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Abstract: We investigate the collinear limit of the energy-energy correlator (EEC) in
a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this
observable in vacuum following a diagrammatic approach. We argue that this route allows
to naturally incorporate medium-induced effects into the all-orders structure systemati-
cally. As an example, we show how the phase-space constraints imposed by the medium on
vacuum-like emissions can be incorporated into the LL result by modifying the anomalous
dimensions. On the fixed-order side, we calculate the O(αs) expansion of the in-medium
EEC for a γ → qq̄ splitting using, for the first time, the exact matrix element. When
comparing this result to previously used approximations in the literature, we find up to
O(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects
are also quantified and further suppress the EEC at large angles. These semi-analytic stud-
ies are complemented with a phenomenological study using the jet quenching Monte Carlo
JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy
correlators can be enhanced by using an alternative definition that takes as input Lund
primary declusterings instead of particles.
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1 Introduction

Jet substructure observables have become an essential ingredient in the search for quark-
gluon plasma (QGP) signatures in heavy-ion collisions in recent years. Their inherent
sensitivity to disparate scales fits very well with the multi-scale nature of jet evolution in
the QGP. From a theoretical point of view, they also offer a unique opportunity to produce
first principles predictions using resummation techniques in perturbative QCD. This semi-
analytic approach is very well established in proton-proton collisions, and the heavy-ion
community has frequently benefited from these developments. As an example, the first
set of jet substructure measurements in heavy-ion collisions (and related calculations) fo-
cused on Soft Drop grooming [1–4]. However, it quickly became apparent that porting
proton-proton-based observables to the complex environment of heavy-ion collisions had
some limitations, mainly due to the high hadronic multiplicity. This has triggered the de-
velopment of new experimental and theoretical techniques with a heavy-ion rationale. The
advances in the field of jet substructure in heavy-ions have been so rapid that experiments
such as ALICE or STAR (traditionally heavy-ion focused) have pioneered measurements
of such class of observables even in proton-proton collisions [5–7]. The most recent ex-
ample of a jet substructure observable that has attracted ample attention are energy flow
correlations [8], which are being actively measured in several experimental setups [9, 10].
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Formally, energy-flow correlators are defined in terms of light-ray energy flow operators
along direction n⃗ [11–17]

E(n⃗) = lim
r→∞

∫ ∞

0
dt r2niT0i(t, r n⃗) , (1.1)

with the stress-energy tensor Tµν . This paper focuses on the simplest projection of the two-
point correlator (EEC), where the azimuthal dependence is integrated out. This results in
the standard definition of the EEC:

dΣ(n)

dχ
=

∫
n⃗1,n⃗2

⟨En(n⃗1)En(n⃗2)⟩
Q2

δ(n⃗1 · n⃗2 − cosχ)

=
∑
{i,j}

∫
n⃗i,n⃗j

En
i E

n
j

Q2n

dσ
dn⃗idn⃗j

δ(n⃗i · n⃗j − cosχ) , (1.2)

where n is an integer number that we set to 1 by default, dropping the superscript notation
in the EEC, and we explore its variation in Sec. 5. In the second line, we have introduced
the inclusive cross-section for producing two particles with energies Ei,j along the directions
n⃗i,j , and Q is the virtuality of the hard process. The sum over {i, j} includes all unordered
particle pairs.

The first studies of EECs date back to the late 1970’s [8, 18, 19] in the context of testing
and verifying QCD properties. Fixed-order calculations presented in these works were used
to extract the strong coupling constant, αs, in e+e− colliders [20–22]. In the collinear and
back-to-back limits, the EEC receives large logarithmically enhanced corrections that must
be resummed to all orders in the strong coupling constant. Substantial theoretical effort
has been devoted to significantly improve the analytic description of this observable both
in QCD [23–31] and N = 4 SYM theory [15, 16, 32–34]. Despite its apparent simplicity,
the EEC has a wide range of applications in the high energy context, including top mass
extraction [35], gluon saturation [36], and the confining transition [37]. One of the most
recent applications of the EECs has been the extraction of αs at the LHC [38].

In the context of heavy-ion collisions, the EECs could potentially address a series of
questions related to the interaction of a jet with the medium, such as: (i) is the criti-
cal temperature of the QGP imprinted in the jet fragmentation?, (ii) what is the angular
resolution of the medium?, (iii) can we experimentally disentangle medium response from
transverse momentum broadening? Furthermore, the energy weighting entering Eq. (1.2)
could help suppress the copious soft contamination arising from the underlying event. Dur-
ing the last year, there has been a series of studies discussing the capability of the EEC to
resolve the scales of the QGP [39–43]. The analytic calculations in the medium are typically
performed at the leading order using certain approximations for the medium modified jet
cross-section. Refs. [39–42] used a semi-classical approximation in the BDMPS-Z formal-
ism that was derived in Ref. [44]. In turn, Ref. [43] provides a leading-order calculation
using the higher-twist formalism [45]. Indistinctly of the specific approximation used for the
leading-order matrix element, all these works predict an enhancement at large angles due
to medium-induced modifications. However, once other effects such as medium response or
energy loss are taken into account either analytically [46] or by means of realistic Monte
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Carlo (MC) simulations [45], the interpretation of the EEC becomes less transparent. Most
of these processes take place at commensurate scales, and therefore, resolving each of them
independently is a remarkably complicated task, as has been observed in many other jet
substructure observables. The intense experimental activity around the EECs in the heavy-
ion community calls for a focused theoretical effort to guarantee a solid interpretation of
the upcoming experimental data.

This paper takes a step towards increasing the precision of the theoretical tools required
to describe the EEC in heavy-ion collisions and provides a careful assessment of the size of
different effects. We do so by combining semi-analytic calculations with parton shower sim-
ulations. In Sec. 2, we re-derive the leading logarithmic resummation of the EEC following
a diagrammatic approach in vacuum. This alternative way of performing the calculation
aims to incorporate the medium modifications, as shown in Sec. 3. Throughout this section,
we explore three different sources of medium modifications to the EEC. First, we study in
Sec. 3.1 the phase-space modification of vacuum emissions in the presence of a medium. In
Sec. 3.2 we discuss three different calculations of the medium modification factor for two
different partonic channels: exact result in the multiple-soft scattering approximation [47],
semi-classical approximation [44] and BDMPS-Z result [48, 49]. A simple energy loss model
is presented in Sec. 3.3. Results for the EEC at leading-order can be found in Sec. 4.
We find that an exact treatment of the leading order cross-section strongly reduces the
enhancement at large angles observed in previous works. After including energy loss, the
significance of the signal at large angles is even further reduced. Besides these analytic
estimates, we also perform a MC study of this observable within the JetMed framework as
shown in Sec. 4.3. We end up by proposing a new definition of the EEC in terms of Lund
subjets [50] in Sec. 5 and summarising our results in Sec. 6.

2 Revisiting the EEC resummation in a diagrammatic approach

In this first section, we present a derivation of the EEC cumulative distribution at lead-
ing logarithmic (LL) accuracy in the collinear limit. In contrast with previous derivations
making explicit use of the light-ray OPE for the energy flow operators [51–53], or Effective
Field Theory (EFT) techniques [28], here we obtain the final distribution by summing infi-
nite set of relevant Feynman diagrams.1 Although the final expressions for the cumulative
distribution agree using any of these methods, the diagrammatic approach (also used in
[55, 56]) is arguably more convenient in the jet quenching context, where a QCD medium
introduces multiple emergent scales and induces modifications to the jet fragmentation pat-
tern. A complete operatorial level or EFT description for the case of jet evolution in dense
QCD matter is not yet available (see [57, 58] for related efforts). The description of these
effects in the language of light-ray OPE is also not trivial since it requires going beyond the
conformal limit of the theory. We note that in real-world QCD, the conformal symmetry
is broken by multiple effects, some present in vacuum (running coupling or quark masses)
and others related to medium scales. In contrast, medium modifications to jet evolution are
relatively well understood using standard diagrammatic methods, see e.g. [59, 60], and form

1For a review of the methods to be employed see for example [54] and references therein.
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the backbone of many jet quenching phenomenological models. In what follows, we first
present a complete derivation of the cumulative distribution assuming a quark-initiated jet
and keeping only the Abelian contributions (i.e.„ equivalent to QED when ignoring photon
branching). We then point out how this generalizes to the well-known QCD result.

Consider a jet with a radius R and total energy Q.2 It is convenient to rewrite Eq. (1.2)
as

dΣ
dχ

=
1

σ

∑
{i,j}∈jet

∫ 1

0
dz

dσ
dθijdz

z(1− z)δ

(
χ− θij

R

)
, (2.1)

where z denotes the energy fraction Ei/Q of the softest parton in a particle pair separated
by a distance θij < R, and we have simplified the measurement function to the collinear
form. We will focus on the cumulative distribution Σ(χ).

As mentioned above, we consider only the Abelian channel of a quark-initiated jet,
where there are only two relevant splitting functions, namely

Pqq(z) = CF
1 + z2

1− z
, Pgq(z) = CF

1 + (1− z)2

z
. (2.2)

In what follows, we use the fact that Pgq(z) = Pqq(1 − z) to write all the contributions
in terms of Pgq and, therefore, z → 0 corresponds to the soft gluon limit. The one-gluon
emission matrix-element squared, at fixed coupling, is thus given by

dPvac = ᾱPgq(z)dz
dθ
θ
, (2.3)

where ᾱ = αs/π and we have again exploited the fact that we work in the collinear limit at
LL accuracy to keep only the logarithmically divergent piece on the angular dependence.
Note that all angles are normalized by the jet radius.

At first order in the strong coupling constant, i.e., O(αs), there are two contributions
to the observable: one with a real (R) gluon emission and a diagram with a virtual (V)
correction, see Fig. 1. The contribution of the real gluon emission to Σ is:

ΣR(χ)
∣∣∣
O(αs)

= ᾱ

∫ 1

0

dθ
θ

∫ 1

0
dz Pgq(z)

[
z2Θ(χ) + (1− z)2Θ(χ) + 2z(1− z)Θ(χ− θ)

]
.

(2.4)

The first two terms in the previous equation correspond to measuring the EEC on the same
parton (i.e., i = j term in Eq. (2.1)), while the last piece accounts for twice the contribution
coming from the resolved EEC (i.e., i ̸= j term in Eq. (2.1)). The virtual contribution can
be written as

ΣV(χ)
∣∣∣
O(αs)

= −ᾱ
∫ 1

0

dθ
θ

∫ 1

0
dz Pgq(z)Θ(χ) , (2.5)

2We note that we use energy and transverse momentum interchangeably throughout this section. In
particular, we shall take Q = pt, with pt equal to the total transverse momentum of the jet in laboratory
coordinates.
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Figure 1: Leading order diagrams contributing to the quark EEC in the Abelian channel.
Conventions used in the main text for the energy fraction for the real diagrams are shown.

where the overall minus sign ensures the exact cancellation of the divergences between the
real and virtual diagrams. As a result, we find that the O(αs) cumulative distribution reads

Σ(χ)
∣∣∣
O(αs)

= ᾱ

∫ 1

0

dθ
θ

dzPgq(z)2z(1− z) [Θ(χ− θ)−Θ(χ)]

= −2ᾱ ln
1

χ

∫ 1

0
dz Pgq(z)z(1− z) , (2.6)

where the remaining integral is finite, and we postpone its explicit calculation until the end
of this section.

At O
(
α2
s

)
, and again keeping only the Abelian contributions, we find 4 distinct dia-

grams as depicted in Fig. 1. We introduce the energy fraction of a real emission with respect
to the jet initiating parton xi = Ei/Q, which only coincides with the local energy fraction
zi for the first emission. Energy degradation along the primary branch implies that for any
other emission xi = Πj<i(1− zj)zi, such that energy conservation reads

∑n
i=1 xi = 1 (with

n = 3 at this order in αs). We write the results in terms of three angles: θ1 ≡ θ13, θ2 ≡ θ23
and θ12, where θ212 = θ21 + θ22 − 2θ1θ2 cosϕ12 and ϕ12 denotes the relative azimuthal angle
between the gluons. At leading-logarithmic accuracy, we can further impose strong angular
ordering between real emissions such that θ1 ≫ θ2 and θ12 ∼ θ1.

Taking into account all these considerations, the RR diagram gives

ΣRR(χ)
∣∣∣
O(α2

s)
= ᾱ2

∫ 1

0

dθ1
θ1

∫ 1

0

dθ2
θ2

∫ 2π

0

dϕ12
2π

∫ 1

0
dx1 Pgq(x1)

∫ 1−x1

0

dx2
1− x1

Pgq

( x2
1− x1

)
×
[
2x1x3Θ(χ− θ1) + 2x2x3Θ(χ− θ2) + 2x1x2Θ(χ− θ12) + x21 + x22 + x23

]
,

(2.7)
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with x3 = 1−x1−x2 = (1− z1)(1− z2) and where in the last three terms inside the square
bracket there is an implicit Θ(χ). Note that the previous expression also accounts for the
corresponding Jacobian when transforming from zi to xi. For the RV case, we have

ΣRV(χ)
∣∣∣
O(α2

s)
= −ᾱ2

∫ 1

0

dθ1
θ1

∫ 1

0

dθ2
θ2

∫ 1

0
dx1 Pgq(x1)

∫ 1

0
dx2 Pgq(x2)

×
[
2x1x3Θ(χ− θ1) + x21 + x23

]
, (2.8)

where x3 = 1−x1 since the second gluon is virtual. The VR diagram has the same structure
as Eq. (2.8). Finally, the VV contribution has a single term

ΣVV(χ)
∣∣∣
O(α2

s)
= ᾱ2

∫ 1

0

dθ1
θ1

∫ 1

0

dθ2
θ2

∫ 1

0
dx1 Pgq(x1)

∫ 1

0
dx2 Pgq(x2) . (2.9)

The full O(α2
s) result is obtained by adding up all 4 contributions that are individually

collinearly divergent. It is straightforward to show that the different diagrams cancel out
exactly in all regions where double or single collinear poles could emerge, as expected. The
only surviving contribution comes from the region where θ1 > θ2 > χ, where the integrands
combine to give:[

(x21 + x22 + x23)
RR − (x21 + x23)

RV − (x22 + x23)
VR + (1)VV

]
Θ(χ < θ1 < 1)Θ(χ < θ2 < θ1) .

(2.10)

After some algebraic manipulation, we find

Σ(χ)
∣∣∣
O(α2

s)
=
ᾱ2

2!
ln2

1

χ

∫ 1

0
dz1Pgq(z1)

∫ 1

0
dz2Pgq(z2)[2(z1 − 2)z1 (z2 − 1)z2] , (2.11)

where, again, the remaining integrals are finite.
The previous calculation can be systematically extended to higher orders in αs with

the only surviving contribution coming from the region without poles order by order. In
general, we find that the O

(
αk
s

)
contribution reads (here assuming k > 2):

Σ(χ)
∣∣∣
O(αk>2

s )
=

2 ᾱk+1

(k + 1)!
lnk+1 1

χ

[
k+1∏
l=1

∫ 1

0
dzl Pgq(zl)(zl − 2)zl

]
zk+1 − 1

zk+1 − 2
. (2.12)

The final distribution is then obtained by summing Eq. (2.12) over k. To that end, we
introduce the anomalous dimensions

γik(j) = −
∫ 1

0
dz zj−1P̂ik(z) , (2.13)

where j is an integer number, (i, k) run over all possible flavors and P̂ denotes the regularized
splitting function, i.e., P̂ corresponds to the LO kernels in Eq. (2.2) evaluated using the
plus-prescription. For the splitting functions of interest in our calculation, one has

γqq(j) = −CF

[
3

2
+

1

j(j + 1)
− 2[ψ(j + 1) + γE ]

]
, γgq(j) = −CF

2 + j + j2

j3 − j
, (2.14)
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Figure 2: Diagrammatic representation of the resummation structure in terms of the
anomalous dimensions. Note that since we only include the Abelian quark channel, flavor-
changing branchings can only occur at the last step in the ladder, unlike the full QCD case.
A similar representation can be drawn in QCD, agreeing with the structure of γ̂(j).

where ψ(j) ≡ Γ′(j)/Γ(j) is the di-gamma function and γE is the Euler-Mascheroni constant.
A direct calculation gives

Σ(χ) =
∞∑
k=0

(−1)k+1 ᾱk+1

(k + 1)!
lnk+1 1

χ
[γk+1

qq (3) + γkqq(3)γgq(3)]

=
(
−1 + χᾱγqq(3)

) γgq(3) + γqq(3)

γqq(3)
, (2.15)

which results in the following differential distribution

dΣ
dχ

=
ᾱ

χ1−ᾱγqq(3)
[γgq(3) + γqq(3)] =

ᾱ

χ1−ᾱγqq(3)

∫ 1

0
dz z(1− z) [Pqq(z) + Pgq(z)] . (2.16)

The form shown in the first line of Eq. (2.15) has a simple diagrammatic interpretation,
illustrated in Fig. 2. It results from the repeated application of the anomalous dimension
matrix, which, in the complete QCD case, reads

γ̂(j) =

[
γqq(j) γqg(j)

γgq(j) γgg(j)

]
, (2.17)

while in the Abelian quark sector one can set γgg = γqg = 0. Using this, a result analogous
to the one shown in Eq. (2.16) can be derived [28].

3 Medium modifications to the EEC

This section aims to explore the medium modifications to the jet EEC. We discuss three
possible sources: (i) phase-space constraints to vacuum-like splittings, (ii) medium mod-
ifications to the leading-order splitting function, and (iii) leading energy loss for resolved
emissions. To this end, we assume a simple model for the QGP consisting of a finite slab
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of dense, static, isotropic and homogeneous matter.3 The medium is assumed to have a
longitudinal extension L. The jet-medium interactions are described using the multiple
soft scattering approximation, detailed below. As a result, we neglect contributions from
rare hard momentum exchanges between the jet and medium constituents, whose exclusion
should not significantly change the final results at a qualitative level [40].

3.1 Phase-space constraints for vacuum-like emissions

The first effect that we discuss is the reduction of phase space for vacuum-like emis-
sions [73, 74]. Sufficiently hard splittings, corresponding to very short formation times,4 are
unmodified by the medium, i.e., their splitting probability is given by Eq. (2.2). Conversely,
splittings with longer formation times are sensitive to medium dynamics and their radiation
pattern is qualitatively modified due to gluon exchanges with the medium constituents. In
particular, assuming that the medium-jet interactions are dominated by multiple soft gluon
exchanges, the typical formation time for medium-induced emissions is given by

tmed
f =

√
2ω

q̂
, (3.1)

where ω is the energy of the emission and q̂ is the so-called jet quenching parameter, that
depends on the properties of the medium.5 Thus, vacuum-like splittings inside the medium
(tf < L) must satisfy tf > tmed

f . These temporal constraints lead to the definition of a
so-called veto region for in-medium vacuum splittings [73]

Θveto = Θ(tf − tmed
f )Θ(L− tf ), (3.2)

which propagates to the anomalous dimension considered in Eq. (2.13). That is, vacuum
evolution is forbidden in Θveto and the new anomalous dimensions read (see also [75]):

γmed(j, θ) = −
∫ 1

0
dz zj−1P̂ (z)[1−Θveto(z, θ)] . (3.3)

In particular, for the q → qg channel we find

γmed
qq (j, θ) = γvacqq (j) +

∫ 1

0
dz zj−1Pgq(z)Θveto(z, θ) . (3.4)

An important remark is that the phase-space constraint, Θveto is derived in the soft-
and-collinear limit. Consequently, the splitting function entering Eq. (3.4) corresponds
to Pgq(z) = 2CF /z. In this approximation, the anomalous dimension in vacuum reduces
to γvacqq (j) = −2CF /(j − 1). The angular dependence of γqq(j, θ) is shown in the left

3For recent theoretical efforts towards describing jet evolution in more realistic matter, see e.g. [61–72]
and references therein.

4We remind the reader that the typical formation time is related to the off-shellness of the emitter and
is given by tf = 2/(z(1− z)ptθ

2), with z the energy-fraction of the emission and θ the opening angle of the
splitting.

5In what follows, we shall implicitly use q̂ as denoting the jet quenching parameter in the adjoint color
representation.
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Figure 3: Left: Medium-to-vacuum ratio of the anomalous dimension for j = 3 as a
function of the splitting angle for the q → qg channel, see Eq. (3.4). Right: the energy-
energy correlator in vacuum (both at fixed and all orders) together with the result including
the medium-modified anomalous dimensions shown in the left panel.

panel of Fig. 3 for j = 3 (the relevant case for the EEC calculation) both in vacuum
and medium for different values of the jet pt. The medium parameters are fixed to be
L = 4 fm and q̂ = 1.5 GeV2/fm, roughly corresponding to central PbPb collisions at LHC
energies. We observe that for all values of jet pt the in-medium anomalous dimension is
reduced compared to the vacuum baseline. This can be naturally understood as a result
of a reduction of the radiative phase space. In addition, the medium-to-vacuum ratio
of anomalous dimensions tends to unity with increasing jet pt, i.e., highly energetic jets
undergo a vacuum-like dominated evolution and are less sensitive to the medium scales.
A final comment concerns the sharpness on the angular dependence of the in-medium
γqq(3), which is due to the step-wise nature of the model describing Θveto. Higher-order
perturbative corrections and fluctuations of medium scales are expected to smooth out the
boundaries of the resolved phase space.

To end this section, we show on the right panel of Fig. 3 the impact of the medium-
modified anomalous dimensions on the EEC. Note that we have re-scaled the vertical axis
by the EEC angle such that the leading order prediction becomes a flat line, as can be
deduced from Eq. (2.6). Including resummation effects leads to deviations from this flat
line, as observed for the solid, gray line in the figure. Also note that in the leading-
logarithmic approximation and fixed coupling, the EEC is independent of the jet pt. We
find that the EEC slope is mildly modified (< 5% for this choice of parameters) in the
moderate angle region after incorporating phase-space constraints on the definition of the
anomalous dimensions.

3.2 Medium modified splitting function

Another source of medium-induced modification to the EEC results from the production
of bremsstrahlung radiation due to the interactions between hard jet constituents and the
medium, leading to an excess of soft gluons at large angles. In a perturbative approach, this
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can be captured, at leading order in the strong coupling, by writing the 1 → 2 cross-section
as

d2P full

dzdθ
=

d2Pvac

dzdθ
+

d2Pmed

dzdθ
≡ [1 + Fmed(z, θ)]

d2Pvac

dzdθ
, (3.5)

where medium induced radiation contributions are encapsulated inside the Fmed function
and the vacuum term is given by Eq. (2.3).6 Beyond O(αs), this separation between vacuum
and medium physics in the splitting function remains to be fully studied, see e.g. [76, 77].
Combining Eq. (2.1) with Eq. (3.5) one can write the leading order in-medium EEC as

dΣ
dθdpt

=
∑
{i,j}

∫ 1

0
dz
[
z(1− z)

dPvac
ij

dθdz

(
1 + F ij

med(θ, z)
)] dσj

σjdpt
, (3.6)

where the last term denotes the jet cross-section that generates the leading parton.7 In
what follows, we will mainly restrict the discussion to q → qg and γ → qq̄ splittings and
postpone the discussion on the role of the initial jet cross-section to the next section.

Despite substantial progress over the last decades, the medium modification factor Fmed

can only be efficiently computed in particular kinematical limits. The first studies of the
in-medium EEC used the so-called ‘semi-classical’ limit [44] where the outgoing partons
are considered to be hard (z ∼ 1/2). Alternatively, several phenomenological works used
the soft limit approximation for the radiated gluon (z ≪ 1); we shall refer to this as the
BDMPS-Z limit [49, 78–80]. As we will discuss below, the BDMPS-Z approach is insufficient
for computing the EEC since this observable involves finite energy fractions, e.g. the energy
weight in the EEC definition in Eq. (2.1). Finally, we will also consider a recent numerical
calculation of Fmed with exact kinematics in the multiple soft scattering approximation [47]
for the simpler γ → qq̄ channel. So far, this numerical approach is limited to pair production
from a photon, which is a subleading process for jet production at the LHC. Nevertheless,
this channel captures many of the structures entering other flavor’s branchings [81], and
we will use this exact result to gauge the validity of the above-mentioned approximations,
which we follow to discuss in more detail.

Semi-classical approximation: We consider the outgoing partonic states in a 1 → 2

process to be very energetic, such that evolution in the medium is mainly dominated by the
rotation of their color field, while deflections from the classical trajectory are neglected. In
this case, the branching process itself (and not the subsequent evolution in the QGP) mostly
controls the final transverse momentum distribution. The expression for the modification
factor in this approximation is given by [44, 81]

Fmed =
2

tf

[∫ L

0
dt
{∫ L

t

dt′

tf
cos

(
t′ − t

tf

)
C3(t′, t)C4(L, t′)

}
− sin

(
L− t

tf

)
C3(L, t)

]
,

(3.7)
6If the strong coupling constant differs in vacuum and medium, the 1 → 2 cross-section takes the form

d2Pfull

dzdθ = [1 +
αmed
s
αs

Fmed(z, θ)]
d2Pvac

dzdθ .
7In other words, dσj

σjdpt
is the hard function. It is omitted in Eq. (3.5) since, in the vacuum case, it

only changes the overall normalization of the EEC distribution. Note that in this work, we are focused on
understanding the final state modifications to the EEC, and we do not provide a complete computation of
the observable.
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where C3,4 denote particular projections of three and four-point correlation functions of
in-medium propagators, see [44, 47, 81] for further discussion and details on the calculation
of these objects. For γ → qq̄ and q → qg, the C3,4 correlators can be reduced to relatively
simple forms in a large number of colors, Nc, limit:

C3(t′, t) = C3(t′ − t) = e−
1
12

q̂θ2ζ(z)(t′−t)3 ,

C4(L, t′) = e−
1
4
q̂ξ(z)θ2(L−t′)(t′−t)2 + non− factorizable . (3.8)

The flavor dependence of the process is encapsulated in the ζ and ξ functions, which for
the two channels under consideration read [81] 8:

ξγ→qq̄ = z2 + (1− z)2 , ζγ→qq̄ = 1 ,

ξq→gq = 1− 2(1− z) + 3(1− z)2 , ζq→gq = 1 + (1− z)2 +
2(1− z)

N2
c − 1

. (3.9)

Another point concerning Eq. (3.8) is the role of the so-called non-factorizable pieces in C4.
These terms account for non-trivial color configurations, and in Refs. [44, 81, 82] it was
argued that their contribution should remain quantitatively small for dense media. In this
work, we have explicitly checked that the impact of these non-factorizable corrections in
the EEC, for a set of parameters used in the figures shown, is negligible, and, due to their
numerical complexity, we neglect them in what follows. Finally, plugging Eq. (3.8) into
Eq. (3.7), the medium modification factor can be compactly written as

Fmed =
2

tf

∫ L

0
dt

[
4
1− e−

1
4
ξq̂(L−t)θ2t2

ξq̂tfθ2t2
cos

(
t

tf

)
− sin

(
t

tf

)]
e−

1
12

q̂ζθ2t3 . (3.10)

In Fig. 4 we show the evaluation of Eq. (3.10) as a function of z for two values of θ. We
consider two physical partonic channels and a toy scenario in which ζ = ξ = 1, which will be
used in the Monte Carlo implementation of Fmed presented in Sec. 4.3. We note a drastic
difference in the behavior of Fmed between collinear (θ = 0.1) and wide-angle splittings
(θ = 0.3). For small-angle splittings, we observe that the dominant contribution to Fmed

comes from democratic splittings (z ∼ 1/2). In contrast, the wide-angle limit of Fmed

corresponds to asymmetric splittings in which either the daughter parton (z → 0) or the
emitter (z → 1) are soft. This is an important point since very asymmetrical configurations
can not be described using the semi-classical approximation. Consequently, as the angle
increases, one expects the values obtained for Fmed to be increasingly less accurate. We
anticipate that, counter-intuitively, these small z branchings are precisely the ones that
dominate the wide-angle part of the jet EEC at the leading order. We observe this to
be always the case when using the semi-classical all approximation, even after including
the energy suppression factor entering the EEC definition. This calls for a more accurate
calculation or better model for the soft sector.

Beyond the semi-classical approximation, the Fmed factor receives corrections related
to quantum diffusion in the transverse plane, which can be captured in a power series

8We thank Carlota Andrés and Fabio Dominguez for pointing out a typo in Ref. [81] as due to z and
1− z being swapped in the q → qg case.
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Figure 4: Evaluation of Fmed in the semi-classical approximation following Eq. (3.10) for
two different splitting angles, θ = 0.1 (left) and θ = 0.3 (right), and three different splitting
processes.

expansion in k2⊥∆t/pt [83], with k⊥ (∆t) a typical transverse momentum (time) scale. When
k2⊥ becomes commensurate with the typical momentum transfer from the medium q̂L, and
∆t ∼ L, one can estimate that the semi-classical approximation fails if min(z, 1 − z)pt ≪
q̂L2/2 ≡ ωc, assuming pt ≫ ωc.

Soft approximation: We now explore the kinematical limit where z → 0 or z → 1. This
regime corresponds to the emission of very soft radiation along with a hard, nearly eikonal
parton. We focus on the q → qg splitting process. The Fmed modification factor can be
calculated under these conditions in the BDMPS-Z limit for z → 0, or in the opposite limit
when z → 1 [84]. For the simple medium model considered above, the in-medium emission
probability reads (see e.g. [85] for details):

d2Pmed
z→0

dzdθ
= 2π θptω

2 d2Pmed
z→0

dωd2k
, (3.11)

where we have implicitly used that the spectrum does not depend on the azimuthal angle,
with

d2Pmed
z→0

dωd2k
=

8αmed
s CF

4π2ω
Re

[∫ L

0
dt Ωcot(Ωt)

e
− k2⊥

q̂(L−t)−2iωΩ cot(Ωt)

q̂(L− t)− 2iωΩcot(Ωt)

− 1

k2⊥

(
1− e

− ik2⊥
2ωΩ cot(ΩL)

)]
, (3.12)

where Ω = (1−i)
2

√
q̂/ω, |k| = k⊥, and ω = zpt. Note that the strong coupling in the

medium αmed
s is evaluated at (q̂ω)1/4, which is the typical transverse momentum scale for

medium-induced emissions [82]. The case z → 1 can be obtained from Eq. (3.12) by crossing
symmetry and reads [84]

d2Pmed
z→1 =

1

2
d2Pmed

z→0

∣∣∣
z→1−z,q̂→q̂F

, (3.13)
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Figure 5: Lund-plane representation of the differential probability distribution given in
Eq. (3.5). Left: soft approximation for the medium splitting probability as given by
Eq. (3.12). Right: ratio between the soft (Eq. (3.12)) and semi-classical approximations
(Eq. (3.10)) to the medium kernel. In both plots, we choose: q̂ = 1.5 GeV2/fm, L = 4 fm,
pt = 120 GeV, R = 1, αs = 0.1 and αmed

s = 0.24.

where the correct jet quenching parameter is now in the fundamental representation, i.e.,
CAq̂F = CF q̂. The overall 1/2 factor accounts for the transformation of Pgq between the
hard and soft limits, see Eq. (2.2).

We show in the left panel of Fig. 5 the splitting probability density defined in Eq. (3.5)
using the soft approximation for the medium kernel (Eq. (3.11)). Note that in this Lund-
plane representation, the vacuum splitting probability reduces to a constant (2αsCF /π) at
double-logarithmic accuracy. Therefore, any enhancement or depletion in this graph can
be attributed to medium effects. In particular, the enhancement observed for soft, wide
angle splittings corresponds to the characteristic scale of the medium zθpt = q̂L. The right
panel of Fig. 5 shows the ratio between this soft approximation and the semi-classical limit
discussed above. We would like to remark that the quantitative interpretation of this ratio is
delicate. Nevertheless, we observe clear differences between these two approximations of the
in-medium matrix element in almost all regions of the radiative phase-space. In particular,
we confirm that the semi-classical approximation does not capture the BDMPS-Z result
neither when z → 0 nor when z → 1. Unfortunately, none of these approximations can be
compared to the exact matrix element since the numerical method proposed in Ref. [81] for
γ → qq̄ is not yet available for q → qg.

To further analyze the differences between the semi-classical and soft limits, we plot the
in-medium scattering probability for fixed-angles in Fig. 6. Note that these plots contain the
full splitting probability (vacuum + medium) and not just the medium part, as was done
in Fig. 4. Both panels focus on the large-angle regime, the region of interest for medium-
modifications to the energy-energy correlator. In the BDMPS-Z case, we show both the soft
(z → 0) and hard gluon (z → 1) limits given by Eqs. (3.12) and (3.13), respectively. We find
that the large-angle regime is fully dominated by asymmetric splittings whose description
clearly differs when taking the soft or the semi-classical limit. The imprint of this mismatch
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Figure 6: Medium splitting probability in q → qg as a function of z for two different
splitting angles: θ = 0.4 (left) and θ = 0.6 (right). We show two different approximations
for the splitting kernel: soft (or BDMPS-Z) both in the z → 0 and z → 1 limits, and
semi-classical.

in the EEC itself will be discussed in Sec. 4.1.

Heuristic interpolation scheme: After separately studying three approximations of
the exact in-medium matrix element in different kinematic regimes (z ∼ 1/2, z → 0 and
z → 1), here we propose an ansatz for the cross-section that simultaneously covers these
three kinematical limits. Assuming pt ≫ ωc, we consider the following interpolating scheme:

d2Pmed = d2PEq. (3.10) Θ(min(z, 1− z)pt − ωc)

+ d2PEq. (3.12) Θ(ωc − zpt) + d2PEq. (3.13) Θ(ωc − (1− z)pt) , (3.14)

which splits the phase-space in terms of the emission’s energy. That is, the first line uses
the semi-classical approximation in a region of symmetric energy sharing, while the second
line describes two regions where most of the energy is carried away by one of the daughter
particles. Note that this form is introduced to gauge how much the most asymmetrical
branching region affects the in-medium EEC. This is a relevant question since previous
studies of the EEC used the semi-classical approximation in the full z-range, even if it does
not capture the correct z → 0 and z → 1 limits, as shown in Figs. 5 and 6. As we will
show next, these asymmetric configurations actually give a sizable contribution to the EEC
at large angles in this particular model. Finally, we would like to remark that the ansatz
introduced in Eq. (3.14) is not meant as a rigorous, or even improvable, way to obtain a
more accurate in-medium cross-section.

3.3 Energy loss model for two parton system

Finally, we consider the effect of energy loss on the in-medium cross-section. From a
phenomenological point of view, energy loss is expected to be the main source of medium
modifications to jet observables. On the theory side, a complete description of the energy
loss mechanism to all-orders remains challenging (see Refs. [74, 86] and references therein for
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recent progress). The treatment of energy loss presented here closely follows that introduced
in Ref. [74] and used in other studies both about the EEC [46] and beyond [87–90].

More concretely, we consider a model for jet energy loss based on the quenching weight
approximation [80, 91]. Without loss of generality, let us consider a q-initiated jet. The
first step is to approximate the in-medium cross-section, dσq, as a pt-shifted version of the
vacuum one, dσvacq , i.e.,

dσmed
q

dptdθ
=

∫ ∞

0
dεDq(ε)

dσvacq

dp′tdθ

∣∣∣∣∣
p′t=pt+ε

, (3.15)

where Dq(ε) is a probability distribution describing the transfer of ε ≪ pt energy from
the quark to the QGP by means of out-of-the cone emissions. Next, the quenching weight
approximation exploits the steeply falling nature of the vacuum cross-section (dσq ∼ dp2t /pnt
with n ≈ 6) to approximate Eq. (3.15) as

dσmed
q

dptdθ
≈

dσvacq

dptdθ

∫ ∞

0
dεDq(ε)e

−nε
pt ≡ Qq(pt)

dσvacq

dptdθ
, (3.16)

where Qq(pt) is usually referred to as the (quark) quenching weight and represents the
Laplace transform of the single parton energy loss probability.

As we have already mentioned, the single parton energy loss probability distribution
is, in general, a highly complex object (including non-perturbative ingredients) and its full
description is still not understood. Focusing on a partonic picture, a closed form for Qq(pt)

can be achieved by assuming that multiple gluon emissions are independent, a reasonable
assumption when the jet energy is transported at large angles via soft gluons [92–94]. Within
this approximation, one can write the single body quenching weight as [91]

Qi = exp

[
−
∫

dω
∫

d2k
dPmed

i

dωd2k

(
1− e

−nω
pt

)]
, (3.17)

and we use the BDMPS-Z form of the in-medium cross-section (since it captures the produc-
tion of soft radiation) as given by Eq. (3.12). At this point, it is important to remark that
there are two distinct physical regimes in the medium-induced cascade that are responsible
for energy loss. To facilitate the discussion, we split Eq. (3.17) as:

Qi = exp

{
−
∫ ωs

T
dω
∫

d2k
dPmed

i

dωd2k

(
1− e

−nω
pt

)
+

∫ ∞

ωs

dω
∫

d2k
dPmed

i

dωd2k

(
1− e

−nω
pt

)}
≡ Qmini−jets

i ×Qpert.
i , (3.18)

and introduce the characteristic scale ωs ≡
(
αmed
s Nc

π

)2
ωc [92]. Physically, ωs corresponds

to the energy scale for which the in-medium emission probability becomes order one, and
the medium-induced cascade develops a turbulent behavior. Soft gluon emissions with T <

ω < ωs thermalize quickly, and their perturbative description breaks down. Further, their
emission rate becomes independent of transverse momentum broadening since they occur

– 15 –



at large angles. In this mini-jet dominated regime, we can therefore write the quenching
weight as:

Qmini−jets
i = exp

[
−
∫ ωs

T
dω

dPmed
i

dω

(
1− e

−nω
pt

)]
, with

dPmed
i

dω
=

2αmed
s Ci

π

√
ωc

2ω3
, (3.19)

where we have used the ω ≪ ωc limit of the medium-induced energy spectrum. After
integration, we find

Qmini−jets
i = exp

{
− 2αmed

s Ci

π

[√
2ωc

T

(
1− e

−nT
pt

)
−
√

2ωc

ωs

(
1− e

−nωs
pt

)
+

√
2πωcn

pt

(
erf

(√
ωsn

pt

)
− erf

(√
nT

pt

))]}
. (3.20)

The second contribution to Qi in Eq. (3.18), Qpert.
i , captures the transport of energy out

of the jet cone due to the emission of semi-hard (perturbative) gluons with ω ≫ ωs that
do not instantly thermalize as was the case for the mini-jets. Note that we describe the in-
medium emission of these gluons with the BDMPS-Z spectrum in all the frequency ranges,
i.e., even when ω > ωc. Strictly speaking, an accurate description of gluons with ω > ωc

requires going beyond the multiple soft scattering approximation for the in-medium elastic
scattering rate and accounting for its Coulomb-like tail [95–98]. Nevertheless, we keep the
BDMPS-Z approximation, which yields a 1/ω3 suppression for ω > ωc to facilitate analytic
calculations. Further, when ωs ≪ ω ≪ ωc, the double differential soft gluon spectrum
reduces to [4, 88]

(2π)2
dPmed

i

dωd2k
≈ αmed

s Ci

π

√
q̂

ω3

4π

q̂
Γ0

(
k2

q̂L

)
. (3.21)

Plugging Eq. (3.21) into (3.18) and imposing that all gluons are outside the cone, i.e.,
k > 2ωR 9

Qpert.
i = exp

{
− αmed

s CF

π

√
2ωcn

pt
Iα

(
nωs

pt

)}
, (3.22)

where α ≡
(

2ptR√
q̂Ln

)2
and

Iα

(
nωs

pt

)
=

∫ ∞

nωs
pt

dx
1− e−x

√
x3

(
e−x2α − αx2Γ0(αx

2)
)
. (3.23)

An important remark is that in the large radius limit, α→ ∞ and thus Qpert.
i → 1. This

case corresponds to the limiting scenario considered in e.g. [40], where it is assumed that
energy loss effects are absent since all radiation is recovered inside the jet cone. Nonethe-
less, we note that even in this ideal asymptotic limit, there are energy loss contributions
analogous to the ones captured by Qmini−jets, which can not be neglected a priori.

9To avoid boundary effects, we consider out-of-the cone emissions to satisfy θ > 2R.
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So far, we have described the quenching weight energy loss prescription for a single
color charge propagating in the medium. Since we want to compute the EEC (at least)
at LO accuracy, we need the two body energy quenching weight. Such an object has a
much richer structure due to the complex color pattern present in multi-gluon processes,
for a more detailed discussion, see e.g. [86]. In this work, we employ a simple model for the
two-body energy loss, described by the interpolating form

Qij(pt, θ, z) = Qi(pt, R)(1−Θres) +Qi(pt, R)Qj(pt, R)Θres , (3.24)

where Θres denotes the phase space where the 1 → 2 branching is resolved by the medium
and it is given by

Θres = Θ(θ − θc)Θ(tmed
f − tf ), with θc =

2√
q̂L3

. (3.25)

Notice that in this notation, i corresponds to the flavor of the parent particle. Also, since
we are working at LO accuracy, we neglect radiative corrections to the bare quenching
weights introduced before [74]. The first factor in Eq. (3.24) ensures that only sufficiently
wide angle emissions, where the outgoing states are resolved as separate color charges, can
lose energy independently [44, 86, 99–103]; the second piece ensures that long-lived gluon
fluctuations are not included because they never decohere from the parent parton.

3.4 Summary of the results

Having individually described the different modifications that affect EEC computation in-
medium, we finalize the discussion by piecing together all the different elements. Neglecting
the initial jet cross-section, the LL medium modified EEC for the q → qg channel reads

dΣq→qg

dχ
=
ᾱ

χ

∫ 1

0
dz z(1− z)Pgq(z)

(
(1−Θveto)

gq

χ−ᾱγmed
qq (3,χ)

+ F gq
med(χ, z)

)
Qqg(pt, χ, z)

+
ᾱ

χ

∫ 1

0
dz z(1− z)Pqq(z)

(
(1−Θveto)

qq

χ−ᾱγmed
qq (3,χ)

+ F qq
med(χ, z)

)
Qgq(pt, χ, z)

≈ 2ᾱ

χ

∫ 1

0
dz z(1− z)Pgq(z)

(
(1−Θveto)

gq

χ−ᾱγmed
qq (3,χ)

+ F gq
med(χ, z)

)
Qqg(pt, χ, z) , (3.26)

where in the last line we have used that, up to the definition of the energy fraction, the
two partonic channels are the same. We note that in our description, they can differ,
for example, in the definition of the color representation of the jet quenching parameter.
In what follows, we shall ignore these distinctions, which have a small numerical impact.
We also set Θgq

veto ≈ 0 in the fixed order term, since the phase-space constraint is derived
in the soft limit. Nonetheless, we conducted a numerical check and found that including
the constraint derived in the soft radiation limit at leading order accuracy, with a naive
extension to finite kinematics, does not significantly change the observable in a qualitative
way.

The equivalent expression for γ → qq̄ reads

dΣγ→qq̄

dχ
=
ᾱ

χ

∫ 1

0
dz z(1− z)P γ

qq̄(z)
(
1 + F qq̄

med(χ, z)
)
Qγ→q̄q(pt, χ, z) , (3.27)
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Figure 7: Jet EEC for the semi-analytic models discussed in the main text following
Eq. (3.26). The left panel neglects energy loss effects, while the right one includes the
two-prong energy loss model introduced in the main text.

where, for consistency, we disregard LL resummation for this channel since it will involve
off-diagonal terms in the (QED) anomalous dimension matrix. We have also adapted the
notation for the quenching weight to make clear that the parent parton is a photon. The
γ → qq̄ vacuum splitting function reads for nf light quark flavors10

P γ
qq̄ = nf (z

2 + (1− z)2) . (3.28)

4 In-medium results for the EEC

In this section, we provide a quantitative study of the jet EEC, following the derivations
presented in the previous sections. We first discuss the results obtained using the semi-
analytic formulas for the q → qg channel, i.e., Eq. (3.26). We then compute the exact O(αs)

result for γ → qq̄ using the publicly available numerical routines introduced in Ref. [47].
The exact numerical result is compared against different semi-analytic estimates discussed
in Sec. 3.2. Finally, we present a Monte Carlo study, using the JetMed MC, modified to
account for balanced (i.e., z ∼ 1/2) branchings in the medium.

4.1 Semi-analytic results for q → qg splittings

In Fig. 7, we show the results for the evaluation of Eq. (3.26) for three different scenarios:
pure vacuum (black), in-medium using the semi-classical approximation (Eq. (3.10)) (blue)
and the result for the interpolation ansatz introduced in Eq. (3.14) (red). We show the
results for the case where energy loss is neglected, i.e., Qq = Qg = 1, on the left-hand side,
while the right-hand side plot includes the full two parton quenching weight introduced in
Eq. (3.24). We consider jets with a radius R = 0.4 and pt = 200 GeV, while the medium
parameters follow the choice made in Fig. 4, with T = 0.3 GeV. Note that for this set-up
ωc = 60 GeV.

10In what follows we use nf = 1.
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The vacuum result is a straight line with a slope controlled by the anomalous dimension.
Regarding the medium curves, let us first focus on the case where energy loss is neglected.
For small angles, all curves overlap, meaning that the EEC is dominated by vacuum evolu-
tion. Medium effects appear at large angles, in accordance with previous studies [39, 40].
However, the behavior of the two models for the in-medium matrix element under consid-
eration is qualitatively distinct. When only semi-hard in-medium splittings are considered,
we observe a significant enhancement of the EEC, resulting from extra bremsstrahlung ra-
diation at wide angles. The curve is characterized by a plateau at the widest angles, while
there is a sharp rise at a characteristic scale (χ ≃ 0.02), related to the coherence angle
θc (see Eq. (3.25)) [39]. In contrast, the interpolation formula first leads to a suppression
of the EEC, followed by an enhancement around the same scale as in the semi-classical
result. The suppression is driven by the BDMPS-Z spectrum (which can become negative),
while the enhancement is again generated by the hard splitting contribution. More impor-
tantly, we find that the EEC for χ > 0.1 is almost an order of magnitude smaller than the
semi-classical result. That is, despite the energy weighting in the observable definition, the
regime around the jet boundary is strongly affected by the modeling of very imbalanced
splittings (z → 0 or 1).

A natural question at this point is whether the previous conclusion might be an artifact
due to the over-simplistic interpolation formula that we have chosen. To demonstrate that
this is not the case, we have performed three independent checks that do not include the
BDMPS-Z contribution. On the one hand, we restricted the range of frequencies over
which the EEC is integrated to those for which the semi-classical approximation is valid,
i.e., ω > ωc. In this case, the EEC falls exactly on top of the vacuum curve at large angles.
Alternatively, we have also calculated a groomed version of the observable in which we
imposed that z > zcut = 0.1. Again, the enhancement at large angles disappeared in this
scenario. Finally, we computed the EEC using higher-power energy suppression factors, i.e.,
taking n > 1 in Eq. (1.2).11 The results obtained using the semi-classical approximation
showed that raising n leads to a qualitative modification in the shape of the distribution
on top of the expected overall suppression. This again indicates a clear dependence on
soft branchings. These results might seem counter-intuitive since this class of observables is
designed to be insensitive to such soft gluon radiation. However, they indicate that currently
available approximations to the in-medium matrix element are insufficient to capture the
correct behavior of the in-medium EEC throughout the full kinematic range. Unfortunately,
this prevents any qualitative or quantitative interpretation of upcoming data based on these
leading-order results.

Turning to the right panel of Fig. 7, we observe that the inclusion of energy loss leads to
an overall suppression of the EEC. When both outgoing partons are resolved as independent
charges, i.e., at angles larger than θc ≃ 0.04, this suppression is more prominent, and thus
energy loss competes with the modification to the splitting function. The exact balance
between these two effects is highly model-dependent, and we can not make a quantitative

11Note that the observable becomes collinear unsafe when n > 2. We discuss an alternative definition of
the EEC that allows for any energy weight in Sec. 5

– 19 –



10−2 10−1 100

χ

10−2

10−1

d
Σ d
χ

p
t

=
1
0

G
e
V

,
q̂

=
2

G
e
V

2
/
fm

,
L

=
2

fm

γ → qq̄

Vacuum

Semi-classical approx.

Large Nc factorizable

Exact

10−2 10−1 100

χ

10−3

10−2

10−1

d
Σ d
χ

p
t

=
2
0

G
e
V

,
q̂

=
2

G
e
V

2
/
fm

,
L

=
2

fm
γ → qq̄

10−2 10−1 100

χ

10−3

10−2

10−1

d
Σ d
χ

p
t

=
3
0

G
e
V

,
q̂

=
2

G
e
V

2
/
fm

,
L

=
2

fm

γ → qq̄

10−2 10−1 100

χ

10−3

10−2

10−1

d
Σ d
χ

p
t

=
5
0

G
e
V

,
q̂

=
2

G
e
V

2
/
fm

,
L

=
2

fm

γ → qq̄

Figure 8: Results for the leading order γ → qq̄ jet EEC with exact kinematics. Jet
energies are ordered from left to right and top to bottom as: pt = 10, 20, 30, 50 GeV. We
show the curves for: vacuum (black), the semi-classical approximation (blue), the semi-
analytic medium factor Fmed obtained in the large Nc limit and keeping only factorizable
terms without using the semi-classical approximation detailed in the main text (red, see [47]
for details) and the exact result extract from the numerical routine (green). We note that
the error band shown is computed by comparing the semi-analytical large Nc result with its
full numerical counterpart, following the procedure detailed in [47]. Thus, the error band
is only indicative of the size of discretization effects entering the numerical calculation.

statement regarding which effect dominates. Nonetheless, we observe that once very soft
radiation is removed from the semi-classical approximation, energy loss seems to dominate
the observable. In particular, using the EEC to determine the transition between coherent
and decoherent jet evolution in the medium is far more involved than the naive O(αs)

calculation might suggest. We note that the sharp transition at χ ∼ 0.3 is due to the step
function form used in Θres; in a more realistic model, this would be smeared due to varying
medium parameters and a more accurate treatment of the phase space, see e.g. [46] for a
different energy loss prescription for the EEC.
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4.2 Leading order results for γ → qq̄ splittings

The previous section has clearly shown how different approximations of the in-medium
matrix element can lead to disparate results at the EEC level. The absence of an exact
calculation of the in-medium q → qg probability hampers any attempt to make quantitative
statements utilizing analytic tools. The situation is less pessimistic in the case of a simplified
scenario, namely γ → qq̄, thanks to a recent computation [47]. We use the publicly available
numerical routines introduced in that paper and calculate the EEC with this exact input. 12

The result is shown in Fig. 8, which also includes the vacuum case (black), the semi-classical
approximation (blue), and a large-Nc version of the exact result where only factorizable
terms are kept, as discussed and computed in [47] (red). We note that the numerical
convergence of the exact calculation degrades when probing energetic jets and/or dense
media. That is why, in this study, we chose pt = (10, 20, 30, 50) GeV and L = 2 fm. For
the same reason, the numerical error band increases as the jet energy increases. This is
observed in the lowermost right panel when χ > 0.5.

First, we note that despite the apparent simplicity of the γ → qq̄ channel compared to
the QCD one studied above, medium effects are imprinted in the EEC in a similar fashion,
i.e., vacuum evolution at small angles followed by an enhancement of large-angle splittings.
In addition, the exact (at O(αs)) in-medium result shows a very similar trend to that of the
naive interpolation formula discussed in the previous section. Interestingly, we observe (for
the three largest energies) that the exact result (and also the large-Nc curve) predicts first
a depletion at relatively small angles, then a rise in the intermediate regime, and finally
another depletion at large angles. We would like to highlight that the fact that the medium
modified result dips twice under the vacuum line has not been observed before. In turn, the
semi-classical approximation fails to grasp the exact result qualitatively and quantitatively.

12We note that this result is still obtained in the high energy limit. Further, we do not include energy loss
since it will not be necessary for the discussion and only introduces more considerable model dependence.
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This reinforces the idea that any jet EEC calculation must include an accurate description
of the small/large z regions. We further confirmed this by computing the EEC with a higher
energy suppression power, i.e., n > 1. For the exact result, we observe that as n increases,
the overall distribution is suppressed, but the shape is not altered.

Overall, medium modifications to the splitting function seem to have a small quantita-
tive impact on the jet EEC for this choice of medium parameters, especially as the jet energy
increases. We explore other values of the jet quenching parameter q̂ = 2, 4, 6, 8GeV2/fm at
fixed jet energy pt = 20 GeV in Fig. 9. Increasing the density of scattering centers in the
medium naturally leads to a larger enhancement. We want to remark that the medium-to-
vacuum ratio remains within a factor of two, and thus, larger values of q̂ do not change the
qualitative picture just discussed.

Our study indicates the urge to push the accuracy of analytical calculations to assess
the potential of the jet EEC to showcase medium-modifications to the splitting function or,
more generally, the transition between a coherent and decoherent regime in jet evolution.

4.3 Monte Carlo study with JetMed

To confirm the analytic findings of the previous section, we compute the EEC using a
Monte Carlo approach. The interest of doing so is twofold: (i) it allows to include the
effect of jet energy loss without relying on the quenching weight approximation used in
Sec. 3.3, (ii) some of the vacuum logarithmic corrections are easily accounted for, such as
those coming from the running of the QCD coupling constant. The latter comment also
holds for the resummation of medium-induced emissions in the regime where this effect
is relevant, namely when the energy of the emitted gluons is comparable to the multiple
branching scale ωs introduced in Sec. 3.3.

We shall use the Monte Carlo parton shower JetMed [73, 104] whose phase space for
vacuum-like radiations, as described in Sec. 3.1, is already built-in and accounts for color
coherence effects. In a nutshell, the JetMed parton shower relies on the factorization in time
between vacuum-like radiations and medium-induced emissions in a three-stage approach:
during the first stage, the highly virtual partons produced by the hard scattering are evolved
following a standard angular ordered vacuum-like shower, albeit constrained by the in-
medium conditions k2t ≥ √

q̂ω and θ > θc. Physically, this first cascade happens at time
t = 0 measured from the hard process; this is formally correct within the double logarithmic
approximation since the in-medium condition implies that tf ≪ L so that all the in-medium
vacuum-like emissions happen very fast as compared to the longitudinal size of the medium.
In the second step, the produced partons are subsequently evolved using an ordering in time
from t = 0 up to t = L with the rate given by the BDMPS-Z rate. These medium-induced
emissions also undergo transverse momentum broadening between successive branchings.
Finally, in the last stage, the outgoing partons are again evolved following an angular
ordered vacuum-like cascade down to the hadronization scale in the out-medium phase-
space corresponding to the conditions tf ≥ L or θ < θc. The angle of the first splitting of the
out-medium shower is not constrained by its parents due to the angular ordering violation
effect (anti-angular ordering) caused by the color decoherence of the parent dipole [102, 103].
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In the in-medium stage, the splitting is assumed to be purely vacuum-like, meaning that
the splitting probability is given by the DGLAP splitting kernel. Hence, the Fmed factor
introduced in Eq. (3.5) is not taken into account, albeit in an effective way via the phase
space constraint, which is valid to double logarithmic accuracy. To test the effect of the
Fmed correction, we have modified the MC to include Fmed for the splitting produced inside
the medium. In this way, we treat Fmed as a pure O(αs) correction to the shower instead
of artificially resumming it. The functional form we use for Fmed is given by Eq. (3.10) and
is therefore valid only for hard splittings with z > ωc/pt. We emphasize that our purpose
is not to faithfully account for the Fmed correction but instead to quantify the relative
importance of the enhancement seen at large angles in the EEC when using Eq. (3.10) with
respect to the effect of softer BDMPS-Z emissions (z ∼ ωs/pt ≪ ωc/pt) and energy loss on
the EEC spectrum. With this in mind, it is sufficient to use a simplified version of the Fmed

function, which is independent of the parton flavor of the emitter, and we will therefore use
Eq. (3.10) with χ = ζ = 1. The consequence of this approximation on the q → qg splitting
is illustrated in Fig. 4 (see the difference between the black and red curves).

To sample the splitting probability for the first emission inside the medium following

αs(k⊥)

π
Pij(z)dz

dθ
θ

[1 + Fmed(z, θ)] , (4.1)

we use the Sudakov veto algorithm with the envelop rate

2CRαs(k⊥)

π

dk⊥
k⊥

dθ
θ

(
1 +

1
240 q̂L

5θ4k2⊥
1 + 1

420 q̂
3/2L9/2θ3

)
, (4.2)

to generate the next splitting angle θ and transverse momentum k⊥. This envelop rate
accounts for the limiting behavior of Fmed(z, θ) as L/tf goes to 0 or infinity and presents
the advantage of having a cumulative distribution function which is analytically invertible.
With this envelop rate, the subsequent splitting angle θ is generated with transverse mo-
mentum k⊥ and is accepted with probability given by the ratio between the exact splitting
probability and its envelope. Note that since we generate k⊥ and not z, an additional veto
is imposed to ensure longitudinal momentum conservation.

In addition to the vacuum case, in which there is no quenching, we consider three
physical scenarios to gauge the sensitivity of the EEC to a particular ingredient with the
possible medium modifications considered in section 3:

1. a vacuum-like shower where only the first splitting is modified by the 1+Fmed factor.
This scenario is akin to the analytic calculation in Sec. 3.2 and in [40];

2. the JetMed baseline, which does not include the Fmed correction but accounts for
BDMPS-Z radiations, coherent and incoherent jet energy loss, and angular ordering
violation effects;

3. the JetMed baseline with the first vacuum-like splitting inside the medium sampled
using the 1 + Fmed correction. This scenario enables one to compare the relative
impact of the Fmed factor with respect to soft medium-induced emissions and large-
angle energy loss.
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Figure 10: Monte Carlo calculation of the EEC as a function of χ = θ/R for a monochro-
matic initial hard spectrum with pt0 = 50 GeV (left) and pt0 = 200 GeV (right) for several
medium-modified jet evolution as discussed in the main text.

In Fig. 10, we show the EEC distribution in jets triggered by a quark with a fixed initial
pt0 = 50 GeV (left plot) and pt0 = 200 GeV (right plot) in the vacuum and the medium for
the three physical set-ups. Since the kinematic of the parton sourcing the jet is fixed and
no initial hard spectrum is included, the jet selection has no effect, and the plot compares
the EEC of the same jet population. In particular, the energy loss effect analytically
implemented in Sec. 3.3 is not present in this calculation. This allows us to understand the
impact on the EEC of intrinsic modifications of the jet shower in the medium. Another
important point is that JetMed does not account for hadronization. Therefore, the curves’
turnover is due to the shower cutoff and not confinement dynamics [37]. One first notices
that the Fmed factor computed in the semi-hard approximation is responsible for the bump
observed at large χ. This bump is considerably reduced when removing the Fmed factor
and considering only BDMPS-Z emissions, in agreement with the analytic findings of the
toy model discussed towards the end of Sec. 3.2. The main message of this plot is that
without the enhancement introduced by Fmed at large angles, the intrinsic modification of
the jet evolution in the medium caused by the phase space modifications and BDMPS-Z-
like emissions leave almost no imprint on EEC distribution. As previously discussed, the
effect of Fmed is vastly overestimated since the semi-hard approximation is invalid in the
kinematic regime where the enhancement appears.

We turn now to the calculation of EEC, including a more realistic hard scattering
spectrum (generated using LO 2 → 2 matrix elements for dijet production in pp collisions
at the LHC with

√
s = 5.02 TeV) and jet selection. Introducing a jet selection on pt enables

one to characterize the dependence of EECs on the energy loss effect. We expect this Monte
Carlo calculation to qualitatively reproduce the analytic results obtained in Sec. 3.3 with
the quenching weight method. Fig. 11 shows that this is indeed the case, as one observes a
suppression at large angles and an enhancement at small angles from the vacuum (solid red)
to the medium (solid curve) calculation. This is a combined consequence of energy loss and
jet selection since the population of jets included in the analysis differs in the vacuum and
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Figure 11: Monte Carlo calculation of the EEC as a function of χ = θ/R in dijet events
at the LHC. Selected jets have pt > 50 GeV (left) or pt > 200 GeV (right) and absolute
value of rapidity |y| < 2.1.

the medium. Jets selected in the medium are sourced by initial hard partons with a larger
pt0 resulting in EECs which are larger at small angles and smaller at large angles, as noticed
by comparing the solid red curves between the left and right plots of Fig. 10. After adding
the modification of the first splitting in the medium in the semi-hard approximation via the
Fmed factor (dashed blue line), one observes a slight enhancement at large angles. There
are two competing effects: energy loss at large angles via medium-induced emissions and
modifications of the first splitting inside the medium, which respectively cause a suppression
or an enhancement at large angles in the distribution. Given that the functional form
of Fmed implemented in the Monte Carlo should be considered as an upper limit of a
more realistic value, one can safely conjecture that the dominant effect among these two
competing mechanisms will be the energy loss.

5 Lund-based definition of the EEC

Throughout this paper, we have studied the canonical definition of the EEC in which
the energy weight is set to 1, i.e., n = 1 in Eq. (1.2). In a heavy-ion context, higher
values of n might be helpful to, for example, mitigate the overwhelming underlying event.
However, setting n > 1 leads to a collinear unsafe observable. For n = 2, it has been
shown that these divergences can be absorbed into moments of non-perturbative objects
such as fragmentation/track functions in proton-proton collisions [51, 105]. Extending this
approach to heavy-ion collisions is a challenging task for multiple reasons, the main one
being the multi-scale nature of the problem [75].13 It would be ideal to minimally modify the
definition of the EEC such that higher powers of the energy weight can be accommodated
without sacrificing perturbative calculability.

13Appendix B of Ref. [40] showed results for the jet EEC with n = 2 neglecting non-perturbative ingre-
dients.
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Figure 12: Lund-based EEC for several values of the energy weighting parameter n in
proton-proton collisions for two jet pt selections: pt > 50 GeV (left) and pt > 200 GeV
(right). Note that for n = 1 the particle level result is indicated by a black, dashed line.

We do so in the Lund family of observables context [50] and denote this alternative
definition as Lund-based EEC or LEEC. The algorithmic procedure to calculate the Lund-
based definition of the energy-energy correlator goes as follows. The starting point is
to recluster a given jet (typically defined with the anti-kt algorithm [106]) with Cam-
bridge/Aachen [107, 108] to obtain an angular-ordered sequence. Then, we follow the
traditional recipe in Lund-based observables:

• Undo the last-clustering step to generate two subjets, j1 and j2.

• Calculate their relative kt defined as kt = min(x1, x2)∆R12, where the concrete defi-
nitions of x (an energy-like variable) and ∆R12 (an angular-like variable) depend on
the collision system. For e+e−, xi = Ei and ∆ = θij , while in pp in xi = pti and
∆Rij =

√
(yi − yj)2 + (ϕi − ϕj)2.

• Only when kt > kt,cut, record the softest branch, so-called primary Lund declustering.

• Repeat from step 1 following only the hardest subjet, i.e., the primary branch.

• Once there is nothing left to decluster, calculate the EEC as

dΣ(n)

dχ
=

1

σ

∑
{i,j}∈declust.

∫ 1

0
dz

dσ
dθijdz

zn(1− z)nδ

(
χ− θij

R

)
Θ(kt > kt,cut) , (5.1)

where the sum runs over all primary Lund declusterings.

The main advantage of using subjets is that Eq. (5.1) remains collinear safe for any
value of n. In the following exploratory study, we will disregard the kt > kt,cut condition and
present some of its properties using Monte Carlo simulations. The logarithmic resummation
of this new observable will be the subject of a separate publication [109].

In Fig. 12, we present results for the Lund EEC with kt,cut = 0 GeV,in proton-proton
collisions using the JetMed samples from the previous section. For n = 1 we plot both

– 26 –



10−2 10−1 100

χ

0.5

1.0

1.5

2.0

2.5

3.0
M

ed
iu

m
(n

o
F

m
ed

)/
V

ac
u

u
m

J
e
tM

e
d
,

a
n
ti-k

t (R
=

0
.4

),
p
t
,je

t
>

5
0

G
e
V

,|y|
<

2
.1

q̂
=

1
.5

G
e
V

2
/
fm

,
L

=
4

fm
,
α
s
,m

e
d

=
0
.2

4

Lund EEC, w/ E-loss

n = 1

Particle level

n = 2

n = 4

10−2 10−1 100

χ

0.5

1.0

1.5

2.0

2.5

3.0

M
ed

iu
m

(w
/

F
m

ed
)/

V
ac

u
u

m

J
e
tM

e
d
,

a
n
ti-k

t (R
=

0
.4

),
p
t
,je

t
>

5
0

G
e
V

,|y|
<

2
.1

q̂
=

1
.5

G
e
V

2
/
fm

,
L

=
4

fm
,
α
s
,m

e
d

=
0
.2

4
Lund EEC, w/ E-loss

n = 1

Particle level

n = 2

n = 4

Figure 13: Medium-to-vacuum ratio of the Lund-based EEC for several values of the
energy weighting parameter n with (right) or without (left) Fmed correction to the first
splitting.

the particle level (i.e., the traditional EEC) and the Lund EEC. We observe very small
differences between the two cases. When increasing n, we only show results for the Lund
version. The overall suppression is naturally explained as a reduction in the contribution
of each pair of subjets to the observable due to the energy-weight penalty. Interestingly,
the slope of the EEC at large angles becomes steeper with increasing n. This might be
related to different anomalous dimensions entering into the logarithmic structure although
no direct link can be made from the parton shower result unless taking the appropriate
limits, as introduced in Ref. [110]. Regarding the pt-dependence, we observe the expected
overall shift to smaller angles of the full distribution and quantitatively small differences
between the Lund approach and the standard definition for n = 1.

The impact of medium corrections to the Lund EEC (with kt,cut = 0 GeV) is explored
in Fig. 13. The left panel does not include Fmed, while the right one does. In both cases,
energy loss is part of the simulation. As in vacuum, the Lund-based result for n = 1 is
almost identical to the standard definition of the EEC. Larger values of n reveal a larger
medium-to-vacuum ratio in the entire angular range with or without Fmed. To explain
this behavior, let us first focus on the case where Fmed is switched off, and the Lund EEC
exhibits an apparent narrowing. The net effect of increasing n is to reduce the number
of pairs that give a sizeable contribution to the EEC, i.e., it should become dominated
by a handful of hard subjet pairs the larger n is. In other words, the EEC resembles
a SoftDrop-like [1] observable such as θg. We note that the pronounced narrowing of the
n = 4 EEC result is quantitatively similar to that of θg [72, 88, 111]. It would be interesting
to simultaneously calculate/measure these two observables and understand whether they
share the same transition point. Including Fmed compensates for this narrowing and leads
to the characteristic enhancement around the jet boundary, as observed in the right panel
of Fig. 13.
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6 Conclusions

The study of parton shower evolution and hadronization in terms of energy-energy corre-
lators has gained momentum in the last couple of years, theoretically and experimentally.
While high-precision calculations exist for the vacuum baseline [31, 112], much less is known
about the formal accuracy of EEC calculations in the heavy-ion context. In this work, we
have provided a detailed study of the EEC in a dense QCD background, both with logarith-
mic resummation tools and Monte Carlo simulations. In summary, our results demonstrate
that certain theoretical approximations to the in-medium matrix element previously em-
ployed in the literature are insufficient to grasp the dynamics of this observable fully and can
lead to a significant overestimate of medium modifications. We also show that a leading-
order description of the EEC can be significantly spoiled by other well-known jet-quenching
effects, such as energy loss.

On the analytic front, we have revisited the LL resummation of the jet EEC following
a diagrammatic approach that, in our view, is more flexible than other approaches when
it comes to including medium effects. We hope this will allow for higher-order calculations
taking into account medium effects; we leave related efforts to future work. Another key
result of this work is the first full leading order EEC calculation in the medium for the
γ → qq̄ channel, which shares many features with pure QCD channels. The exact results
confirm that commonly used semi-analytic approximations vastly overestimate the medium
enhancement. We hope this result will trigger new developments in the computation of the
exact q → qg in-medium matrix element.

Monte Carlo simulations of the EEC further support these conclusions. Our calculation
includes part of the NLL resummation in vacuum (such as running coupling corrections),
energy loss via medium-induced emissions, and medium modification of the first in-medium
splitting. We find that the dominant effect is caused by energy loss, which suppresses the
medium distribution at large angles and increases it at small angles (with the transition
occurring around θc). Even when overestimating the medium modification to the first in-
medium semi-hard splitting, we observe that the energy loss effect can overwhelm the large
angle enhancement. Further steps to improve our Monte Carlo calculation include (i) to
have an NLL accurate parton shower (see [110, 113–115]) for the vacuum-like evolution, (ii)
to perform a proper matching using the exact Fmed factor at the level of the short distance
cross-section, to have control over the O(αs) 1 → 2 in-medium matrix element within a
parton shower approach.

Finally, we argue that the energy weight in the EEC definition can be used as a knob
to amplify medium effects. To not spoil collinear safety, we introduce an extension of the
standard jet EEC definition, in which the building blocks are primary Lund declusterings
instead of individual particles. We anticipate that this gain in terms of sensitivity to medium
effects might come at the price of a more complex all-order structure. Nevertheless, the
resummation of this new observable at NLL accuracy can be achieved numerically within
the PanScales framework and will be presented in a separate publication.
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