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1 Introduction

Jet substructure observables have become an essential ingredient in the search for quark-
gluon plasma (QGP) signatures in heavy-ion collisions in recent years. Their inherent
sensitivity to disparate scales fits very well with the multi-scale nature of jet evolution
in the QGP. From a theoretical point of view, they also offer a unique opportunity to
produce first principles predictions using resummation techniques in perturbative QCD.
This semi-analytic approach is very well established in proton-proton collisions, and the
heavy-ion community has frequently benefited from these developments. As an example, the
first set of jet substructure measurements in heavy-ion collisions (and related calculations)
focused on Soft Drop grooming [1–4]. However, it quickly became apparent that porting
proton-proton-based observables to the complex environment of heavy-ion collisions had some
limitations, mainly due to the high hadronic multiplicity. This has triggered the development
of new experimental and theoretical techniques with a heavy-ion rationale. The advances
in the field of jet substructure in heavy-ions have been so rapid that experiments such as
ALICE or STAR (traditionally heavy-ion focused) have pioneered measurements of such
class of observables even in proton-proton collisions [5–7]. The most recent example of a jet
substructure observable that has attracted ample attention are energy flow correlations [8],
which are being actively measured in several experimental setups [9, 10].

Formally, energy-flow correlators are defined in terms of light-ray energy flow operators
along direction n⃗ [11–17]

E(n⃗) = lim
r→∞

∫ ∞

0
dt r2niT0i(t, r n⃗) , (1.1)
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with the stress-energy tensor Tµν . This paper focuses on the simplest projection of the
two-point correlator (EEC), where the azimuthal dependence is integrated out. This results
in the standard definition of the EEC:

dΣ(n)

dχ =
∫

n⃗1,n⃗2

⟨En(n⃗1)En(n⃗2)⟩
Q2 δ(n⃗1 · n⃗2 − cosχ)

=
∑
{i,j}

∫
n⃗i,n⃗j

En
i E

n
j

Q2n

dσ
dn⃗idn⃗j

δ(n⃗i · n⃗j − cosχ) , (1.2)

where n is an integer number that we set to 1 by default, dropping the superscript notation
in the EEC, and we explore its variation in section 5. In the second line, we have introduced
the inclusive cross-section for producing two particles with energies Ei,j along the directions
n⃗i,j , and Q is the virtuality of the hard process. The sum over {i, j} includes all unordered
particle pairs.

The first studies of EECs date back to the late 1970’s [8, 18, 19] in the context of testing
and verifying QCD properties. Fixed-order calculations presented in these works were used
to extract the strong coupling constant, αs, in e+e− colliders [20–22]. In the collinear and
back-to-back limits, the EEC receives large logarithmically enhanced corrections that must
be resummed to all orders in the strong coupling constant. Substantial theoretical effort
has been devoted to significantly improve the analytic description of this observable both
in QCD [23–31] and N = 4 SYM theory [15, 16, 32–34]. Despite its apparent simplicity,
the EEC has a wide range of applications in the high energy context, including top mass
extraction [35], gluon saturation [36], and the confining transition [37]. One of the most
recent applications of the EECs has been the extraction of αs at the LHC [38].

In the context of heavy-ion collisions, the EECs could potentially address a series of
questions related to the interaction of a jet with the medium, such as: (i) is the critical
temperature of the QGP imprinted in the jet fragmentation?, (ii) what is the angular
resolution of the medium?, (iii) can we experimentally disentangle medium response from
transverse momentum broadening? Furthermore, the energy weighting entering eq. (1.2)
could help suppress the copious soft contamination arising from the underlying event. During
the last year, there has been a series of studies discussing the capability of the EEC to
resolve the scales of the QGP [39–43]. The analytic calculations in the medium are typically
performed at the leading order using certain approximations for the medium modified jet
cross-section. Refs. [39–42] used a semi-classical approximation in the BDMPS-Z formalism
that was derived in ref. [44]. In turn, ref. [43] provides a leading-order calculation using
the higher-twist formalism [45]. Indistinctly of the specific approximation used for the
leading-order matrix element, all these works predict an enhancement at large angles due
to medium-induced modifications. However, once other effects such as medium response,
medium hydrodynamic evolution or energy loss are taken into account either analytically [46]
or by means of realistic Monte Carlo (MC) simulations [39, 43], the interpretation of the
EEC becomes less transparent. Most of these processes take place at commensurate scales,
and therefore, resolving each of them independently is a remarkably complicated task, as
has been observed in many other jet substructure observables. The intense experimental
activity around the EECs in the heavy-ion community calls for a focused theoretical effort
to guarantee a solid interpretation of the upcoming experimental data.
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This paper takes a step towards increasing the precision of the theoretical tools required
to describe the EEC in heavy-ion collisions and provides a careful assessment of the size
of different effects. We do so by combining semi-analytic calculations with parton shower
simulations. In section 2, we re-derive the leading logarithmic resummation of the EEC
following a diagrammatic approach in vacuum. This alternative way of performing the
calculation aims to incorporate the medium modifications, as shown in section 3. Throughout
this section, we explore three different sources of medium modifications to the EEC. First,
we study in section 3.1 the phase-space modification of vacuum emissions in the presence of a
medium. In section 3.2 we discuss three different calculations of the medium modification
factor: state-of-the-art result in the multiple-soft scattering approximation [47], semi-classical
approximation [44] and BDMPS-Z result [48, 49]. A simple energy loss model is presented
in section 3.3. Results for the EEC at leading-order can be found in section 4 using the
static brick approximation for the medium. We find that this state-of-the art treatment of
the leading order cross-section strongly reduces the enhancement at large angles observed in
previous works. After including energy loss, the significance of the signal at large angles is
even further reduced. Besides these analytic estimates, we also perform a MC study of this
observable within the JetMed framework as shown in section 4.3. We end up by proposing
a new definition of the EEC in terms of Lund subjets [50] in section 5 and summarising
our results in section 6.

2 Revisiting the EEC resummation in a diagrammatic approach

In this first section, we present a derivation of the EEC cumulative distribution at leading
logarithmic (LL) accuracy in the collinear limit. Recent calculations of the EECs are based on
the use of the light-ray OPE for the energy flow operators [51–53], or Effective Field Theory
(EFT) techniques [28]. Here, we follow the approach introduced in refs. [54, 55] and obtain
the final distribution by summing an infinite set of relevant Feynman diagrams.1 Although
the final expressions for the cumulative distribution agree using any of these methods, the
diagrammatic approach is arguably more convenient in the jet quenching context, where
a QCD medium introduces multiple emergent scales and induces modifications to the jet
fragmentation pattern. A complete operatorial level or EFT description for the case of jet
evolution in dense QCD matter is not yet available (see [57, 58] for related efforts). The
description of these effects in the language of light-ray OPE is also not trivial since it requires
going beyond the conformal limit of the theory. We note that in real-world QCD, the
conformal symmetry is broken by multiple effects, some present in vacuum (running coupling
or quark masses) and others related to medium scales. In contrast, medium modifications
to jet evolution are relatively well understood using standard diagrammatic methods, see
e.g. [59, 60], and form the backbone of many jet quenching phenomenological models. In what
follows, we first present a complete derivation of the cumulative distribution assuming a quark-
initiated jet and keeping only the Abelian contributions (i.e., equivalent to QED when ignoring
photon branching). We then point out how this generalizes to the well-known QCD result.

1For a review of the methods to be employed see for example [56].
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Consider a jet with a radius R and total energy Q.2 It is convenient to rewrite eq. (1.2) as

dΣ
dχ = 1

σ

∑
{i,j}∈jet

∫ 1

0
dz dσ

dθijdz z(1− z)δ
(
χ− θij

R

)
, (2.1)

where z denotes the energy fraction Ei/Q of the softest parton in a particle pair separated
by a distance θij < R, and we have simplified the measurement function to the collinear
form. We will focus on the cumulative distribution Σ(χ).

As mentioned above, we consider only the Abelian channel of a quark-initiated jet, where
there are only two relevant splitting functions, namely

Pqq(z) = CF
1 + z2

1− z
, Pgq(z) = CF

1 + (1− z)2

z
. (2.2)

In what follows, we use the fact that Pgq(z) = Pqq(1 − z) to write all the contributions
in terms of Pgq and, therefore, z → 0 corresponds to the soft gluon limit. The one-gluon
emission matrix-element squared, at fixed coupling, is thus given by

dPvac = ᾱPgq(z)dz
dθ
θ
, (2.3)

where ᾱ = αs/π and we have again exploited the fact that we work in the collinear limit
at LL accuracy to keep only the logarithmically divergent piece on the angular dependence.
Note that all angles are normalized by the jet radius.

At first order in the strong coupling constant, i.e., O(αs), there are two contributions
to the observable: one with a real (R) gluon emission and a diagram with a virtual (V)
correction, see figure 1. The contribution of the real gluon emission to Σ is:

ΣR(χ)
∣∣∣
O(αs)

= ᾱ

∫ 1

0

dθ
θ

∫ 1

0
dz Pgq(z)

[
z2Θ(χ) + (1− z)2Θ(χ) + 2z(1− z)Θ(χ− θ)

]
. (2.4)

The first two terms in the previous equation correspond to measuring the EEC on the same
parton (i.e., i = j term in eq. (2.1)), while the last piece accounts for twice the contribution
coming from the resolved EEC (i.e., i ̸= j term in eq. (2.1)). The virtual contribution
can be written as

ΣV(χ)
∣∣∣
O(αs)

= −ᾱ
∫ 1

0

dθ
θ

∫ 1

0
dz Pgq(z)Θ(χ) , (2.5)

where the overall minus sign ensures the exact cancellation of the divergences between the
real and virtual diagrams. As a result, we find that the O(αs) cumulative distribution reads

Σ(χ)
∣∣∣
O(αs)

= ᾱ

∫ 1

0

dθ
θ

dzPgq(z)2z(1− z) [Θ(χ− θ)−Θ(χ)]

= −2ᾱ ln 1
χ

∫ 1

0
dz Pgq(z)z(1− z) , (2.6)

2We note that we use energy and transverse momentum interchangeably throughout this section. In
particular, we shall take Q = pt, with pt equal to the total transverse momentum of the jet in laboratory
coordinates.
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Figure 1. Leading order diagrams contributing to the quark EEC in the Abelian channel. Conventions
used in the main text for the energy fraction for the real diagrams are shown.

where the remaining integral is finite, and we postpone its explicit calculation until the
end of this section.

At O
(
α2

s

)
, and again keeping only the Abelian contributions, we find 4 distinct diagrams

as depicted in figure 1. We introduce the energy fraction of a real emission with respect to
the jet initiating parton xi = Ei/Q, which only coincides with the local energy fraction zi

for the first emission. Energy degradation along the primary branch implies that for any
other emission xi = Πj<i(1− zj)zi, such that energy conservation reads ∑n

i=1 xi = 1 (with
n = 3 at this order in αs). We write the results in terms of three angles: θ1 ≡ θ13, θ2 ≡ θ23
and θ12, where θ2

12 = θ2
1 + θ2

2 − 2θ1θ2 cosϕ12 and ϕ12 denotes the relative azimuthal angle
between the gluons. At leading-logarithmic accuracy, we can further impose strong angular
ordering between real emissions such that θ1 ≫ θ2 and θ12 ∼ θ1.

Taking into account all these considerations, the RR diagram gives

ΣRR(χ)
∣∣∣
O(α2

s)
= ᾱ2

∫ 1

0

dθ1
θ1

∫ 1

0

dθ2
θ2

∫ 2π

0

dϕ12
2π

∫ 1

0
dx1 Pgq(x1)

∫ 1−x1

0

dx2
1− x1

Pgq

(
x2

1− x1

)
×
[
2x1x3Θ(χ− θ1) + 2x2x3Θ(χ− θ2) + 2x1x2Θ(χ− θ12) + x2

1 + x2
2 + x2

3

]
,

(2.7)

with x3 = 1− x1 − x2 = (1− z1)(1− z2) and where in the last three terms inside the square
bracket there is an implicit Θ(χ). Note that the previous expression also accounts for the
corresponding Jacobian when transforming from zi to xi. For the RV case, we have

ΣRV(χ)
∣∣∣
O(α2

s)
=− ᾱ2

∫ 1

0

dθ1
θ1

∫ 1

0

dθ2
θ2

∫ 1

0
dx1 Pgq(x1)

∫ 1

0
dx2 Pgq(x2)

×
[
2x1x3Θ(χ− θ1) + x2

1 + x2
3

]
, (2.8)
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where x3 = 1− x1 since the second gluon is virtual. The VR diagram has the same structure
as eq. (2.8). Finally, the VV contribution has a single term

ΣVV(χ)
∣∣∣
O(α2

s)
= ᾱ2

∫ 1

0

dθ1
θ1

∫ 1

0

dθ2
θ2

∫ 1

0
dx1 Pgq(x1)

∫ 1

0
dx2 Pgq(x2) . (2.9)

The full O(α2
s) result is obtained by adding up all 4 contributions that are individually

collinearly divergent. It is straightforward to show that the different diagrams cancel out
exactly in all regions where double or single collinear poles could emerge, as expected. The
only surviving contribution comes from the region where θ1 > θ2 > χ, where the integrands
combine to give:[

(x2
1 + x2

2 + x2
3)RR − (x2

1 + x2
3)RV − (x2

2 + x2
3)VR + (1)VV

]
Θ(χ < θ1 < 1)Θ(χ < θ2 < θ1) .

(2.10)

After some algebraic manipulation, we find

Σ(χ)
∣∣∣
O(α2

s)
= ᾱ2

2! ln
2 1
χ

∫ 1

0
dz1Pgq(z1)

∫ 1

0
dz2Pgq(z2)[2(z1 − 2)z1 (z2 − 1)z2] , (2.11)

where, again, the remaining integrals are finite.
The previous calculation can be systematically extended to higher orders in αs with the

only surviving contribution coming from the region without poles order by order. In general,
we find that the O

(
αk

s

)
contribution reads (here assuming k > 2):

Σ(χ)
∣∣∣
O(αk>2

s )
= 2 ᾱk+1

(k + 1)! ln
k+1 1

χ

[
k+1∏
l=1

∫ 1

0
dzl Pgq(zl)(zl − 2)zl

]
zk+1 − 1
zk+1 − 2 . (2.12)

The final distribution is then obtained by summing eq. (2.12) over k. To that end, we
introduce the anomalous dimensions

γik(j) = −
∫ 1

0
dz zj−1P̂ik(z) , (2.13)

where j is an integer number, (i, k) run over all possible flavors and P̂ denotes the regularized
splitting function, i.e., P̂ corresponds to the LO kernels in eq. (2.2) evaluated using the
plus-prescription. For the splitting functions of interest in our calculation, one has

γqq(j) = −CF

[3
2 + 1

j(j + 1) − 2[ψ(j + 1) + γE ]
]
, γgq(j) = −CF

2 + j + j2

j3 − j
, (2.14)

where ψ(j) ≡ Γ′(j)/Γ(j) is the di-gamma function and γE is the Euler-Mascheroni constant.
A direct calculation gives

Σ(χ) =
∞∑

k=0
(−1)k+1 ᾱk+1

(k + 1)! ln
k+1 1

χ
[γk+1

qq (3) + γk
qq(3)γgq(3)]

=
(
−1 + χᾱγqq(3)

) γgq(3) + γqq(3)
γqq(3)

, (2.15)
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Figure 2. Diagrammatic representation of the resummation structure in terms of the anomalous
dimensions. Note that since we only include the Abelian quark channel, flavor-changing branchings
can only occur at the last step in the ladder, unlike the full QCD case. A similar representation can
be drawn in QCD, agreeing with the structure of γ̂(j).

which results in the following differential distribution

dΣ
dχ = ᾱ

χ1−ᾱγqq(3) [γgq(3) + γqq(3)] =
ᾱ

χ1−ᾱγqq(3)

∫ 1

0
dz z(1− z) [Pqq(z) + Pgq(z)] . (2.16)

The form shown in the first line of eq. (2.15) has a simple diagrammatic interpretation,
illustrated in figure 2. It results from the repeated application of the anomalous dimension
matrix, which, in the complete QCD case, reads

γ̂(j) =
[
γqq(j) γqg(j)
γgq(j) γgg(j)

]
, (2.17)

while in the Abelian quark sector one can set γgg = γqg = 0. Using this, a result analogous
to the one shown in eq. (2.16) can be derived [28].

3 Medium modifications to the EEC

This section aims to explore the medium modifications to the jet EEC. We discuss three
possible sources: (i) phase-space constraints to vacuum-like splittings, (ii) medium modi-
fications to the leading-order splitting function, and (iii) leading energy loss for resolved
emissions. To this end, we assume a simple model for the QGP consisting of a finite slab
of dense, static, isotropic and homogeneous matter.3 The medium is assumed to have a
longitudinal extension L. The jet-medium interactions are described using the multiple soft
scattering approximation, detailed below. As a result, we neglect contributions from rare
hard momentum exchanges between the jet and medium constituents, whose exclusion should
not significantly change the final results at a qualitative level [40].

3For recent theoretical efforts towards describing jet evolution in more realistic matter, see e.g. [61–72] and
references therein.
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3.1 Phase-space constraints for vacuum-like emissions

The first effect that we discuss is the reduction of phase space for vacuum-like emissions [73, 74].
Sufficiently hard splittings, corresponding to very short formation times,4 are unmodified
by the medium, i.e., their splitting probability is given by eq. (2.2). Conversely, splittings
with longer formation times are sensitive to medium dynamics and their radiation pattern is
qualitatively modified due to gluon exchanges with the medium constituents. In particular,
assuming that the medium-jet interactions are dominated by multiple soft gluon exchanges,
the typical formation time for medium-induced emissions is given by

tmed
f =

√
2ω
q̂
, (3.1)

where ω is the energy of the emission and q̂ is the so-called jet quenching parameter, that
depends on the properties of the medium.5 Thus, vacuum-like splittings inside the medium
(tf < L) must satisfy tf < tmed

f . These temporal constraints lead to the definition of a
so-called veto region for in-medium vacuum splittings [73]

Θveto = Θ(tf − tmed
f )Θ(L− tf ) , (3.2)

This constraint reduces the available phase space for vacuum-like radiation. Although
eq. (3.2) is derived in a specific approximation (i.e. soft-and-collinear emissions and static
medium), a similar phase-space restriction, although with a different functional formal, is to
be expected once other effects are included. As a result, the medium alters the boundary
defining where vacuum evolution is valid. Consequently, the anomalous dimensions describing
this in-medium, vacuum-like evolution of the jet remain unmodified.

In practice, implementing this kind of constrained evolution semi-analytically can be
challenging. A practical way to solve this issue consists in absorbing the phase-space constraint
into the anomalous dimensions, setting the evolution kernel to zero in the appropriate regions.
That is, we incorporate the phase-space constraint in the anomalous dimensions that now
read (see also [75]):

γmed(j, θ) = −
∫ 1

0
dz zj−1P̂ (z)[1−Θveto(z, θ)] . (3.3)

In particular, for the q → qg channel we find

γmed
gq (j, θ) = γvac

gq (j) +
∫ 1

0
dz zj−1Pgq(z)Θveto(z, θ) . (3.4)

We note that the functional form of this equation does not depend on the specifics of the
phase-space constraint and that the vacuum result is recovered at any perturbative order.

In figure 3 we evaluate eq. (3.4) for j = 3 using eq. (3.2) to describe the medium phase-
space constraint. Since Θveto is derived in the soft-and-collinear limit, we set Pgq(z) = 2CF /z.

4We remind the reader that the typical formation time is related to the off-shellness of the emitter and
is given by tf = 2/(z(1 − z)ptθ

2), with z the energy-fraction of the emission and θ the opening angle of the
splitting.

5In what follows, we shall implicitly use q̂ as denoting the jet quenching parameter in the adjoint color
representation.
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Figure 3. Medium-to-vacuum ratio of the anomalous dimension for j = 3 as a function of the
splitting angle for the q → qg channel, see eq. (3.4).

In this approximation, the anomalous dimension in vacuum reduces to γvac
gq (j) = −2CF /(j−1).

The medium parameters are fixed to be L = 4 fm and q̂ = 1.5GeV2/fm, roughly corresponding
to central PbPb collisions at LHC energies, as extracted from the nuclear modification factor
for jets [76]. We also use these parameters in the semi-analytical calculations as they form a
sensible set of medium parameters. We observe that for all values of jet pt the in-medium
anomalous dimension is reduced compared to the vacuum baseline. This can be naturally
understood as a result of a reduction of the radiative phase space. In addition, the medium-
to-vacuum ratio of anomalous dimensions tends to unity with increasing jet pt, i.e., highly
energetic jets undergo a vacuum-like dominated evolution and are less sensitive to the medium
scales. A final comment concerns the sharpness on the angular dependence of the in-medium
γgq(3), which is due to the step-wise nature of the model describing Θveto. Higher-order
perturbative corrections and fluctuations of medium scales are expected to smooth out the
boundaries of the resolved phase space.

The fact that Θveto is only known in the soft-and-collinear limit represents a problem for
the EEC calculation. That is, introducing Θveto as given by eq. (3.2) in the resummation
structure of this observable would modify the coefficients of the vacuum result starting from
single-log. The only consistent approach to solve this issue would be to incorporate the full
set of single-logarithmic corrections to the medium phase-space constraints. First steps in
this direction were presented in ref. [75], where finite z effects were included in Θveto [75, 76].
The determination of Θveto to single-log accuracy requires a dedicated study.

3.2 Medium modified splitting function

Another source of medium-induced modification to the EEC results from the production
of bremsstrahlung radiation due to the interactions between hard jet constituents and the
medium, leading to an excess of soft gluons at large angles. In a perturbative approach, this
can be captured, at leading order in the strong coupling, by writing the 1 → 2 cross-section as

d2P full

dzdθ = d2Pvac

dzdθ + d2Pmed

dzdθ ≡ [1 + Fmed(z, θ)]
d2Pvac

dzdθ , (3.5)
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where medium induced radiation contributions are encapsulated inside the Fmed function
and the vacuum term is given by eq. (2.3). The strong coupling constant may differ in
the vacuum and medium part of eq. (3.5). For instance, the typical transverse momentum
squared of a medium-induced gluon in the LPM regime, which sets the running scale of
αs, is of order of

√
q̂ω. We thus generically write the 1 → 2 cross-section under the

form d2Pfull

dzdθ = [1 + αmed
s
αs

Fmed(z, θ)]d2Pvac

dzdθ . Beyond O(αs), this separation between vacuum
and medium physics in the splitting function remains to be fully studied, see e.g. [77–80].
Combining eq. (2.1) with eq. (3.5) one can write the leading order in-medium EEC as

dΣ
dθdpt

=
∑
{i,j}

∫ 1

0
dz
[
z(1− z)

dPvac
ij

dθdz

(
1 + αmed

s

αs
F ij

med(θ, z)
)]

dσj

σjdpt
, (3.6)

where the last term denotes the jet cross-section that generates the leading parton.6 In what
follows, we will mainly restrict the discussion to q → qg and γ → qq̄ splittings and postpone
the discussion on the role of the initial jet cross-section to the next section.

Despite substantial progress over the last decades, the medium modification factor Fmed
can only be efficiently computed in particular kinematical limits.7 The first studies of the
in-medium EEC used the so-called ‘semi-classical’ limit [44] where the outgoing partons are
considered to be hard (min(z, 1−z)pt ≫ ωc ≡ q̂L2/2). Alternatively, several phenomenological
works used the soft limit approximation for the radiated gluon (z ≪ 1 and pt ≫ ωc leading to
ω = zpt ≪ ωc); we shall refer to this as the BDMPS-Z limit [49, 81–83]. As we will discuss
below, the BDMPS-Z approach is insufficient for computing the EEC since this observable
involves finite energy fractions, e.g. the energy weight in the EEC definition in eq. (2.1).
Finally, we will also consider a recent numerical calculation of Fmed for the simpler γ → qq̄

channel [47]. This calculation shares with BDMPS-Z and the semi-classical approximation the
description of the medium dynamics in terms of the multiple-scattering approximation using
the harmonic oscillator potential as well as the use of the high-energy limit pt ≫ Qs =

√
q̂L

(the latter condition comes from assumption that the energy pT of the parent parton is much
larger than the typical momentum transferred from the medium in the multiple soft scattering
approximation). However, it goes significantly beyond the two discussed approaches: (i)
with respect to the BDMPS-Z approach, it is valid for arbitrary values of the momentum
sharing fraction, (ii) with respect to the semi-classical approximation, it includes subleading
colour corrections and the transverse dynamics in the eikonal approximation. So far, this
numerical approach is limited to pair production from a photon [47], which is a subleading
process for jet production at the LHC. Nevertheless, we will use the improved accuracy
of this result [47] to gauge the validity of the above-mentioned approximations, which we
follow to discuss in more detail.

6In other words, dσj

σj dpt
is the hard function. It is omitted in eq. (3.5) since, in the vacuum case, it

only changes the overall normalization of the EEC distribution. Note that in this work, we are focused on
understanding the final state modifications to the EEC, and we do not provide a complete computation of the
observable.

7Here we are considering the case of dense medium. For calculations of the EEC in the limit of dilute
matter see [40, 43].
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Semi-classical approximation. We consider the outgoing partonic states in a 1 → 2
process to be very energetic, such that evolution in the medium is mainly dominated by the
rotation of their color field, while deflections from the classical trajectory are neglected. In
this case, the branching process itself (and not the subsequent evolution in the QGP) mostly
controls the final transverse momentum distribution. The expression for the modification
factor in this approximation is given by [44, 84]

Fmed = 2
tf

[∫ L

0
dt
{∫ L

t

dt′
tf

cos
(
t′ − t

tf

)
C3(t′, t)C4(L, t′)

}
− sin

(
L− t

tf

)
C3(L, t)

]
, (3.7)

where C3,4 denote particular projections of three and four-point correlation functions of
in-medium propagators, see [44, 47, 84] for further discussion and details on the calculation
of these objects. For γ → qq̄ and q → qg, the C3,4 correlators can be reduced to relatively
simple forms in a large number of colors, Nc, limit:

C3(t′, t) = C3(t′ − t) = e−
1

12 q̂θ2ζ(z)(t′−t)3
,

C4(L, t′) = e−
1
4 q̂ξ(z)θ2(L−t′)(t′−t)2 + non-factorizable . (3.8)

The flavor dependence of the process is encapsulated in the ζ and ξ functions, which for
the two channels under consideration read [84]:8

ξγ→qq̄ = z2 + (1− z)2 , ζγ→qq̄ = 1 ,

ξq→gq = 1− 2(1− z) + 3(1− z)2 , ζq→gq = 1 + (1− z)2 + 2(1− z)
N2

c − 1 . (3.9)

Another point concerning eq. (3.8) is the role of the so-called non-factorizable pieces in C4.
These terms account for non-trivial color configurations, and in refs. [44, 84, 85] it was argued
that their contribution should remain quantitatively small for dense media. In this work,
we have explicitly checked that the impact of these non-factorizable corrections in the EEC,
for a set of parameters used in the figures shown, is negligible, and, due to their numerical
complexity, we neglect them in what follows. Finally, plugging eq. (3.8) into eq. (3.7), the
medium modification factor can be compactly written as

Fmed = 2
tf

∫ L

0
dt
[
41− e−

1
4 ξq̂(L−t)θ2t2

ξq̂tfθ2t2
cos

(
t

tf

)
− sin

(
t

tf

)]
e−

1
12 q̂ζθ2t3

. (3.10)

In figure 4 we show the evaluation of eq. (3.10) as a function of z for two values of θ.
We consider two physical partonic channels and a toy scenario in which ζ = ξ = 1, which
will be used in the Monte Carlo implementation of Fmed presented in section 4.3. We note
a drastic difference in the behavior of Fmed between collinear (θ = 0.1) and wide-angle
splittings (θ = 0.3). For small-angle splittings, we observe that the dominant contribution to
Fmed comes from democratic splittings (z ∼ 1/2). In contrast, the wide-angle limit of Fmed
corresponds to asymmetric splittings in which either the daughter parton (z → 0) or the
emitter (z → 1) are soft. This is an important point since very asymmetrical configurations

8We thank Carlota Andrés and Fabio Dominguez for pointing out a typo in ref. [84] as due to z and 1 − z

being swapped in the q → qg case.
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Figure 4. Evaluation of Fmed in the semi-classical approximation following eq. (3.10) for two different
splitting angles, θ = 0.1 (left) and θ = 0.3 (right), and three different splitting processes.

can not be described using the semi-classical approximation. Consequently, as the angle
increases, one expects the values obtained for Fmed to be increasingly less accurate. We
anticipate that, counter-intuitively, these small z branchings are precisely the ones that
dominate the wide-angle part of the jet EEC at the leading order. We observe this to
be always the case when using the semi-classical all approximation, even after including
the energy suppression factor entering the EEC definition. This calls for a more accurate
calculation or better model for the soft sector.

Beyond the semi-classical approximation, the Fmed factor receives corrections related to
quantum diffusion in the transverse plane, which can be captured in a power series expansion
in k2

⊥∆t/pt [86], with k⊥ (∆t) a typical transverse momentum (time) scale. When k2
⊥ becomes

commensurate with the typical momentum transfer from the medium q̂L, and ∆t ∼ L, one
can estimate that the semi-classical approximation fails if min(z, 1 − z)pt ≪ q̂L2/2 ≡ ωc,
assuming pt ≫ ωc.

Soft approximation. We now explore the kinematical limit where z → 0 or z → 1. This
regime corresponds to the emission of very soft radiation along with a hard, nearly eikonal
parton. We focus on the q → qg splitting process. The Fmed modification factor can be
calculated under these conditions in the BDMPS-Z limit for z → 0, or in the opposite limit
when z → 1 [87]. For the simple medium model considered above, the in-medium emission
probability reads (see e.g. [88] for details):

d2Pmed
z→0

dzdθ = 2π θptω
2 d2Pmed

z→0
dωd2k

, (3.11)

where we have implicitly used that the spectrum does not depend on the azimuthal angle, with

d2Pmed
z→0

dωd2k
= 8αmed

s CF

4π2ω
Re
[ ∫ L

0
dt Ωcot(Ωt) e

−
k2
⊥

q̂(L−t)−2iωΩ cot(Ωt)

q̂(L− t)− 2iωΩcot(Ωt) −
1
k2
⊥

(
1− e

−
ik2

⊥
2ωΩ cot(ΩL)

)]
,

(3.12)
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Figure 5. Lund-plane representation of the differential probability distribution given in eq. (3.5).
Left: soft approximation for the medium splitting probability as given by eq. (3.12). Right: ratio
between the soft (eq. (3.12)) and semi-classical approximations (eq. (3.10)) to the medium kernel. In
both plots, we choose: q̂ = 1.5GeV2/fm, L = 4 fm, pt = 120GeV, R = 1, αs = 0.1 and αmed

s = 0.24.

where Ω = (1−i)
2
√
q̂/ω, |k| = k⊥, and ω = zpt. In principle, the strong coupling in the

medium αmed
s should be evaluated at (q̂ω)1/4, which is the typical transverse momentum

scale for medium-induced emissions [85](see also the discussion after eq. (3.5)). For simplicity,
we shall however consider throughout the paper a constant αs,med value. The case z → 1
can be obtained from eq. (3.12) by crossing symmetry and reads [87]

d2Pmed
z→1 = 1

2 d2Pmed
z→0

∣∣∣
z→1−z,q̂→q̂F

, (3.13)

where the correct jet quenching parameter is now in the fundamental representation, i.e.,
CAq̂F = CF q̂. The overall 1/2 factor accounts for the transformation of Pgq between the
hard and soft limits, see eq. (2.2).

We show in the left panel of figure 5 the splitting probability density defined in eq. (3.5)
using the soft approximation for the medium kernel (eq. (3.11)). Note that in this Lund-
plane representation, the vacuum splitting probability reduces to a constant (2αsCF /π) at
double-logarithmic accuracy. Therefore, any enhancement or depletion in this graph can be
attributed to medium effects. In particular, the enhancement observed for soft, wide angle
splittings corresponds to the characteristic scale of the medium zθpt = q̂L. The right panel of
figure 5 shows the ratio between this soft approximation and the semi-classical limit discussed
above. We would like to remark that the quantitative interpretation of this ratio is delicate,
since it depends on the values for αs and αmed

s . Nevertheless, we observe clear differences
between these two approximations of the in-medium matrix element in almost all regions of
the radiative phase-space. In particular, we confirm that the semi-classical approximation
does not capture the BDMPS-Z result neither when z → 0 nor when z → 1. Unfortunately,
none of these approximations can be compared to the matrix element obtained in [47] since
the numerical method proposed in ref. [47] for γ → qq̄ is not yet available for q → qg.

To further analyze the differences between the semi-classical and soft limits, we plot the
in-medium scattering probability for fixed-angles in figure 6. Note that these plots contain
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Figure 6. Medium splitting probability in q → qg as a function of z for two different splitting angles:
θ = 0.4 (left) and θ = 0.6 (right). We show two different approximations for the splitting kernel:
soft (or BDMPS-Z) both in the z → 0 ((eq. (3.12))) and z → 1 (eq. (3.13)) limits, and semi-classical
(eq. (3.10)).

the full splitting probability (vacuum + medium) and not just the medium part, as was done
in figure 4. Both panels focus on the large-angle regime, the region of interest for medium-
modifications to the energy-energy correlator. In the BDMPS-Z case, we show both the soft
(z → 0) and hard gluon (z → 1) limits given by eqs. (3.12) and (3.13), respectively. We find
that the large-angle regime is fully dominated by asymmetric splittings whose description
clearly differs when taking the soft or the semi-classical limit. The imprint of this mismatch
in the EEC itself will be discussed in section 4.1.

Heuristic interpolation scheme. After separately studying three approximations of the
state-of-the-art in-medium matrix element in different kinematic regimes (z ∼ 1/2, z → 0
and z → 1), here we propose an ansatz for the cross-section that simultaneously covers these
three kinematical limits. Assuming pt ≫ ωc, we consider the following interpolating scheme:

d2Pmed = d2P eq. (3.10) Θ(min(z, 1− z)pt − ωc)
+ d2P eq. (3.12) Θ(ωc − zpt) + d2P eq. (3.13) Θ(ωc − (1− z)pt) , (3.14)

which splits the phase-space in terms of the emission’s energy. That is, the first line uses the
semi-classical approximation in a region of symmetric energy sharing, while the second line
describes two regions where most of the energy is carried away by one of the daughter particles.
Note that this form is introduced to gauge how much the most asymmetrical branching region
affects the in-medium EEC. This is a relevant question since previous studies of the EEC used
the semi-classical approximation in the full z-range, even if it does not capture the correct
z → 0 and z → 1 limits, as shown in figures 5 and 6. As we will show next, these asymmetric
configurations actually give a sizable contribution to the EEC at large angles in this particular
model. Finally, we would like to remark that the ansatz introduced in eq. (3.14) is not meant
as a rigorous, or even improvable, way to obtain a more accurate in-medium cross-section.
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3.3 Energy loss model for two parton system

Finally, we consider the effect of energy loss on the in-medium cross-section. From a
phenomenological point of view, energy loss is expected to be the main source of medium
modifications to jet observables. On the theory side, a complete description of the energy
loss mechanism to all-orders remains challenging (see refs. [74, 89] and references therein for
recent progress). The treatment of energy loss presented here closely follows that introduced
in ref. [74] and used in other studies both about the EEC [46] and beyond [90–93].

More concretely, we consider a model for jet energy loss based on the quenching weight
approximation [83, 94]. Without loss of generality, let us consider a q-initiated jet. The
first step is to approximate the in-medium cross-section, dσq, as a pt-shifted version of the
vacuum one, dσvac

q , i.e.,

dσmed
q

dptdθ
=
∫ ∞

0
dεDq(ε)

dσvac
q

dp′tdθ

∣∣∣∣∣
p′t=pt+ε

, (3.15)

where Dq(ε) is a probability distribution describing the transfer of ε ≪ pt energy from
the quark to the QGP by means of out-of-the cone emissions. Next, the quenching weight
approximation exploits the steeply falling nature of the vacuum cross-section (dσq ∼ dp2

t /p
n
t

with n ≈ 6) to approximate eq. (3.15) as

dσmed
q

dptdθ
≈

dσvac
q

dptdθ

∫ ∞

0
dεDq(ε)e−

nε
pt ≡ Qq(pt)

dσvac
q

dptdθ
, (3.16)

where Qq(pt) is usually referred to as the (quark) quenching weight and represents the Laplace
transform of the single parton energy loss probability.

As we have already mentioned, the single parton energy loss probability distribution
is, in general, a highly complex object (including non-perturbative ingredients) and its full
description is still not understood. Focusing on a partonic picture, a closed form for Qq(pt)
can be achieved by assuming that multiple gluon emissions are independent, a reasonable
assumption when the jet energy is transported at large angles via soft gluons [95–97]. Within
this approximation, one can write the single body quenching weight as [94]

Qi = exp
[
−
∫

dω
∫

d2k
dPmed

i

dωd2k

(
1− e

−nω
pt

)]
, (3.17)

and we use the BDMPS-Z form of the in-medium cross-section (since it captures the production
of soft radiation) as given by eq. (3.12). At this point, it is important to remark that there
are two distinct physical regimes in the medium-induced cascade that are responsible for
energy loss. To facilitate the discussion, we split eq. (3.17) as:

Qi = exp
{
−
∫ ωs

T
dω
∫

d2k
dPmed

i

dωd2k

(
1− e

−nω
pt

)
+
∫ ∞

ωs

dω
∫

d2k
dPmed

i

dωd2k

(
1− e

−nω
pt

)}
≡ Qmini−jets

i ×Qpert.
i , (3.18)

and introduce the characteristic scale ωs ≡
(

αmed
s Nc

π

)2
ωc [95]. Physically, ωs corresponds to

the energy scale for which the in-medium emission probability becomes order one, and the
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medium-induced cascade develops a turbulent behavior. Soft gluon emissions with T < ω < ωs

thermalize quickly, and their perturbative description breaks down. Further, their emission
rate becomes independent of transverse momentum broadening since they occur at large
angles. In this mini-jet dominated regime, we can therefore write the quenching weight as:

Qmini−jets
i = exp

[
−
∫ ωs

T
dωdPmed

i

dω
(
1− e

−nω
pt

)]
, with dPmed

i

dω = 2αmed
s Ci

π

√
ωc

2ω3 , (3.19)

where we have used the ω ≪ ωc limit of the medium-induced energy spectrum. After
integration, we find

Qmini−jets
i = exp

{
− 2αmed

s Ci

π

[√
2ωc

T

(
1− e

−nT
pt

)
−
√

2ωc

ωs

(
1− e

−nωs
pt

)

+
√

2πωcn

pt

(
erf
(√

ωsn

pt

)
− erf

(√
nT

pt

))]}
. (3.20)

The second contribution to Qi in eq. (3.18), Qpert.
i , captures the transport of energy out of

the jet cone due to the emission of semi-hard (perturbative) gluons with ω ≫ ωs that do not
instantly thermalize as was the case for the mini-jets. Note that we describe the in-medium
emission of these gluons with the BDMPS-Z spectrum in all the frequency ranges, i.e., even
when ω > ωc. Strictly speaking, an accurate description of gluons with ω > ωc requires
going beyond the multiple soft scattering approximation for the in-medium elastic scattering
rate and accounting for its Coulomb-like tail [98–101]. Nevertheless, we keep the BDMPS-Z
approximation, which yields a 1/ω3 suppression for ω > ωc to facilitate analytic calculations.
Further, when ωs ≪ ω ≪ ωc, the double differential soft gluon spectrum reduces to [4, 91]

(2π)2 dPmed
i

dωd2k
≈ αmed

s Ci

π

√
q̂

ω3
4π
q̂
Γ0

(
k2

q̂L

)
. (3.21)

Plugging eq. (3.21) into (3.18) and imposing that all gluons are outside the cone, i.e.,
k > 2ωR,9

Qpert.
i = exp

{
− αmed

s CF

π

√
2ωcn

pt
Iα

(
nωs

pt

)}
, (3.22)

where α ≡
(

2ptR√
q̂Ln

)2
and

Iα

(
nωs

pt

)
=
∫ ∞

nωs
pt

dx 1− e−x

√
x3

(
e−x2α − αx2Γ0(αx2)

)
. (3.23)

An important remark is that in the large radius limit, α→ ∞ and thus Qpert.
i → 1. This

case corresponds to the limiting scenario considered in e.g. [40], where it is assumed that
energy loss effects are absent since all radiation is recovered inside the jet cone. Nonetheless,
we note that even in this ideal asymptotic limit, there are energy loss contributions analogous
to the ones captured by Qmini−jets, which can not be neglected a priori.

9To avoid boundary effects, we consider out-of-the cone emissions to satisfy θ > 2R.
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So far, we have described the quenching weight energy loss prescription for a single
color charge propagating in the medium. Since we want to compute the EEC (at least) at
LO accuracy, we need the two body energy quenching weight. Such an object has a much
richer structure due to the complex color pattern present in multi-gluon processes, for a more
detailed discussion, see e.g. [89]. In this work, we employ a simple model for the two-body
energy loss, described by the interpolating form

Qij(pt, θ, z) = Qi(pt, R)(1−Θres) +Qi(pt, R)Qj(pt, R)Θres , (3.24)

where Θres denotes the phase space where the 1 → 2 branching is resolved by the medium
and it is given by

Θres = Θ(θ − θc)Θ(tmed
f − tf ), with θc =

2√
q̂L3 . (3.25)

Notice that in this notation, i corresponds to the flavor of the parent particle. Also, since we
are working at LO accuracy, we neglect radiative corrections to the bare quenching weights
introduced before [74]. The first factor in eq. (3.24) ensures that only sufficiently wide angle
emissions, where the outgoing states are resolved as separate color charges, can lose energy
independently [44, 89, 102–106]; the second piece ensures that long-lived gluon fluctuations
are not included because they never decohere from the parent parton.

3.4 Summary of the results

Having individually described the different modifications that affect EEC computation in-
medium, we finalize the discussion by piecing together all the different elements. Neglecting
the initial jet cross-section, the LL medium modified EEC for the q → qg channel reads

dΣq→qg

dχ = ᾱ

χ

∫ 1

0
dz z(1− z)Pgq(z)

(
(1−Θveto)gq

χ−ᾱγqq(3,χ) + αmed
s

αs
F gq

med(χ, z)
)
Qqg(pt, χ, z)

+ ᾱ

χ

∫ 1

0
dz z(1− z)Pqq(z)

(
(1−Θveto)qq

χ−ᾱγqq(3,χ) + αmed
s

αs
F qq

med(χ, z)
)
Qqg(pt, χ, z)

≈ 2ᾱ
χ

∫ 1

0
dz z(1− z)Pgq(z)

(
(1−Θveto)gq

χ−ᾱγqq(3,χ) + αmed
s

αs
F gq

med(χ, z)
)
Qqg(pt, χ, z) , (3.26)

where in the last line we have used that, up to the definition of the energy fraction, the two
partonic channels are the same. We note that in our description, they can differ, for example,
in the definition of the color representation of the jet quenching parameter. In what follows,
we shall ignore these distinctions. The form of eq. (3.26) is general, i.e. valid for different
prescriptions for the anomalous dimension. As discussed in section 3.1 one possibility is to set
γqq(3, χ) = γmed

qq (3, χ) according to eq. (3.3), effectively restricting the phase-space of vacuum
splittings according to Θgq

veto. However, since the latter is only known at double-logarithmic
accuracy, this prescription would spoil the single-logarithmic nature of the EEC. Accordingly
we use γqq(3, χ) = γvac

qq (3, χ) and also set Θgq
veto = 0 in the fixed order term.

The equivalent expression for γ → qq̄ reads

dΣγ→qq̄

dχ
= ᾱ

χ

∫ 1

0
dz z(1− z)P γ

qq̄(z)
(
1 + F qq̄

med(χ, z)
)
Qγ→q̄q(pt, χ, z) , (3.27)
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Figure 7. Jet EEC for the semi-analytic models discussed in the main text following eq. (3.26):
semi-classical approximation (eq. (3.10)) and heuristic interpolating scheme (eq. (3.14)). The left panel
neglects energy loss effects, while the right one includes the two-prong energy loss model introduced
in the main text (eq. (3.24)).

where, for consistency, we disregard LL resummation for this channel since it will involve
off-diagonal terms in the (QED) anomalous dimension matrix. We have also adapted the
notation for the quenching weight to make clear that the parent parton is a photon. The
γ → qq̄ vacuum splitting function reads for nf light quark flavors10

P γ
qq̄ = nf (z2 + (1− z)2) . (3.28)

4 In-medium results for the EEC

In this section, we provide a quantitative study of the jet EEC, following the derivations
presented in the previous sections. We first discuss the results obtained using the semi-analytic
formulas for the q → qg channel, i.e., eq. (3.26). We then compute the EEC result for γ → qq̄

using the publicly available numerical routines introduced in ref. [47], which include finite-z
and subleading colour corrections. The numerical result from [47] is compared against different
semi-analytic estimates discussed in section 3.2. Finally, we present a Monte Carlo study, using
the JetMed MC, modified to account for balanced (i.e., z ∼ 1/2) branchings in the medium.

4.1 Semi-analytic results for q → qg splittings

In figure 7, we show the results for the evaluation of eq. (3.26) for three different scenarios:
pure vacuum (black), in-medium using the semi-classical approximation (eq. (3.10)) (blue)
and the result for the interpolation ansatz introduced in eq. (3.14) (red). We show the results
for the case where energy loss is neglected, i.e., Qq = Qg = 1, on the left-hand side, while the
right-hand side plot includes the full two parton quenching weight introduced in eq. (3.24).
We consider jets with a radius R = 0.4 and pt = 200GeV, while the medium parameters
follow the choice made in figure 4, with T = 0.3GeV. Note that for this set-up ωc = 60GeV.

10In what follows we use nf = 1.
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The vacuum result is a straight line with a slope controlled by the anomalous dimension.
Regarding the medium curves, let us first focus on the case where energy loss is neglected.
For small angles, all curves overlap, meaning that the EEC is dominated by vacuum evolution.
Medium effects appear at large angles, in accordance with previous studies [39, 40]. However,
the behavior of the two models for the in-medium matrix element under consideration is
qualitatively distinct. When only semi-hard in-medium splittings are considered, we observe
a significant enhancement of the EEC, resulting from extra bremsstrahlung radiation at wide
angles. The curve is characterized by a plateau at the widest angles, while there is a sharp
rise at a characteristic scale (χ ≃ 0.02), related to the coherence angle θc (see eq. (3.25)) [39].
In contrast, the interpolation formula first leads to a suppression of the EEC, followed by
an enhancement around the same scale as in the semi-classical result. The suppression is
driven by the BDMPS-Z spectrum (which can become negative), while the enhancement is
again generated by the hard splitting contribution. More importantly, we find that the EEC
for χ > 0.1 is almost an order of magnitude smaller than the semi-classical result. That is,
despite the energy weighting in the observable definition, the regime around the jet boundary
is strongly affected by the modeling of very imbalanced splittings (z → 0 or 1).

A natural question at this point is whether the previous conclusion might be an artifact
due to the over-simplistic interpolation formula that we have chosen. To demonstrate that this
is not the case, we have performed three independent checks that do not include the BDMPS-Z
contribution. On the one hand, we restricted the range of frequencies over which the EEC is
integrated to those for which the semi-classical approximation is valid, i.e., ω > ωc. In this
case, the EEC falls exactly on top of the vacuum curve at large angles. Alternatively, we have
also calculated a groomed version of the observable in which we imposed that z > zcut = 0.1.
Again, the enhancement at large angles disappeared in this scenario. Finally, we computed
the EEC using higher-power energy suppression factors, i.e., taking n > 1 in eq. (1.2).11

The results obtained using the semi-classical approximation showed that raising n leads to
a qualitative modification in the shape of the distribution on top of the expected overall
suppression. This again indicates a clear dependence on soft branchings. These results might
seem counter-intuitive since this class of observables is designed to be insensitive to such
soft gluon radiation. However, they indicate that currently available approximations to the
in-medium matrix element are insufficient to capture the correct behavior of the in-medium
EEC throughout the full kinematic range. Unfortunately, this prevents any qualitative or
quantitative interpretation of upcoming data based on these leading-order results for dense
QCD media. If the medium is instead assumed dilute, leading order in opacity results as
those in [40] are already available to provide qualitative predictions.

Turning to the right panel of figure 7, we observe that the inclusion of energy loss leads to
an overall suppression of the EEC. When both outgoing partons are resolved as independent
charges, i.e., at angles larger than θc ≃ 0.04, this suppression is more prominent, and thus
energy loss competes with the modification to the splitting function. The exact balance
between these two effects is highly model-dependent, and we can not make a quantitative
statement regarding which effect dominates. In addition, the jet pt only enters in our analytic

11Note that the observable becomes collinear unsafe when n > 2. We discuss an alternative definition of the
EEC that allows for any energy weight in section 5.
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formulas through the quenching weight, i.e. no running coupling effects are considered. Thus,
we expect to underestimate the impact of energy-loss. Keeping these caveats in mind, we
observe that once very soft radiation is removed from the semi-classical approximation,
energy loss seems to dominate the observable. In particular, using the EEC to determine the
transition between coherent and decoherent jet evolution in the medium is far more involved
than the naive O(αs) calculation might suggest. We note that the sharp transition at χ ∼ 0.3
is due to the step function form used in Θres; in a more realistic model, this would be smeared
due to varying medium parameters and a more accurate treatment of the phase space, see
e.g. [46] for a different energy loss prescription for the EEC.

4.2 Leading order results for γ → qq̄ splittings

The previous section has clearly shown how different approximations of the in-medium matrix
element can lead to disparate results at the EEC level. The absence of an exact calculation
of the in-medium q → qg probability hampers any attempt to make quantitative statements
utilizing analytic tools. The situation is less pessimistic in the case of a simplified scenario,
namely γ → qq̄, thanks to a recent computation [47]. We use the publicly available numerical
routines introduced in that paper and calculate the EEC with this state-of-the-art input.12

The result is shown in figure 8, which also includes the vacuum case (black), the semi-classical
approximation (blue), and a large-Nc version of the numerical result where only factorizable
terms are kept, as discussed and computed in [47] (red). We note that the numerical
convergence degrades when probing energetic jets and/or dense media. That is why, in this
study, we chose pt = (10, 20, 30, 50)GeV and L = 2 fm. For the same reason, the numerical
error band increases as the jet energy increases. This is observed in the lowermost right panel
when χ > 0.5. Given that the calculations assume the high-energy limit, it would be highly
desirable to improve the numerical stability of the code so as to reach higher-energies.

First, we note that despite the apparent simplicity of the γ → qq̄ channel compared to
the QCD one studied above, medium effects are imprinted in the EEC in a similar fashion,
i.e., vacuum evolution at small angles followed by an enhancement of large-angle splittings.
The small-angle behavior is a natural consequence of Fmed vanishing in this regime. In
addition, the state-of-the-art in-medium result shows a very similar trend to that of the naive
interpolation formula discussed in the previous section. Interestingly, we observe (for the three
largest energies) that the state-of-the-art result (and also the large-Nc curve) predicts first a
depletion at relatively small angles, then a rise in the intermediate regime, and finally another
depletion at large angles. We would like to highlight that the fact that the medium modified
result dips twice under the vacuum line has not been observed before. Improving the numerical
accuracy of the routines in the large-angle regime would help confirm this observation. In
turn, the semi-classical approximation fails to grasp the numerical result qualitatively and
quantitatively. This reinforces the idea that any jet EEC calculation must include an accurate
description of the small/large z regions. We further confirmed this by computing the EEC
with a higher energy suppression power, i.e., n > 1. For the numerical result, we observe that
as n increases, the overall distribution is suppressed, but the shape is not altered.

12We do not include energy loss since it will not be necessary for the discussion and only introduces more
considerable model dependence.
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Figure 8. Results for the leading order γ → qq̄ jet EEC from the state-of-the-art matrix element [47].
Jet energies are ordered from left to right and top to bottom as: pt = 10, 20, 30, 50GeV. We show
the curves for: vacuum (black), the semi-classical approximation (blue), the semi-analytic medium
factor Fmed obtained in the large Nc limit and keeping only factorizable terms without using the
semi-classical approximation detailed in the main text (red, see [47] for details) and the numerical
results (green). We note that the error band shown is computed by comparing the semi-analytical
large Nc result with its full numerical counterpart, following the procedure detailed in [47]. Thus, the
error band is only indicative of the size of discretization effects entering the numerical calculation.

Overall, medium modifications to the splitting function seem to have a small quantitative
impact on the jet EEC for this choice of medium parameters, especially as the jet energy
increases. We explore other values of the jet quenching parameter q̂ = 2, 4, 6, 8GeV2/ fm
at fixed jet energy pt = 20GeV in figure 9. Increasing the density of scattering centers in
the medium naturally leads to a larger enhancement. We want to remark that the medium-
to-vacuum ratio remains within a factor of two, and thus, larger values of q̂ do not change
the qualitative picture just discussed.

Our study indicates the urge to push the accuracy of analytical calculations to assess the
potential of the jet EEC to showcase medium-modifications to the splitting function or, more
generally, the transition between a coherent and decoherent regime in jet evolution.
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Figure 9. Medium-to-vacuum ratio of jet EEC in the γ → qq̄ channel using the state-of-the-art
matrix-element [47] for increasing values of q̂.

4.3 Monte Carlo study with JetMed

To confirm the analytic findings of the previous section, we compute the EEC using a Monte
Carlo approach. The interest of doing so is twofold: (i) it allows to include the effect of jet
energy loss without relying on the quenching weight approximation used in section 3.3, (ii)
some of the vacuum logarithmic corrections are easily accounted for, such as those coming
from the running of the QCD coupling constant. The latter comment also holds for the
resummation of medium-induced emissions in the regime where this effect is relevant, namely
when the energy of the emitted gluons is comparable to the multiple branching scale ωs

introduced in section 3.3.
We shall use the Monte Carlo parton shower JetMed [73, 76] whose phase space for

vacuum-like radiations, as described in section 3.1, is already built-in and accounts for color
coherence effects. In a nutshell, the JetMed parton shower relies on the factorization in time
between vacuum-like radiations and medium-induced emissions in a three-stage approach:
during the first stage, the highly virtual partons produced by the hard scattering are evolved
following a standard angular ordered vacuum-like shower, albeit constrained by the in-medium
conditions k2

t ≥
√
q̂ω and θ > θc. Physically, this first cascade happens at time t = 0 measured

from the hard process; this is formally correct within the double logarithmic approximation
since the in-medium condition implies that tf ≪ L so that all the in-medium vacuum-like
emissions happen very fast as compared to the longitudinal size of the medium. In the second
step, the produced partons are subsequently evolved using an ordering in time from t = 0 up
to t = L with the rate given by the BDMPS-Z rate. These medium-induced emissions also
undergo transverse momentum broadening between successive branchings. Finally, in the
last stage, the outgoing partons are again evolved following an angular ordered vacuum-like
cascade down to the hadronization scale in the out-medium phase-space corresponding to
the conditions tf ≥ L or θ < θc. The angle of the first splitting of the out-medium shower
is not constrained by its parents due to the angular ordering violation effect (anti-angular
ordering) caused by the color decoherence of the parent dipole [105, 106].
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In the in-medium stage, the splitting is assumed to be purely vacuum-like, meaning that
the splitting probability is given by the DGLAP splitting kernel. Hence, the Fmed factor
introduced in eq. (3.5) is not taken into account, albeit in an effective way via the phase
space constraint, which is valid to double logarithmic accuracy. To test the effect of the Fmed
correction, we have modified the MC to include Fmed for the splitting produced inside the
medium. In this way, we treat Fmed as a pure O(αs) correction to the shower instead of
artificially resumming it. The functional form we use for Fmed is given by eq. (3.10) and is
therefore valid only for hard splittings with z > ωc/pt. We emphasize that our purpose is not
to faithfully account for the Fmed correction but instead to quantify the relative importance
of the enhancement seen at large angles in the EEC when using eq. (3.10) with respect to
the effect of softer BDMPS-Z emissions (z ∼ ωs/pt ≪ ωc/pt) and energy loss on the EEC
spectrum. With this in mind, it is sufficient to use a simplified version of the Fmed function,
which is independent of the parton flavor of the emitter, and we will therefore use eq. (3.10)
with χ = ζ = 1. The consequence of this approximation on the q → qg splitting is illustrated
in figure 4 (see the difference between the black and red curves).

To sample the splitting probability for the first emission inside the medium following

αs(k⊥)
π

Pij(z)dz
dθ
θ

[1 + Fmed(z, θ)] , (4.1)

we use the Sudakov veto algorithm with the envelop rate

2CRαs(k⊥)
π

dk⊥
k⊥

dθ
θ

(
1 +

1
240 q̂L

5θ4k2
⊥

1 + 1
420 q̂

3/2L9/2θ3

)
, (4.2)

to generate the next splitting angle θ and transverse momentum k⊥. This envelop rate
accounts for the limiting behavior of Fmed(z, θ) as L/tf goes to 0 or infinity and presents the
advantage of having a cumulative distribution function which is analytically invertible. With
this envelop rate, the subsequent splitting angle θ is generated with transverse momentum k⊥
and is accepted with probability given by the ratio between the targeted splitting probability
and its envelope. Note that since we generate k⊥ and not z, an additional veto is imposed
to ensure longitudinal momentum conservation.

In addition to the vacuum case, in which there is no quenching, we consider three physical
scenarios to gauge the sensitivity of the EEC to a particular ingredient with the possible
medium modifications considered in section 3:

1. a vacuum-like shower where only the first splitting is modified by the 1 + Fmed factor.
This scenario is akin to the analytic calculation in section 3.2 and in [40];

2. the JetMed baseline, which does not include the Fmed correction but accounts for
BDMPS-Z radiations, coherent and incoherent jet energy loss, and angular ordering
violation effects;

3. the JetMed baseline with the first vacuum-like splitting inside the medium sampled
using the 1+Fmed correction. This scenario enables one to compare the relative impact
of the Fmed factor with respect to soft medium-induced emissions and large-angle
energy loss.
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Figure 10. Monte Carlo calculation of the EEC as a function of χ = θ/R for a monochromatic initial
hard spectrum with pt0 = 50GeV (left) and pt0 = 200GeV (right) for several medium-modified jet
evolution as discussed in the main text.

In figure 10, we show the EEC distribution in jets triggered by a quark with a fixed
initial pt0 = 50GeV (left plot) and pt0 = 200GeV (right plot) in the vacuum and the medium
for the three physical set-ups. Since the kinematic of the parton sourcing the jet is fixed and
no initial hard spectrum is included, the jet selection has no effect, and the plot compares the
EEC of the same jet population. In particular, the energy loss effect analytically implemented
in section 3.3 is not present in this calculation. This allows us to understand the impact
on the EEC of intrinsic modifications of the jet shower in the medium. Another important
point is that JetMed does not account for hadronization. Therefore, the curves’ turnover is
due to the shower cutoff and not confinement dynamics [37]. One first notices that the Fmed
factor computed in the semi-hard approximation is responsible for the bump observed at
large χ. This bump is considerably reduced when removing the Fmed factor and considering
only BDMPS-Z emissions, in agreement with the analytic findings of the toy model discussed
towards the end of section 3.2. The main message of this plot is that without the enhancement
introduced by Fmed at large angles, the intrinsic modification of the jet evolution in the
medium caused by the phase space modifications and BDMPS-Z-like emissions leave almost
no imprint on EEC distribution. As previously discussed, the effect of Fmed is expected
to be overestimated since the semi-hard approximation is invalid in the kinematic regime
where the enhancement appears.

We turn now to the calculation of EEC, including a more realistic hard scattering
spectrum (generated using LO 2 → 2 matrix elements for dijet production in pp collisions
at the LHC with

√
s = 5.02TeV) and jet selection. Introducing a jet selection on pt enables

one to characterize the dependence of EECs on the energy loss effect. We expect this Monte
Carlo calculation to qualitatively reproduce the analytic results obtained in section 3.3 with
the quenching weight method. Figure 11 shows that this is indeed the case, as one observes a
suppression at large angles and an enhancement at small angles from the vacuum (solid red)
to the medium (solid curve) calculation. This is a combined consequence of energy loss and
jet selection since the population of jets included in the analysis differs in the vacuum and
the medium. Jets selected in the medium are sourced by initial hard partons with a larger
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Figure 11. Monte Carlo calculation of the EEC as a function of χ = θ/R in dijet events at the LHC.
Selected jets have pt > 50GeV (left) or pt > 200GeV (right) and absolute value of rapidity |y| < 2.1.

pt0 resulting in EECs which are larger at small angles and smaller at large angles, as noticed
by comparing the solid red curves between the left and right plots of figure 10. After adding
the modification of the first splitting in the medium in the semi-hard approximation via the
Fmed factor (dashed blue line), one observes a slight enhancement at large angles. There
are two competing effects: energy loss at large angles via medium-induced emissions and
modifications of the first splitting inside the medium, which respectively cause a suppression
or an enhancement at large angles in the distribution. Given that the functional form of
Fmed implemented in the Monte Carlo should be considered as an upper limit of a more
realistic value, one can safely conjecture that the dominant effect among these two competing
mechanisms will be the energy loss.

Finally, we also present JetMed results (without the additional Fmed factor) for an ideal
longitudinal Bjorken expansion of the plasma — such that q̂(t) = q̂0t/t0 — and compare
this scenario to the static “brick” case. The parameters of the medium (q̂0 ≡ q̂(t0), t0, L
and αs,med) are fixed to reproduce the jet RAA as in [72]. The results are shown in figure 12.
We observe the same features, in particular a similar suppression at large angles caused
by jet energy loss. This is to be expected since the two sets of medium parameters in the
Bjorken and static cases are scaled such that they give a similar RAA (which is controlled by
jet energy loss). Deviations between the Bjorken expansion and static scenarios are larger
around the angular scale χ ∼ θc/R due to the violation of this scaling behaviour by relatively
hard medium-induced emissions which remain inside the jet, with a typical angle of order θc.

5 Lund-based definition of the EEC

Throughout this paper, we have studied the canonical definition of the EEC in which
the energy weight is set to 1, i.e., n = 1 in eq. (1.2). In a heavy-ion context, higher
values of n might be helpful to, for example, mitigate the overwhelming underlying event.
However, setting n > 1 leads to a collinear unsafe observable. For n = 2, it has been shown
that these divergences can be absorbed into moments of non-perturbative objects such as
fragmentation/track functions in proton-proton collisions [51, 107]. Extending this approach
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Figure 12. Comparison of JetMed results for the EEC in a static and Bjorken expanding medium
for jets with pt > 50GeV (left) and pt > 200GeV (right). In the static case, we use q̂ = 1.5GeV2/fm
and αs,med = 0.24, while in the Bjorken expanding case, we use q̂0 = 20.5GeV2/fm, t0 = 0.125 fm and
αs,med=0.23.

to heavy-ion collisions is a challenging task for multiple reasons, the main one being the
multi-scale nature of the problem [75].13 It would be ideal to minimally modify the definition
of the EEC such that higher powers of the energy weight can be accommodated without
sacrificing perturbative calculability.

We do so in the Lund family of observables context [50] and denote this alternative defi-
nition as Lund-based EEC or LEEC. The algorithmic procedure to calculate the Lund-based
definition of the energy-energy correlator goes as follows. The starting point is to recluster a
given jet (typically defined with the anti-kt algorithm [108]) with Cambridge/Aachen [109, 110]
to obtain an angular-ordered sequence. Then, we follow the traditional recipe in Lund-based
observables:

• Undo the last-clustering step to generate two subjets, j1 and j2.

• Calculate their relative kt defined as kt = min(x1, x2)∆R12, where the concrete defi-
nitions of x (an energy-like variable) and ∆R12 (an angular-like variable) depend on
the collision system. For e+e−, xi = Ei and ∆ = θij , while in pp in xi = pti and
∆Rij =

√
(yi − yj)2 + (ϕi − ϕj)2.

• Only when kt > kt,cut, record the softest branch, so-called primary Lund declustering.

• Repeat from step 1 following only the hardest subjet, i.e., the primary branch.

• Once there is nothing left to decluster, calculate the EEC as

dΣ(n)

dχ = 1
σ

∑
{i,j}∈declust.

∫ 1

0
dz dσ

dθijdz z
n(1− z)nδ

(
χ− θij

R

)
Θ(kt > kt,cut) , (5.1)

where the sum runs over all primary Lund declusterings.
13Appendix B of ref. [40] showed results for the jet EEC with n = 2 neglecting non-perturbative ingredients.
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Figure 13. Lund-based EEC for several values of the energy weighting parameter n in proton-proton
collisions for two jet pt selections: pt > 50GeV (left) and pt > 200GeV (right). Note that for n = 1
the particle level result is indicated by a black, dashed line.

The main advantage of using subjets is that eq. (5.1) remains collinear safe for any value of
n, provided kt,cut > 0. In the following exploratory study, we will present some of its properties
using Monte Carlo simulations. The logarithmic resummation of this new observable together
with its non-perturbative structure will be the subject of a separate publication [111].

In figure 13, we present results for the Lund EEC with kt,cut = 0.25GeV, in proton-proton
collisions using the JetMed samples from the previous section. For n = 1 we plot both the
particle level (i.e., the traditional EEC) and the Lund EEC. We observe very small differences
between the two cases in the perturbative sector of the observable. In the non-perturbative
part, i.e. smaller χ, the Lund based EEC is more suppressed. When increasing n, we
only show results for the Lund version. The overall suppression is naturally explained as a
reduction in the contribution of each pair of subjets to the observable due to the energy-weight
penalty. Interestingly, the slope of the EEC at large angles becomes steeper with increasing
n. This might be related to different anomalous dimensions entering into the logarithmic
structure although no direct link can be made from the parton shower result unless taking
the appropriate limits, as introduced in ref. [112]. Regarding the pt-dependence, we observe
the expected overall shift to smaller angles of the full distribution and quantitatively small
differences between the Lund approach and the standard definition for n = 1.

The impact of medium corrections to the Lund EEC (with kt,cut = 0.25GeV) is explored
in figure 14. The left panel does not include Fmed, while the right one does. In both cases,
energy loss is part of the simulation. As in vacuum, the Lund-based result for n = 1 is almost
identical to the standard definition of the EEC in the perturbative sector, while deviations
occur at smaller angles, as expected. Larger values of n reveal a larger medium-to-vacuum
ratio in the entire angular range with or without Fmed. To explain this behavior, let us
first focus on the case where Fmed is switched off, and the Lund EEC exhibits an apparent
narrowing. The net effect of increasing n is to reduce the number of pairs that give a sizeable
contribution to the EEC, i.e., it should become dominated by a handful of hard subjet pairs
the larger n is. In other words, the EEC resembles a SoftDrop-like [1] observable such as θg.
We note that the pronounced narrowing of the n = 4 EEC result is quantitatively similar to

– 27 –



J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

10−2 10−1 100

χ

0.5

1.0

1.5

2.0

2.5

3.0
M

ed
iu

m
(n

o
F

m
ed

)/
V

ac
u

u
m

JetMed, anti-kt(R = 0.4), pt,jet > 50 GeV, |y| < 2.1
q̂ = 1.5 GeV2/fm, L = 4 fm, αs,med = 0.24

Lund EEC, w/ E-loss

n = 1

Particle level

n = 2

n = 4

10−2 10−1 100

χ

0.5

1.0

1.5

2.0

2.5

3.0

M
ed

iu
m

(w
/

F
m

ed
)/

V
ac

u
u

m

JetMed, anti-kt(R = 0.4), pt,jet > 50 GeV, |y| < 2.1
q̂ = 1.5 GeV2/fm, L = 4 fm, αs,med = 0.24

Lund EEC, w/ E-loss

n = 1

Particle level

n = 2

n = 4

Figure 14. Medium-to-vacuum ratio of the Lund-based EEC for several values of the energy weighting
parameter n with (right) or without (left) Fmed correction to the first splitting.

that of θg [72, 91, 113]. It would be interesting to simultaneously calculate/measure these
two observables and understand whether they share the same transition point. Including
Fmed compensates for this narrowing and leads to the characteristic enhancement around
the jet boundary, as observed in the right panel of figure 14.

6 Conclusions

The study of parton shower evolution and hadronization in terms of energy-energy correlators
has gained momentum in the last couple of years, theoretically and experimentally. While
high-precision calculations exist for the vacuum baseline [31, 114], much less is known about
the formal accuracy of EEC calculations in the heavy-ion context. In this work, we have
provided a detailed study of the EEC in a dense QCD background, both with logarithmic
resummation tools and Monte Carlo simulations. In summary, our results demonstrate that
certain theoretical approximations to the in-medium matrix element previously employed
in the literature are insufficient to grasp the dynamics of this observable fully and can
lead to a significant overestimate of medium modifications. We also study how the leading-
order description of the EEC is modified by other well-known jet-quenching effects, such
as energy loss.

On the analytic front, we have revisited the LL resummation of the jet EEC following
a diagrammatic approach that, in our view, is more flexible than other approaches when it
comes to including medium effects. We hope this will allow for higher-order calculations
taking into account medium effects; we leave related efforts to future work. Another key result
of this work is the first leading order EEC calculation in the medium for the γ → qq̄ channel
that is valid for arbitrary energy-sharing fractions and includes subleading colour corrections.
These state-of-the-art results confirm that commonly used semi-analytic approximations vastly
overestimate the medium enhancement. We hope this result will trigger new developments in
the computation of the q → qg in-medium matrix element with a similar level of accuracy.

Monte Carlo simulations of the EEC further support these conclusions. Our calculation
includes part of the NLL resummation in vacuum (such as running coupling corrections),
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energy loss via medium-induced emissions, and medium modification of the first in-medium
splitting. We find that the dominant effect is caused by energy loss, which suppresses the
medium distribution at large angles and increases it at small angles (with the transition
occurring around θc). Even when overestimating the medium modification to the first in-
medium semi-hard splitting, we observe that the energy loss effect can overwhelm the large
angle enhancement. Further steps to improve our Monte Carlo calculation include (i) to have
an NLL accurate parton shower (see [112, 115–117]) for the vacuum-like evolution, (ii) to
perform a proper matching using the state-of-the-art Fmed factor at the level of the short
distance cross-section, to have control over the O(αs) 1 → 2 in-medium matrix element
within a parton shower approach,and (iii) to include a realistic hydrodynamic evolution
of the medium.

Finally, we argue that the energy weight in the EEC definition can be used as a knob
to amplify medium effects. To not spoil collinear safety, we introduce an extension of the
standard jet EEC definition, in which the building blocks are primary Lund declusterings
instead of individual particles. We anticipate that this gain in terms of sensitivity to medium
effects might come at the price of a more complex all-order structure. Nevertheless, the
resummation of this new observable at NLL accuracy can be achieved numerically within the
PanScales framework and will be presented in a separate publication.

Acknowledgments

The Feynman diagrams in this work were produced using the JaxoDraw software [118]. JB
and RS are supported by the United States Department of Energy under Grant Contract
DESC0012704. We express our heartfelt gratitude to Pier Monni for insightful discussions
and collaboration on related topics. We are grateful to the authors of ref. [39] for a careful
reading of the manuscript and helpful suggestions. We thank Laura Havener, Peter Jacobs,
Mateusz Ploskon, and Wenqing Fan for discussions on the experimental measurement of
the EEC in heavy ions. We are thankful to Yacine Mehtar-Tani, Guilherme Milhano, and
Xin-Nian Wang for many helpful discussions. JB is also grateful to Ian Moult and Andrey
Sadofyev for useful parallel discussions, and Swagato Mukherjee for sharing interesting related
ideas. PC would like to thank Feng Yuan for his hospitality at LBNL during the completion
of this project. JB would like to thank the hospitality of the CERN TH division during
the completion of this project.

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has no associated code or the code will not
be deposited.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

– 29 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

References

[1] A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146
[arXiv:1402.2657] [INSPIRE].

[2] CMS collaboration, Measurement of the Splitting Function in pp and Pb-Pb Collisions at√
sNN = 5.02TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].

[3] Y.-T. Chien and I. Vitev, Probing the Hardest Branching within Jets in Heavy-Ion Collisions,
Phys. Rev. Lett. 119 (2017) 112301 [arXiv:1608.07283] [INSPIRE].

[4] Y. Mehtar-Tani and K. Tywoniuk, Groomed jets in heavy-ion collisions: sensitivity to
medium-induced bremsstrahlung, JHEP 04 (2017) 125 [arXiv:1610.08930] [INSPIRE].

[5] ALICE collaboration, Direct observation of the dead-cone effect in quantum chromodynamics,
Nature 605 (2022) 440 [Erratum ibid. 607 (2022) E22] [arXiv:2106.05713] [INSPIRE].

[6] ALICE collaboration, Measurements of the groomed jet radius and momentum splitting fraction
with the soft drop and dynamical grooming algorithms in pp collisions at

√
s = 5.02TeV, JHEP

05 (2023) 244 [arXiv:2204.10246] [INSPIRE].

[7] STAR collaboration, Measurement of CollinearDrop jet mass and its correlation with SoftDrop
groomed jet substructure observables in

√
s = 200GeV pp collisions by STAR,

arXiv:2307.07718 [INSPIRE].

[8] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron
Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys.
Rev. D 19 (1979) 2018 [INSPIRE].

[9] R. Cruz-Torres, Measurement of the angle between jet axes and energy-energy correlators with
ALICE, in the proceedings of the 11th International Conference on Hard and Electromagnetic
Probes of High-Energy Nuclear Collisions, Aschaffenburg, Germany (2023),
https://indico.uni-muenster.de/event/1409/contributions/2081/.

[10] A. Tamis, Measurement of Two-Point Energy Correlators Within Jets in pp Collisions at√
s = 200GeV at STAR, arXiv:2309.05761.

[11] N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996)
403 [hep-ph/9512370] [INSPIRE].

[12] F.V. Tkachov, Measuring multi-jet structure of hadronic energy flow or What is a jet?, Int. J.
Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].

[13] G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl.
Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].

[14] C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e+e− Event Shape
Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78
(2008) 034027 [arXiv:0801.4569] [INSPIRE].

[15] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations,
JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

[16] A.V. Belitsky et al., From correlation functions to event shapes, Nucl. Phys. B 884 (2014) 305
[arXiv:1309.0769] [INSPIRE].

[17] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11
(2018) 102 [arXiv:1805.00098] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.48550/arXiv.1402.2657
https://inspirehep.net/literature/1281068
https://doi.org/10.1103/PhysRevLett.120.142302
https://doi.org/10.48550/arXiv.1708.09429
https://inspirehep.net/literature/1620905
https://doi.org/10.1103/PhysRevLett.119.112301
https://doi.org/10.48550/arXiv.1608.07283
https://inspirehep.net/literature/1484157
https://doi.org/10.1007/JHEP04(2017)125
https://doi.org/10.48550/arXiv.1610.08930
https://inspirehep.net/literature/1494840
https://doi.org/10.1038/s41586-022-04572-w
https://doi.org/10.48550/arXiv.2106.05713
https://inspirehep.net/literature/1867966
https://doi.org/10.1007/JHEP05(2023)244
https://doi.org/10.1007/JHEP05(2023)244
https://doi.org/10.48550/arXiv.2204.10246
https://inspirehep.net/literature/2070421
https://doi.org/10.48550/arXiv.2307.07718
https://inspirehep.net/literature/2677589
https://doi.org/10.1103/PhysRevD.19.2018
https://doi.org/10.1103/PhysRevD.19.2018
https://inspirehep.net/literature/131996
https://indico.uni-muenster.de/event/1409/contributions/2081/
https://doi.org/10.48550/arXiv.2309.05761
https://doi.org/10.1016/0370-2693(96)00558-8
https://doi.org/10.1016/0370-2693(96)00558-8
https://doi.org/10.48550/arXiv.hep-ph/9512370
https://inspirehep.net/literature/403859
https://doi.org/10.1142/S0217751X97002899
https://doi.org/10.1142/S0217751X97002899
https://doi.org/10.48550/arXiv.hep-ph/9601308
https://inspirehep.net/literature/404516
https://doi.org/10.1016/S0550-3213(99)00308-9
https://doi.org/10.1016/S0550-3213(99)00308-9
https://doi.org/10.48550/arXiv.hep-ph/9902341
https://inspirehep.net/literature/495322
https://doi.org/10.1103/PhysRevD.78.034027
https://doi.org/10.1103/PhysRevD.78.034027
https://doi.org/10.48550/arXiv.0801.4569
https://inspirehep.net/literature/778415
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.48550/arXiv.0803.1467
https://inspirehep.net/literature/781040
https://doi.org/10.1016/j.nuclphysb.2014.04.020
https://doi.org/10.48550/arXiv.1309.0769
https://inspirehep.net/literature/1252573
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.48550/arXiv.1805.00098
https://inspirehep.net/literature/1670938


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

[18] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Electron-Positron Annihilation Energy
Pattern in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D
17 (1978) 2298 [INSPIRE].

[19] C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in Perturbative
Quantum Chromodynamics: A Conjecture for All Orders, Phys. Lett. B 85 (1979) 297
[INSPIRE].

[20] OPAL collaboration, A Measurement of energy correlations and a determination of
αs(M2

Z0)e+e− annihilations at
√
s = 91GeV, Phys. Lett. B 252 (1990) 159 [INSPIRE].

[21] DELPHI collaboration, Energy-energy correlations in hadronic final states from Z0 decays,
Phys. Lett. B 252 (1990) 149 [INSPIRE].

[22] SLD collaboration, Measurement of αs(M2
Z) from hadronic event observables at the Z0

resonance, Phys. Rev. D 51 (1995) 962 [hep-ex/9501003] [INSPIRE].

[23] D. de Florian and M. Grazzini, The Back-to-back region in e+e− energy-energy correlation,
Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].

[24] Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy energy
correlation, JHEP 07 (1999) 012 [hep-ph/9905339] [INSPIRE].

[25] M.A. Ebert, B. Mistlberger and G. Vita, The Energy-Energy Correlation in the back-to-back
limit at N3LO and N3LL’, JHEP 08 (2021) 022 [arXiv:2012.07859] [INSPIRE].

[26] Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron
annihilation at NNLL + NNLO accuracy, Eur. Phys. J. C 77 (2017) 749 [arXiv:1708.04093]
[INSPIRE].

[27] V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in
electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].

[28] L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys. Rev.
D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].

[29] A. Kardos et al., Precise determination of αS(MZ) from a global fit of energy-energy correlation
to NNLO+NNLL predictions, Eur. Phys. J. C 78 (2018) 498 [arXiv:1804.09146] [INSPIRE].

[30] K. Lee, B. Meçaj and I. Moult, Conformal Colliders Meet the LHC, arXiv:2205.03414
[INSPIRE].

[31] W. Chen et al., NNLL resummation for projected three-point energy correlator, JHEP 05 (2024)
043 [arXiv:2307.07510] [INSPIRE].

[32] A.V. Belitsky et al., Energy-Energy Correlations in N = 4 Supersymmetric Yang-Mills Theory,
Phys. Rev. Lett. 112 (2014) 071601 [arXiv:1311.6800] [INSPIRE].

[33] A.V. Belitsky et al., Event shapes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 884 (2014)
206 [arXiv:1309.1424] [INSPIRE].

[34] J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlation in N = 4 super
Yang-Mills theory at next-to-next-to-leading order, Phys. Rev. D 100 (2019) 036010
[arXiv:1903.05314] [INSPIRE].

[35] J. Holguin, I. Moult, A. Pathak and M. Procura, New paradigm for precision top physics:
Weighing the top with energy correlators, Phys. Rev. D 107 (2023) 114002 [arXiv:2201.08393]
[INSPIRE].

[36] H.-Y. Liu et al., Nucleon Energy Correlators for the Color Glass Condensate, Phys. Rev. Lett.
130 (2023) 181901 [arXiv:2301.01788] [INSPIRE].

– 31 –

https://doi.org/10.1103/PhysRevD.17.2298
https://doi.org/10.1103/PhysRevD.17.2298
https://inspirehep.net/literature/122089
https://doi.org/10.1016/0370-2693(79)90601-4
https://inspirehep.net/literature/140636
https://doi.org/10.1016/0370-2693(90)91098-V
https://inspirehep.net/literature/298707
https://doi.org/10.1016/0370-2693(90)91097-U
https://inspirehep.net/literature/300161
https://doi.org/10.1103/PhysRevD.51.962
https://doi.org/10.48550/arXiv.hep-ex/9501003
https://inspirehep.net/literature/378545
https://doi.org/10.1016/j.nuclphysb.2004.10.051
https://doi.org/10.48550/arXiv.hep-ph/0407241
https://inspirehep.net/literature/654927
https://doi.org/10.1088/1126-6708/1999/07/012
https://doi.org/10.48550/arXiv.hep-ph/9905339
https://inspirehep.net/literature/499946
https://doi.org/10.1007/JHEP08(2021)022
https://doi.org/10.48550/arXiv.2012.07859
https://inspirehep.net/literature/1836788
https://doi.org/10.1140/epjc/s10052-017-5320-9
https://doi.org/10.48550/arXiv.1708.04093
https://inspirehep.net/literature/1615886
https://doi.org/10.1103/PhysRevD.94.074019
https://doi.org/10.48550/arXiv.1606.03453
https://inspirehep.net/literature/1469080
https://doi.org/10.1103/PhysRevD.100.014009
https://doi.org/10.1103/PhysRevD.100.014009
https://doi.org/10.48550/arXiv.1905.01310
https://inspirehep.net/literature/1733236
https://doi.org/10.1140/epjc/s10052-018-5963-1
https://doi.org/10.48550/arXiv.1804.09146
https://inspirehep.net/literature/1669846
https://doi.org/10.48550/arXiv.2205.03414
https://inspirehep.net/literature/2078551
https://doi.org/10.1007/JHEP05(2024)043
https://doi.org/10.1007/JHEP05(2024)043
https://doi.org/10.48550/arXiv.2307.07510
https://inspirehep.net/literature/2677324
https://doi.org/10.1103/PhysRevLett.112.071601
https://doi.org/10.48550/arXiv.1311.6800
https://inspirehep.net/literature/1266292
https://doi.org/10.1016/j.nuclphysb.2014.04.019
https://doi.org/10.1016/j.nuclphysb.2014.04.019
https://doi.org/10.48550/arXiv.1309.1424
https://inspirehep.net/literature/1252863
https://doi.org/10.1103/PhysRevD.100.036010
https://doi.org/10.48550/arXiv.1903.05314
https://inspirehep.net/literature/1724848
https://doi.org/10.1103/PhysRevD.107.114002
https://doi.org/10.48550/arXiv.2201.08393
https://inspirehep.net/literature/2015392
https://doi.org/10.1103/PhysRevLett.130.181901
https://doi.org/10.1103/PhysRevLett.130.181901
https://doi.org/10.48550/arXiv.2301.01788
https://inspirehep.net/literature/2620630


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

[37] P.T. Komiske, I. Moult, J. Thaler and H.X. Zhu, Analyzing N-Point Energy Correlators inside
Jets with CMS Open Data, Phys. Rev. Lett. 130 (2023) 051901 [arXiv:2201.07800] [INSPIRE].

[38] CMS collaboration, Measurement of energy correlators inside jets and determination of the
strong coupling constant, CMS-PAS-SMP-22-015 (2023).

[39] C. Andres et al., Resolving the Scales of the Quark-Gluon Plasma with Energy Correlators,
Phys. Rev. Lett. 130 (2023) 262301 [arXiv:2209.11236] [INSPIRE].

[40] C. Andres et al., A coherent view of the quark-gluon plasma from energy correlators, JHEP 09
(2023) 088 [arXiv:2303.03413] [INSPIRE].

[41] J. Barata, J.G. Milhano and A.V. Sadofyev, Picturing QCD jets in anisotropic matter: from jet
shapes to energy energy correlators, Eur. Phys. J. C 84 (2024) 174 [arXiv:2308.01294]
[INSPIRE].

[42] C. Andres et al., Seeing beauty in the quark-gluon plasma with energy correlators, Phys. Rev. D
110 (2024) L031503 [arXiv:2307.15110] [INSPIRE].

[43] Z. Yang, Y. He, I. Moult and X.-N. Wang, Probing the Short-Distance Structure of the
Quark-Gluon Plasma with Energy Correlators, Phys. Rev. Lett. 132 (2024) 011901
[arXiv:2310.01500] [INSPIRE].

[44] F. Domínguez et al., Mapping collinear in-medium parton splittings, Eur. Phys. J. C 80 (2020)
11 [arXiv:1907.03653] [INSPIRE].

[45] X.-N. Wang and X.-F. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl.
Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].

[46] J. Barata and Y. Mehtar-Tani, Energy loss effects in EECs at LO, PoS HardProbes2023
(2024) 145 [arXiv:2307.08943] [INSPIRE].

[47] J.H. Isaksen and K. Tywoniuk, Precise description of medium-induced emissions, JHEP 09
(2023) 049 [arXiv:2303.12119] [INSPIRE].

[48] R. Baier et al., Radiative energy loss of high-energy quarks and gluons in a finite volume
quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

[49] B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED
and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

[50] F.A. Dreyer, G.P. Salam and G. Soyez, The Lund Jet Plane, JHEP 12 (2018) 064
[arXiv:1807.04758] [INSPIRE].

[51] H. Chen, I. Moult, X.Y. Zhang and H.X. Zhu, Rethinking jets with energy correlators: Tracks,
resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012 [arXiv:2004.11381]
[INSPIRE].

[52] H. Chen, I. Moult and H.X. Zhu, Spinning gluons from the QCD light-ray OPE, JHEP 08
(2022) 233 [arXiv:2104.00009] [INSPIRE].

[53] H. Chen, QCD factorization from light-ray OPE, JHEP 01 (2024) 035 [arXiv:2311.00350]
[INSPIRE].

[54] K. Konishi, A. Ukawa and G. Veneziano, Jet Calculus: A Simple Algorithm for Resolving QCD
Jets, Nucl. Phys. B 157 (1979) 45 [INSPIRE].

[55] D.G. Richards, W.J. Stirling and S.D. Ellis, Second Order Corrections to the Energy-energy
Correlation Function in Quantum Chromodynamics, Phys. Lett. B 119 (1982) 193 [INSPIRE].

– 32 –

https://doi.org/10.1103/PhysRevLett.130.051901
https://doi.org/10.48550/arXiv.2201.07800
https://inspirehep.net/literature/2014077
http://cds.cern.ch/record/2866560?ln=en
https://doi.org/10.1103/PhysRevLett.130.262301
https://doi.org/10.48550/arXiv.2209.11236
https://inspirehep.net/literature/2155764
https://doi.org/10.1007/JHEP09(2023)088
https://doi.org/10.1007/JHEP09(2023)088
https://doi.org/10.48550/arXiv.2303.03413
https://inspirehep.net/literature/2638993
https://doi.org/10.1140/epjc/s10052-024-12514-1
https://doi.org/10.48550/arXiv.2308.01294
https://inspirehep.net/literature/2684595
https://doi.org/10.1103/PhysRevD.110.L031503
https://doi.org/10.1103/PhysRevD.110.L031503
https://doi.org/10.48550/arXiv.2307.15110
https://inspirehep.net/literature/2683153
https://doi.org/10.1103/PhysRevLett.132.011901
https://doi.org/10.48550/arXiv.2310.01500
https://inspirehep.net/literature/2705371
https://doi.org/10.1140/epjc/s10052-019-7563-0
https://doi.org/10.1140/epjc/s10052-019-7563-0
https://doi.org/10.48550/arXiv.1907.03653
https://inspirehep.net/literature/1742781
https://doi.org/10.1016/S0375-9474(01)01130-7
https://doi.org/10.1016/S0375-9474(01)01130-7
https://doi.org/10.48550/arXiv.hep-ph/0102230
https://inspirehep.net/literature/553250
https://doi.org/10.22323/1.438.0145
https://doi.org/10.22323/1.438.0145
https://doi.org/10.48550/arXiv.2307.08943
https://inspirehep.net/literature/2678171
https://doi.org/10.1007/JHEP09(2023)049
https://doi.org/10.1007/JHEP09(2023)049
https://doi.org/10.48550/arXiv.2303.12119
https://inspirehep.net/literature/2644893
https://doi.org/10.1016/S0550-3213(96)00553-6
https://doi.org/10.48550/arXiv.hep-ph/9607355
https://inspirehep.net/literature/420877
https://doi.org/10.1134/1.567126
https://doi.org/10.48550/arXiv.hep-ph/9607440
https://inspirehep.net/literature/421287
https://doi.org/10.1007/JHEP12(2018)064
https://doi.org/10.48550/arXiv.1807.04758
https://inspirehep.net/literature/1682306
https://doi.org/10.1103/PhysRevD.102.054012
https://doi.org/10.48550/arXiv.2004.11381
https://inspirehep.net/literature/1792757
https://doi.org/10.1007/JHEP08(2022)233
https://doi.org/10.1007/JHEP08(2022)233
https://doi.org/10.48550/arXiv.2104.00009
https://inspirehep.net/literature/1854952
https://doi.org/10.1007/JHEP01(2024)035
https://doi.org/10.48550/arXiv.2311.00350
https://inspirehep.net/literature/2716267
https://doi.org/10.1016/0550-3213(79)90053-1
https://inspirehep.net/literature/140299
https://doi.org/10.1016/0370-2693(82)90275-1
https://inspirehep.net/literature/12525


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

[56] S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet
substructure and boosted-object phenomenology, Lect. Notes Phys. 958 (2019) 1 [INSPIRE].

[57] V. Vaidya, Effective Field Theory for jet substructure in heavy ion collisions, JHEP 11 (2021)
064 [arXiv:2010.00028] [INSPIRE].

[58] G. Ovanesyan and I. Vitev, An effective theory for jet propagation in dense QCD matter: jet
broadening and medium-induced bremsstrahlung, JHEP 06 (2011) 080 [arXiv:1103.1074]
[INSPIRE].

[59] Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J.
Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].

[60] J.P. Blaizot and Y. Mehtar-Tani, Jet Structure in Heavy Ion Collisions, Int. J. Mod. Phys. E
24 (2015) 1530012 [arXiv:1503.05958] [INSPIRE].

[61] Y. He, L.-G. Pang and X.-N. Wang, Gradient Tomography of Jet Quenching in Heavy-Ion
Collisions, Phys. Rev. Lett. 125 (2020) 122301 [arXiv:2001.08273] [INSPIRE].

[62] A.V. Sadofyev, M.D. Sievert and I. Vitev, Ab initio coupling of jets to collective flow in the
opacity expansion approach, Phys. Rev. D 104 (2021) 094044 [arXiv:2104.09513] [INSPIRE].

[63] L. Antiporda, J. Bahder, H. Rahman and M.D. Sievert, Jet drift and collective flow in
heavy-ion collisions, Phys. Rev. D 105 (2022) 054025 [arXiv:2110.03590] [INSPIRE].

[64] S. Hauksson, S. Jeon and C. Gale, Momentum broadening of energetic partons in an anisotropic
plasma, Phys. Rev. C 105 (2022) 014914 [arXiv:2109.04575] [INSPIRE].

[65] Y. Fu, J. Casalderrey-Solana and X.-N. Wang, Asymmetric transverse momentum broadening in
an inhomogeneous medium, Phys. Rev. D 107 (2023) 054038 [arXiv:2204.05323] [INSPIRE].

[66] J. Barata, A.V. Sadofyev and X.-N. Wang, Quantum partonic transport in QCD matter, Phys.
Rev. D 107 (2023) L051503 [arXiv:2210.06519] [INSPIRE].

[67] S. Hauksson and E. Iancu, Jet polarisation in an anisotropic medium, JHEP 08 (2023) 027
[arXiv:2303.03914] [INSPIRE].

[68] K. Boguslavski et al., Jet momentum broadening during initial stages in heavy-ion collisions,
Phys. Lett. B 850 (2024) 138525 [arXiv:2303.12595] [INSPIRE].

[69] J. Barata, X. Mayo López, A.V. Sadofyev and C.A. Salgado, Medium induced gluon spectrum in
dense inhomogeneous matter, Phys. Rev. D 108 (2023) 034018 [arXiv:2304.03712] [INSPIRE].

[70] M.V. Kuzmin, X. Mayo López, J. Reiten and A.V. Sadofyev, Jet quenching in anisotropic
flowing matter, Phys. Rev. D 109 (2024) 014036 [arXiv:2309.00683] [INSPIRE].

[71] S.P. Adhya, C.A. Salgado, M. Spousta and K. Tywoniuk, Multi-partonic medium induced
cascades in expanding media, Eur. Phys. J. C 82 (2022) 20 [arXiv:2106.02592] [INSPIRE].

[72] P. Caucal, E. Iancu and G. Soyez, Jet radiation in a longitudinally expanding medium, JHEP
04 (2021) 209 [arXiv:2012.01457] [INSPIRE].

[73] P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense
QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].

[74] Y. Mehtar-Tani and K. Tywoniuk, Sudakov suppression of jets in QCD media, Phys. Rev. D 98
(2018) 051501 [arXiv:1707.07361] [INSPIRE].

[75] J. Barata and R. Szafron, Leading order track functions in a hot and dense QGP, Phys. Rev. D
110 (2024) L031501 [arXiv:2401.04164] [INSPIRE].

– 33 –

https://doi.org/10.1007/978-3-030-15709-8
https://inspirehep.net/literature/1717499
https://doi.org/10.1007/JHEP11(2021)064
https://doi.org/10.1007/JHEP11(2021)064
https://doi.org/10.48550/arXiv.2010.00028
https://inspirehep.net/literature/1820599
https://doi.org/10.1007/JHEP06(2011)080
https://doi.org/10.48550/arXiv.1103.1074
https://inspirehep.net/literature/891633
https://doi.org/10.1142/S0217751X13400137
https://doi.org/10.1142/S0217751X13400137
https://doi.org/10.48550/arXiv.1302.2579
https://inspirehep.net/literature/1218394
https://doi.org/10.1142/S021830131530012X
https://doi.org/10.1142/S021830131530012X
https://doi.org/10.48550/arXiv.1503.05958
https://inspirehep.net/literature/1353675
https://doi.org/10.1103/PhysRevLett.125.122301
https://doi.org/10.48550/arXiv.2001.08273
https://inspirehep.net/literature/1776973
https://doi.org/10.1103/PhysRevD.104.094044
https://doi.org/10.48550/arXiv.2104.09513
https://inspirehep.net/literature/1859289
https://doi.org/10.1103/PhysRevD.105.054025
https://doi.org/10.48550/arXiv.2110.03590
https://inspirehep.net/literature/1939969
https://doi.org/10.1103/PhysRevC.105.014914
https://doi.org/10.48550/arXiv.2109.04575
https://inspirehep.net/literature/1919732
https://doi.org/10.1103/PhysRevD.107.054038
https://doi.org/10.48550/arXiv.2204.05323
https://inspirehep.net/literature/2065927
https://doi.org/10.1103/PhysRevD.107.L051503
https://doi.org/10.1103/PhysRevD.107.L051503
https://doi.org/10.48550/arXiv.2210.06519
https://inspirehep.net/literature/2165146
https://doi.org/10.1007/JHEP08(2023)027
https://doi.org/10.48550/arXiv.2303.03914
https://inspirehep.net/literature/2639008
https://doi.org/10.1016/j.physletb.2024.138525
https://doi.org/10.48550/arXiv.2303.12595
https://inspirehep.net/literature/2644905
https://doi.org/10.1103/PhysRevD.108.034018
https://doi.org/10.48550/arXiv.2304.03712
https://inspirehep.net/literature/2650004
https://doi.org/10.1103/PhysRevD.109.014036
https://doi.org/10.48550/arXiv.2309.00683
https://inspirehep.net/literature/2693464
https://doi.org/10.1140/epjc/s10052-021-09950-8
https://doi.org/10.48550/arXiv.2106.02592
https://inspirehep.net/literature/1867144
https://doi.org/10.1007/JHEP04(2021)209
https://doi.org/10.1007/JHEP04(2021)209
https://doi.org/10.48550/arXiv.2012.01457
https://inspirehep.net/literature/1834616
https://doi.org/10.1103/PhysRevLett.120.232001
https://doi.org/10.48550/arXiv.1801.09703
https://inspirehep.net/literature/1651221
https://doi.org/10.1103/PhysRevD.98.051501
https://doi.org/10.1103/PhysRevD.98.051501
https://doi.org/10.48550/arXiv.1707.07361
https://inspirehep.net/literature/1611316
https://doi.org/10.1103/PhysRevD.110.L031501
https://doi.org/10.1103/PhysRevD.110.L031501
https://doi.org/10.48550/arXiv.2401.04164
https://inspirehep.net/literature/2744900


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

[76] P. Caucal, E. Iancu and G. Soyez, Deciphering the zg distribution in ultrarelativistic heavy ion
collisions, JHEP 10 (2019) 273 [arXiv:1907.04866] [INSPIRE].

[77] P. Arnold, H.-C. Chang and S. Iqbal, The LPM effect in sequential bremsstrahlung 2:
factorization, JHEP 09 (2016) 078 [arXiv:1605.07624] [INSPIRE].

[78] M. Fickinger, G. Ovanesyan and I. Vitev, Angular distributions of higher order splitting
functions in the vacuum and in dense QCD matter, JHEP 07 (2013) 059 [arXiv:1304.3497]
[INSPIRE].

[79] P. Arnold, O. Elgedawy and S. Iqbal, Are Gluon Showers inside a Quark-Gluon Plasma
Strongly Coupled? A Theorist’s Test, Phys. Rev. Lett. 131 (2023) 162302 [arXiv:2212.08086]
[INSPIRE].

[80] P. Arnold, O. Elgedawy and S. Iqbal, Landau-Pomeranchuk-Migdal effect in sequential
bremsstrahlung: Gluon shower development, Phys. Rev. D 108 (2023) 074015
[arXiv:2302.10215] [INSPIRE].

[81] U.A. Wiedemann and M. Gyulassy, Transverse momentum dependence of the
Landau-Pomeranchuk-Migdal effect, Nucl. Phys. B 560 (1999) 345 [hep-ph/9906257] [INSPIRE].

[82] R. Baier, Y.L. Dokshitzer, S. Peigne and D. Schiff, Induced gluon radiation in a QCD medium,
Phys. Lett. B 345 (1995) 277 [hep-ph/9411409] [INSPIRE].

[83] C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003)
014008 [hep-ph/0302184] [INSPIRE].

[84] J.H. Isaksen and K. Tywoniuk, Wilson line correlators beyond the large-Nc, JHEP 11 (2020)
125 [arXiv:2107.02542] [INSPIRE].

[85] J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Medium-induced gluon branching,
JHEP 01 (2013) 143 [arXiv:1209.4585] [INSPIRE].

[86] T. Altinoluk et al., Next-to-eikonal corrections in the CGC: gluon production and spin
asymmetries in pA collisions, JHEP 07 (2014) 068 [arXiv:1404.2219] [INSPIRE].

[87] L. Apolinario, N. Armesto and C.A. Salgado, Medium-induced emissions of hard gluons, Phys.
Lett. B 718 (2012) 160 [arXiv:1204.2929] [INSPIRE].

[88] J. Barata, Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Medium-induced radiative kernel
with the Improved Opacity Expansion, JHEP 09 (2021) 153 [arXiv:2106.07402] [INSPIRE].

[89] Y. Mehtar-Tani and K. Tywoniuk, Radiative energy loss of neighboring subjets, Nucl. Phys. A
979 (2018) 165 [arXiv:1706.06047] [INSPIRE].

[90] A. Takacs and K. Tywoniuk, Quenching effects in the cumulative jet spectrum, JHEP 10 (2021)
038 [arXiv:2103.14676] [INSPIRE].

[91] P. Caucal, A. Soto-Ontoso and A. Takacs, Dynamically groomed jet radius in heavy-ion
collisions, Phys. Rev. D 105 (2022) 114046 [arXiv:2111.14768] [INSPIRE].

[92] Y. Mehtar-Tani, D. Pablos and K. Tywoniuk, Cone-Size Dependence of Jet Suppression in
Heavy-Ion Collisions, Phys. Rev. Lett. 127 (2021) 252301 [arXiv:2101.01742] [INSPIRE].

[93] D. Pablos and A. Soto-Ontoso, Pushing forward jet substructure measurements in heavy-ion
collisions, Phys. Rev. D 107 (2023) 094003 [arXiv:2210.07901] [INSPIRE].

[94] R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Quenching of hadron spectra in media,
JHEP 09 (2001) 033 [hep-ph/0106347] [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP10(2019)273
https://doi.org/10.48550/arXiv.1907.04866
https://inspirehep.net/literature/1743577
https://doi.org/10.1007/JHEP09(2016)078
https://doi.org/10.48550/arXiv.1605.07624
https://inspirehep.net/literature/1465655
https://doi.org/10.1007/JHEP07(2013)059
https://doi.org/10.48550/arXiv.1304.3497
https://inspirehep.net/literature/1228211
https://doi.org/10.1103/PhysRevLett.131.162302
https://doi.org/10.48550/arXiv.2212.08086
https://inspirehep.net/literature/2615453
https://doi.org/10.1103/PhysRevD.108.074015
https://doi.org/10.48550/arXiv.2302.10215
https://inspirehep.net/literature/2635099
https://doi.org/10.1016/S0550-3213(99)00458-7
https://doi.org/10.48550/arXiv.hep-ph/9906257
https://inspirehep.net/literature/501243
https://doi.org/10.1016/0370-2693(94)01617-L
https://doi.org/10.48550/arXiv.hep-ph/9411409
https://inspirehep.net/literature/380313
https://doi.org/10.1103/PhysRevD.68.014008
https://doi.org/10.1103/PhysRevD.68.014008
https://doi.org/10.48550/arXiv.hep-ph/0302184
https://inspirehep.net/literature/613721
https://doi.org/10.1007/JHEP11(2021)125
https://doi.org/10.1007/JHEP11(2021)125
https://doi.org/10.48550/arXiv.2107.02542
https://inspirehep.net/literature/1877347
https://doi.org/10.1007/JHEP01(2013)143
https://doi.org/10.48550/arXiv.1209.4585
https://inspirehep.net/literature/1186753
https://doi.org/10.1007/JHEP07(2014)068
https://doi.org/10.48550/arXiv.1404.2219
https://inspirehep.net/literature/1289068
https://doi.org/10.1016/j.physletb.2012.10.040
https://doi.org/10.1016/j.physletb.2012.10.040
https://doi.org/10.48550/arXiv.1204.2929
https://inspirehep.net/literature/1110854
https://doi.org/10.1007/JHEP09(2021)153
https://doi.org/10.48550/arXiv.2106.07402
https://inspirehep.net/literature/1868335
https://doi.org/10.1016/j.nuclphysa.2018.09.041
https://doi.org/10.1016/j.nuclphysa.2018.09.041
https://doi.org/10.48550/arXiv.1706.06047
https://inspirehep.net/literature/1605773
https://doi.org/10.1007/JHEP10(2021)038
https://doi.org/10.1007/JHEP10(2021)038
https://doi.org/10.48550/arXiv.2103.14676
https://inspirehep.net/literature/1854170
https://doi.org/10.1103/PhysRevD.105.114046
https://doi.org/10.48550/arXiv.2111.14768
https://inspirehep.net/literature/1978839
https://doi.org/10.1103/PhysRevLett.127.252301
https://doi.org/10.48550/arXiv.2101.01742
https://inspirehep.net/literature/1839540
https://doi.org/10.1103/PhysRevD.107.094003
https://doi.org/10.48550/arXiv.2210.07901
https://inspirehep.net/literature/2165630
https://doi.org/10.1088/1126-6708/2001/09/033
https://doi.org/10.48550/arXiv.hep-ph/0106347
https://inspirehep.net/literature/559346


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

[95] J.-P. Blaizot, E. Iancu and Y. Mehtar-Tani, Medium-induced QCD cascade: democratic
branching and wave turbulence, Phys. Rev. Lett. 111 (2013) 052001 [arXiv:1301.6102]
[INSPIRE].

[96] R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ’Bottom up’ thermalization in heavy ion
collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].

[97] J. Berges, M.P. Heller, A. Mazeliauskas and R. Venugopalan, QCD thermalization: Ab initio
approaches and interdisciplinary connections, Rev. Mod. Phys. 93 (2021) 035003
[arXiv:2005.12299] [INSPIRE].

[98] S. Schlichting and I. Soudi, Splitting rates in QCD plasmas from a nonperturbative
determination of the momentum broadening kernel C(q⊥), Phys. Rev. D 105 (2022) 076002
[arXiv:2111.13731] [INSPIRE].

[99] Y. Mehtar-Tani, Gluon bremsstrahlung in finite media beyond multiple soft scattering
approximation, JHEP 07 (2019) 057 [arXiv:1903.00506] [INSPIRE].

[100] X. Feal and R. Vazquez, Intensity of gluon bremsstrahlung in a finite plasma, Phys. Rev. D 98
(2018) 074029 [arXiv:1811.01591] [INSPIRE].

[101] S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in
hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379]
[INSPIRE].

[102] J. Barata, F. Domínguez, C.A. Salgado and V. Vila, A modified in-medium evolution equation
with color coherence, JHEP 05 (2021) 148 [arXiv:2101.12135] [INSPIRE].

[103] J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation,
JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].

[104] Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a
dilute medium, JHEP 04 (2012) 064 [arXiv:1112.5031] [INSPIRE].

[105] Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, The Radiation pattern of a QCD antenna in a
dense medium, JHEP 10 (2012) 197 [arXiv:1205.5739] [INSPIRE].

[106] J. Casalderrey-Solana, Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, New picture of jet
quenching dictated by color coherence, Phys. Lett. B 725 (2013) 357 [arXiv:1210.7765]
[INSPIRE].

[107] Y. Li et al., Extending Precision Perturbative QCD with Track Functions, Phys. Rev. Lett. 128
(2022) 182001 [arXiv:2108.01674] [INSPIRE].

[108] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
063 [arXiv:0802.1189] [INSPIRE].

[109] Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms,
JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

[110] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic
scattering, in the proceedings of the Workshop on Monte Carlo Generators for HERA Physics
(Plenary Starting Meeting), Hamburg, Germany (1998), pg. 270 [hep-ph/9907280] [INSPIRE].

[111] J. Barata et al., A study of Lund based Energy-Energy Correlators, in preparation.

[112] M. Dasgupta et al., Parton showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125
(2020) 052002 [arXiv:2002.11114] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevLett.111.052001
https://doi.org/10.48550/arXiv.1301.6102
https://inspirehep.net/literature/1216305
https://doi.org/10.1016/S0370-2693(01)00191-5
https://doi.org/10.48550/arXiv.hep-ph/0009237
https://inspirehep.net/literature/533933
https://doi.org/10.1103/RevModPhys.93.035003
https://doi.org/10.48550/arXiv.2005.12299
https://inspirehep.net/literature/1797849
https://doi.org/10.1103/PhysRevD.105.076002
https://doi.org/10.48550/arXiv.2111.13731
https://inspirehep.net/literature/1978745
https://doi.org/10.1007/JHEP07(2019)057
https://doi.org/10.48550/arXiv.1903.00506
https://inspirehep.net/literature/1723239
https://doi.org/10.1103/PhysRevD.98.074029
https://doi.org/10.1103/PhysRevD.98.074029
https://doi.org/10.48550/arXiv.1811.01591
https://inspirehep.net/literature/1701570
https://doi.org/10.1103/PhysRevC.82.064902
https://doi.org/10.48550/arXiv.1006.2379
https://inspirehep.net/literature/857897
https://doi.org/10.1007/JHEP05(2021)148
https://doi.org/10.48550/arXiv.2101.12135
https://inspirehep.net/literature/1843222
https://doi.org/10.1007/JHEP08(2011)015
https://doi.org/10.48550/arXiv.1105.1760
https://inspirehep.net/literature/898928
https://doi.org/10.1007/JHEP04(2012)064
https://doi.org/10.48550/arXiv.1112.5031
https://inspirehep.net/literature/1082482
https://doi.org/10.1007/JHEP10(2012)197
https://doi.org/10.48550/arXiv.1205.5739
https://inspirehep.net/literature/1116167
https://doi.org/10.1016/j.physletb.2013.07.046
https://doi.org/10.48550/arXiv.1210.7765
https://inspirehep.net/literature/1193972
https://doi.org/10.1103/PhysRevLett.128.182001
https://doi.org/10.1103/PhysRevLett.128.182001
https://doi.org/10.48550/arXiv.2108.01674
https://inspirehep.net/literature/1898830
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.48550/arXiv.0802.1189
https://inspirehep.net/literature/779080
https://doi.org/10.1088/1126-6708/1997/08/001
https://doi.org/10.48550/arXiv.hep-ph/9707323
https://inspirehep.net/literature/445565
https://doi.org/10.48550/arXiv.hep-ph/9907280
https://inspirehep.net/literature/484872
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.48550/arXiv.2002.11114
https://inspirehep.net/literature/1782392


J
H
E
P
1
1
(
2
0
2
4
)
0
6
0

[113] A Large Ion Collider Experiment and ALICE collaborations, Measurement of the
groomed jet radius and momentum splitting fraction in pp and Pb-Pb collisions at √

sNN = 5.02
TeV, Phys. Rev. Lett. 128 (2022) 102001 [arXiv:2107.12984] [INSPIRE].

[114] C. Duhr, B. Mistlberger and G. Vita, Four-Loop Rapidity Anomalous Dimension and Event
Shapes to Fourth Logarithmic Order, Phys. Rev. Lett. 129 (2022) 162001 [arXiv:2205.02242]
[INSPIRE].

[115] M. van Beekveld et al., PanScales parton showers for hadron collisions: formulation and
fixed-order studies, JHEP 11 (2022) 019 [arXiv:2205.02237] [INSPIRE].

[116] M. van Beekveld et al., PanScales showers for hadron collisions: all-order validation, JHEP 11
(2022) 020 [arXiv:2207.09467] [INSPIRE].

[117] M. van Beekveld and S. Ferrario Ravasio, Next-to-leading-logarithmic PanScales showers for
Deep Inelastic Scattering and Vector Boson Fusion, JHEP 02 (2024) 001 [arXiv:2305.08645]
[INSPIRE].

[118] D. Binosi and L. Theußl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams,
Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

– 36 –

https://doi.org/10.1103/PhysRevLett.128.102001
https://doi.org/10.48550/arXiv.2107.12984
https://inspirehep.net/literature/1893479
https://doi.org/10.1103/PhysRevLett.129.162001
https://doi.org/10.48550/arXiv.2205.02242
https://inspirehep.net/literature/2077573
https://doi.org/10.1007/JHEP11(2022)019
https://doi.org/10.48550/arXiv.2205.02237
https://inspirehep.net/literature/2077626
https://doi.org/10.1007/JHEP11(2022)020
https://doi.org/10.1007/JHEP11(2022)020
https://doi.org/10.48550/arXiv.2207.09467
https://inspirehep.net/literature/2119991
https://doi.org/10.1007/JHEP02(2024)001
https://doi.org/10.48550/arXiv.2305.08645
https://inspirehep.net/literature/2659790
https://doi.org/10.1016/j.cpc.2004.05.001
https://doi.org/10.48550/arXiv.hep-ph/0309015
https://inspirehep.net/literature/626979

	Introduction
	Revisiting the EEC resummation in a diagrammatic approach
	Medium modifications to the EEC
	Phase-space constraints for vacuum-like emissions
	Medium modified splitting function
	Energy loss model for two parton system
	Summary of the results

	In-medium results for the EEC
	Semi-analytic results for q to q g splittings
	Leading order results for gamma to q bar q splittings
	Monte Carlo study with JetMed

	Lund-based definition of the EEC
	Conclusions

