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Abstract
The CERN SPS Beam Dump System (SBDS) is responsi-

ble for disposing the beam in the SPS in case of any machine
malfunctioning or end of cycled operation. This is achieved
by the actuation of kicker magnets with predefined pulses,
which aim to: i) deviate the beam towards the absorber block
(TIDVG); ii) dilute the particle density. Evidently, a mal-
function of this system may have negative consequences,
such as the absorber block degrading if the beam is not suf-
ficiently diluted, unwanted activation of the surroundings
or even damage to the vacuum chamber in case of complete
failure. By leveraging a combination of real images from
a beam screen device and data from simulations, we train
an online monitoring system to identify potential failures of
the SBDS from real-time images. This work improves the
safety of the operation of the SPS and contributes towards
the goal of automating the operation of accelerators.

INTRODUCTION
The Super Proton Synchrotron (SPS) is part of the CERN

accelerator chain, receiving beam from the Proton Syn-
chrotron and feeding fixed target experiments and the Large
Hadron Collider (LHC). The SPS features a beam dump
system, the SPS Beam Dump System (SBDS) [1, 2], which
is responsible for the disposal of the beam in case of ma-
chine malfunctioning or end of cycled operation. The SBDS
is composed of three horizontal (MKDH), three vertical
(MKDV) kickers and an absorber block (TIVDG), as shown
in Fig. 1. These kickers are actuated to deflect the beam
towards the TIDVG. Moreover, they are pulsed such that the
beam is diluted on the TIVDG – by continuously changing
the point where the beam hits the TIDVG, particle density
is reduced, avoiding damage to the absorber block. There-
fore, the SBDS is a critical component of the SPS and it
follows that its monitoring is important for the safe opera-
tion of the accelerator. Thus, we develop a tool based on a
Convolutional Autoencoder, widely used in computer vision
and machine learning, to detect failures in the SBDS from
BTV [3] images. Importantly, it can detect both failures on
which it was trained on and failures not seen during training.
It can also predict certain physical parameters of the beam,
providing additional information to the operator.

BTV IMAGES
A BTV is located 3665 mm in front of the TIVDG (not

depicted in Fig. 1), through which the beam passes before
hitting the TIDVG. The BTV is oriented at an angle of 45°
to the beamline, allowing for its image to be acquired from
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Figure 1: Schematic of the SBDS [4].

the side [5]. An image is acquired and stored for each beam
dump. The left panel of Fig. 2 shows an example of a BTV
acquisition (after preprocessing) of a normal SFTPRO (a
particular beam type that fills completely the SPS circumfer-
ence) dump.

Images of the BTV can also be obtained from simulations
based on particle tracking. An example of a BTV image
obtained from a simulation is shown in the right panel of
Fig. 2. The agreement between the simulation and the real
BTV is reasonably good, though there are visible differences,
such as the outline of the beam. In these simulations, var-
ious parameters of the beam, such as emittance, number
of bunches, number of batches, batch spacing, etc., can be
changed. This makes these simulations very appealing, as
they can be used to generate a labeled dataset (image and
parameters) that covers a wide range of combinations, which
would be extremely difficult to do in the physical machine.

MODEL ARCHITECTURE
Autoencoder and Reconstruction

As mentioned above, we wish to detect failures in the
SBDS from BTV images. Moreover, we wish to predict
physical parameters of the beam. Thus, our problem is
that of a regression from BTV images to a combination of
numerical (physical parameters) and categorical (failures)
variables. A regressor, however, would generally not be able
to identify failures on which it was not trained. This is an
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Figure 2: BTV image of an SFTPRO beam. Denoised ac-
quisition (left) and simulation (right). Arbitrary pixel units.
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important issue because our monitoring system should be
robust to many types of failures, even those not previously
observed. We overcome this by employing autoencoders [6],
which have found numerous applications, such as dimension-
ality reduction [7], image denoising [8], and, most impor-
tantly to this work, anomaly detection [9, 10]. Autoencoders
consist of two submodels, an encoder and a decoder. The
encoder transforms a high-dimensional input into a lower-
dimensional output, latent vector (or code), which encodes
the information of the input. Then, the decoder takes the
latent vector and attempts to reconstruct the original input.
In our particular application, we train the autoencoder such
that the latent variables match the numerical and categorical
variables (physical parameters and failures) that we wish
to predict, thus making the encoder a regressor. Notwith-
standing, we also allow the inclusion of free latent variables
as in common autoencoders to take into account features
other than the physical parameters we wish to predict. The
decoder then takes this mixed vector of predicted physical
parameters and general features of the input and tries to
reproduce the original BTV image given as input.

It is the reconstruction that enables the detection of previ-
ously unseen failures1. If the image of such a failure is fed
to the autoencoder, the encoder will make a (not necessarily
correct) prediction of the physical parameters, exactly as it
would do for an image of a normal beam. Therefore, it would
be difficult to flag the failure purely based on these values.
However, because the decoder was trained to reconstruct
the images of normal operation and failures present in the
training set (which can be flagged by the latent variables),
its reconstruction of the normal operation would be good,
whereas that of the unseen failure would be poor. Therefore,
by comparing the reconstruction to the original BTV image,
i.e. computing the reconstruction error, we can potentially
detect failures not present in the training set.

Hidden Layers

Since our inputs are images, we employ Convolutional
Neural Networks (CNN) [11], widely used in computer vi-
sion. The encoder contains five layers, the first four convolu-
tional and the last fully connected. Each of the convolutional
layers is followed by batch normalisation [12] and activation
with leaky rectified linear units (ReLUs). For categorical
latent variables, a sigmoid is applied to transform the output
of the layers to probabilities. The decoder follows the same
architecture in reverse and with Transposed CNNs [11], fol-
lowed by the application of softmax to transform the output
to a probability distribution. This is important for the com-
putation of the reconstruction loss as detailed in the next
section. In both CNNs and Transposed CNNs, the kernel
size is 3, the stride is 2 and padding is 1. The hidden dimen-
sions are 32, 64, 128 and 256 at the final convolutional layer
of the encoder, with the order reversed for the decoder.

1 Assuming such a failure somehow affects the BTV image.

TRAINING AND TESTING
Dataset

In this work, we restrict ourselves to simulated data. The
transfer of this tool to real data is also under development.
The dataset consists of 1024 samples and is generated ac-
cording to the distributions shown in Table 1. The numerical
variables are: jitter𝑥 and jitter𝑦, corresponding to small hori-
zontal and vertical shifts that can happen in the machine; 𝜀𝑥
and 𝜀𝑦, the horizontal and vertical normalised emittances.
Finally, mkdv_fail is the sole categorical variable and indi-
cates whether an MKDV has failed. Failure, here, means the
MKDV does not produce a kick. This parameter is Bernoulli-
distributed with parameter 0.1, i.e. an MKDV fails on 10%
of samples on average. Each sample is a pair of the BTV
image and the vector of the physical parameters of one sim-
ulation.

The training set consists of 896 randomly selected samples
from the 1024 and the test set consists of the remaining
128 plus 16 new samples corresponding to MKDH failures.
These failures are not present in the training set and serve to
test if the model can detect previously unseen failures.

Table 1: Parameter Distribution of Dataset

Parameter Distribution Unit

jitter𝑥 𝒩(0, 32) mm
jitter𝑦 𝒩(0, 32) mm

𝜀𝑥 𝒩(5, 12) 10−6 mm mrad
𝜀𝑦 𝒩(3.5, 12) 10−6 mm mrad

mkdv_fail ℬ(0.1)

Training
The numerical variables are normalised to follow a stan-

dard normal distribution and mkdv_fail is binary. The im-
ages are transformed to a resolution of 128x64 and subse-
quently normalised such that the sum of the pixels is 1, which
allows the use of probability-based losses, as explained next.

The loss function has three components. First, mean
squared error (MSE) is applied to the numerical latent vari-
ables. Second, cross entropy is applied to mkdv_fail. Finally,
we apply the Kullback-Leibler divergence (KL divergence)
for the image reconstruction loss. The intensities of the pix-
els of BTV images span across multiple orders of magnitude,
from background noise away from the beam to very high
intensities at its peaks and troughs. Thus, an application of
usual metrics, such as MSE, would result in a bad reconstruc-
tion of all pixels but those of the very highest intensities, as
these would dominate the loss. Because the KL divergence
is an entropy-based metric, it works in log-probabilities and
does not suffer from this issue. It regularises the losses of
pixels of different orders of magnitude, thus making it more
amenable to a better reconstruction. Indeed, we have found
substantial improvements in reconstruction quality using
this loss when compared to MSE.
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Figure 3: Predictions of the physical parameters on test set.

We use the Adam optimiser with default parameters [13]
on batches of 128 samples, over 100 epochs, with a learning
rate decay of 1/2 every 10 epochs.

RESULTS
Figure 3 shows the predictions of the physical parame-

ters on the test set. For the types of cases seen in training,
normal operation and MKDV failure, there is very good
agreement between predictions and ground truth. In partic-
ular, the model can identify an MKDV failure with 100%
recall. These cases, however, show a slight dispersion in the
other variables, especially in vertical jitter and emittance.
This can be explained by the fact that an MKDV failures
results: in a vertical shift, i.e. the same effect as vertical
jitter; and in a vertical compression, which increases particle
density, similarly to a lower-emittance beam. Unsurprisingly,
the predictions of the MKDH failure cases are poor, which
is expected, as the model was not trained on these samples.
Here, as described previously, we use the reconstructions to
assess whether this failure occurred.

Figure 4 shows the original BTV image, its reconstruction
and a histogram of its pixels for an example of each of the
three types of cases. It is clear that the model reconstructs
well the two types in the training set, with a slightly larger
error for the MKDV failure case. This is possibly due to
the low number of training samples. Furthermore, the vi-
sual assessment is supported by the histograms, which show
great agreement between original and reconstruction at the
most important orders of magnitude. On the other hand, the
MKDH failure is badly reproduced, resulting in high recon-
struction error, with noticeable difference in the histograms,
especially the rightmost bucket.

Figure 5 shows the distribution of reconstruction error.
In general, MKDH failure cases show higher error than
the other two types. Therefore, a threshold criterion, such
as reconstruction loss > 4 × 10−1 (red dashed line), could
be used to flag a potential failure. Or, at least, a type of
case not covered by the training set, for which predictions
are not to be trusted. However, there are two non-MKDH-
failure samples that would be flagged, i.e. false positives. A
slightly larger training set and tuning of the model would
possibly eliminate these. Overall, this criterion results in
98.6% accuracy, 87.5% precision and 100% recall on the
test set.
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Figure 4: Original image, its reconstruction and histogram
of pixel intensity, for each type of case.
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Figure 5: Reconstruction error.

CONCLUSION
We trained a model that infers beam parameters and de-

tects failures with great accuracy from dump BTV images
alone. Importantly, the model is robust, detecting not only
failures present in the training set, but also previously un-
seen failures. Its performance can likely be improved with
a larger dataset and hyperparameter optimisation. Further
development and research is currently undergoing in: i) hy-
perparameter tuning of the model; ii) real data testing; iii)
mixed dataset training, i.e. with both simulated and real
data; iv) generalisation (e.g. to other beam types). This will
contribute to the improvement and eventual deployment of
the model in the operation of the SPS.
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