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Summary of the Antiproton Collector Study

December 13 -14, 1982

A two day meeting was held to discuss progress towards a consistent 

design of an Antiproton Collector. The concept emerged of 25 m radius collector 

ring to be interposed between production target and the present AA. The accept

ance of this new ring would be 6% in Δp/p and 200π mm.mrad in both transverse 

phase planes. It would contain r.f. systems for bunch rotation and high fre

quency cooling for fast cooling in both longitudinal and transverse planes.

The collector would pass on its antiprotons every few seconds to the AA 

ring so that it could be maintained or repaired without losing the antiproton 

stack. To take advantage of this nearly all the systems with moving parts in 

the AA would be replaced by equivalent systems in the collector, thus helping 

to ensure a reliable source of antiprotons.

With the focusing devices and target assembly now being developed, the 

expected improvement in antiproton collection rate could be a factor 10 higher 

than the present bare AA. This seems matched to forecasts of SPS capability in 

the next few years. It might even be possible to reach this improved rate while 

only taking every alternate pulse from the PS supercycle.

Much remains to be done to establish the feasibility of the collector, and 

particularly its cooling systems but the conclusions of this study were suf

ficiently encouraging for one to be hopeful that a design will now emerge.

The unedited contributions to this study are to be found in order of pre

sentation. Each contribution is headed by a deviding page with its title printed 

along the thumb margin.

E.J.N. Wilson
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LATTICE STRUCTURE WITH FIXED AND VARIABLE η

S.X. Fang

1. GENERAL DESCRIPTION

The AC ring, which resembles a racetrack, has a circumference of 157.08 m. It consists of 

two arcs and two long straight insertions, each 17 m, for installing the injection, ejection 

and cooling systems. The lattice structure of one half of the ring is shown in Fig. 1. It 

is composed of six regular cells, two dispersion suppressors and one long insertion. The 

main characteristics of this lattice focusing structure are as follows.

It must provide two regimes of operation, i.e. the "bunch rotation" regime and the 

"cooling regime". In the former regime the η value is -0.002. Once the beam is debunched, 

nine groups of quadrupole currents are varied in the left half of the ring to change to the 

"cooling regime". Under these conditions, the right half-ring is still left in its initial 

state. In contrast, in the left half-ring the dispersion function is raised, to correspond 

to an η value of -0.1.

Besides, it must also have a large acceptance in both horizontal and vertical plane, i.e. :

Δp/p ± 3%  ɛH = ɛV =  for the bunch rotation regime,

Δp/p ± 0.75%, ɛH = ɛV =  200π for the cooling regime.

2. NUMBER OF SUPER PERIODS

A ring with two or three super-periods can be envisaged. We prefer the solution with 

two super-periods for the following reasons. First, since the circumference of the ring is 

fixed and equal to one quarter of the PS, increasing the number of super-periods means de

creasing the total space which can be used for long insertion. Much space must be consumed 

by dispersion suppressors. Then, due to the increased number of dispersion suppressors, a 

larger dispersion function in the regular cell must be provided in order to achieve a given 

η value. This means that larger horizontal apertures are required. We have therefore 

chosen to have a minimum number of super-periods. In this lattice they are two.

3. PHASE ADVANCE IN A REGULAR CELL

The typical FODO separated function lattice has been adopted to meet the requirement 

mentioned above. Each standard cell is composed of two bending magnets and two quadrupoles 

QD and QF. The phase advance per cell is μH = 62.2° and μV = 63.54°.

With a 60° phase shift per cell, the orbit dispersion can be suppressed with missing 

magnets and only one type of dipole. It not only favours chromaticity correction, but also
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this phase makes it easy to constrain any perturbation within a limited region. For example, 

if we introduce a "kick", ∆K, in a quadrupole of the lattice, then the disturbed machine 

functions AßH and ∆D will propagate along the lattice with a phase advance per cell 2 p μH, V 
and μβH,V, respectively. If p is exactly equal to 60°, then we can constrain this perturb-

ation in four cells by introducing two other kicks with the same strength at the end qua

drupole of the second and last cells (see Fig. 2). A similar method has been proposed by

W. Hardt 1). By means of this technique one can change the dispersion function in some part 

of the lattice without disturbing the zero dispersion region.

Unfortunately, it seems difficult to have exactly 60° phase advance, because during 

the bunch rotation regime we ask for η =-0.002 in the horizontal plane. According to the 

definition of η and γm, the total dispersion of the ring is determined by :

(1)

where p is the radius of curvature in bending magnets,

C is the circumference of the ring,

γ is the injection energy (for 3.5 GeVIc it is 3.86).

Since the dispersion is zero in long insertions,the above integral is only made over 

the arc part.

The value of dispersion D depends on both the μH and the cell length Lc Lc is only

determined by the total cell number N* according the following formula :

(2)

where Lin is the length of the long insertion

Once N is chosen, the only way we can use to have a desirable value of /ü/p ds is to 

adjust the p value. We should choose the cell number N such as to make p as close as pos

sible to 60°. In this design, N = 20 is more suitable.

4. DISPERSION SUPPRESSORS

As mentioned by E. Keil2) and J.P. Delahaye3), a particularly simple dispersion sup

pressor can be obtained for a p = 60° structure by just leaving out the bending magnets in 

one of the two regular cells (Fig. 1). But for small machines missing bending magnet intro

duces some ßV modulation in vertical direction if straight bending magnets are used. Four 

variables are necessary in order to suppress dispersion and the ß^ mismatch simultaneously. 

Furthermore, if p is far from 60°, then not only the vertical, but also the horizontal 

ß functions are disturbed. So, usually six variable are necessary to fit the six boundary 

conditions between regular cell and dispersion cell D = 0 

D’ =0). The six variables are two straight sections and four quadrupoles as shown in Fig. 3. 

It is worth pointing out that if the p is not quite 60°, say ±5° away, one cannot suppress

* Including the cells in dispersion suppressors.
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the dispersion even using six variables. In this case we must use a bending magnet strength 

which is different from regular cell.

To simplify the power supplies we use the two lengths of straight section as variables 

and keep the strength of four quadrupoles unchanged, then the ß^ maximum in the regular 

cell is increased from 9.68 m to 12.98 m, but the ßH maximum is almost unchanged, only
ri 

rising from 9.8 m to 10.22 m. This may be due to μH being very near 60°.

5. LONG STRAIGHT INSERTION

The main purpose of long insertion is for injection, ejection and cooling, but another 

important purpose is to produce the necessary phase advance ∆uH,V so that the betatron fre

quency QH,V have the desired value. For example, the working point of our design is

QH = 4.27, QV = 4.30. The total phase shift of normal cell and dispersion suppressors is

μV/2π = 3.4426, μH /2π = 3.4289. So, this means that the insertion must produce a total

phase advance.

Injection and ejection are favourable if the insertion is composed of two 

doublets (Fig. 1) and has ßH maximum and ßV minimum in its centre where the magnetic kicker 

can be placed. Using the length between two doublets, two quadrupoles of the doublet and 

the final quadrupole of dispersion suppressors adjacent to the insertion as four variables, 

we find a solution which can satisfy all the requirements mentioned above and also leaves 

the Twiss parameters in the arc almost undisturbed.

The detailed Twiss parameters of the whole ring are given in Table 1.

6. TRANSFORMATION TO THE COOLING REGIME

In order to keep the machine functions of the right arc unchanged during the trans

formation process, the Twiss parameters at the ends of the right arc must remain unchanged. 

This means that one must seek a matched solution in the left side (including two insertions) 

with the six boundary conditions, at the

point B (Fig. 4) if we start from point A during matching.

In addition, there are three, other . conditions to be met : the dispersion integral 

fd/p ds in left arc must equal 1/2(η + 1/γ2)C/2π, (η = -0.1 for cooling regime) ; the 

maximum beat values of ßH and ßV in the left side must be as small as possible, especially 

in the vertical direction ; altogether nine conditions must be fulfilled. In principle nine 

variables are enough to find the above solution, but how should we select nine quadrupoles 

from among fourteen quadrupoles at the left side in order to have the best solution is still 

an open question.

As a first step and in order to get experience, all the fourteen quadrupoles were used 

as variables to find a good solution with AGS for the cooling regime. Then, based on this 

solution we can select nine groups of quadrupoles for the cooling regime. Finally, we use 

these nine groups of quadrupoles to reach any intermediate regime.
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Tables 2 and 3 compare the results obtained from fourteen and nine variables for the 

cooling regime. We can see that ßH is increased from 14.97 m to 20.47 m and, fortunately, 

ßV is almost unchanged.

Comparing the cooling regime with the bunch rotation regime, one can see that the ho

rizontal aperture is determined by bunch rotation regime because of the large momentum 

spread, but the vertical aperture is determined by the cooling regime because of the 

modulation in ßV function.

We had intended to limit the perturbation only in the left arc part, without extending 

it to insertion region, but the results were disappointing; even if Dmax is increased in max 
some regular cell to 12.26 m, the fd/p ds only increases to 2.45. The p in left half-ring 

is only -0.06. This means that the quadrupoles in insertion must play an important role 

during the matching procedure, mainly to produce necessary phase advance without changing 

the D function in the arc.

Figs. 5 and 6 show that the strength K of nine groups of quadrupoles should be changed 

in order to maintain the working point in a rather small range, say ±0.05, during the trans

formation process from bunch rotation regime to cooling regime. Four of them change linearly, 

another five follow linear segments. The tolerance on ∆K/K is about 5 10-3 for ∆Q ≤ 5 10-3.

7. LATTICE STRUCTURE FOR FIXED η = -0.013

In balancing versatility of operation against simplicity a compromise regime has been 

suggested. For example, p could be kept at a small fixed value, say ~-0.015.

Fortunately, the above lattice structure has sufficient flexibility to allow us to find 

the solution for p = -0.013 with rather small lattice functions, i.e. Dmax = 3.33 m, 

= 13.5 m in the regular cell. The details of lattice functions and beam size are shown 

in Table 4 and Figs. 9-12. At this stage of the design, the working point was moved to 

QH = 4.30 and QV = 4.32 in order to avoid the non-linear resonances up to the 7th order.

As the phase advance per cell is not exactly 60°, two quadrupole strengths in the 

dispersion suppressor are modified to cancel the orbit dispersion in the long straight 

section. Besides, for satisfying the requirements of injection and ejection some bending 

field is introduced in the last quadrupole of the dispersion suppressor. Here, we suppose 

that the beam center is at 52 mm from the quadrupole center.

8. REFERENCES
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A GENERAL FORMULATION FOR DISPERSION SUPPRESSOR

IN REGULAR LATTICE STRUCTURES

B. Autin and J.-P. Delahaye

1. INTRODUCTION

It has become a general practice in most of the modern storage or accelerator rings to 

provide dispersion-free straight sections where the orbit position is independent of the 

particle momentum. A well-known technique to cancel at once the orbit dispersion function 

DX and its derivative D’X consists in inserting in a regular lattice structure at least two 

special lattice cells called "dispersion suppressor".

Assigning to each of these two special lattice cells the same transversal focusing 

device that for the regular one, but different bending magnets, provides the two parameters 

necessary to cancel the dispersion function and its slope without perturbing the B function.

.E. Keil 1) proved that in the particular case of a FODO lattice and with the assumption 

of thin lenses, this result could be obtained by adopting in the two special lattice cells 

bending magnets of angle ϕ1 ϕ2 related to the angle ϕ0 of the regular lattice cell bending 

magnet by :

where μ is the horizontal betatron phase advance per cell.

This result is in fact quite general as it is demonstrated here and completely inde

pendent of the lattice structure and the elements widths, provided the dispersion function 

at the extremity of the lattice cell remains proportional to the deflection bending angle.

2. EQUIVALENT TRANSFER MATRIX OF THE DISPERSION SUPPRESSOR

The general horizontal transfer matrix M0 of a periodic lattice cell can be fully 

described by :

1) E. Keil, Single Particle Dynamics - Linear Machine Lattices, CERN 77-13 (1977).
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where μ0 is the relative horizontal phase advance,

α0 and β0 the usual Twiss parameters,

D0 and D'0 the absolute value and slope of the dispersion function, all parameters re

lated to the extremity of the lattice cell.

As the β function and the phase advance will not be perturbed by the insertion of the 

dispersion suppressor, the equivalent transfer matrix of each of this two special cells are 

identical to the one equivalent to the periodic lattice cell M0 except for the dispersion 

function D and its slope D'.

Nevertheless, a similar expression can be used subsituting to the regular dispersion 

value D0 and its slope D'0 the corresponding values that the dispersion function would take at 

the extremities of the cell if the ring were regularly constituted by the considered lattice 

cell :

The equivalent transfer matrix [S] of the dispersion suppressor can then be calculated :

S11 = cos2μ0 + α0 sin2μ0,

S12 = β0 sin2μ0,

S13 = [(cosμ0 + α0 sinμ0) - (cos2μ0 + α0 sin2μ0)]D1 + [ß0 sinμ0(1 - 2 cosμ0)]D'1 + 

[1 - (cosμ0 + α0 sinμ0)]D2  [ß0 sinμ0]D'2,
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3. CONDITIONS FOR DISPERSION SUPPRESSION

The dispersion function D is generally transformed in a channel by the equivalent 

transfer matrix [M] :

The dispersion value and its slope will therefore cancel at the end of the dispersion 

suppressor if the two equations are verified.

(1)

(2)

Each of these equations can be decomposed in two equations dealing with either the dis

persion values or the slopes only, where the transfer matrix elements have been replaced by 

their values above :

Simplifying the equation (4) by ß0 sinμ0 and the equation (5) by, it is easy 

to show that the set of the 4 equations above is equivalent to :
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(7)

(8)

(9)

As for a large majority of lattice cells, the dispersion function and its slope at the 

extremity of the cell are proportional to the bending magnet angle ф as it is the only dis

persive element.

(10)

(11)

Thus, an easy dispersion suppressor can be constituted by two special lattice cells 

identical to the regular lattice cell except for their magnet bending angles which must be 

related to the one of the regular lattice cell by (Fig. 1) :

(12)

(13)

(14)

In any case, the total bending deflection in the dispersion suppressor is equal to the 

deflection of the regular lattice cell independently of the horizontal phase advance per cell.

4. CASES OF SPECIAL INTEREST

Therefore, adopting special horizontal phase advance per lattice cell leads to some 

very interesting relations between the three different bending angles (Table below).

μ0 (° mod 2μ) ф1/ф2 ф2/ф0

60 or 300 0 1

67.98 or 292.02 0.2 0.8

70.53 or 289.47 0.25 0.75

75.52 or 284.48 1/3 2/3

90 or 270 0.5 0.5

120 or 240 2/3 1/3

180 0.75 0.25
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In particular, a π/3 horizontal phase advance μ0 enables an easy dispersion suppressor 

built-up by just putting off one regular bending magnet. It is the well-known missing magnet 

method.

On the other hand, a π/2 horizontal phase advance Po leads to a dispersion suppressor 

with, in each special lattice cell, equivalent bending magnets whose deflection is half of 

the regular lattice cell’s one.

Nevertheless, it is clear that the more interesting cases quoted above cannot generally 

be strictly adopted as the corresponding horizontal working point would suffer from low order 

betatron resonances. The operational procedure for a ring design therefore consists in finding 

first a regular lattice cell especially adapted to the envisaged machine with an horizontal 

phase advance very near the one which could provide an easy dispersion suppressor. A slight 

change of the position and/or the strength of the main lattice elements allows then to find 

back an ideal dispersion suppressor. Powerful minimization subroutines such "Minuit" in the

AGS linear optic program 2) are then very useful for this kind of optimisation.

5. CONCLUSION

Easy dispersion suppressor can thus be inserted without perturbing the ß function in 

rings built up with any regular lattice cell. It imposes only to adapt to the horizontal phase 

advance per cell the bending angles of two special lattice cells constituting the dispersion 

suppressor. The ratio of the different bending strength is independent of the kind of lattice 

cell adopted and of the width of its elements.

2) E. Keil, AGS - The ISR Computer Program for Synchrotron Design, CERN 75-13 (1975).


