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Abstract

In this article, building on our recent investigations and motivated by the fuzzball-

paradigm, we explore normal modes of a probe massless scalar field in the rotating BTZ-

geometry in an asymptotically AdS spacetime and correspondingly obtain the Spectral Form

Factor (SFF) of the scalar field. In particular, we analyze the SFF obtained from the single-

particle partition function. We observe that, a non-trivial Dip-Ramp-Plateau (DRP) struc-

ture, with a Ramp of slope one (within numerical precision) exists in the SFF which is

obtained from the grand-canonical partition function. This behaviour is observed to remain

stable close to extremality as well. However, at exact extremality, we observe a loss of the

DRP-structure in the corresponding SFF. Technically, we have used two methods to obtain

our results: (i) An explicit and direct numerical solution of the boundary conditions to

obtain the normal modes, (ii) A WKB-approximation, which yields analytic, semi-analytic

and efficient numerical solutions for the modes in various regimes. We further re-visit the

non-rotating case and elucidate the effectiveness of the WKB-approximation in this case,

which allows for an analytic expression of the normal modes in the regime where a level-

repulsion exists. This regime corresponds to the lower end of the spectrum as a function of

the scalar angular momentum, while the higher end of this spectrum tends to become flat.

By analyzing the classical stress-tensor of the probe sector, we further demonstrate that

the back-reaction of the scalar field grows fast as the angular momenta of the scalar modes

increase in the large angular momenta regime, while the back-reaction remains controllably

small in the regime where the spectrum has non-trivial level correlations. This further jus-

tifies cutting the spectrum off at a suitable value of the scalar angular momenta, beyond

which the scalar back-reaction significantly modifies the background geometry.
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1 Introduction

Understanding and identifying the signatures of unitarity in a quantum dynamics is

a non-trivial problem in physics. First, one needs a suitable diagnostic observable to both

calculate and measure that can detect e.g. the lack of unitarity. Secondly, since explicit time-

dependence is generally involved for any realistic system, one needs to track the system for a

very long time-scale to recover unitarity.1 Close to these, are ideas and notions of quantum

chaos. Spectral Form Factor (SFF) and Level Spacing Distribution (LSD) provide us with

a very useful diagnostic of the underlying integrable or chaotic dynamics. The extreme

version of quantum chaos is generally provided by systems under the Random Matrix Theory

(RMT) universality class, which displays a Dip-Ramp-Plateau (DRP) structure in the SFF,

with a ramp of slope unity and a Wigner-Dyson LSD. While RMT-class systems ensure the

collective existence of all these features simultaneously, it is still interesting to understand

whether each of the above features can be isolated from the others. Especially to this is the

existence of the slope unity ramp, which is thought to originate from the level-repulsion of

far-away eigenvalues of the spectrum.

Understanding quantum aspects of gravity and black holes has been a driving force in

decades of research in theoretical physics. One of the primary upshots is a potent debate

about the smoothness of the event horizon of a black hole. This conflict of ideas underlies

several burning issues in quantum aspects of gravity, especially unitarity[1, 2]. In particular,

it has been argued,e.g. in [3, 4] that quantum gravitational effects make the event horizon

non-smooth.2 Much earlier to these, ’t Hooft had considered a brickwall model of a (quan-

tum) black hole[5], in which a Dirichlet hypersurface was placed ad hoc in front of the event

horizon of a black hole.

In [6, 7, 8] we have initiated a re-visit of the brickwall-type model, especially within the

context of unitarity of the spectral form factor (SFF) of a probe (scalar) field in the given

brickwall geometry. Recently, in [9], an explicit calculation of the SFF of a quantum black

hole has been carried out In a low-dimensional model and it was demonstrated to fall under

the RMT-universality class. For related studies in the SYK model or in JT-gravity, see

e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. However, at present,

no analogous calculation exists in higher dimensions where gravitons are true dynamical

degrees of freedom. More directly, it has been established in [9] that the SYK model and its

close cousins are under the RMT universality class. Gravitational wormholes play a crucial

1For example, for a system with discrete energy levels, this time-scale behaves as tH ∼ ∆−1, where ∆

is the minimum gap in the spectrum. Clearly, this is proportional to the exponential of entropy, and is

therefore extremely large for a system with many degrees of freedom.
2More specifically, it has been argued that there is a conflict between effective field theories, smooth

horizons and strong sub-additivity of entanglement entropy.
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and a rather interesting role in these studies, see e.g. [28] for a review on certain basic aspects

of wormholes from this perspective.

Although our explicit model calculations are performed in (2+1)-dimensions where only

boundary gravitons are dynamical, we have seen strong hints of the dynamical origin of the

chaotic features: the large blue shift close to the black hole geometry coming from the Rindler

near-horizon geometry. Therefore, it is reasonable to expect that our observations are robust

across dimensions, although an explicit check will be technically rather cumbersome at this

point.

Our underlying finer-grained motivation is rooted in the fuzzball-type scenario, in which

it is thought to be difficult to capture scrambling and chaotic properties of a black hole,

associated with its thermal description. At this point, it is worthwhile to emphasize that

the fuzzball-type scenario does not have any wormhole-type realization by construction and

therefore it is potentially fruitful to compare and contrast results obtained by these two

methods. Our model consists of an ad hoc Dirichlet boundary condition on a stretched

horizon which is localized at a fixed radial position. This can be viewed as a toy model for a

fuzzball, see e.g. [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. While, generically,

the fuzzballs are characterized by a non-trivial profile function, in [6, 7, 8] we observed

several interesting and robust features with a simple Dirichlet boundary condition for a

first-quantized probe scalar field and its corresponding single-particle partition function.3

These are:

• The spectral form factor displays a robust dip-ramp plateau structure, with ramp of

slope unity.4

• No averaging is needed to observe the linear ramp.

• The single-particle spectrum displays level-repulsion.

Motivated by these observations, in this article, we explore a similar question in the

rotating BTZ geometry. There are multiple motivations of our present work: (i) First,

rotating BTZ geometry is a natural and interesting generalization of our earlier works. (ii)

Secondly, rotating BTZ geometry allows for the possibility of considering a grand-canonical

ensemble for the probe scalar field and the corresponding analytically continued SFF. We

will observe that this plays a crucial role and the above observations will hold provided

we consider the SFF obtained from the grand partition function. (iii) Thirdly, rotating

3Note that, in [7], we have explicitly explored the role of an angle-dependent Dirichlet boundary and

found that, choosing a Gaussian random distribution with an order one variance produces a Wigner-Dyson

like level-spacing distribution.
4These features are visible in a log-log plot.
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BTZ allows for an extremal limit which has several unique features associated to the black

hole dynamics. We will observe, among other things, that the near-extremal physics is

qualitatively different from the physics at exact extremality. At exact extremality both

level-repulsion and the DRP-structure of the corresponding SFF disappear. This further

demonstrates that the near-horizon Rindler structure along with a compact direction to

support a non-vanishing angular momentum are the crucial ingredients for this behaviour.

(iv) Fourth, at a technical level, the salient features related to quantum chaos in [6, 7]

originate from the behaviour of the normal modes as a function of the non-vanishing angular

momenta of the scalar field. It is thus interesting to understand the role of a global non-

vanishing angular momentum in this framework. For rotating BTZ, the black hole angular

momentum provides us with this additional scale. It is intriguing that at the maximal

allowed value of the BTZ angular momentum, the normal modes become a linear function

of the angular momenta of the scalar sector and therefore reduce to a harmonic oscillator

like behaviour.5

Before we end this section, let us summarize the key observations of this work:

• For a generic non-vanishing angular momentum of the BTZ-background, the spectral

form factor of the probe scalar field displays a robust dip-ramp plateau structure, with

ramp of slope unity.6 It is perhaps worth emphasizing that we need not carry out any

averaging to observe these features. However, an averaging may be done to sharpen

the features as a convenience.

• The above observations are done from an SFF which is obtained by analytically con-

tinuing the grand-canonical partition function. It is noteworthy that the SFF obtained

from the canonical partition function does not exhibit a stable dip-ramp-plateau struc-

ture. Instead, it transitions smoothly from chaotic RMT type to simple harmonic

oscillator (SHO) type, as the black hole’s angular momentum increases towards ex-

tremality.

• The grand-canonical partition function can be equivalently viewed as emerging from

restricting the partition sum on positive modes only. These modes display the quali-

tatively similar level-correlation that we have seen in our earlier works as well.

• Close to extremality, the DRP features remain unaffected. To the extent we could

check within our numerical constraints.

5Note that, even for the harmonic oscillator the level spacing distribution does display an extreme level

repulsion, since all energy levels are equispaced. The corresponding SFF, however, does not display any

chaotic behaviour.
6These features are, once again, visible in a log-log plot.
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• At exact extremality, there is a qualitatively different physics. The SFF now appears

to resemble an integrable system and the normal modes seem to be linear and there-

fore harmonic oscillator like. A clear demarcation between the close-to-extremality

and exact-extremality is the precise nature of red-shift produced by the black hole

geometry. While, at exact extremality, the surface gravity vanishes identically; close

to extremality it is arbitrarily small but non-vanishing. Equivalently, the former cor-

responds to physics at exact T = 0 temperature, whereas the latter corresponds to a

small non-vanishing temperature.

• All our statements above are made for the single-particle Spectral Form Factor.

This article is divided into the following parts: In the next section, we begin with our

set-up describing a probe Klein-Gordon field in the rotating BTZ geometry. We first review,

using the previously unused WKB-approximation, the non-rotating case that was reported in

our earlier work. This approximation allows us for certain analytic regimes as well as faster

and more efficient numerical solutions. Subsequently we discuss the rotating BTZ case.

We use numerical methods, analytical and semi-analytical (WKB) methods in exploring

this case in general. We then analyze the exact extremal case separately, using the WKB-

approximation. We then conclude with several open directions as well as comments on our

current works in progress in the Discussion section. We have relegated several technical

details to five appendices.

2 Probe Scalar in Rotating Black Hole Background

Let’s consider rotating BTZ metric in 2 + 1 dimensions,

ds2 = gttdt
2 + grrdr

2 + 2gtψdtdψ + gψψdψ
2, (2.1)

where,

gtt =M − r2

l2
, gtψ = −J

2
, gψψ = r2 and grr =

(
−M +

J2

4r2
+
r2

l2

)−1

. (2.2)

Here we have set c = 1 throughout the paper. M and J are respectively mass and angular

momentum of the black hole. The inner and outer (event horizon) horizons are defined by,

r2± =
Ml2

2

(
1±

√
1− J2

M2l2

)
. (2.3)

We want to quantize a massless probe scalar field in this background i.e. we want solve the

following Klein-Gordon equation,

2Φ ≡ 1√
|g|
∂µ

(√
|g|∂µΦ

)
= µ2Φ2. (2.4)
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As the metric is invariant under the translation of t and ψ, we will use the ansatz, Φ =∑
ω,m e

−iωteimψϕω,m(r) and with this ansatz radial part of (2.4) satisfies,(
grr

(
ω − J

2r2
m

)2

− µ2

r2
+

1

r

d

dr

(
r

grr

d

dr

))
ϕ(r) = 0. (2.5)

Here we have suppressed the subscript of ϕ(r). To write (2.5) in more familiar form, we use a

new radial coordinate z =
r2−r2+
r2−r2−

and introduce a new radial function F (z) = ziα(1−z)−βϕ(r),
where

α =
l2r+

2(r2+ − r2−)
(ω − ΩHm), β =

1

2
(1−

√
1 + µ2). (2.6)

Here ΩH = J/2r2+ is the angular velocity at the horizon. In this new coordinate, z → 1 is

the boundary and z → 0 corresponds to outer horizon. With this changes (2.5) simplifies to,

z(1− z)
d2F (z)

dz2
+ (c− (1 + a+ b)z)

dF (z)

dz
− abF (z) = 0, (2.7)

with

a = β − i
l2

2(r+ + r−)

(
ω +

m

l

)
, b = β − i

l2

2(r+ + r−)

(
ω − m

l

)
, c = 1− 2iα, (2.8)

solution is given by ,

ϕ(z) = z−iα(1− z)β(C1 2F1(a, b; 1 + a+ b− c; 1− z)+

C2(1− z)c−a−b 2F1(c− a, c− b; 1 + c− a− b; 1− z)) (2.9)

Near boundary behaviour of (2.9) is

ϕbdry(z) ≈ z−iα
(
C1(1− z)

1
2
(1−

√
1+µ2) + C2(1− z)

1
2
(1+

√
1+µ2)

)
, (2.10)

where the first term is non-normalizable and second one is normalizable. So normalizable

condition at boundary implies C1 = 0, i.e,

ϕ(z) ∼ z−iα(1− z)β (1− z)c−a−b 2F1(c− a, c− b; 1 + c− a− b; 1− z)

= z−iα(1− z)β
(
P 2F1(a, b; c; z) +Qz1−c2F1(a− c+ 1, b− c+ 1; 2− c; z)

)
= (1− z)β

(
P z−iα 2F1(a, b; c; z) +Qziα2F1(a− c+ 1, b− c+ 1; 2− c; z)

) (2.11)

where,

P =
Γ(1− c)Γ(c− a− b+ 1)

Γ(1− a)Γ(1− b)
, Q =

Γ(c− 1)Γ(c− a− b+ 1)

Γ(c− a)Γ(c− b)
(2.12)
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Dirichlet boundary condition that field vanishes at some z = z0 implies:

Q

P
= −z−2iα

0
2F1(a, b; c; z0)

2F1(a− c+ 1, b− c+ 1; 2− c; z0)
. (2.13)

This is the quantization condition which gives rise to normal modes. When the position of

the stretched horizon is very close to the event horizon (z0 → 0), we can approximate the

ratio as −z−2iα
0 and then quantization condition becomes,

Q

P
=

Γ(c− 1)

Γ(c− a)Γ(c− b)

Γ(1− a)Γ(1− b)

Γ(1− c)
= −z−2iα

0

⇒ −z2iα0

Γ(c− 1)

Γ(c− a)Γ(c− b)

Γ(1− a)Γ(1− b)

Γ(1− c)
= 1

⇒ Arg

(
Γ(c− 1)

Γ(c− a)Γ(c− b)

)
+ α log z0 = −

(
n+

1

2

)
π. (2.14)

Let ϵ = r0 − r+ denotes the separation between horizon and stretched horizon. Then (2.14)

can be written as the following,

α log

(
2 ϵ r+
r2+ − r2−

)
+Arg

(
Γ(c− 1)

Γ(c− a)Γ(c− b)

)
= −

(
n+

1

2

)
π, where, n ∈ Z. (2.15)

We have solved this equation in Mathematica which gives us normal modes ω(n,m) as

a function of principal quantum number n and rotational quantum number m. In the

subsequent sections we will consider those modes for which ω(n,m) − ΩHm > 0, i.e. when

partition sum is well defined. Before that, let us revisit the non-rotating BTZ geometry first.

2.1 Non-rotating BTZ: J = 0 case

Let’s consider J = 0 case first i.e. static BTZ black hole which we have already studied

in [6]. As (2.15) is symmetric under m → −m, roots i.e. normal modes also preserve the

symmetry as shown in Figure 1 (left). Corresponding spectral form factor is shown in the

right of the Figure 1.
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Figure 1: Spectrum (left) and SFF (right) for static BTZ i.e. J = 0 case along m-direction.

Here n = 0, mcut = 400 and z0 = 10−20 and β = βH . The yellow line has slope one.

2.1.1 Some Analytical Regimes & Estimates

In this section, we will use the WKB approximation to explore analytical regimes of the

spectrum. Furthermore, as we will explicitly demonstrate, the WKB-approximation is also

efficient in numerically obtaining the normal modes. Some of the key details are provided

in appendix D and we will use them in this section. First of all, note that the Klein-Gordon

equation, given explicitly in the r coordinate of [6], can be written as:

(
r2 − 1

)2
ϕ′′(r) + 2r(r2 − 1)ϕ′(r) +

(
ω2 − (r2 − 1)

(
1

r2

(
m2 +

1

4

)
+

3

4

))
ϕ(r) = 0 .(2.16)

This equation can now be written in the form of a Schrödinger equation:

d2Ψ

dr2
− V (r)Ψ(r) = 0 . (2.17)

The explicit form of the potential can be obtained from equation (D.7), which we will not

explicitly present here. Instead, we will refer the Reader to a generic form of the potential

in e.g. figure 2.
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rH

r0

I

II

r

V(r)
V(r)

Figure 2: The Schrödinger potential corresponding to the Klein-Gordon equation in non-

rotating BTZ-background. We have chosen m = 1.6 and ω = 1 for this particular case.

The shape of the potential shown in this figure is, however, generic. The robust qualitative

feature is that there exists two regions I and II, where V (r) < 0 and V (r) > 0, respectively.

These two regions are separated by a classical turning point, denoted by rc where V (rc) = 0.

Also, rH and r0 correspond to the location of the event horizon and the cut-off surface,

respectively.

It is clear from the pictorial representation of the potential that there are three regions

where the WKB approximation yields analytic solutions, at least in terms of integrals. The

full solution of the wavefunction is given by (in what follows, we closely follow the notations

of [42])

Ψ(r) =
1

|V (r)| 14

[
DI

+exp

(
i

∫ rc

r

|V (r)|
1
2dr

)
+DI

−exp

(
−i
∫ rc

r

|V (r)|
1
2dr

)]
, r < rc ,(2.18)

= dI+Bi
(
V ′(rc)

1
3 (r − rc)

)
+ dI−Ai

(
V ′(rc)

1
3 (r − rc)

)
, r ∼ rc , (2.19)

=
1

|V (r)| 14

[
DII

+ exp

(∫ r

rc

|V (r)|
1
2dr

)
+DII

− exp

(
−
∫ r

rc

|V (r)|
1
2dr

)]
, r > rc .(2.20)

As obtained in [42], the corresponding WKB connection formulae relate the coefficients

{dI+, dI−} with {DI
+, D

I
−} and {dI+, dI−} with {DII

+ , D
II
− }:[

dI+
dI−

]
= e−i

π
4
√
πV ′(rc)

− 1
6

[
1 i

i 1

][
DI

+

DI
−

]
, (2.21)

[
dI+
dI−

]
=

√
πV ′(rc)

− 1
6

[
1 0

0 2

][
DII

+

DII
−

]
, (2.22)
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which implies [
DI

+

DI
−

]
=

√
πV ′(rc)

− 1
6

[
1
2
e

iπ
4 e−

iπ
4

1
2
e−

iπ
4 ei

iπ
4

][
DII

+

DII
−

]
. (2.23)

By observation, in the regime r > rc, normalizability of the solution as r → ∞ requires

DII
+ = 0, and hence dI+ = 0 using the connection formulae. This also fixes the other constants:

dI− =
√
πV ′(rc)

−1/6DII
− , DI

+ = e−iπ/4DII
− and DI

− = eiπ/4DII
− . Hence, the explicit solution is:

Ψ(r) =
2DII

−

|V (r)| 14
cos

(∫ rc

r

|V (r)|
1
2dr − π

4

)
, r < rc , (2.24)

= DII
− 2

√
πV ′(rc)

− 1
6Ai

(
V ′(rc)

1
3 (r − rc)

)
, r ∼ rc , (2.25)

=
1

|V (r)| 14
DII

− exp

(
−
∫ r

rc

|V (r)|
1
2dr

)
, r > rc . (2.26)

The boundary condition Ψ(r0) = 0 now yields:

cos

(∫ rc

r0

|V (r)|
1
2dr − π

4

)
= 0 =⇒

∫ rc

r0

|V (r)|
1
2dr − π

4
=
π

2
+ 2nπ , n ∈ Z . (2.27)

To obtain the spectrum, let us collect some further explicit formulae. The potential, V (r)

is given by

V (r) =
r2 (4m2 − 4ω2 − 6)− 4m2 + 3r4 − 1

4r2 (r2 − 1)2
, r0 ≤ r ≤ rc , (2.28)

r2c =
1

3

(
−2m2 + 2

√
m4 − 2m2ω2 + ω4 + 3ω2 + 3 + 2ω2 + 3

)
. (2.29)

Although V (rc) = 0 admits four distinct solutions, only the above is real and positive and

hence we discard the rest. Fortunately, with the above potential the WKB-integral in (2.27)

can be performed analytically to yield:∫ rc

r0

|V (r)|
1
2dr =

1

8

(
−2

√
3 tan−1(a1) + 2

√
ω2 + 1 log

(
b1 + 1

b1 − 1

)
−
√
4m2 + 1 log

(
c1 + 1

c1 − 1

)
−

√
3π

)
a1 =

−2m2 − 3r20 + 2ω2 + 3
√
3
√

−4m2 (r20 − 1)− 3r40 + r2 (4ω2 + 6) + 1
, (2.30)

b1 =
m2 (− (r20 − 1)) + (r20 + 1)ω2 + 2

√
ω2 + 1

√
−4m2 (r20 − 1)− 3r40 + r20 (4ω

2 + 6) + 1
, (2.31)

c1 =
−2m2 (r20 − 2) + r20 (2ω

2 + 3) + 1
√
4m2 + 1

√
−4m2 (r20 − 1)− 3r40 + r20 (4ω

2 + 6) + 1
. (2.32)
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While the above expressions are analytical, it is still difficult to invert them and obtain

an analytic expression of ω(m). It is, nonetheless, possible to numerically solve the WKB-

equation, obtain the normal modes and compare them with the normal modes that we have

already obtained by solving the boundary conditions directly. It is also possible to obtain

more intuition on the spectrum, by looking at specific regimes of the WKB-formulae above.

We will begin with the second case. It is particularly simple to consider the cut-off surface

r0 → rH : r0 = rH + ϵ and perform an ϵ-expansion of the above integrals. At the leading

order, we obtain:

3π

4
+ 2nπ =

1

8

(
−
√
4m2 + 1 log

( √
4m2 + 1

√
ω2 + 1 +m2 + ω2 + 2

−
√
4m2 + 1

√
ω2 + 1 +m2 + ω2 + 2

)

− 2
√
3 tan−1

(
ω2 −m2

√
3
√
ω2 + 1

)
+ 2

√
ω2 + 1 log

(
4 (ω2 + 1)

2

ϵ2 (m4 − 2m2ω2 + ω4 + 3ω2 + 3)

)
−

√
3π

)
.

(2.33)

The equation above is still somewhat unwieldy to invert. We can further assume that ω ≫ 1

as well as m≫ 1 such that ω(m) ≪ m.7 In this limit, we obtain:

3π

4
+ 2nπ =

1

4

(
ω log

(
4ω4

m4ϵ2

)
−
√
3 tan−1

(√
3ω

m2

))
. (2.34)

In the ϵ→ 0 limit, the first term above dominates and we obtain:

ω(m) =
π(8n+ 3)

4W
(

8
√
2πn+3

√
2π

4m
√
ϵ

) , (2.35)

where W is the product log function.8 The above approximation breaks down roughly at

ω ≈ m2/3ϵ4/3, which implies that we can use the approximate result for large enough angular

momenta, as long asmmax ∼ ϵ−2/3, for a given ϵ. Tuning ϵ appropriately, it is thus possible to

have an access to the high-end of the m-spectrum for the function ω(m). Note further, that

both the explicit solution in (2.35) as well as the ω ∼ m2/3 dependence satisfy the criterion

ω(m) ≪ m, for large enough m. Some of these features are demonstrated in figure 3.

7This essentially implies that ω(m) is a slowly varying function of m, i.e. a logarithmic function.
8The Product Log function W (z) yields the principal solution for x satisfying: z = xex.
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ϵ=10-2

ϵ=10-3

m

ω(m)

ω(m)

Figure 3: A pictorial representation of the analytic formula in (2.35), for given choices for

ϵ which has been explicitly shown in the figure above. In both cases, we have set n = 1.

Evidently, the lower ends of the spectrum coincide rather well. It is further evident from the

trend of these curves that by increasing ϵ, one decreases the curvature of the ω(m) function.

It is thus conceivable that for large enough ϵ, ω(m) will become a linear function.

Alternatively, one can obtain straightforward, albeit somewhat brute force, numerical

solutions of the WKB-equations. A representative such figure has been demonstrated in

figures 4 and 5.
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m

ω(m)

ω(m)

Figure 4: A pictorial representation comparing the analytic formula in (2.35), for given

choices for ϵ with numerical solutions obtained by the leading term in the ϵ → 0 limit. We

have set ϵ = 10−5 and n = 1 in the above figure. The blue dashed curve represents the

formula in (2.35) while the red solid curve represents numerical solutions. It is clear that

(2.35) provides a reliable approximation to the normal modes.

n

ω(n)
ω(n)

Figure 5: A pictorial representation of the dependence of normal modes with n, for a fixed

value of the angular momentumm. In this plot, the blue and the yellow curves correspond to

m = 1 and m = 30, respectively. It is evident that ω(n) closely resembles a linear function,

and this dependence is rather robust against the choice of m.

Note that the WKB approximations yields rather nice results compared to the numerical

roots that we have earlier found out by solving directly the boundary conditions. It is

12



noteworthy that although both require a numerical solution in the generic regime, the WKB-

equations are substantially simpler to work with numerically.9

2.2 Non-vanishing rotation: J ̸= 0

We will now switch gears to the rotating black hole. For J ̸= 0, the defining equation (2.15)

is not symmetric under m → −m. This fact is reflected in Figure 6 (left panel), which

is obtained by direct numerical solutions of the quantization conditions. Nonetheless, the

regulated ω̃ = ω(1,m)− ΩHm is symmetric, which is also shown in Figure 6 (right panel).

-400 -200 0 200 400
-2

-1

0

1

2

m

ω
(0
,m

)

-400 -200 0 200 400

0.14

0.15

0.16

0.17

0.18

m

ω
(0
,m

)-
Ω
H
m

Figure 6: Spectrum (left) and regulated spectrum (right) for BTZ black hole with J = 0.01.

Here n = 0, mcut = 400 and z0 = 10−20. Note that, while the unregulated spectrum appears

linear, the regulated spectrum contains the qualitative features which we have seen to yield

a non-trivial spectral form factor.

A particularly noteworthy feature of the spectrum is: In the presence of a non-vanishing

J , the spectrum ω(m) is not necessarily positive. To define positive modes, we can work

with ω̃(n,m) = ω(n,m)−ΩHm. This, in turn, corresponds to considering a grand-canonical

partition function and the corresponding analytically continued spectral form factor:

Z [β] =
∑
m,n

e−βω(n,m) → Z [β,ΩH ] =
∑
m,n

e−β(ω(n,m)−mΩH) , (2.36)

where on the RHS, the partition sum consists of summing over single particle energies for

each conserved angular momentumm, and subsequently summing over all angular momenta,

weighted by a chemical potential which is fixed by the angular velocity of the event horizon.

The corresponding spectral form factor is now obtained by sending β → β + it, keeping ΩH

9Just as a comparison, using Mathematica, the time-scale it roughly takes to find O(103) roots of the

Dirichlet boundary conditions in (2.15) is larger than finding O(104) numerical solutions of the WKB-

equations in (2.27).
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real.10 In Figure 7 we have demonstrated the generic dip-ramp-plateau behaviour of the

corresponding SFF. Let us emphasize that the existence of the DRP-structure, especially

the ramp with slope-one ramp, in the corresponding SFF is a robust feature. These features

are similar to our earlier observations in [6, 7].

β=βH

10 100 1000 104 105 106 107
10-6

10-5

10-4

0.001

0.010

0.100

1

t

g(
t)

Figure 7: SFF corresponding to the modes in Figure 6 with β = βH . The yellow line has

slope one.

Furthermore, the left panel of Figure 8 shows the behaviour of normal modes for fixed

n with the angular momentum J of the black hole. As J increases, ωs become more linear

with slope unity. The regulated spectrum, on the other hand, has a curvature near small

angular momenta m; but it tends to flatten out for increasing angular momentum of the

scalar field.

J/M=0.9999

J/M=0.999

J/M=0.99
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ω
(0
,m

) J/M=0.9999

J/M=0.999

J/M=0.99

0 100 200 300 400
0.00

0.01
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0.03

m

ω
(0
,m

)-
Ω
H
m

Figure 8: Spectrum (left) and regulated spectrum (right) for different J
M

values. Extremal

limit is J
M

= 1 and black line in the left panel corresponds to that. Here n = 0, mcut = 400

and z0 = 10−20.

10In principle, it is also possible to consider analytic continuation of ΩH → ΩH + is, where s is some

parameter, similar to the possibility that was mentioned in [6]. To the best of our knowledge, we are

unaware of study along this direction. We will, however, not explore this possibility here.
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2.2.1 Some Analytical Regimes & Estimates

In this section, we will explore analytic regimes of the modes. Towards that, we will find a

“near-horizon” solution and a “near-boundary” solution and impose a matching condition.

This yields an algebraic equation which can be solved to obtain analytic expressions for the

normal modes. The general solution of the equation (2.7) can be written as:

ϕ(z) = z
1
2
(c−1)

[
C1 2F1(a, b; c; z) + C2(−1)1−cz1−c2F1(1 + a− c, 1 + b− c; 2− c; z)

]
, (2.37)

where C1,2 are hitherto undetermined constants. Now, we wish to impose the near-horizon

Dirichlet boundary condition. For this, we expand the above solution near z = z0, with

z0 ≪ 1, such that, at the leading order:

ϕ(z0) = z
−c/2
0

[
C1z

c− 1
2

0 + (−1)1−cC2z
1
2
0

]
, (2.38)

which, upon imposing ϕ(z0) = 0, yields: C2 = C1(−1)czc−1
0 . In deriving the above, we have

explicitly used Re(c−1/2) = 1/2 and therefore both terms above are on equal ground. Upon

inserting the above relation in (2.37), we end up with a solution, denoted by ϕ(z)nh with one

undetermined constant. Let us now expand this solution near the boundary, as z → 1. A

straightforward series expansion near this point yields:

lim
z→1

ϕ(z)nh =
πC1 csc(π(a+ b− c))

(
zc−1
0 Γ(2−c)

Γ(1−a)Γ(1−b) −
Γ(c)

Γ(c−a)Γ(c−b)

)
Γ(a+ b− c+ 1)

+(z − 1)−a−b+c
πC1(cot(π(a+ b− c))− i) (z0Γ(c)Γ(a− c+ 1)Γ(b− c+ 1)− Γ(a)Γ(b)zc0Γ(2− c))

z0Γ(a)Γ(b)Γ(a− c+ 1)Γ(b− c+ 1)Γ(−a− b+ c+ 1)

+ . . . (2.39)

Normalizability of ϕ(z)nh near z → 1 imposes:

zc−1
0 =

Γ(1− a)Γ(1− b)Γ(c)

Γ(2− c)Γ(c− a)Γ(c− b)
. (2.40)

Note that this condition is identical to (2.13).

Now, using identities of hypergeometric functions, we can can rewrite ϕ(z)nh as a function

of (1− z). Towards this, we explicitly use:

2F1(a, b, c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b, a+ b+ 1− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b2F1(c− a, c− b, 1 + c− a− b; 1− z) .

(2.41)
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The resulting expression for ϕ(z), which we denote by ϕ(1− z)b, is somewhat unwieldy, and

we refrain from providing it explicitly. It is nonetheless straightforward to carry out a series

expansion of ϕ(1− z)b near z → 1. This yields:

ϕ(1− z)b = C1Γ(c)(1− z)−a−b+cΓ(a+ b− c)(
1

Γ(a)Γ(b)
− Γ(1− a)Γ(1− b)

Γ(a− c+ 1)Γ(c− a)Γ(b− c+ 1)Γ(c− b)

)
+ . . . , (2.42)

where we have used (2.40) above. Comparing the above with (2.39), we obtain the constraint:

e−2i(a+b−c)π = 1 =⇒ a+ b− c = n , n ∈ Z , (2.43)

=⇒ ω =

(
r+
r−

ΩH

)
m and n = −1 . (2.44)

Note that, the formula above allows us to easily take two limits: (i) extremal: when r+ = r−,

we obtain ω = ΩHm; (ii) non-rotating: ΩH = 0, and r− = 0. It is reasonable to assume that

in this limit ΩH/r− remains constant11 and therefore ω(m) is still a linear function.12 While

the extremal limit yields a straightforward result, the non-rotating limit is more subtle. For

this reason, we will treat this case separately.

2.2.2 Some Analytical Regimes & Estimates: WKB

In this section, we will make use of the WKB-approximation to obtain the normal modes,

which we have already obtained by solving the boundary conditions. The purpose here is

to explore any potential analytical window as well as use numerical solutions on the WKB-

equations, which are technically simpler than the boundary conditions. As before, we can

obtain an explicit form of the WKB-potential, which in this case is somewhat unwieldy.

Instead of presenting the detailed expression, let us discuss some instructive limits of this

potential.

11In fact, it is straightforward to check that the ratio ΩH

r−
→ 1

ℓ2
√
M

in the limit J → 0.
12Note that, this behaviour is expected for large values of ω, measured in units of temperature. At

extremality, the temperature vanishes and therefore every mode is infinitely large in this unit.
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r+

ω=2.1, m=4

ω=2.1, m=2
r

V(r)

M=2, J=
1

2

Figure 9: The Schrödinger potential corresponding to the Klein-Gordon equation in rotating

BTZ-background. There are two distinct qualitative classes of behaviours, which is shown

in the blue and the dark yellow curves. The first clearly does not have any classical turning

point while the latter does. We will only consider the situations with a classical turning

point. The WKB-potential, in the admissible regime, has the same qualitative features that

we have seen in the non-rotating BTZ-geometry as well. The location of the event horizon,

r+, is demonstrated by the vertical dashed line.

First of all, it is clear from Figure 9 that there are two qualitatively distinct parametric

regimes of the WKB potential: one which has a classical turning point and one which does

not. Note, however, that this depends crucially on the allowed values of {ω,m} and therefore

the spectrum which we are yet to determine. On physical grounds, we will consider the first

case only.

Let us investigate the role of the black hole angular momentum on the spectrum, by

turning on a small δ = J/M ≪ 1. The WKB potential takes the form:

V (r) =
4m2r2 − 8m2 + 3r4 − 4r2ω2 − 12r2 − 4

4r2 (r2 − 2)2
+

2δmω

r2 (r2 − 2)2
+O(δ2) , (2.45)

where we have set ℓ = 1. It is straightforward to check that at δ = 0, the potential above

reduces to (2.28). It is now somewhat tedious to perform the WKB-integral using the above

potential. Nonetheless, it is possible. The detailed steps are rather messy, we therefore

present the final form of the integral. Clearly, the integral
∫ √

|V (r)|dr consists of two
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terms. These yield the following two contributions:

I = I1 + I2 , (2.46)

I1 =
1

8

2
√
3 tan−1(A1)−

√
4m2 + 2 log

(
A2+1
A2−1

)
+ 2

√
ω2 + 2 log

(
A3+1
A3−1

)
+
√
6π

√
2

 ,(2.47)

I2 =

mω

(
2 log

(
X1+1
X1−1

)
√
4m2+2

+
log

(
X1+1
X1−1

)
√
ω2+2

)
8
√
2

, (2.48)

where

A1 =
2m2 + 3r2 − 2ω2 − 6√

3
√

4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4
, (2.49)

A2 =
m2 (8− 2r2) + 2r2ω2 + 6r2 + 4√

2
√
4m2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.50)

A3 =
r2 (m2 − ω2)− 2 (m2 + ω2 + 4)√

2
√
ω2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.51)

and

X1 =
m2 (8− 2r2) + 2r2ω2 + 6r2 + 4√

2
√
4m2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.52)

X2 =
r2 (m2 − ω2)− 2 (m2 + ω2 + 4)√

2
√
ω2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

. (2.53)

To proceed further, let us now set M = 1 and r = 1 + ϵ, with ϵ ≪ 1. At the leading

order in both {ϵ, δ}, we obtain:

I =
1

8

(
−2

√
3 tan−1

(
ω2 −m2

√
3
√
ω2 + 1

)
−

√
3π

)

+
1

8

(mωδ − 2 (ω2 + 1)) log

(
ϵ2(m4−2m2ω2+ω4+3ω2+3)

4(ω2+1)2

)
√
ω2 + 1



+
1

8

 log
( √

4m2+1
√
ω2+1+m2+ω2+2

−
√
4m2+1

√
ω2+1+m2+ω2+2

)
(−4m2 + 2mωδ − 1)

√
4m2 + 1

 . (2.54)

Now an analytic expression for the normal modes can be obtained by solving the WKB-

equation in the limit m≫ ω and mδ ≪ 1, which yields:

ω =

√
4π2a2

log
(

2
m2ϵ

) − 1 +
δm

2
+ . . . , a =

3

4
+ 2n . (2.55)
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It is straightforward to check that when δ = 0 and m2ϵ ≪ 1 the formula in (2.55) matches

with (2.35). Note that, (2.55) is already suggestive about the role of a non-vanishing J in

the spectrum: First, the leading order contribution already linearizes ω(m). It is therefore

possible that at the maximal J , the linear modes will dominate. However, this needs to

be checked separately, which we will do in the next section. Secondly, it is manifest that

(ω − cJm) behaves as the modes in (2.35), where c is an order one constant. Thus, an

appropriately defined SFF in terms of (ω − Jm) is expected to display the robust DRP-

structure that we have previously seen. Note that, this consideration directly leads to the

SFF obtained from the grand-canonical partition function, as already mentioned in (2.36).

2.3 Extremal BTZ: J =M case

Let us consider the special case of the extremal limit, which is obtained by setting J = Mℓ

in (2.1). Evidently, this sets r+ = r−. Let us write the corresponding metric as follows:

ds2 = −f(ρ)dt2 + dρ2

f(ρ)
+ ρ2

(
dy − r2H

ρ2
dt

)2

, with f(ρ) =
(ρ2 − r2H)

2

ρ2
, (2.56)

where rH = r+ = r−, ρ ∈ [rH ,∞] is the radial coordinate and y ∼ y + 2πRy is the compact

direction.

Before moving further, let us offer a few comments on the extremal geometry. The

extremal BTZ geometry can be written in the following form:

ds2 = r2Hdu
2
− + dx2 + e2xdu+du− , (2.57)

u± = y ± t , ρ2 − r2H = e2x , (2.58)

The coordinates u± are periodic: u± ∼ u± + 2π. The boundary is located at x→ ∞, where

u± become null directions; the horizon is located at x→ −∞. It is instructive to compare the

near-horizon geometry of a non-extremal black hole, i.e. a Rindler geometry, with the metric

in (2.57). While the non-trivial warp factor e2x fast approaches zero near the horizon (as

x → −∞), the extremal geometry in (2.57) retains a constant du2− deformation supported

by r2H in the first term of the metric. This is qualitatively different from a Rindler×S1

geometry and explicitly can be written as an AdS2 × S1-background. This will be crucial in

a qualitatively different physics at the extremal point.

For convenience, we will redefine a radial coordinate: r2 = ρ2 − r2H and rewrite (2.56) in

the following form:

ds2 = −f(r)dt2 + r2

f(r)(r2 + r2H)
dr2 + (r2 + r2H)

(
dy2 − r2H

r2 + r2H
dt

)2

, with f(r) =
r4

r2 + r2H
(2.59)
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where r = 0 is horizon and r → ∞ is the conformal boundary. With the decomposition of

scalar field Φ(t, , r, y) ∼ e−iωteimyϕ(r), KG equation takes the following form,

ϕ(r)
(
m2
(
r2H − r2

)
− 2mr2Hω − µ2r4 + ω2

(
r2 + r2H

))
+ r5 (rϕ′′(r) + 3ϕ′(r)) = 0. (2.60)

Let’s define two new variables p and q as p = m + ω and q = m− ω. In terms of z = irHq
r2

,

(2.60) is a confluent hypergeometric equation,

ϕ′′(z) +

(
− µ2

4z2
+

ip

4rHz
− 1

4

)
ϕ(z) = 0, (2.61)

with solution is in terms of Whittaker functions,

ϕ(z) = C1Mκ,ν(z) + C2Wκ,ν(z), with κ =
ip

4rH
, ν =

√
1 + µ2

2
(2.62)

Near boundary (z → 0) expansion of (2.62) is,

ϕbdry(z) ∼ (C1 + AC2)z
1
2
(1+

√
1+µ2) + C2Bz

1
2
(1−

√
1+µ2), (2.63)

where first term is normalizable and second one is non-normalizable. So normalizability

of the scalar field near boundary implies C2 = 0, i.e. ϕ(z) ∼ Mκ,ν(z) whose near horizon

(z → ∞) behaviour is the following,

ϕhor(z) ∼ Γ(∆)

(
e

z
2 z

− ip
4rH

Γ(∆
2
− ip

4rH
)
+ (−1)

ip
4rH

−∆
2

e−
z
2 z

ip
4rH

Γ(∆
2
+ ip

4rH
)

)
. (2.64)

Dirichlet boundary condition near horizon that ϕhor(z = z0) = 0 implies,

Γ(∆
2
+ ip

4rH
)

Γ(∆
2
− ip

4rH
)
= −(−1)

ip
4rH

−∆
2 e−z0z

ip
2rH
0

= −e
pπ
4rH

+ iπ∆
2 e−z0

(
irHq

ϵ2

) ip
2rH

= −e
pπ
4rH

+ iπ∆
2 e−z0

(rHq
ϵ2

) ip
2rH e

− πp
4rH

= −e
iπ∆
2 e−

irHq

ϵ2

(rHq
ϵ2

) ip
2rH

⇒
Γ(∆

2
+ ip

4rH
)

Γ(∆
2
− ip

4rH
)
e

−iπ∆
2 e

irHq

ϵ2

(rHq
ϵ2

)− ip
2rH = −1 (2.65)

Which leads to the following quantization condition,

2Arg

[
Γ

(
∆

2
+

ip

4rH

)]
+
rHq

ϵ2
− π∆

2
+

p

2rH
log

(
ϵ2

rHq

)
= (2n+ 1)π, n ∈ Z. (2.66)
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Where ϵ2 = irHq
z0

. When ϵ→ 0 i.e. the position of stretched horizon is very close to the event

horizon, we can approximately write (2.66) as,

rHq
ϵ2

∼ (2n+ 1)π

⇒ ω(n,m) ∼ m− (2n+ 1)πϵ2 (2.67)

So in the extremal limit, normal modes ω are linear in both m and n, especially the slope

of ω(m) vs. m for fixed n is 1.

2.4 Extremal Limit: WKB Approximation

In order to carry out the WKB approximation, we will rewrite the Klein-Gordon equation

(2.60) in terms of a Schrödinger equation of the following form:

d2Ψ(r)

dr2
− V (r)Ψ(r) = 0 , (2.68)

V (r) =
4m2 (r2 − r2H) + 8mr2Hω + 3r4 − 4r2ω2 − 4r2Hω

2

4r6
. (2.69)

The classical turning points of the above potential is given by:

V (rc) = 0 =⇒ r2c =
2

3

(
ω2 −m2 + (ω −m)

√
3 + (ω +m)2

)
. (2.70)

It is clear that ω = m is a special parametric locus, which does not have a turning point.

We have pictorially demonstrated the qualitative features of the potential in figure 10.
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Figure 10: The Schrödinger potential corresponding to the Klein-Gordon equation in ex-

tremal BTZ-background. There are two distinct qualitative classes of behaviour: ω ̸= m,

which is shown in the blue curve (we have chosen ω = 1.6, m = 2 for a representative value).

The other class corresponds to setting ω = m, which is shown by the dark yellow curve.

The latter clearly does not have any classical turning point. We will discard this possibility

explicitly. The WKB-potential, in the admissible regime, has the same qualitative features

that we have seen in the non-rotating BTZ-geometry as well.

Given the potential, we can evaluate the integral on the LHS of (2.27). This yields:

LHS =
1

8

(
a+ 2

√
3 arctan(b) + (m+ ω) log(c)

)
, (2.71)

a =
2
√

−4m2 (ϵ2 − 1)− 8mω − 3ϵ4 + 4ω2 (ϵ2 + 1)

ϵ2
−

√
3π , (2.72)

b =
2m2 − 2ω2 + 3ϵ2√

3
√

−4m2 (ϵ2 − 1)− 8mω − 3ϵ4 + 4ω2 (ϵ2 + 1)
, (2.73)

c =

m(ϵ2−2)+ω(ϵ2+2)√
−4m2(ϵ2−1)−8mω−3ϵ4+4ω2(ϵ2+1)

+ 1

m(ϵ2−2)+ω(ϵ2+2)√
−4m2(ϵ2−1)−8mω−3ϵ4+4ω2(ϵ2+1)

− 1
, (2.74)

where ϵ denotes the location of the cut-off surface. In the limit ϵ → 0, we an simply keep

the ϵ−2-term coming from a and ignore the rest. This yields:

Abs(ω −m) = 2πϵ2
(
3

4
+ 2n

)
=⇒ ω = m± 2πϵ2

(
3

4
+ 2n

)
, n ∈ Z. . (2.75)

Note that, in the strict ϵ = 0 case, the above analysis breaks down since there are no classical

turning points in this limit.

22



Let us demonstrate the behaviour of numerical solutions of the WKB-equations, which is

summarized in Figure 11. In Figures 11a and 11b we have shown the behaviour of the normal

modes ω(m), for two choices of ϵ = 10−1 and ϵ = 10−3, respectively. It is evident that the

function ω(m) is tantalizingly close to a linear one with unit, which becomes stronger as ϵ is

reduced. This observation is in qualitative agreement with the analytical formula in (2.75).

In Figures 11c and 11d the corresponding SFFs are shown with β = 0. The discernible

ramp-structure has disappeared here. To further emphasize this point, we have shown SFFs

for β = 2 in Figures 11e and 11f,13 which looks very similar to a harmonic oscillator SFF. We

take these observations to conclude that at exact extremality, the SFF displays integrable

behaviour rather than a chaotic one.

13Note that, at exact extremality, the black hole temperature vanishes and therefore a natural choice of

β = T−1 → ∞. Choosing β = 0 is maximally far away from this parametric regime. It is highly instructive

that even in this limit we do not observe any ramp structure. On the other hand, an order one value of β

makes the SFF resemble a harmonic oscillator, with a very small classical Poincaré recurrence time. These

are strong hints that we loose the chaotic features at exact extremality.
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Figure 11: A pictorial representation of numerical solutions of the WKB-equations. We

have shown the behaviour of the modes, as well as the corresponding SFF, for representative

choices of ϵ and β.

3 Comments on Back-reaction

In this section, we will comment on the validity of the probe limit. Our analyses will be

based on a classical consideration only and the physics point that we want to highlight here

is that modes with arbitrarily large m quantum number will back-react significantly on the

classical geometry and change the metric altogether. Therefore, it is sensible to cut-off the

partition sum at a finite value of m. We will only discuss some salient features here and

refer the interested Reader to appendix B for more technical details.
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The classical stress-tensor of the scalar field reads:

Tαβ = ∂αΦ∂βΦ− 1

2
gαβ (∂Φ)

2 . (3.1)

it is straightforward to evaluate the corresponding energy density ρ = Tαβu
αuβ, where uα is

a time-like unit vector. Given the BTZ-geometry, the corresponding energy density behaves

as (see equations (B.9) and (B.10)):

ρbdry ∼ O(r−6) + . . . , as r → ∞ (3.2)

ρhor ∼
1

r2 − 1
+ oscillatory , as r → 1 . (3.3)

It is clear from the expressions above that near the boundary it is always safe to ignore the

back-reaction, however, near the horizon this is not the case. Ignoring the rapidly oscillatory

terms above, it is straightforward to estimate the diverging back-reaction as one approaches

the horizon. From (B.11) and (B.12), the back-reaction is controlled by the parameter m/δ,

where δ = r0 − rH , and we have set rH = 1 here. Thus, our calculations are valid till

mcut ∼ δ−1 and this justifies the computation of a partition function with an explicit cut-off.

This behaviour can simply be fixed from dimensional analysis, if we assume that there is no

other scale when the brickwall is Planck distance away from the classical event horizon. It

is, however, interesting that here this relation holds for arbitrary δ.

Before concluding, let us offer some further comments. Note that, the above conclusion

is based solely on the classical back-reaction. It is known that a semi-classical (quantum)

back-reaction of a scalar field can produce a qualitatively different back-reaction, see e.g. [45,

46, 47, 48]. Therefore it merits a separate and thorough analyses to make a stronger claim

regarding cutting off the large m spectrum. We leave this for a future work.

4 Discussions

In this article, we have explored the brickwall-like model for a rotating BTZ geometry,

especially in the context of a probe scalar single-particle spectral form factor. We have

explicitly demonstrated that, for a generic value of the black hole mass and angular momen-

tum, the dip-ramp-plateau structure, with a ramp of slope unity, is a stable feature of this

sector. However, the crucial observation is that the non-trivial SFF dynamics is visible using

the grand-canonical partition function, as opposed to the canonical partition function. This

grand-canonical partition function is obtained by summing over each angular momentum

sector of the probe field, in which the angular momenta of the rotating BTZ geometry plays

the role of a chemical potential. Clearly, in the vanishing limit of this rotation, the grand-

canonical partition function reduces to the canonical partition which we have explored in

[6].
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Furthermore, we have also demonstrated that close to extremality, i.e. as J → Mℓ this

structure appears to be a robust feature still. We have used two main technical methods:

A direct and brute force numerical solution of the Dirichlet boundary conditions and the

WKB-approximation. We have explicitly shown that the WKB-approximation is technically

easier for finding the normal modes, and it can also provide us with analytical answers in a

suitable regime of the parameter space. The latter is useful for several reasons: the central

theme is that it allows for an analytical understanding of the origin of the level-repulsion

dynamics of the modes, which is crucial to yield the DRP-structure, especially the ramp, of

the SFF.

In contrast to the above, at exact extremality, i.e. at J = Mℓ, the DRP structure

appears lost from the SFF. At the same time, the corresponding level-spacing distribution

also resembles that of a harmonic oscillator. Thus the system becomes integrable. At

extremality we have T = 0 identically, where T is the temperature of the dual CFT. Naively,

it is therefore expected that any chaotic signature of the underlying dynamics will become

invisible at this point. On the other hand, the dual CFT has two distinct temperature for a

rotating BTZ geometry: The right-moving temperature T+ ∼ (r+ − r−) and the left-moving

temperature T− ∼ (r+ + r−). At extremality, the right temperature vanishes but the left

one remains non-vanishing. It is, therefore, an interesting question to explore how the SFF

can see the non-vanishing left temperature. This question is especially interesting since it

is known that an “early time chaos”, around the scrambling time-scale, can be observed

with the left temperature on a suitably chosen four-point out-of-time-order correlator, see

e.g. [49, 50, 51]. It may be possible to formulate an OTOC-calculation in our framework using

a boundary CFT approach, similar to the ones in [52, 53]. Alternatively, a bulk observer

localized to move along the stretched horizon may also describe a suitable CFT evolution,

by identifying the bulk integral curve generated by the bulk observer with a Hamiltonian

evolution on the boundary CFT[53]. We hope to address this issue in future.

Our observations, notwithstanding, raise several further questions. First, it is not under-

stood how one should think about the cut-off surface located at a bulk point in the geometry,

from the perspective of the dual CFT. In other words, our construction appears agnostic

about the specific UV-complete description and it is not clear to us how this aspect affects

the robust and universal observation that we have made. One way to address this question

is perhaps to consider a framework similar to the T T̄ -bar deformation where such a bulk

cut-off surface emerges, following e.g. [55], and re-interpret the Dirichlet hypersurface as an

IR cut-off.14 Although from a gravitational point of view, this appears possible, it remains

to be seen what this means in terms of the dual CFT. It would be rather interesting if the

corresponding operation to the CFT can be identified with fuzzball-like states. We hope to

14We thank Monica Guica for a conversation related to this.
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address this question in near future.

A related question is to understand how a Dirichlet boundary condition can lead to, at

least, a thermal-like CFT correlator. The universal presence of the DRP-structure hints that

a corresponding thermal behaviour is expected, viewed from the dual CFT. It is thus inter-

esting to re-visit the standard AdS/CFT correlation function calculations, in the presence

of the Dirichlet surface in front of the horizon. Work along this direction is underway[56]

and we hope to report on it soon. A related class of similar questions can be explored for

de-Sitter space as well, which is also about to appear soon[57].

Note that, by construction, our model is at best an effective one and is not expected to

provide answers to all fine-grained questions on the ramp emerges. Another way of probing

the UV-complete description of the DRP-structure is to investigate a full-fledged fuzzball

geometry. By now, there is a huge literature on such geometries, which are constructed from

explicit supergravity solutions. While these geometries are rather rich in structure, recent

advances in [42] obtain explicit correlation functions in such geometries and therefore greatly

facilitates an SFF-computation. Especially since, at a technical level, WKB-approximation

is extremely useful in such questions in the fuzzball-geometries. Building on our earlier as

well as current work, we are further exploring this question in a specific class of fuzzball

geometries[58].

Note that, in the series of studies that we initiated in [6], followed by [7, 8], we have

considered the SFF obtained from the single-particle partition function. In other words, we

have explicitly set the density of states to be unity. However, non-trivial physics is expected

to result from a non-trivial density of states. For example, if we allow the normal modes to

be populated by an arbitrary number of particles, it is expected that the level-repulsion will

disappear from the resulting system. This is intuitive, since two non-interacting identical

systems will not retain the information about level-correlations that is present in one of

them. This can further be explicitly checked by taking e.g. multiple random matrix spectra

and observing that the resulting full spectrum displays a Poisson level spacing distribution,

as opposed to a Wigner-Dyson one. Therefore, if we consider a multi-particle SFF for our

system, without introducing any further interactions, it is expected that the DRP-structure

of the multi-particle SFF will disappear.15 We hope, however, that the “seed of chaos”

which we observe in the single-particle sector, will nevertheless show up once an adequate

interaction is turned on.

The above possibility brings about several intriguing questions in the general context

of chaos in quantum field theories. We can formulate a QFT on a lattice: This essentially

entails defining spin-like degrees of freedom at each lattice site. Each such spin degree of

15It is, in principle, possible to verify this claim by an explicit computation. However, numerically, the

evaluation of the multi-particle SFF appears rather unwieldy and lacking in precision.
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freedom can obey a non-trivial spectrum. On one extreme, the spectrum can be a harmonic

oscillator like (or, any other integrable spectrum); on the other hand, it could be as chaotic as

a random matrix spectrum. Intuitively, we expect that such a QFT on the lattice as a whole

will always display integrable features, as long as the different spin degrees of freedom at

different sites do not interact. Turning an interaction on, however, is a potentially interesting

possibility. It is expected that for a certain class of interactions and in a certain regime of

the interaction strength, the underlying single-particle spectrum physics governs the multi-

particle dynamics, especially when it is chaotic. We are, however, not aware of any such

precise classification or statement in the existing literature. We plan to visit this issue within

a simplified lattice model in future.
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A Appendix: Free Scalar in a BTZ Geometry

In this appendix, we collect some basic details related to the canonical quantization of a

free scalar field in a BTZ black hole geometry. The scalar field is treated in the probe limit,

whose action is given by

S =

∫
d3x

√
−g
(
−1

2
gµν∂µΦ∂νΦ− m2

2
Φ2

)
=

∫
d3xL , (A.1)

The resulting equation of motion is given by

2Φ−m2Φ = 0 . (A.2)

For convenience, we will consider the specific case of m = 0. The corresponding canonical

momenta are given by

π =
∂L

∂(∂tΦ)
= (−g)1/2gtµ∂µΦ . (A.3)

Subsequently, the following canonical commutation relations are imposed:

[Φ(t, x⃗),Φ(t, x⃗′)] = 0 = [π(t, x⃗), π(t, x⃗′)] , (A.4)

[Φ(t, x⃗), π(t, x⃗′)] = iδ(2) (x⃗− x⃗′) . (A.5)
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Finally, a natural inner product can be defined as:

(Φ1,Φ2) = −i
∫
Σ

(Φ1∇µΦ
∗
2 − Φ∗

2∇µΦ1)n
µ√γd2x , (A.6)

where Σ is a spacelike hypersurface, nµ is the corresponding normal and γ is the induced

metric on this hypersurface; furthermore Φ1,2 are solutions to the classical equations of

motion in (A.2). Here, we are considering real scalars, and hence Φ∗
2 = Φ2.

To define positive frequency modes, we need to choose a time-direction. Given a station-

ary geometry, a time-like Killing vector Kµ can be defined and correspondingly the positive

modes are defined by

LKµfα = −iωαfα , (A.7)

where ωα and fα are eigenvalues and eigenfunctions of the corresponding time-evolution oper-

ator which is defined by the Lie derivative along the Killing vector Kµ.16 The eigenfunctions

are normalized according to the inner product defined in (A.6), such that (fβ, fα) = δβα.

The field Φ can now be expanded in terms of the positive modes, as follows:

Φ(t, x⃗) =
∑
α

(
fαaα + f ∗

αa
†
α

)
, (A.8)

with

[aβ, aα] = 0 =
[
a†β, a

†
α

]
,
[
aα, a

†
β

]
= δαβ . (A.9)

The corresponding spectra can be obtained starting with the vacuum aα |0⟩ = 0. The

corresponding number operator is defined as: N = a†αaα.

In our case, we have explicitly found out the solutions of the equations of motion in

terms of hypergeometric functions, subject to the appropriate boundary conditions. Even

though, in general, the hypergeometric functions are not orthonormal, we can construct an

orthonormal basis using e.g. the Gram-Schmidt procedure. For us, the explicit construction

of this is not essential. Given the normal modes, we can define the single-particle partition

function as follows:

Z = Tr
(
e−βHP

)
, P = δN,1 . (A.10)

The corresponding spectral form factor is obtained by appropriately analytically continuing

this partition function.

16Note that, for both rotating and non-rotating BTZ, we have a unique choice for a globally defined

time-like Killing vector.
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B Validity of Probe Limit

Let’s consider the Einstein-Hilbert action with matter field Φ. The action functional is

(up to boundary terms):

S[g; Φ] =

∫ (
1

2κ
(R− 2Λ) + LM

)√
−gd3x , (B.1)

with Lagrangian density of matter field is given by

LM = −1

2

(
gαβ∂αΨ∂βΨ+ µ2Ψ2

)
. (B.2)

Einstein field equations for (B.1) are:

Gαβ + Λgαβ = κTαβ , (B.3)

where

Tαβ = ∂αΦ∂βΦ− 1

2
gαβg

µν∂µΦ∂νΦ .

Let’s consider massless scalar field in static BTZ metric for simplicity whose metric is given

by

ds2 = −(r2 − r2H)dt
2 +

dr2

r2 − r2H
+ r2dψ2 , (B.4)

with 2Φ = 0 and Λ = −1. The energy density of scalar field as observed by a timelike

observer with velocity uα = 1√
−gtt (1, 0, 0) is:

ρ = Tαβu
αuβ

= Ttt(u
t)2 = −Tttgtt. (B.5)

With Φ ∼ e−iωteimψy(r), energy density is given by

ρ =
e2i(mϕ−tω)

8r3 (r2 − 1)2
(y(r)2

(
−4m2

(
r2 − 1

)
r4 + 4r6ω2 − 8r4ω2 − 4r2ω2 + 1

)
(B.6)

+ 4r2y′(r)2 − 4ry(r)y′(r)))) . (B.7)

Near boundary, field goes as ybdry(r) ∼ r−1/2 and density is given by

ρbdry ∼
(
ω2 −m2

2

1

r4
− m2

2

1

r6
+ . . .

)
. (B.8)

Near horizon, field takes the following form [6]:

yhor ∼
√
r
(
P (1− r2)

−iω
2 +Qeπω(1− r2)

iω
2

)
, (B.9)
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where P,Q are ω and m dependent functions. Substituting this into (B.6), near horizon

behaviour of energy density is given by,

ρhor ∼
ω2

(r2 − 1)4

(
PQ− P 2

2
(1− r2)−iω − Q2

2
(1− r2)iω

)
+ . . . (B.10)

When r → 1, last two terms in the above equation (B.10) are highly oscillatory. That’s why

to see the m-dependence of ρhor we will only focus on the first term. Let’s define,

ρ̃hor = ω2P Q (B.11)

In general ω and m are not independent variable but for any small neighbourhood of m we

can approximate any function by a straight line with slope determined by the tangent at

that point. So let’s assume ω = sm, where s is the slope of ω = f(m) curve at that m

value. Then when s is very small i.e. for larger values of m (for example see Figure 1) we

can approximate,

ρ̃hor ∼ 2−2im Γ
(
1−im

2

)
πΓ
(−im

2

)(1 + 2e−mπ + e−2mπ) +O(m) ∼ 2−2im Γ
(
1−im

2

)
πΓ
(−im

2

) (B.12)

whose absolute value is m
2π

tanh πm
2
, which is an increasing function of m. This implies for

larger values of m, back reaction grows so we have to cut-off the spectrum at some finite

m = mcut if we want to be in the probe limit.

C WKB Approximation

Here, we will review and collect the basics of the WKB approximation, which we have

used to determine an approximate spectrum. Consider the Schrödinger equation:

d2Ψ(x)

dx2
− V (x)

h̄2
Ψ(x) = 0 , k(x)2 = −V (x)2 , (C.1)

where we have kept the h̄-dependence explicit. The potential V (x) is general, but we will

assume that it is slowly varying, which will be made more precise momentarily. Towards

finding a solution of the equation (C.1), let us use an ansatz17:

Ψ(x) = e
i
h̄
σ(x) , (C.2)

and the resulting equation becomes:

ih̄σ′′(x)− σ′(x)2 + k(x)2 = 0 . (C.3)

17Since the potential is slowly varying, we will assume that a plane-wave like solution exists, where the

phase will now be a slowly varying function of the coordinate x.
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In the semi-classical regime, it is sensible to assume a perturbative expansion of σ(x) in

powers of h̄:

σ(x) = σ0(x) +
h̄

i
σ1(x) +

(
h̄

i

)2

σ2(x) + . . . . (C.4)

Plugging this expansion back in the equation, we obtain:

O(h̄0) : (σ′
0(x))

2
= k(x)2 =⇒ σ0(x) = ±

∫
k(x)dx . (C.5)

O(h̄) : σ′′
0(x) + 2σ′

0(x)σ
′
1(x) = 0 =⇒ σ′

1 =
σ′′
0

2σ′
0

= − k′

2k
=⇒ σ1 = −1

2
log k . (C.6)

Upto this order, the wavefunction is given by

Ψ(x) =
c1√
|k(x)|

e
i
h̄

∫
k(x)dx +

c2√
|k(x)|

e−
i
h̄

∫
k(x)dx , (C.7)

where c1,2 are two undetermined constants and we have chosen k(x)2 > 0. Clearly, this

corresponds to the classically accessible region for the given potential. Similarly, for the

classically disallowed region, i.e. k(x)2 < 0, one obtains:

Ψ(x) =
d1√
|k(x)|

e
1
h̄

∫
|k(x)|dx +

d2√
|k(x)|

e−
1
h̄

∫
|k(x)|dx , (C.8)

where d1,2 are the two undetermined constants.

Note that, for the perturbative expansion to work, we must require:∣∣∣∣h̄ σ′′(x)

(σ′(x))2

∣∣∣∣ ≡ ∣∣∣∣d(h̄/σ(x))dx

∣∣∣∣≪ 1 . (C.9)

Using the leading order solution σ′(x) = k(x) and defining a corresponding de Broglie

wavelength λ = 2πh̄/k(x), the above inequality corresponds to: |dλ/dx|≪ 2π. Physically,

this essentially implies that the de Broglie wavelength is slowly varying at the scale of one

wavelength. This condition will be manifestly violated when k(x) → 0, i.e. near the classical

turning points. Also, note that, the probability of finding a particle within a length scale

where V (x) remains approximately constant, is determined by the time-scale for which the

particle spends time within such a region. Therefore, a factor of inverse momentum is

expected: |Ψ|2∼ k−1.

Let us now consider that the potential consists of a classically allowed region within

b ≤ x ≤ a and the classically forbidden regions are x > a and x < b. In this case, the
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complete solution will take the form:

Ψ(x) =
c1√
|k(x)|

e
i
h̄

∫
k(x)dx +

c2√
|k(x)|

e−
i
h̄

∫
k(x)dx , b ≤ x ≤ a , (C.10)

Ψ(x) =
d1√
|k(x)|

e
1
h̄

∫
|k(x)|dx , x < b , (C.11)

Ψ(x) =
d2√
|k(x)|

e−
1
h̄

∫
|k(x)|dx , x > a . (C.12)

Near the turning point, i.e. when V (x) → 0 as x → x∗, let us assume that the potential is

still sufficiently slowly varying that we can approximate:

V (x) = V (x∗) + V ′(x∗)(x− x∗) + . . . = V ′(x∗)(x− x∗) , (C.13)

where x∗ = a/b, as we have chosen above. The general solution of the Schrodinger equation

is given in terms of Airy functions:

Ψ(x) = e1Ai

((
V ′(x∗)

h̄2

)1/3

(x− x∗)

)
+ e2Bi

((
V ′(x∗)

h̄2

)1/3

(x− x∗)

)
, x ∼ x∗ ,(C.14)

Ai(y) =
1

π

∫ ∞

0

dt cos

(
yt+

t3

3

)
, (C.15)

Bi(y) =
1

π

∫ ∞

0

dt

[
sin

(
yt+

t3

3

)
+ exp

(
yt− t3

3

)]
, (C.16)

where Ai and Bi are the usual Airy functions and e1,2 are two undetermined constants. Now,

to fix the solution completely, we need to match the Airy functions with the corresponding

oscillatory and decaying parts in the corresponding regions.

D Klein-Gordon to Schrödinger

Let us begin with the Klein-Gordon equation in a non-rotating BTZ background. For

convenience, we will begin with the equation written in the coordinate of [6]. The metric is:

ds2 = −(r2 − r2h)dt
2 +

dr2

(r2 − r2h)
+ r2dψ2 , −∞ < t <∞ , 0 < r <∞ , 0 ≤ ψ < 2π .(D.1)

The massless Klein-Gordon equation 2Φ = 0 , in this background, takes the form:(
r2 − 1

)2 d2ϕ
dr2

+ 2r
(
r2 − 1

) dϕ
dr

+
(
ω2 − U(r)

)
ϕ = 0 , (D.2)

U(r) =
(
r2 − 1

) [ 1
r2

(
m2 +

1

4

)
+ 1− 1

4

]
, (D.3)
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where we have used an ansatz for the scalar field: Φ =
∑

m,ω e
imψe−iωtϕ(r)/

√
r, and set

rh = 1. Therefore every dimensionful quantity is measured in units of temperature, up to

an order one constant. We will not keep track of the constant, since it is not relevant for the

physics results that we are exploring.

To convert (D.2), note that any second order differential equation of the following form:

a1(r)ϕ
′′ + a2(r)ϕ

′ + a3(r)ϕ = 0 , (D.4)

with ϕ(r) = Ψ(r)g(r) , 2a1(r)g
′(r) + a2(r)g(r) = 0 , (D.5)

can be recast as a Schrödinger equation of the following form:

d2Ψ

dr2
− V (r)Ψ(r) = 0 , (D.6)

where V (r) = −a1(r)g
′′(r) + a2(r)g

′(r) + a3(r)g(r)

a1(r)g(r)

=
1

4a21

[
a22 − 2a2a

′
1 + 2a1 (a

′
2 − 2a3)

]
. (D.7)

Similarly, an equation of the following form:

A(z)F ′′(z) +B(z)F ′(z) + C(z)F (z) = 0 , (D.8)

can be recast into a Schrödinger equation of the following form:

d2Ψ(z)

dz2
− V (z)Ψ(z) = 0 , F (z) = Ψ(z)g(z) , 2Ag′ +Bg = 0 , (D.9)

where V (r) =
1

4A2

[
B2 − 2BA′ + 2A (B′ − 2C)

]
. (D.10)
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