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DESIGN OF THE COMPACT QUADRUPOLE (y TRANSITION) POLE PROFILE

A.K. Mitra and F. Rohner

INTRODUCTION

The pole profile of the compact quadrupole has been designed with the help
1 2
of two computer programs, namely, MAGNET ) and POISSON ). The stored energy in

the magnet, computed by POISSON and approximate formulae, has a good agreement.

DESIGN OF MAGNETIC CIRCUIT

2.1 Required magnetic field

The required strength of the compact quadrupole is:
Jg dl = 0.3 T . (D

To accommodate the normal PS ceramic chamber, the pole aperture of 61 mm is
sufficient. Keeping in view that the stray field effect is more pronounced with
shorter yoke length, a reasonable value of 140 mm has been chosen for the yoke

length (effective length = 190 mm),

= 1.576 T/m .
m
This gradient of the field can be obtained by the ampere-turn
2
NT = B8 - 2320 A,
2o

where g = 1.576 T/m, R = 0.061 m.

2.2 Pole shaping

It has been observed that the pole width, the iron length and the aperture
of the magnet are some of the guiding factors for fringing field. Instead of
using a three-dimensional magnet program, the characteristics of existing quadru-
poles have been considered. The pole profile has then been designed such that at
80% of the aperture, the gradient is overdone by 7% so as to compensate for the
fringing field effect. The pole shape is obtained with the segment of a circle

of radius 70 mm and straight lines near the coil windows (Fig. 1). Figure 2 shows



the details of the magnet. The program MAGNET has been used to obtain the desired
pole shape with the trial and error method. The same has been checked by POISSON.
The shim (straight lines) as calculated by MIRT is shown in Fig. 3. Figures 4 and
5 show, respectively, the basic mesh for the air region and the flux lines in the
magnet. The flux lines in the presence of three holes (per quadrant) in the magnet
can be seen in Fig. 6. The variation of gradient of the field along the x and

y axes is shown in Fig. 7, and Fig. 8 shows the measured gradient variation along

the x axis for one of the quadrupoles.

2.3 Magnetic (stored) energy

In a true quadrupole, in rectangular coordinates,

=
[l

g X

B2 = g7 (x® + y)

Stored energy _ Ei 1.2 _ ,}__IT
Unit length 2 2 L = 2, B dx dy .

The energy can be calculated by using Eq. (A.10) (see Appendix):
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= 0.3 mH for i = 290 A (NI = 2320, N = 8)

The stored energy of the magnet has been calculated from POISSON and is found to
be equal to 63.5 J/m.
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MAIN CHARACTERISTICS OF THE QUADRUPOLE

[ g dL =0.3T
Nominal gradient = 1.576 T/m
Useful aperture = 120 mm

Inscribed circle diameter = 122 mm

Iron length = 140 mm
Over-all length = 234 mm
Stored energy =12 J
Inductance = 0.3 mH
Resistance = 7.3 md
Time constant = 40 msec
Total ampere-—turn = 2320 A
Number of turns =8

OTHER CONSIDERATIONS

Though the pole profile has been designed to take into account the effect of
fringing field, provision has been made for final shimming by means of adjustable
iron screws on the stainless steel end plates. The tolerance of the profile
dimensions is *#0.05 mm. The stampings are made of thin laminations of 1 mm thick-

ness and are clamped together by three bolts per quadrant as shown in Fig. 2.

COMMENTS

Eight such quadrupoles have been constructed and a quick measurement on each
of these magnets showed satisfactory results. Seven of these magnets have been
installed in the synchrotron ring to fit in the gamma-transition jump system.

The performance of these lenses satisfies the requirements of the system.
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APPENDIX

CALCULATION OF STORED MAGNETIC ENERGY IN A QUADRUPOLE

{ = lengts™ of Te magnel
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We shall assume a symmetric quadrupole for the analysis.
In Cartesian coordinate system:
B =g 7V (A.1)
B = X A.2
y - & (A.2)
Since, in a true quadrupole, g, = gy =g
A e 8.3)
The stored energy
W_ 2
[ 2Uo [[ B” dx dy
K_iz_f 2 2
T 2ug J &ty dxdy (A.4)

From the above figure, W/2 = (W; + Wy + W3)/%

W1 2 ' rh

— = % + dx dy = — |— + — A.5
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(A.6)

To find W3, we shall assume a linear field distribution from a to b, i.e.

b - x
B =
y BO b b
where By = g a.
h b
Ws g2 3.2 ) g2
—_—=— = b - dx dy = R® a b A.
zzuobsz(x)xylzm a (A7)
V=0 X=0
for h = hy = R?/2a.
W3 g’ s (b
T (B &

when h # hg.

From Eqs. (A.5), (A.6), and (A.8), the total energy can be expressed as

R (R 10 10 N O] P

This gives the stored energy per octant of the lens per unit length.

Substituting the value of Yo = 47 X 1077, the empirical formula for energy

is given by
Yz2g Ra)?|1- [ET "3 (5)2 2| x 10° 3/m (A.10)
2 12 3 ’ )

where g is in T/m, and R and a are in m.
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All dimensions in mm. | 150
Tolerance +0.05.

Fig. 1 Compact quadrupole pole profile.
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Fig. 2 Compact quadrupole
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Fig. 5 Flux plot of the compact quadrupole






pac

Feds)

FABRICATON SUISSE



FABRICATION SUISSE



