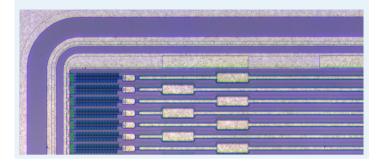
TCAD Simulation of the Electrical Performance of the ATLAS18 Strip Sensor for the HL-LHC

C. Jessiman^(a*), J. Dandoy^(a), R. Griffin^(b), C. T. Klein^(a), J. Keller^(a), T. Koffas^(a), E. Staats^(a), A. Walker^(b), V. Fadeyev^(c), M. Ullan^(d), Y. Unno^(e)

(a) Carleton University

esity (b) National Research Council Canada (e) High Energy Accelerator Research Organization (KEK) (c) Santa Cruz Institute for Particle Physics

(d) Instituto de Microelectronica de Barcelona


* corresponding author (callanjessiman@cmail.carleton.ca)

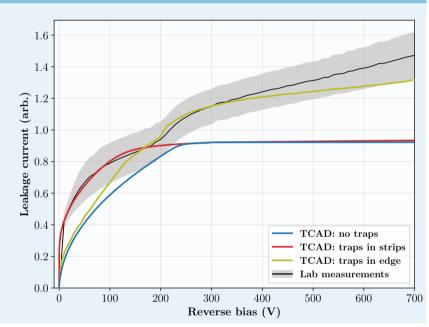
The ITk Strip Detector

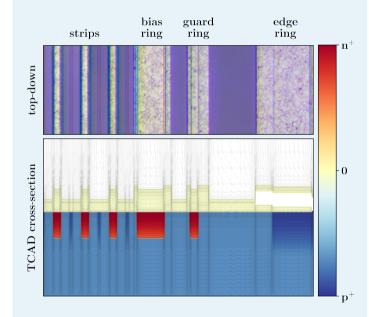
- ► High-Luminosity LHC: upgraded collision rate for higher stats to probe rare processes
 - beam-on planned for 2029
- ► ITk: in-production Inner Tracker upgrade for ATLAS experiment in HL-LHC
 - needs to deal with 5x higher luminosity and10x higher lifetime radiation fluence
- Inner layers use square pixel sensors to maximize tracking performance
- Outer layers use crossed pairs of strip sensors [1] to provide full tracking with fewer channels than pixel sensors
 - up to 10^{15} 1-MeV n_{eq}/cm^2 radiation fluence expected in strip detector

Strip Sensor Layout

- Strip sensors are fabricated on 6" wafers in 8 different layouts to cover cylindrical ITk
 - manufactured by Hamamatsu Photonics
 - sensors have 2 or 4 rows of ~ 1 k strips each
 - n^+ -in-p strips: roughly 75 μ m x 40mm
 - active thickness: 300μm

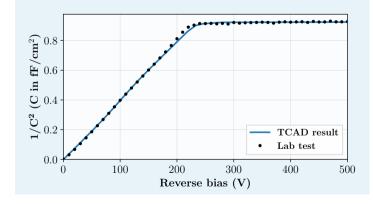
TCAD Simulation

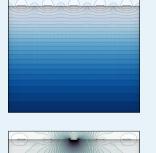

- ➤ Sentaurus TCAD is used to simulate the electrical behaviour of a sensor
- ➤ Can simulate edge structures and/or multiple strips to model full device
 - 2D simulation takes advantage of sensor symmetries to simplify computation
- ► Simulation includes:
 - detailed geometrical model of field oxide, passivation, and top-side contacts
 - ▶ doping and fixed oxide charge measured via CV and implant resistance (see also [2])
 - traps measured by DLTS [3], inferred from TCAD results, or based on existing models
 - model of humidity effects on passivation surface based on diode simulation [4]

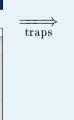

Sensor IV

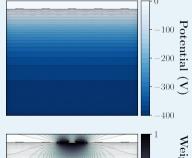
- Sensor IV depends on geometry, surface effects, charge trapping
- Tuning TCAD to match lab IVs reveals mechanisms of current generation
 - surface currents in sensor edge have large effect on sensor IV
 - using bulk traps from DLTS [3] and parametrizing surface traps as in [5]
 traps in strip area increase generation
 - current at low bias

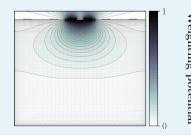
 surface leakage from traps near edge
- reproduces shape of IV past 200 V


 Next steps: combine simulations
- Next steps: combine simulations coherently, model radiation damage


Sensor CV


- Sensor CV $(1/C^2 \text{ shown})$ is a simple function of bulk thickness and doping
 - ▶ allows precise estimation of these parameters




Inputs for ATLAS Detector Simulation

- ATLAS physics analysis needs detailed simulation of collision, detection, reconstruction
- Simulation of detector response requires input from TCAD
 - electric field for charge drift
 - weighting field for induction
- TCAD results show effect of radiation-induced traps
 - Perugia trapping model [5] used to estimate end-of-life damage
 - traps raise depletion voltage, reduce interstrip isolation

Conclusions

- ▶ We have developed a detailed 2D TCAD model of the ITk strip sensor
 - model is based on measurements of sensors and test devices
 - ▶ simulation reproduces observed behaviour of unirradiated sensors
 - ▶ next step: extend simulation to include post-irradiation behaviour
- This work supports the development, future operation, and physics analysis of the ATLAS ITk

References

[1] Y. Unno et al. "Specifications and pre-production of n⁺-in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider". JINST 18 (2023).

[2] Y. Unno. "Analysis of MOS capacitor with p layer with TCAD simulation". HSTD 13 (2023).

[3] C. T. Klein. "Defect level identification of ATLAS ITk Strip Sensors using DLTS". HSTD 13 (2023).

[4] I-S. Ninca. "Understanding the humidity sensitivity of sensors with TCAD simulations". HSTD 13 (2023)

[5] P. Asenov et al. "TCAD modeling of bulk radiation damage effects in silicon devices with the Perugia radiation damage model". NIM A 1040 (2022).

13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (Vancouver, Dec. 2023)

