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This work investigates in detail the performance and advantages of a new quantum Monte Carlo
integrator, dubbed quantum Fourier iterative amplitude estimation (QFIAE), to numerically evaluate for the
first time loop Feynman integrals in a near-term quantum computer and a quantum simulator. In order to
achieve a quadratic speedup, QFIAE introduces a quantum neural network (QNN) that efficiently
decomposes the multidimensional integrand into its Fourier series. For a one-loop tadpole Feynman
diagram, we have successfully implemented the quantum algorithm on a real quantum computer and
obtained a reasonable agreement with the analytical values. One-loop Feynman diagrams with more
external legs have been analyzed in a quantum simulator. These results thoroughly illustrate how our
quantum algorithm effectively estimates loop Feynman integrals and the method employed could also find
applications in other fields such as finance, artificial intelligence, or other physical sciences.
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I. INTRODUCTION

To unravel the mysteries of the universe at its most
fundamental level, quantum field theory (QFT) stands out
as an astounding theory, demonstrating significant agree-
ment between theoretical predictions and experimental
observations at particle colliders. However, as our com-
prehension of the particle realm progresses, the need to
explore higher energies presents substantial challenges for
precise measurements and theoretical predictions. In this
regard, the perturbative approach in QFT has gained
immense importance, emerging as a crucial framework
for deriving accurate predictions in high-energy physics.
Nevertheless, computing higher-order contributions in
perturbative QFT is far from straightforward. The primary
challenge lies in dealing with virtual quantum fluctuations,
leading to the intricacies of multiloop-multileg Feynman
integrals. The difficulty stems from their multidimensional
nature, dependence on multiple scales, and the presence of
ultraviolet (UV), infrared (IR), and threshold singularities.

Tackling these challenges often involves tiresome regulari-
zation, renormalization, and subtraction techniques.
Considering the enormous computational demands of

standard methods, the imperative to seek alternative
approaches becomes evident to overcome existing state-
of-the-art limitations. In response, there is a growing
interest in exploring innovative strategies rooted in quan-
tum computing to address traditionally challenging prob-
lems spanning diverse domains. The potential acceleration
offered by quantum computers has spurred various ideas,
including Grover’s algorithm for efficient database
querying [1], Shor’s algorithm for factorization of large
integers [2], and quantum annealing for Hamiltonian
minimization [3]. In the realm of particle physics, quantum
algorithms have made inroads into different areas, such as
lattice gauge theories [4,5]. Moreover, these algorithms
have been deployed in various tasks related to high-energy
colliders [6]. These applications encompass jet identifica-
tion and clustering [7–10], determination [11] and integra-
tion [12] of parton densities, simulation of parton
showers [13], anomaly detection [14–16], integration of
elementary particle processes [17], calculation of color
factors in QCD [18], and the establishment of the causal
structure of multiloop Feynman diagrams [19,20]. The
rapid expansion of applications underscores the versatility
of quantum algorithms for a wide array of purposes [21].
In light of these recent achievements, this article seeks to

investigate the potential of quantum algorithms for the
efficient computation of loop Feynman integrals.
Specifically, we delve into the capabilities of quantum
Fourier iterative amplitude estimation (QFIAE), a quantum
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algorithm recently introduced in [22,23]. QFIAE serves as
an end-to-end quantumMonte Carlo integrator, showcasing
the aimed potential for a quadratic speedup in querying the
probability distribution function that follows the target
function.
The workflow of QFIAE, illustrated in Fig. 1, initiates by

decomposing the target function into its Fourier series
using a quantum neural network (QNN) following a data
reuploading approach [24–26]. As was proven in [24,27],
following an exponential data encoding approach leads the
quantum model to represent a truncated Fourier series.
Subsequently, each trigonometric term of the Fourier series
undergoes quantum integration using iterative quantum
amplitude estimation (IQAE) [28], an efficient version of
quantum amplitude estimation(QAE) [29].
The Fourier decomposition enables the target function to

be encodable with a minimum number of quantum arith-
metic operations. At the same time, it takes advantage of
the fact that the sine function is more suitable for integra-
tion in a quantum approach. The QNN is the central
ingredient of QFIAE that offers a viable strategy to retain
the potential quadratic speedup with respect to other
quantum integration algorithms recently proposed, such
as Fourier quantumMonte Carlo integration (FQMCI) [30].
The key idea of FQMCI is also to use Fourier series
decomposition to approximate the integrand and then
estimate each component separately using QAE.
Nevertheless, it relies on certain assumptions regarding
the acquisition of the Fourier coefficients, which may not
hold in general. When these assumptions are not met, the
quantum speedup might be wiped out. The QNN ensures a
reliable extraction of the coefficients in a quantum way.
The second crucial aspect of QFIAE involves leveraging

the advantages of IQAE over QAE. QAE [29] is a quantum
algorithm that estimates quantum state amplitudes using
amplitude amplification, a generalization of Grover’s algo-
rithm [1]. This process enhances the probability of meas-
uring a desired state over a nondesired state. However,
QAE has inherent limitations, including its reliance on the

resource-intensive quantum phase estimation (QPE) sub-
routine [31], which involves operations considered com-
putationally expensive for current noisy intermediate scale
quantum (NISQ) devices that may compromise the antici-
pated quadratic speedup promised by QAE. To address this
challenge, IQAE replaces QPE with a classically efficient
postprocessing method, reducing the qubits and gates
requirements while maintaining the asymptotic quadratic
speedup.

II. QUANTUM INTEGRATION OF LOOP
FEYNMAN INTEGRALS

In the realm of particle physics, loop Feynman integrals
are mathematical expressions that capture quantum fluc-
tuations arising from virtual particle interactions within
subatomic physical processes. These integrals can become
highly intricate, often reaching a level of complexity
where analytical computation is practically impossible.
Consequently, numerical integration methods involving a
potentially large number of variables become necessary.
An innovative approach to address such integrals is the

loop-tree duality (LTD) [32–35]. The LTD methodology
transforms loops defined in the Minkowski space of loop
four-momenta into trees defined in the Euclidean space of
their spatial components. Additionally, it reinterprets vir-
tual states within loops as configurations resembling real-
radiation processes.
Among other advantages, this transformation provides a

more intuitive understanding of the singular structure of
loop integrals [36,37]. In particular, the most remarkable
property of LTD is the existence of a manifestly causal
representation [32,38–42], i.e., an integrand representation
where certain nonphysical singularities are absent and
therefore yields integrands that are numerically more
stable. Since the integration domain in LTD is Euclidean,
not Minkowski, it offers additional advantages, both for
analytic applications such as asymptotic expansions
[43,44], where the hierarchy of scales is well defined,
and numerical applications [45,46] because the number of
loop integration variables is independent of the number
of external particles. For example, at one loop the number
of independent integration variables is always three, the
number of spatial components of the loop momentum,
although for certain kinematic configurations this number
is reduced when the dependence on any of these variables is
trivial. This is the case for tadpole and bubble diagrams at
one loop. Moreover, LTD offers a unified framework for
cross-section calculations, since the dual representation of
loop integrals in Euclidean domains allows a direct
combination of virtual and real contributions at the
integrand level, resulting in a fully local cancellation of
IR [47–51] and UV [43,52] singularities without the need
for modifying the dimensions of space-time, such as in
dimensional regularization (DREG) [53,54].

FIG. 1. Comparison of the workflows of classical Monte Carlo
integration and the QFIAE quantum algorithm.
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We now apply QFIAE to this sort of integrals expressed
in the LTD formalism, as a proof of concept of how
quantum computing has the potential to handle these costly
tasks in the particle physics field.

A. Tadpole loop integral

The first Feynman loop integral we address is the one-
loop tadpole integral

Að1Þ
1 ðmÞ ¼

Z
l

1

l2 −m2 þ {0
; ð1Þ

with internal mass m. The {0 factor is the customary
complex Feynman prescription for analytic continuation
in different kinematical regions. The loop four-momentum
to be integrated is l. The corresponding mathematical
expression in LTD, however, gets support in the loop three-
momentum because the loop energy component is inte-
grated out [33]. If a local UV counterterm is introduced,
then its LTD representation

Að1;RÞ
1 ðm; μUVÞ ¼ −

1

2

Z
l

�
1

qðþÞ
1;0

−
1

qðþÞ
UV;0

�
1þ μ2UV −m2

2ðqðþÞ
UV;0Þ2

��
;

ð2Þ

is well defined in the four physical dimensions, where
the integration measure reads

R
l ¼ R

d3l=ð2πÞ3. In

Eq. (2), we have defined the on-shell energies qðþÞ
1;0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þm2 − {0
p

and qðþÞ
UV;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ μ2UV − {0

p
, where μUV

is the renormalization scale. The tadpole integral is one-
dimensional because the integrand is independent of the
solid angle, and only depends on the modulus of the three-
momentum. The change of variable

jlj ¼ mz
1 − z

; z ¼ ½0; 1Þ; ð3Þ

remaps the integration variable into a finite range where the
Fourier series of the target function is defined.
To implement QFIAE in a real quantum computer we

must consider that quantum computers operating in the
NISQ era encounter diverse sources of noise, ranging from
quantum effects like decoherence to hardware-specific
errors, including gate, readout, and calibration errors. At
the same time, working on the same hardware technology
(superconducting qubits), we advocate for a hardware-
agnostic implementation strategy. Specifically, we propose
an approach where the two modules of QFIAE are
implemented on two different quantum computers supplied
by different providers. This enables a minimization of the
impact of hardware-specific noise on the overall algorith-
mic performance.
A one-qubit QNN is trained using an updated version of

the Adam gradient descent method first presented in [55]

and recently improved in [56]. In this new version of the
Adam algorithm, the authors propose a real-time quantum
error mitigation (RTQEM) procedure, that allows to
mitigate the noise in the QNN parameters during training.
We use the full-stack Qibo [57] framework. The high-level
algorithm has been written using Qibo, while Qibolab [58] and
Qibocal [59] are used to respectively control and calibrate the
5-qubit superconducting quantum device hosted in the
Quantum Research Centre (QRC) of the Technology
Innovation Institute (TII).
On the other hand, a 5-qubit IQAE algorithm has been

executed using Qiskit [60] on the 27-qubit IBMQ super-
conducting device ibmq_mumbai. To mitigate quantum
noise during execution, we employed a pulse-efficient
transpilation technique [61]. Effectively reducing the num-
ber of two-qubit gates by harnessing the hardware-native
cross-resonance interaction. While it has previously dem-
onstrated promise in the context of variational quantum
circuits (VQC) [62], it has not yet been extensively
explored for fault-tolerant applications. Considering the
positive results presented in Table I, this work serves as an
intriguing starting point for the applicability of this miti-
gation technique to fault-tolerant algorithms. Furthermore,
we also applied two more error mitigation techniques,
dynamical decoupling (DD) and zero noise extrapolation
(ZNE), using the Qiskit runtime estimator primitive [63].
In particular, the hardware implementation has been

done by fixing the mass to m ¼ 5 GeV, and considering
two values of the renormalization scale, μUV ¼ 2m and
μUV ¼ m=2. The uncertainties on the integrals presented in
Table I have been computed as the quadratic sum of the
individual uncertainties provided by IQAE for each trigo-
nometric component. These uncertainties are statistical in
nature and are to be combined with the statistical uncer-
tainties from the noise of the quantum devices employed in
both the QNN training and IQAE integration modules of
the QFIAE algorithm. Furthermore, there are also system-
atic uncertainties from the classical or quantum Fourier

TABLE I. Renormalized tadpole integral Að1;RÞ
1 ðm; μUVÞ on

Qibo and IBMQ, as a function of the ratio of the renormalization
scale μUV to the mass m, which is fixed to m ¼ 5 GeV. The
Fourier decomposition and IQAE integration are performed
either with a quantum simulator (S) or on a real quantum device
(Q). In the first raw both components are performed using
classical standard methods (C).

Fourier IQAE
Að1;RÞ

1 ðm; μUVÞ m ¼ 5;
μUV ¼ m=2

Að1;RÞ
1 ðm; μUVÞ

m ¼ 5; μUV ¼ 2m

C C −0.106 −0.258
S S −0.101ð3Þ −0.254ð9Þ
S Q −0.108ð4Þ −0.270ð12Þ
Q S −0.105ð2Þ −0.252ð6Þ
Q Q −0.106ð3Þ −0.270ð9Þ
Analytical −0.1007 −0.2554
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series truncation of the integrand function Að1;RÞ
1 ðm; μUVÞ.

Taking into account all statistical and systematic uncer-
tainties the obtained results are in agreement with the
analytical values within uncertainties.
The results presented in Table I show a relatively small

deviation from the analytical value for both μUV ¼ m=2 and
μUV ¼ 2m. In particular, the agreement with the analytical
values when both components of the algorithm are
executed on a quantum computer (second to last row of
Table I) is better than 1.7 standard deviations in all cases.
This result represents a noteworthy achievement for the
current state of the art in quantum computing technology.
Moreover, considering that it is the first application of an
end-to-end quantum algorithm executed on a quantum
computer for estimating Feynman loop integrals.
Furthermore, part of the deviation comes from the
Fourier series approximation itself, as shown in the first
row of Table I, which constitutes proof of the robustness of
the quantum algorithm presented.

B. Bubble loop integral

QFIAE is also effective in dealing with Feynman loop
integrals with threshold singularities. Therefore, we con-
sider the one-loop bubble integral

Að1Þ
2 ðp;m1; m2Þ ¼

Z
l

Y2
i¼1

1

q2i −m2
i þ {0

; ð4Þ

with q1 ¼ l and q2 ¼ lþ p, where p is an external
momentum. As for the tadpole, we introduce a local UV
counterterm to have a finite integral in the UV. The
corresponding LTD representation is [32]

Að1;RÞ
2 ðp;m1;m2Þ¼

Z
l

�
1

x2

�
1

λþ
þ 1

λ−

�
−

1

4ðqðþÞ
UV;0Þ3

�
; ð5Þ

where x2 ¼
Q

i¼1;2 2q
ðþÞ
i;0 , λ� ¼ P

i¼1;2 q
ðþÞ
i;0 � p0, and the

on-shell energies are given by qðþÞ
i;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

i − {0
p

with
i∈ f1; 2g, assuming the external momentum has vanishing

spatial components, p ¼ ðp0; 0Þ. If p2
0 < ðm1 þm2Þ2 the

integral is purely real. Otherwise, it gets an imaginary
contribution from the unitary threshold singularity at
λ− → 0, assuming p0 > 0. To deal with this threshold
singularity, it is convenient to introduce a contour defor-
mation in the complex plane, in order to smooth the
behavior of the function in the vicinity of the threshold
without altering the result of the integral. We consider
m1 ¼ m2 ¼ m, and proceed to estimate the integral using
two different QNNs to fit separately the real and imaginary
parts of the integrand and then integrate each Fourier series
using IQAE. We have implemented QFIAE on two differ-
ent quantum simulators. For the QNNs, we employed
Pennylane [64] whereas for IQAE, we utilized Qibo.
Results are depicted in Fig. 2, where the real and

imaginary parts are displayed on the left and right plots,
respectively. The statistical uncertainties are calculated as
in the previous section. It is worth mentioning that
uncertainties in the region below the unitary threshold
(m=p0 > 0.5) appear to be larger compared to the rest. This
is explained by the Fourier coefficients for low frequencies
being larger than in the high-mass region. Hence the
statistical uncertainties on the integrals of the trigonometric
functions for low frequencies are intrinsically larger since
the integrals we are estimating are also larger, i.e., have a
larger weight, which is the Fourier coefficient. Another
interesting point about these results is that in the low-mass
region, the QNNs fit the target function with a slight drop in
performance, hence there seems to be a correlation between
the QNN struggling to fit a function and the coefficients of
the lower frequency terms being larger.
Despite this, it is remarkable that the quantum integration

values are in agreement with the analytical values within
uncertainties. This constitutes another significant achieve-
ment since we have successfully circumvented the thresh-
old singularity while applying a quantum algorithm to
estimate the bubble integral.

C. Triangle loop integral

We now consider the one-loop three-point function,
which corresponds to a triangle loop topology. The LTD
representation of this integral is given by [38]

Að1Þ
3 ðp1; p2; m1; m2; m3Þ

¼ −
Z
l

1

x3

�
1

λ−12λ
þ
23

þ 1

λþ23λ
−
31

þ 1

λ−31λ
þ
12

þ ðλþij ↔ λ−ijÞ
�
;

ð6Þ
with x3 ¼

Q
3
i¼1 2q

ðþÞ
i;0 , where now the on-shell energies are

qðþÞ
1;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþp1Þ2þm2

1− {0
p

, and qðþÞ
i;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

i − {0
p

for i∈ f2; 3g. We work in the center of mass frame where
p12 ¼ p1 þ p2 ¼ 0, p12;0 ¼ p1;0 þ p2;0 ¼

ffiffiffi
s

p
and the

external momenta p1 and p2 are back-to-back along the
z axis. The causal denominators are

FIG. 2. Quantum integration of the real (left) and imaginary
(right) part of the renormalized bubble integral

Að1;RÞ
2 ðp;m;m; μUVÞ as a function of the ratio of the mass m

to the energy component of the external momentum set at
p0 ¼ 100 GeV, and the renormalization scale μUV.
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λ�31 ¼ qðþÞ
3;0 þ qðþÞ

1;0 � p1;0; λ�12 ¼ qðþÞ
1;0 þ qðþÞ

2;0 � p2;0;

λ�23 ¼ qðþÞ
2;0 þ qðþÞ

3;0 ∓ p12;0: ð7Þ

The integration variables in Eq. (6) are the modulus of
the loop three-momentum and its polar angle with respect
to p1, considering that the azimuthal integration is trivial.
This means that the Fourier decomposition is a function of
two variables and we have to integrate each of them
separately. We also apply a contour deformation to deal
with the unitary threshold singularity at λþ23 → 0, when
s > ðm2 þm3Þ2. The contour deformation smooths the
behavior of the integrand over the threshold singularity and
therefore significantly improves the quality of the Fourier
decomposition. The estimations of the triangle integral,
obtained in Pennylane and Qibo simulators, are shown in
Figs. 3(left) and 3(right), illustrating the real and imaginary
components, respectively. The statistical uncertainties are
calculated as in the previous sections and are expected to be
higher since we are performing a double IQAE integral, and
each integration introduces an error. However, the esti-
mated uncertainties align well with the deviations observed
in the real and imaginary components of the integral. All in
all, this represents another noteworthy accomplishment as
we have successfully extended for the first time the QFIAE
algorithm to a two-dimensional function with a threshold
singularity, and utilized a quantum algorithm to approxi-
mate the integral with sufficient accuracy.

III. CONCLUSIONS

In this work, we have for the first time successfully
implemented a quantum algorithm for evaluating Feynman
loop integrals in quantum hardware. Our approach is based
on the nonconventional LTD representation of Feynman
loop integrals and the QFIAE quantum algorithm which
provides a theoretical quadratic quantum speedup in the
number of queries of the probability distribution function.
We have provided a clear indication of how the optimi-

zation of a quantum circuit, at the level of pulses and the
application of combined error mitigation techniques, enable

the collection of accurate results. Specifically, we employed
QFIAE to numerically integrate the one-dimensional tad-
pole Feynman loop integral entirely on real quantum
hardware provided by Qibo and IBM. Moreover, loop
Feynman integrals with more external legs and dimensions
have also been integrated using QFIAE on quantum sim-
ulators across various kinematical regions, circumventing
different threshold singularities using a contour deforma-
tion. The obtained results demonstrate the remarkable
performance of QFIAE in estimating these integrals.
Overall, our study highlights the potential of quantum

Monte Carlo integrators, particularly the QFIAE quantum
algorithm, in integrating Feynman loop integrals. These
findings, some of them obtained from quantum super-
conducting devices, serve as an initial step toward the
search for a quantum method capable of speeding up the
computationally expensive task of evaluating Feynman
multiloop-multileg integrals. Moreover, they offer a proof
of concept for the method’s applicability to wider chal-
lenges across various domains that require Monte Carlo
integration, such as finance, artificial intelligence and other
physical sciences.
When considering the scalability of QFIAE to higher

dimensions, it is important to analyze its two key compo-
nents separately. Regarding the IQAE integration, the use
of Fourier decomposition allows us to express a multidi-
mensional integral as a product of individual integrals
containing Fourier terms with independent integration
variables. Consequently, regardless of the dimensionality,
IQAE is always applied to one-dimensional trigonometric
integrands after Fourier decomposition. This ensures its
efficient extension to multidimensional functions. In rela-
tion to the QNN fitting the target function, universality has
been theoretically demonstrated in [24] for exponential
encoding and a data re-uploading scheme. This constitutes
a theoretical proof that the first component of QFIAE is
also scalable to higher dimensions.
Still, the main challenge lies in identifying a suitable

ansatz capable of ensuring the trainability of multidimen-
sional functions, which is essential for addressing higher-
loop integrals. While universality has proven effective in
lower dimensions, extending it to higher dimensions
remains an open problem. In this work, we achieved a
successful fit for one and two-dimensional functions.
However, the search for a viable ansatz in higher dimen-
sions which involves a tradeoff between trainability and
expressivity of the variational quantum circuit is left for
future work.
Progressing in the previous limitation would assure,

according to the algorithm proposed in this article, a
significant noteworthy advancement over classical
Monte Carlo methods for computing these integrals,
presenting new opportunities for unlocking previously
inaccessible levels of precision in theoretical predictions
for high-energy physics at colliders.

FIG. 3. Quantum integration of the real (left) and imaginary
(right) part of the triangle integral Að1Þ

3 ðp1; p2; m;m;mÞ as a
function of the ratio of the mass m to the cms energy set atffiffiffi
s

p ¼ 2 GeV.
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APPENDIX A: HARDWARE IMPLEMENTATION
OF QFIAE

Although the implementation of Monte Carlo integration
in quantum simulators is of great interest for proof of
concept purposes, the potential quantum advantage will
only be materialized when the quantum algorithm is run on
a real quantum device. To this aim, we have addressed the
challenge of implementing an end-to-end quantum inte-
grator method into two different quantum devices.
First, the QNN has been trained using an updated version

of the Adam gradient descent method first presented in [55]
and recently improved in [56]. In this new version of the
algorithm, the authors propose a Real-Time Quantum Error
Mitigation (RTQEM) procedure, that allows to mitigate the
noise in the QNN parameters during training. We use the
Qibo [57] framework to compute the full-stack procedure.
The high-level quantum computing algorithm has been
written using Qibo, while Qibolab [58] and Qibocal [59] are
used to respectively control and calibrate the 5-qubit
superconducting device employed.
In this case, a more hardware-friendly linear ansatz has

been chosen to construct the QNN in one qubit. In
particular each layer LðlÞ

LAðx⃗; θ⃗Þ is defined as:

LðlÞ
LAðx⃗; θ⃗Þ ¼

YM
i¼1

Rzðθ3xi þ κθ4ÞRyðθ1xi þ θ2Þ; with

�
κ ¼ 1 if l is the last layer;

κ ¼ 0 otherwise:
ðA1Þ

On the other hand, the IQAE has been executed using
Qiskit [60] on the IBMQ27-qubits device ibmq_mumbai. The
quantum circuits of the operators A and Q of the IQAE
algorithm are presented in Fig. 4. Tomitigate quantum noise
during the execution of this algorithm,we employed a pulse-
efficient transpilation technique [61]. This technique effec-
tively reduces the number of two-qubit gate operations by
harnessing the hardware-native cross-resonance interaction,
potentially leading to a reduction in quantum noise. While it
has previously demonstrated promise in the context of
Variational Quantum Circuits (VQC) [62], it has not yet
been extensively explored for fault-tolerant applications.
Hence, this work serves as an intriguing starting point for the
applicability of this mitigation technique to fault-tolerant
algorithms, given the positive results presented in Fig. 3.
Furthermore, we also applied two more error mitigation
techniques, Dynamical Decoupling (DD) and Zero Noise
Extrapolation (ZNE),which are automatizedwithin the Qiskit
Runtime Estimator primitive [63].

APPENDIX B: SIMULATION IMPLEMENTATION
OF QFIAE

We have also implemented the QFIAE algorithm using
two different simulation frameworks. Pennylane [64] has

been used for QNN implementation, whereas Qibo [57] has
been used for applying IQAE to the Fourier series.
In particular, the linear ansatz corresponding to each

layerLðlÞ
LAðx⃗; θ⃗Þ for training the QNN to fit aM-dimensional

function is the following [25]:

LðlÞ
LAðx⃗; θ⃗Þ ¼

YM
i¼1

SðxiÞAðlÞ
i ðθ⃗l;iÞ; ðB1Þ

where SðxiÞ and AðlÞ
i are chosen as:

SðxiÞ¼RzðxiÞ; AðlÞ
i ðθ⃗l;iÞ¼Rzðθl;i;1ÞRyðθl;i;2ÞRzðθl;i;3Þ:

ðB2Þ

Once the Fourier coefficients are obtained from the
QNN, we implement the IQAE algorithm. To uphold the
claimed quantum advantage provided by Grover’s ampli-
tude amplification, certain conditions must be fulfilled.
First, the probability distribution of the functions to be
integrated should be encodable into a shallow quantum
circuit. In view of this requirement, we will use the
distribution pðxiÞ ¼ 1=2n generated by applying an
n-dimensional Hadamard gate, denoted as H⊗n, which
corresponds to a quantum circuit of depth 1. The second
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condition is that the target function has to be encodable
with a minimum number of quantum arithmetic operations.
That will be achieved selecting the target function as a
sinðxiÞ2 to be integrated in ½xi;min; xi;max�. Then the integrals
of the Fourier terms are obtained from the integral of the
sine function.
Under these considerations and choosing nqubits ¼ 5, the

quantum circuits corresponding to the A and Q operators
are shown in Fig. 4. Note that in Fig. 4(a) the rotation
angles encode the information about the limits of integra-
tion xi;min and xi;max. In particular, they are defined as:

θ0¼ðxmax−xminÞ=2nþ2xmin; θi¼2ðiþ1Þðxmax−xminÞ=2n;
n¼nqubits: ðB3Þ

For more information, a tutorial on QFIAE implementation
can be found at [23].

APPENDIX C: PARAMETERS EMPLOYED FOR
INTEGRALS IMPLEMENTATION

See Tables II and III below:

FIG. 4. Quantum circuits of the operators for the IQAE component of the QFIAE algorithm. (a) Amplitude operator A.
(b) Amplification operator Q.

TABLE II. Parameters for training the QNN.

Tadpole
(HW)

Tadpole
(SIM)

Bubble m=p0 < 0.5
(SIM)

Bubble m=p0 > 0.5
(SIM)

Triangle m=
ffiffiffi
s

p
< 0.5

(SIM)
Triangle m=

ffiffiffi
s

p
> 0.5

(SIM)

Layers 3 5 10 20 10 10
n_Fourier 5 5 10 20 10a 10
Step_size 0.100 0.060 0.095 0.020 0.065 0.045
Max_steps 60 300 450 200 450 400
Data_train 15 150 150 1500 3600 10000
Shots 500 � � � � � � � � � � � � � � �
δ � � � � � � 21 � � � 0.1 � � �

aNote that since it is a 2D function, the total number of Fourier coefficients is nFourier2 ¼ 100.

TABLE III. Parameters for the IQAE.

Tadpole Bubble Triangle
(HW & SIM) (SIM) (SIM)

ε 0.01 0.001 0.001
α 0.05 0.05 0.05
Shots 100000 1000 10000
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