= ⟨n(pn)|d̄σµνd − ūσµνu|n(pn)⟩ . (2.27)
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The two equivalent matrix elements on the right-hand side of this equation can be
evaluated on the lattice. The results can be written as

GT (Q2) = F u
1,T (Q2) − F d

1,T (Q2) , (2.28)

G
(1)
T (Q2) = F u

2,T (Q2) − F d
2,T (Q2) , (2.29)

G
(2)
T (Q2) = F u

3,T (Q2) − F d
3,T (Q2) , (2.30)

with the F q
i,T (Q2) (q = u, d) functions parameterized by:

F q
1,T (Q2) = ±1

2
[
F u

1,T (0) − F d
1,T (0)

]
Db1(Q2) + 1

2
[
F u

1,T (0) + F d
1,T (0)

]
Dh1(Q2) , (2.31)

F u
2,T (Q2) = − MN

2mπ
Bπ,u

T (0)
[
2Gp

M (Q2) + Gn
M (Q2)

]
+ 2M2

N

m2
b1

F u
1,T (0)Db1(Q2) , (2.32)

F d
2,T (Q2) = − MN

2mπ
Bπ,u

T (0)
[
Gp

M (Q2) + 2Gn
M (Q2)

]
+ 2M2

N

m2
b1

F d
1,T (0)Db1(Q2) , (2.33)

F u
3,T (Q2) = MN

4mπ
Bπ,u

T (0)
[
2F p

2 (Q2) + F n
2 (Q2)

]
− M2

N

m2
b1

F u
1,T (0)Db1(Q2) , (2.34)

F d
3,T (Q2) = MN

4mπ
Bπ,u

T (0)
[
F p

2 (Q2) + 2F n
2 (Q2)

]
− M2

N

m2
b1

F d
1,T (0)Db1(Q2) . (2.35)

In the first of these relations, the plus sign corresponds to q = u and the minus
sign to q = d. Numerically, ref. [64] gives F u

1,T (0) = 0.784, F d
1,T (0) = −0.204, and

Bπ,u
T (0) = 0.195 for the tensor charges that determine the normalization. The functions

GN
M (Q2) and F N

2 (Q2) are the Sachs magnetic and Pauli form factors defined in eq. (2.17).
Finally,

Db1/h1(Q2) =
m2

b1/h1

m2
b1/h1

+ Q2 (2.36)

are dipole functions with mh1 = 1.166 GeV and mb1 = 1.229 GeV.

Note that several of the terms in eqs. (2.31)–(2.35) benefit from an enhancement factor
MN /mπ ∼ 10, which facilitates detection of tensor currents.

The above parametrizations of the form factors — especially the axial vector and tensor
ones — have been derived with momentum transfers

√
Q2 ≲ 1 GeV in mind. However,

given their weak dependence on Q2 at O(GeV) momentum transfers, which is evident from
figure 1, we will use them also to extrapolate to larger momentum transfers relevant for
accelerator neutrino experiments.
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We are now ready to express the spin-summed squared amplitudes for CCQE neutrino-
nucleon scattering (νβ + n → ℓ−α + p+) in terms of the form factors and as functions of
the Mandelstam variables:

1
2
∑
spin

AX,αA∗
Y,α = C0

[
Bα,XY (Q2) + Cα,XY (Q2)s − u

M2
N

+ Dα,XY (Q2)(s − u)2

M4
N

]
, (2.37)

where X, Y = L, R, S, P, T and C0 ≡ 4|Vud|2M4
N /v4. The factor 1

2 on the left hand side
averages over spin orientations of the initial nucleon. In the approximation that the nucleon
is initially at rest, kinematics dictates that s − u = 4MN Eν − Q2 − m2

ℓα
. Assuming moreover

that proton and neutron masses are identical, the functions Bα,XY (Q2), Cα,XY (Q2) and
Dα,XY (Q2) are1

Bα,LL =
m2

ℓα
+ Q2

M2
N

{(
1 + Q2

4M2
N

)
G2

A −
(

1 − Q2

4M2
N

)(
F 2

1 − Q2

4M2
N

F 2
2

)
+ Q2

M2
N

F1F2

−
m2

ℓα

4M2
N

[(
F1 + F2

)2
+
(
GA − G̃P

)2
−
(

1 + Q2

4M2
N

)
G̃2

P

]}
, (2.38)

Cα,LL = Q2

M2
N

(
GA(F1 + F2)

)
, (2.39)

Dα,LL = 1
4

(
G2

A + F 2
1 + Q2

4M2
N

F 2
2

)
, (2.40)

Bα,RR = Bα,LL , (2.41)

Cα,RR = −Cα,LL , (2.42)

Dα,RR = Dα,LL , (2.43)

Bα,SS =
m2

ℓα
+ Q2

M2
N

(
1 + Q2

4M2
N

)
G2

S , (2.44)

Cα,SS = 0 , (2.45)

Dα,SS = 0 , (2.46)

Bα,P P =
m2

ℓα
+ Q2

M2
N

Q2

4M4
N

G2
P , (2.47)

Cα,P P = 0 , (2.48)

Dα,P P = 0 , (2.49)

1The full expressions without these approximation are given in appendix B. For our numerical results, we
will use the full expressions because nucleons bound in nuclei cannot be assumed to be initially at rest.
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Bα,T T = −
m2

ℓα
+ Q2

M2
N

{
G2

T + Q2

4M2
N

[
+ 4GT G

(1)
T −

m2
ℓα

M2
N

(
2G

(2)
T

(
GT − 4G

(2)
T

)
+
(
G

(1)
T

)2 − 4G
(1)
T G

(2)
T

)]
+

m2
ℓα

2M2
N

[
G2

T − 4GT

(
(G(1)

T + G
(2)
T

)
+ 2

(
G

(1)
T + 2G

(2)
T

)2]

+ 4
(

Q2

4M2
N

)2((
G

(1)
T

)2 +
m2

ℓα

M2
N

(
G

(2)
T

)2)}
, (2.50)

Cα,T T = 0 , (2.51)

Dα,T T = 1
2G2

T + Q2

4M2
N

[
− 2GT G

(2)
T +

(
G

(1)
T + 2G

(2)
T

)2]
+ 4G

(2)
T

2
(

Q2

4M2
N

)2

,

for XX-type interactions, and

Bα,LR =
m2

ℓα
+ Q2

M2
N

{
−
(

1 + Q2

4M2
N

)
G2

A −
(

1 − Q2

4M2
N

)(
F 2

1 − Q2

4M2
N

F 2
2

)
+ Q2

M2
N

F1F2

−
m2

ℓα

4M2
N

[(
F1 + F2

)2
−
(
GA − G̃P

)2
+
(

1 + Q2

4M2
N

)
G̃2

P

]}
, (2.52)

Cα,LR = 0 , (2.53)

Dα,LR = 1
4

(
−G2

A + F 2
1 + Q2

4M2
N

F 2
2

)
, (2.54)

Bα,LS = 0 , (2.55)

Cα,LS = mℓα

2MN

(
F1 −

Q2

4M2
N

F2

)
GS , (2.56)

Dα,LS = 0 , (2.57)

Bα,LP = − mℓα

2MN

m2
ℓα

+ Q2

M2
N

(
GA + Q2

4M2
N

GP

)
GP , (2.58)

Cα,LP = 0 , (2.59)

Dα,LP = 0 , (2.60)

Bα,LT = −
m2

ℓα
+ Q2

M2
N

mℓα

MN

{
F1
(
3GT − 2G

(1)
T − 4G

(2)
T

)
+ 2F2GT

+ Q2

4M2
N

[
4F1

(
G

(1)
T − G

(2)
T

)
+ F2

(
− GT + 6G

(1)
T + 4G

(2)
T

)]
+ 4F2G

(2)
T

(
Q2

4M2
N

)2 }
,

(2.61)
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Cα,LT = −mℓα

MN

(
3GAGT + (G̃P GT − 4GAG

(1)
T ) Q2

4M2
N

)
, (2.62)

Dα,LT = 0 . (2.63)

for the interference terms with the SM amplitude (LX-type interactions).
For anti-neutrinos interacting via ν̄β +p+ → ℓ+

α +n, the relevant functions for the LL, RR,
LS and LT interactions are (C̄α,XY ) = −(Cα,XY ), for the LP interaction we have B̄α,LP =
−Bα,LP , and the remaining functions are identical to their ν counterparts. Finally, for both
neutrino and anti-neutrino scatterings we always have

∑
spin A∗

X,αAY,α =
∑

spin AX,αA∗
Y,α.

Let us focus first on the interference (LX-type) terms which are typically more important
than the XX-type contributions because they will be multiplied by only one power of the new
physics couplings ϵX . We see that among the interference terms, the only ones that are not
proportional to mℓα/MN are of the LR type (interference between the left-handed SM current
and a right-handed new physics current, eqs. (2.52)–(2.54)). Therefore, for electron (muon)
neutrinos, for which mℓα/MN ∼ 5 × 10−4 (0.1), one might expect right-handed new physics
currents parameterized by ϵR to be the easiest to detect. However, it turns out that the F1, F2,
and GS form factors appearing in eqs. (2.52) and (2.54) are only O(1), while tensor (eqs. (2.61)
and (2.62)) and pseudoscalar interactions (eq. (2.58)) benefit from form factors that are larger
(see discussion below eq. (2.21) and below eq. (2.36)), compensating the smallness of mℓα/MN .

At quadratic order in the ϵX ’s we do not have any such suppressions and all interactions
contribute, especially the pseudoscalar and tensor ones with their large form factors.

As a final note, in this work we do not consider XY interactions when X ̸= Y and X ̸= L

or Y ̸= L. This corresponds to an interference between two different non-SM like interactions
at the quadratic order with respect to ϵXϵY , however such term would always be suppressed
with respect to a quadratic term with just one interaction as well as the interference with
the SM. Therefore, we ignore such terms in the remainder of this work.

2.3 Neutrino-nucleus scattering

While interactions of neutrinos with nucleons are already highly non-trivial, the fact that
nucleons are embedded in nuclei adds another layer of complexity. In this section we consider
the scattering of (anti)neutrinos off a target nucleus A. We will focus in particular on
A = 16 (oxygen, relevant for water Čerenkov detectors), for which nuclear spectral functions
are available.2

In the limit of moderate momentum transfer (|q| ≳ 400 MeV), a factorization scheme
can be adopted to describe the hadronic final state [21]. In the quasielastic region, the latter
can be simplified as the product of a single nucleon with momentum p′ = (E′, p′) that is
decoupled, and the A − 1-nucleon residual system:

|ΨA
f ⟩ = |p′⟩ ⊗ |ΨA−1

n , pA−1⟩ . (2.64)

Here, |p′⟩ is the final state nucleon produced at the primary vertex, assumed to be in a
plane wave state, and |ΨA−1

n , pA−1⟩ is the wave-function describing the remnant nucleus
2Our results should to a good approximation be applicable also to scattering on carbon (A = 12) and

nitrogen (A = 14), given that these nuclei are similar in mass to oxygen. We plan to repeat our analysis for
scattering on 40Ar once the corresponding spectral functions — currently under development — are published.
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with momentum pA−1. The subscript n labels the possible states of the nuclear remnant,
with n = 0 corresponding to the ground state and n > 0 to excited states. With this
factorization ansatz, and inserting a complete set of free single-nucleon states satisfying∑

N

∫
d3pN |N, pN ⟩ ⟨pN , N | = 1 (where the sum runs over all nucleons in the target nucleus

and the integral runs over the nucleon 3-momentum), the matrix element of the one-body
current operator is

⟨ΨA
f | Jµ |ΨA

0 ⟩ =
∑
N

∫
d3pN

[
⟨ΨA−1

n | ⊗ ⟨pN , N |
]
|ΨA

0 ⟩ ⟨p′|
∑

i

jµ
i |pN , N⟩ . (2.65)

In this expression |ΨA
0 ⟩ is the ground state of the initial-state nuclear system, p′ = q + pN

is the final 4-momentum of a free nucleon with initial 4-momentum pN , and Jµ =
∑

i jµ
i , is

the nuclear current operator, which we write as a sum of one-body currents, each of them
corresponding to one of the quark bilinear operators from eqs. (2.10)–(2.14).

Exploiting momentum conservation at the single nucleon vertex we can rewrite the
squared spin-summed amplitudes in the nuclear case. Considering the system where a
nucleon with momentum pN is removed, leaving behind a residual nucleus with excitation
energy E∗,3 we have

1
2
∑
spin

AX,αA∗
Y,α = 1

2

∫
d3pN

(2π)3 Ph(pN , E∗) mN

e(pN )
mN

e(q + pN )

×
∑
spin

∑
N

AX,αA∗
Y,α δ

(
ω̃ + e(pN ) − e(q + pN )

)
, (2.66)

where e(pN ) ≡ (p2
N + m2

N )1/2, and ω̃ is the effective energy transfer from the neutrino to
the nucleon. It is defined in terms of the physical energy transfer ω (the zero component
of the 4-vector q ≡ (ω, q)) via

ω̃ = ω + mN − E∗ − e(pN ) . (2.67)

The correction terms on the right-hand-side of eq. (2.67) account for the fact that the initial
state nucleon is bound. The one-nucleon spectral function, Ph(pN , E), can be written as

Ph(pN , E∗) =
∑

n

∣∣∣ ⟨ΨA
0 |
[
|pN ⟩ ⊗ |ΨA−1

n ⟩
]∣∣∣2 δ(E∗ + EA

0 − EA−1
n + mN ) , (2.68)

where the energy of the nuclear ground state is EA
0 and the one of the remnant system,

which can be found in any state n, is EA−1
n . The factors mN /e(pN) and mN /e(q + pN)

in eq. (2.66) are included to account for the fact that the four-spinors in the relativistic
matrix element are defined using the covariant normalization, whereas the spinors appearing
in the spectral function are normalized to unity.

Various methods can be employed to calculate the spectral function of finite nuclei [65–70].
In this study, we utilize the spectral function of 16O from refs. [20, 71]. This approach employs
a semi-phenomenological method, combining (e, e′p) scattering data with nuclear matter
calculations derived from the Correlated Basis Function formalism.

3In other words, E∗ is the absolute value of the energy required to remove one nucleon from the nucleus.
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3 Cross section results

Using the formalism outlined in the previous sections, we can now calculate the CCQE
neutrino-nucleus cross-section, including the full set of EFT operators. In the laboratory
frame, where the initial nucleus is at rest, the differential neutrino-nucleus cross-section
is given by

dσαβ

dQ2 = dσ̂LL,α

dQ2 δαβ +
∑
X

(
[ϵX ]αβ

dσ̂LX,α

dQ2 δαβ + h.c.

)
+
∑
X,Y

[ϵX ]αβ [ϵY ]∗αβ

dσ̂XY,α

dQ2 , (3.1)

with

dσ̂XY,α

dQ2 = 1
64π

1
(pν · pNi)2

[1
2
∑
spin

AX,αA∗
Y,α

]
. (3.2)

Here, Ni = n for neutrino interactions (νn scattering) and Ni = p for anti-neutrino interactions
(ν̄p scattering). For the scattering on free nucleons, one simply has to replace AX,αA∗

Y,α by
AX,αA∗

Y,α. From kinematics we have pν · pNi = MN Eν . The total cross section (eq. (2.6)) is
obtained by integrating eq. (3.1) over Q2, with the lower and upper integration limits [44]

Q2
min = 1

2Eν +MN

[
2MN E2

ν −m2
ℓα

(MN +Eν)−Eν

√
−2M2

N (s+m2
ℓα

)+(s−m2
ℓα

)2 +M4
N

]
,

(3.3)

Q2
max = 1

2Eν +MN

[
2MN E2

ν −m2
ℓα

(MN +Eν)+Eν

√
−2M2

N (s+m2
ℓα

)+(s−m2
ℓα

)2 +M4
N

]
.

(3.4)

The squared center of mass energy is s = M2
N + 2MN Eν .

The individual contribution, σ̂XY,α, to the total cross sections as a function of the neutrino
energy are shown in figures 2 and 3 for scattering on oxygen. Remember that the σ̂XY,α can
be negative — only after multiplying with the [ϵX ]αβ coefficients and summing according to
eq. (2.6), the result for the total cross section needs to be positive. In fact, σLR exhibits a
sign change (from negative at lower energies to positive at higher energies) at Eν ∼ 0.8 GeV.

Our main findings from figures 2 and 3 can be summarized as following:

1. New interactions can benefit from significant cross-section enhancements, aiding their
detection. This is particularly true for pseudoscalar and tensor interactions, which
benefit from large nucleonic form factors. In the case of pseudoscalar currents, this
is related to the fact that the pion is a pseudoscalar, and nucleons couple strongly to
pions. For the tensor case, the enhancement can similarly be related to the existence of
two-pion intermediate states [64].

2. The axial form factor introduces significant systematic uncertainties to the neutrino-
nucleus cross-section, indicated by the colored bands in figures 2 and 3 and also
summarized in table 2. This affects the SM contribution as well as many types of new
interactions, notably those with right-handed and pseudoscalar Lorentz structures. We
see that using lattice QCD, which predicts a larger form factor, as input leads to cross
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Figure 2. Contributions to the CCQE differential cross sections for muon neutrinos scattering on
an oxygen target, as a function of the neutrino energy. Results for νe scattering are very similar.
The different colored curves correspond to operators with different Lorentz structures, with the SM
(LL) case shown in gray. For interactions depending on the axial form factor, we compare different
parameterizations of that form factor: the dipole from eq. (2.19) (dotted), the z-expansion fitted
to neutrino-deuteron scattering data (dashed), and the z-expansion fitted to lattice QCD results
(solid). For cross sections that depend on the induced scalar form factor G̃S , a suffix “0” indicates
that this form factor has been set to zero, whereas a suffix “1” indicates that the form factor has been
determined using a constituent quark model (with O(1) uncertainty). For comparisons, we also show
results for neutrino scattering on free nucleons (thinner dot-dashed lines). Our main cross-section
results in tabulated form are available from GitHub [41].
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Figure 3. Same as figure 2, but for ντ scattering.

sections that are larger by O(10%) factor than those based on the dipole form factor or
neutrino-deuteron scattering. Discrepancies are largest in the multi-GeV energy range
which is most relevant to long-baseline experiments like DUNE. Note, however, that
the large uncertainties affect mostly the normalization of the cross section, not the
energy dependence. Therefore, the energy spectrum of observed neutrino events can be
used to distinguish different types of new interactions.

3. Nuclear effects are crucial even at multi-GeV energies, in contradiction to the widespread
assumption that neutrino scattering on free nucleons is a good approximation in the
calculation of the CCQE cross sections at large q2. This is particularly apparent for
tensor interactions (green lines in figures 2 and 3) at energies ≳ 6 GeV. The observed
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νe νµ ντ

Eν [GeV] ≤ 1 1 < · · · ≤ 4 > 4 ≤ 1 1 < · · · ≤ 4 > 4 ≤ 4 > 4

LL 2.4 3.1 3.0 2.3 3.1 3.0 3.4 3.4
RR 1.4 2.1 2.6 1.4 2.1 2.6 0.2 2.8

D2 Difference (%) PP 4.9 7.5 7.8 4.5 7.2 7.5 12.1 6.1
LR 10.4 23.5 19.6 9.1 23.5 19.6 8.0 11.7
LP 1.5 0.04 0.2 1.4 0.9 0.05 9.4 4.1

LL 18.3 34.9 35.7 17.8 34.9 35.7 70.0 44.5
RR 11.8 22.4 30.5 11.7 22.4 30.5 30.8 37.0

LQCD Difference (%) PP 60.5 145.0 162.7 56.5 138.6 154.6 310.6 90.4
LR 76.8 167.5 176.3 76.3 168.1 176.5 154.1 152.3
LP 14.0 10.5 4.1 16.3 17.3 10.9 974.8 86.0

Table 2. Differences (in per cent) between the energy-integrated cross sections evaluated using axial
form factors based on neutrino-deuteron scattering (top) or lattice QCD (bottom) compared to the
simple dipole form factor from eq. (2.19). Different columns correspond to different energy ranges and
neutrino flavors, while different rows are for interactions with different Lorentz structures.

phenomenon can be attributed to the Fermi motion of nucleons within the nuclear
medium. This introduces additional terms that are negligible when scattering occurs
on a single nucleon at rest in the laboratory frame.

4. For τ neutrinos, the initial-state momentum of the bound target nucleon lowers the
energy threshold for ντ interactions from 3.45 GeV for scattering on nucleons to ∼
2.5 GeV for scattering on oxygen nuclei. The effect is expected to be even more significant
in larger nuclei like 40Ar thanks to the larger initial-state momenta. The shift of the
threshold is much larger than the typical experimental energy resolution and should
therefore be clearly visible in the event spectrum, given sufficient statistics.

4 Summary and conclusions

Accurate calculations of neutrino-nucleus interaction cross sections are pivotal for precision
neutrino physics. And while controlling hadronic uncertainties within the Standard Model
already presents a substantial challenge, the task becomes even more daunting when potential
new interactions beyond the Standard Model are introduced

In this work, we have taken an important step forward by deriving, for the first time, a
comprehensive set of neutrino-nucleus cross sections that incorporate all conceivable hadronic
currents within the framework of Effective Field Theory. We have carefully determined the
relevant vector, axial vector, scalar, pseudoscalar, and tensor form factors of the nucleon.
Furthermore, we have established the corresponding nucleon matrix elements and integrated
them with the nuclear spectral function to account for nuclear effects. An emphasis was
placed on understanding systematic uncertainties, particularly those tied to the nucleon
axial form factor.

Our findings show that specific Lorentz structures, especially pseudoscalar and tensor
interactions, exhibit cross sections notably enhanced compared to those of the Standard
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Model. Nonetheless, there exists a considerable margin of uncertainty. Lattice QCD predicts
the axial form factor, and the pseudoscalar one which is derived from it, to be larger by
about 10% compared to the simple dipole parameterization and the z-expansion approach
based on neutrino-deuteron scattering data. We also observed that nuclear effects hold
significance across all Lorentz structures, even at multi-GeV energies. For charged current
ντ interactions, factoring in the initial state momentum of the impacted nucleon smears
out the energy threshold.

Our results can be used in future studies of new physics in the neutrino sector to relate
observed event rates to the coupling constants of an underlying theoretical model. Further
recommendations on how to use our results in practice are given in appendix C.

Directions for future work include applying our methods to different target nuclei, as
well as updating form factors and spectral functions with new data from neutrino-nucleus
and electron-nucleus scattering experiments. Attention must be paid to the fact that this
data itself may be contaminated by physics beyond the Standard Model. While the focus
of this work is exclusively on studying the CCQE cross sections, new physics can affect
other processes contributing to neutrino- nucleus scattering above O(1) GeV (namely, deep
inelastic scattering and resonance production). The effects of new physics on the deep inelastic
scattering within the EFT Extensions of the SM is thoroughly discussed in ref. [15]. The
case for the resonance production is much more involved, given how difficult it is to obtain
the corresponding hadronic amplitudes even in the SM, and we leave it for a future work.
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A Impact of new physics on Standard Model parameters

As explained in section 2.1 and in refs. [4, 9, 42, 43], the measured values of the SM parameters
entering our calculations, in particular v and Vud may themselves be affected by new physics.
The resulting biases can, however, be absorbed into a redefinition of ϵL as we now show
explicitly. The true values of the SM parameters (which we denote with a superscript ‘0’)
can formally be related to the measured values (for which we use the superscript ‘PDG’) via

vPDG ≡ v0 + δv ,

V PDG
ud ≡ V 0

ud + δVud .
(A.1)
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Up to first order in the new physics parameters, δv and δVud can be absorbed into a
redefinition of ϵL according to

ϵL → ϵ̄L ≡ ϵL + 2δv

vPDG − δVud

V PDG
ud

, (A.2)

as can be easily seen by directly plugging eq. (A.1) into the WEFT Lagrangian (cf. eq. (2.1))

LWEFT ⊃ − 2V 0
ud

(v0)2

{
[1 + ϵL]αβ(q̄uγµPLqd)(ℓ̄αγµPLνβ) + . . .

}
(A.3)

Here, . . . stands for all new physics terms with Lorentz structures R, S, P , T . We see that,
interpreting v as vPDG, Vud as V PDG

ud , and ϵL as ϵ̄L in eq. (2.1), the effects of new physics
on the Higgs vev and on the CKM matrix elements are absorbed.

B Complete expressions for the squared amplitudes

In this appendix, we present the full expression for the squared amplitudes, without the
approximation of nucleons at rest that was used in eqs. (2.38)–(2.63). With the definitions
D0 ≡ 2V 2

ud/v4 and Pij ≡ pi · pj , we find

1
2
∑
spin

|AL(R),α|2 = D0

{(
PℓαnPνp+PℓαpPνn

)[(
2F1+F2

)2+
(
G̃P −2GA

)2+ Pnp

M2
N

(
F 2

2 −G̃2
P

)]

−
(
PℓαnPνn+PℓαpPνp

)[
4F1F2+3F 2

2 +G̃P

(
G̃P −4GA

)
−Pnp

M2
N

(
F 2

2 +G̃2
P

)]
∓8
(
PℓαnPνp−PℓαpPνn

)[
GA

(
F1+F2

)]
(B.1)

−M2
NPℓαν

[(
1−Pnp

M2
N

)(
4F1F2+F 2

2 +G̃P

(
4GA−G̃P

)
−Pnp

M2
N

(
F 2

2 −G̃2
P

))

+4
(
F 2

1 −G2
A

)]}
,

1
2
∑
spin

|AS,α|2 = 2D0G2
SPℓαν

(
Pnp+M2

N

)
, (B.2)

1
2
∑
spin

|AP,α|2 = 2D0G2
PPℓαν

(
Pnp−M2

N

)
, (B.3)
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1
2
∑
spin

|AT,α|2 = 4D0

{(
PℓαnPνn+PℓαpPνp

)[
2(G(1)

T +G
(2)
T )
(
GT −G

(1)
T −G

(2)
T

)
+ Pnp

M2
N

(
G

(1)
T

2
−2G

(2)
T

2)]
(B.4)

+
(
PℓαnPνp+PℓαpPνn

)[
2Pnp

M2
N

G
(2)
T

(
−GT +2G

(1)
T +G

(2)
T

(
1+ Pnp

M2
N

))

+
(
GT −G

(1)
T

)2]

+M2
NPℓαν

[
G2

T

Pnp

M2
N

+2
(

1−Pnp

M2
N

)(
G

(1)
T +G

(2)
T

(
1+ Pnp

M2
N

))

×
(

GT −G
(1)
T −G

(2)
T

(
1+ Pnp

M2
N

))]}
,

where in eq. (B.1) the − and + signs correspond to |AL,α|2 and |AR,α|2, respectively. For
the interference terms with the SM we find
1
2
∑
spin

AL,αA∗
R,α = D0

{(
PℓαnPνp+PℓαpPνn

)[(
2F1+F2

)2−(G̃P −2GA

)2+ Pnp

M2
N

(
F 2

2 +G̃2
P

)]

−
(
PℓαnPνn+PℓαpPνp

)[
4F1F2+3F 2

2 −G̃P

(
G̃P −4GA

)
−Pnp

M2
N

(
F 2

2 −G̃2
P

)]

+M2
NPℓαν

[(
1−Pnp

M2
N

)(
4F1F2+F 2

2 −G̃P

(
4GA−G̃P

)
−Pnp

M2
N

(
F 2

2 +G̃2
P

))

+4
(
F 2

1 +G2
A

)]}
,

(B.5)

1
2
∑
spin

AL,αA∗
S,α = D0mℓαMN GS

(
Pνn+Pνp

)[
2F1+F2

(
1−Pnp

M2
N

)]
, (B.6)

1
2
∑
spin

AL,αA∗
P,α =−D0mℓαMN GP

(
Pνn−Pνp

)[
2GA−G̃P

(
1−Pnp

M2
N

)]
, (B.7)

1
2
∑
spin

AL,αA∗
T,α =−D0mℓαMN

{(
Pνn−Pνp

)[
2F1

(
3GT −4G

(1)
T −2G

(2)
T

)
(B.8)

+F2
(
5GT −6G

(1)
T −2G

(2)
T

)
+ Pnp

M2
N

(
4F1

(
G

(1)
T −G

(12
T

)
−F2

(
GT −6G

(1)
T

)
+2F2G

(2)
T

Pnp

M2
N

)]

+
(
Pνn+Pνp

)[
2GA

(
3GT −2G

(1)
T

)
−G̃P GT +

(
4GAG

(1)
T +GT G̃P

)Pnp

M2
N

]}
.
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C Application to oscillation experiments

In this appendix we explain how the results of this work can be used at neutrino oscillation
experiments. We will follow closely the formalism introduced at refs. [12, 40]. The first
important point to note is that the new interactions introduced in the Lagrangian of eq. (2.1)
will in general affect not only the neutrino detection cross sections, but also the production
rate. Let us assume neutrinos are produced at a source S in conjunction with a charged
lepton ℓβ , and that the experiment can have multiply “sources” (e.g. different meson decays,
S = π±, K0

S , K0
L, K±, etc., in a neutrino beam experiment). Neutrinos scatter off the target

nucleon or nucleus and produce a charged lepton ℓα. The differential event rate in a detector
a distance L away from the source is [15]:

dRα

dEν
= NT σSM

α (Eν)
∑
β,S

ΦS,SM
β (Eν) P̃ S

βα(Eν , L) . (C.1)

In this expression, NT is the number of target particles in the detector, the SM neutrino
flux for each source S (in the absence of new physics) is ΦS,SM

β (Eν), and the SM detection
cross section is σSM

α (Eν) = σ̂LL,α. The pseudo-probability P̃ S
βα(Eν , L) is the oscillation

probability convoluted with terms describing the new physics in neutrino production and
detection. It is given by:

P̃ S
βα(Eν ,L) =

∑
n,m

e−i∆m2
nmL/(2Eν)

×
[
U∗

βnUβm+
∑

X,j,k

pS,jk
XL,β [ϵjk

X U ]∗βnUβm+
∑

X,j,k

pS,jk∗
XL,βU∗

βn[ϵjk
X U ]βm+

∑
X,Y,j,k

pS,jk
XY,β [ϵjk

X U ]∗βn[ϵjk
Y U ]βm

]

×
[
UαnU∗

αm+
∑

X,r,s

drs
XL,α[ϵrs

X U ]αnU∗
αm+

∑
X,r,s

drs∗
XL,αUαn[ϵrs

X U ]∗αm+
∑

X,Y,r,s

drs
XY,α[ϵrs

X U ]αn[ϵrs
Y U ]∗αm

]
,

(C.2)

where ∆m2
nm ≡ m2

νn
− m2

νm
are the mass squared differences, Uαm are the elements of the

effective PMNS matrix in matter,4 and the sums run over neutrino mass eigenstates n, m,
interactions X = L, R, S, P, T , and quark flavor indices j, k at the source or r, s at the
detector. The impact of the new physics effects is parameterized by the production coefficients,
pS,jk

XY,β , and the detection coefficients, djk
XY,α, which quantify how strongly a new interaction

affects the neutrino event rate. Roughly speaking, the pS,jk
XY,β give the magnitude of the new

physics contribution to the neutrino fluxes relative to the SM flux. The coefficients with
4It is important to keep in mind that, at neutrino oscillation experiments, new charged-current interactions

are often accompanied by new neutral-current interactions once the EFT defined by eq. (2.1) is embedded into
an ultraviolet completion that respects the SM SU(2) symmetry. (For the same reason, they are also often
accompanied by flavor-changing neutral currents in the charged lepton sector, which, however, go beyond the
scope of this work.) If the new neutral-current interactions have an L or R Lorentz structure, they contribute
to neutrino coherent forward scattering, thereby modifying the effective PMNS matrix in matter. In addition,
new scalar (S) interactions lead to an effective modification of the neutrino mass matrix in matter, which
implies modifications to both the PMNS matrix elements Uαn and to the mass-squared differences ∆m2

nm.
Precision studies should always take into account both neutral-current and charged-current manifestations of
the new physics.
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X ̸= Y describe the interference between operators with different Lorentz structures, whereas
the ones with X = Y describe the non-interfering terms. Notably pS,jk

LL,β = 1 as LL is the
Lorentz structure of SM weak interactions. Similarly, the djk

XY,α are the ratios of the (partial)
detection cross sections with and without new physics. As long as only scattering on up
and down quarks is considered, they are given by

dud
XY,α = σ̂XY,α

σSM
α

, (C.3)

where σ̂XY,α are the CCQE partial cross sections including new physics from section 3, and
σSM

α is the total SM CCQE cross section.
For additional details on the production coefficients and the effect of new physics on

various neutrino fluxes we refer the reader to refs. [12, 15, 40].

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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