AA LONG TERM NOTE No. 17

Summary of the meeting of August 31, 1982

Present: B. Autin, R. Billinge, R. Brown, V. Chohan, W. Hardt, R. Johnson,

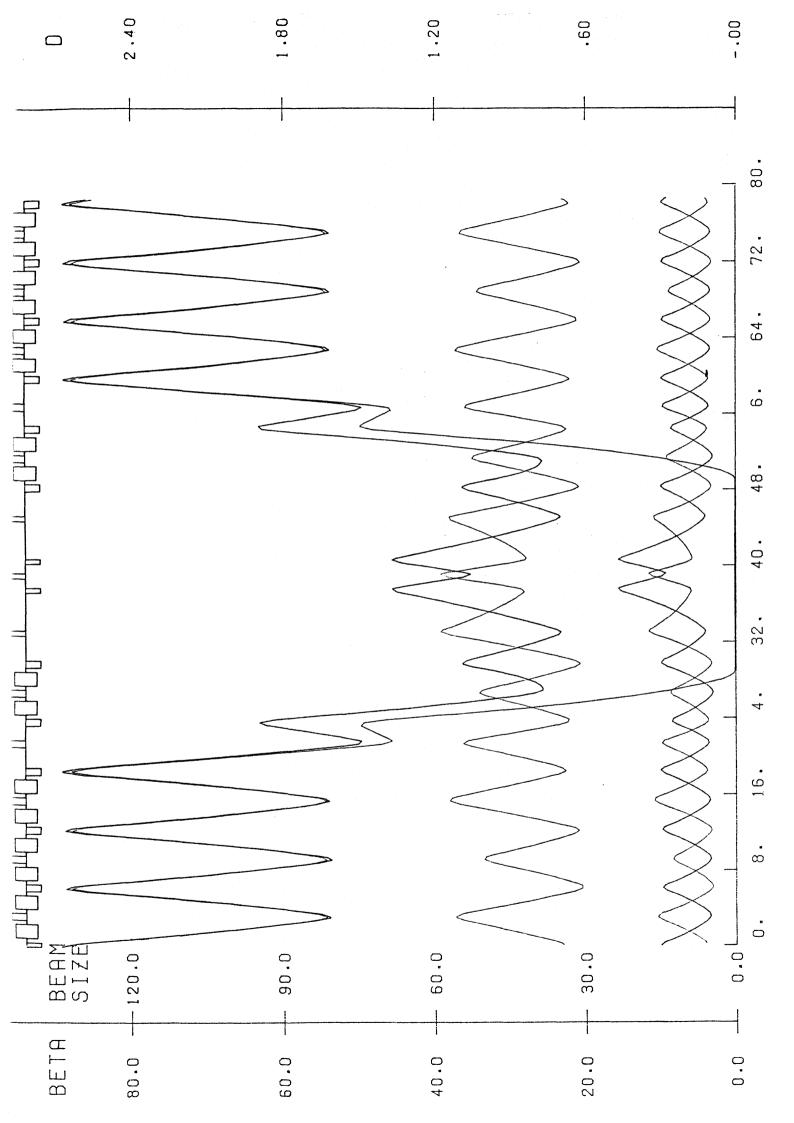
- E. Jones, H. Koziol, C. Metzger, G. Nassibian, K.H. Schindl,
- J.C. Schnuriger, R. Sherwood, A. Sullivan, H.H. Umstätter,
- S. van der Meer, E.J.N. Wilson

Topic : Lattice of the Antiproton Collector, by S.X. Fang

The lattice of the Antiproton Collector (AC) has a focusing structure which varies with time in order to cope with two regines of operation.

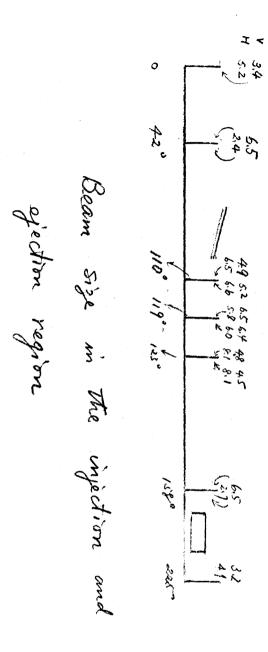
During the "bunch rotation" regime, the dispersion in revolution frequency η is small in order to maintain the RF voltage low. This situation is maintained during a quarter of the synchrotron period and, for simplicity, corresponds to $\eta=0$ in the following but it is obvious that η can be adjusted to any finite value in practice.

Once the beam is debunched, the quadrupole currents are varied in one half of the ring to reach the "cooling" regime. Under these conditions, the half ring which is still in its initial state is isochronous and the signal picked-up by the cooling electrodes is transmitted without alteration to the cooling kickers. In contrast, in the other half ring the dispersion in particle time of flight is high, it corresponds to an η value of 0.1 and the population of the beam sample sensed by the pick-ups is fastly renewed at each turn.

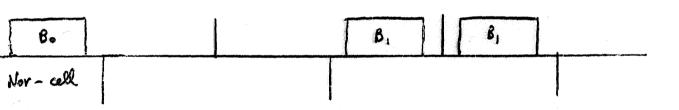

The attached copies of transparencies describe the properties of the proposed AC ring.

	Page
Ring shape	1
½ ring structure	2
Main parameters	3
Characteristic functions in the "bunch rotation" regime	4
Characteristic functions in the "cooling" regime	5
Injection/ejection region	7
Basic arguments for the choice of the lattice	8-15

风 植中山外 路 $l_{B} = 1.4327 m$ $l_{5,0} = 0.75 m$ $l_{8} = 0.6 m$ Antiproton Collector (AC)


Main Lattice parameters of AB ring) 3.5 Ger (7=3.862) 11.675 C = 2/mR 156.49 (PS/4) Acceptance ±3% (initial) ±0.75% (Final) 20 number of nov. cell 6.1665 m figth of nor cell number of bending M. length of B's 1,4327 m number of gual's length of O's 0,75 m (nor. cell). , o. 60 m (straight section bending angle 0.19635 rad field strength 1.6 T & gap hight of B ~6.5cm (see beam size) igood freld width ~ 12 cm. ~60° Mix, Mz

	Imital	Final
eta n	0.0	0.1 (left, 0.0 (right)
eta ?	4.81	4.30
Oz	4.28	4.83
D max	264 m.	9.454 m
BH mas	15.23 m	25.04 m
Br mer	11.34 m	14.14 m
Ex (natural)	-1.168	-1.41
\$v(.,)	-0.96	-1.068



					9
	Beam size	in differents	elements 4	- gradient is	n 05
	Initial	Final		v	
B,	11.9 x 5.2 cm	10.7×4.6			
BL	11.9 x5.2	10.9 x5.4			
Bs	11.9 x4.5	11.3 x6.2	12 × 6.5		
\mathcal{B}_{4}	11.9 x4.5	12.0 x5.7			
B5-	11.9 x5.2	f.7x3.8			
Bi.	11.9 x5.2	8.5x3.5			
B7	8.0 x4.7	60x48	8x5	Gradi	ent
By	5.2 x4.6	2.4x3.3		Initral	Final
ח	12 EV2 (r9 A K-7 C		-5.66 Tm	-5.25
D_{ℓ}	13,5 x 3.6 129 x 3.3	12.0x2.0	~14×4.8	-5.66 T/m	
Dz Ds	129 x 3, 4	12.5 X2.8			-4.82
D_4	13.6 x3.6	8.8 x3.6		-5.66 -5.7	· "
D5	9.8 x3.6	6.9 x 3.9		-s.7 -6.1	- 3.97 -6.0
Us	7.0 ^2.0				0.0
F,	8.4 x 5.6	7.5 x S.7		5,25	6.04
F	8.4 X4.9	8.9 × 6.3	9 x 6.5	5.25	5.2/
Fi	8.4 x5.6	8.1 x3.7	9 x 6,5	5.25	5.14
Fa	8.0x5.3	5.4 x 6.2		6.1	6.5
Fs	3.3 x5.0	2.8 x4.5	3.5 x 5	5.0	4.55
\mathcal{D}_{io}	5.5 x 3.3	4.4x3.2		-5.4	-6.9
Dw	6.8×4.5	3.1 x4.8	8.5×7.0	-7.53	- 9-8
<i>D</i> ₃ .	6.8 × 4.5	2.4×6.5		-7.47	-7.36
F,o	3,6x59	3.6×6.5		6.4	6.9
Fro	5.8x55	6.3x6.5		10.5	10.7
F30	36 x59	5.4x3.3		5.35	6.23
		1	•		1

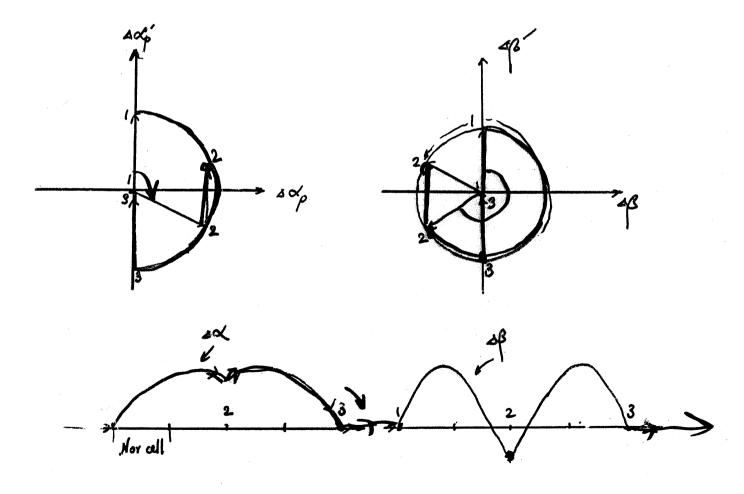
n 05 5	gradient is	elements 4	in differents	Beam size
			Final	Initial
D - vertice	•		10.7 × 4.6	11.9 X 5. 2 cm
F.			10.9 x 5.4	11.9 x5.2
		12 × 6.5	11.3 × 6.2	11.9 x4.5
			12.0 x5.7	11.9 x 4.5
			8.7×3.8	11.9 x5.2
			8.5 x3.5	11.9 x5.2
ent,	Gradi	8×5	6.084.8	8.0x4.7
Final-	Initral		2.4x3.3	5.2 ×4.6
-5:25 l	-5.66 Tm		12.0X20	13.5×3.6
-4.55	-5.66 T/m	~14x4.8	119 x45	12.9 x3.3
-4.82	-5.66		125×28	12.9 x 3.4
-3.97	-5.7		8.8 x3.6	13.6 ×3.6
-6.0 i	-6.1		6.9x3.9	9.8x3.6
6.04	5.25		7.5×57	8.4 x 5.6
5.2/	5.25	9 x 6.5	8.9×63	8.4 x4.9
5.14	5.25		8.1 *3.7	8.4 x5.6
6.5	6.1		54 × 62	8.0x5.3
4.53	5.0	3.5×5	28165	3.3 x 5.0
-6.9	- 5.4		4.4 x3.2	<u>್ಲಾ</u> ಚಿತ
-28	-7.53	0 4 1	8.1 x48	6.8×4.5
-7.36	-7.47	8.5×7.0	2.446.5	6.8×4.5
6.9	6.4		3.6×6.5	3.6×5.9
10.7	10.5		6.3×6.5	5.8x5.5
6.23	5:35		5.4×3.3	3.6x5.9

AA ring — As many straight as possible AC Dynamical lattice. large acceptance in both direction.

to divide B. by two part in order to decrease the edd effect of B, meanwhile , decrease Br modulation.

Three advantage for M=60°

U B=80


y the smallest Br modulation [modulation =0]

3) If one introduces some perturbation, it can
easily limited in certain region.

If we introduce some pertubation 21 $\beta \rightarrow \beta_0 + \alpha\beta$ $\phi \rightarrow \alpha_0 + \alpha\alpha_0$ $\phi \rightarrow \alpha_0 + \alpha\alpha_0$ $\phi \rightarrow \alpha_0 + \alpha\alpha_0$ $\phi \rightarrow \alpha_0 + \alpha\alpha_0$

Then $\frac{d^{2}}{d\phi^{2}}\left(\frac{a\beta}{\beta_{0}}\right) + 4Q_{0}^{2}\left(\frac{c\beta}{\beta_{0}}\right) = -2aK\left(Q_{0}\beta_{0}\right)^{2} \qquad Q_{0}^{2}\left(\frac{aQ_{0}}{\beta_{0}}\right) + Q_{0}^{2}\left(\frac{aQ_{0}}{\beta_{0}}\right) = -aKQ_{0}Q_{0}^{2}\beta_{0}^{3} \qquad Q_{0}^{2}$

Here $\phi = \int \frac{ds}{Q_0 \beta_0}$ This means $a\beta$, $a\alpha$, will be a harmonic oscillation with frequency a a a a.

Duside 1 & 3 AXPEO

3. How to decree the parameters of a normal cell. ?

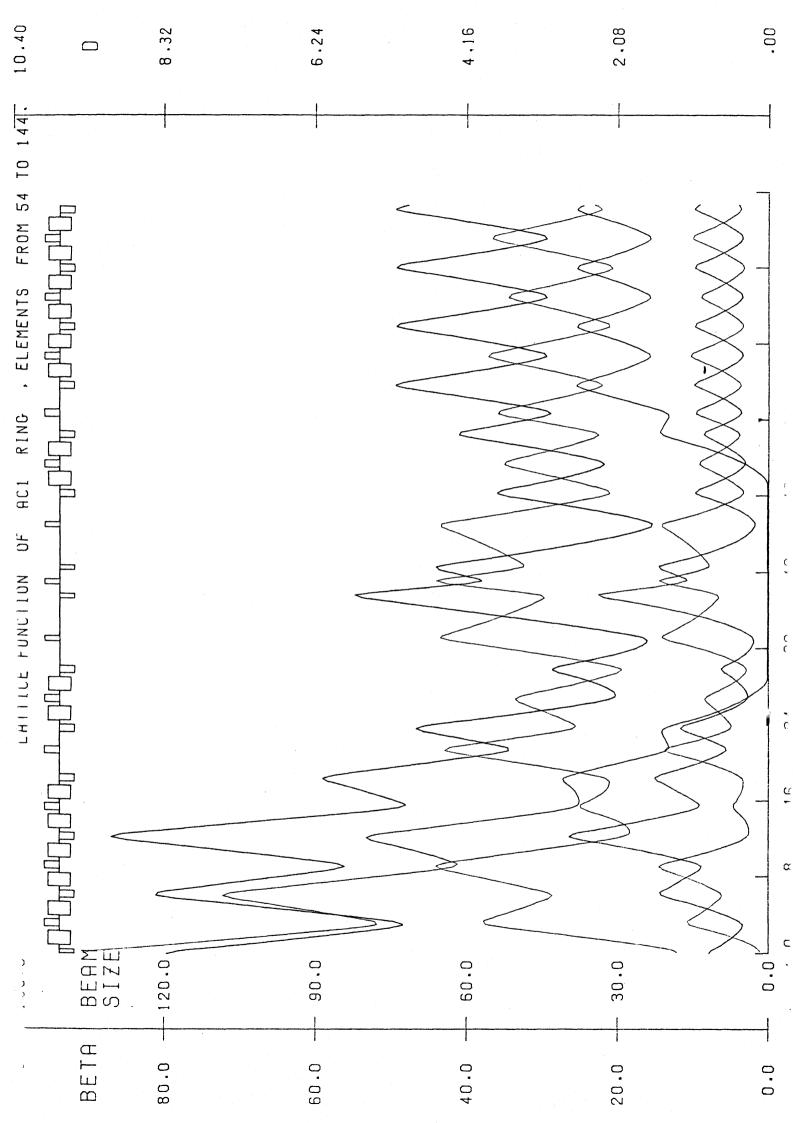
1=60° is more favorable, but we can not keep This value

: $\eta = 0 \rightarrow \alpha_p = \frac{R}{\gamma_r^2} = \frac{249}{(3.86)^2} = 1.67$

FODO lattice $\propto_p \propto L_{cell} F_i(\mu)$ $\int_H^{\infty} \propto L_{cell} F_i(\mu)$

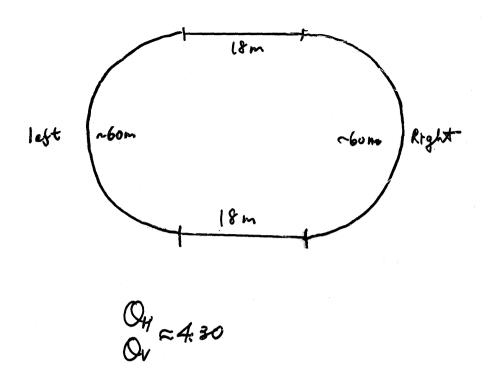
M between 60° - 90°.

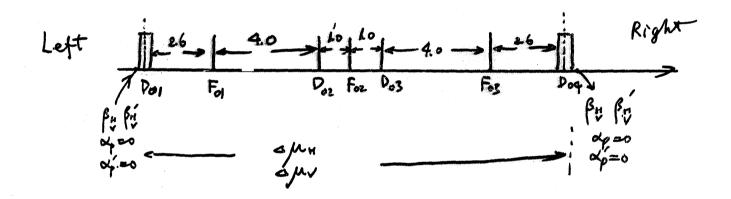
Leell = $\frac{2\pi R - Lin}{N < discrete number}$


Lin - special, insertion for OH, Ov match and for injection & ejection

: Leel only can take some discreted value

: Once N is decided only way is to adjust in. so as the \$\overline{\pi}_1 = 1.67.


i. N' must be choose in order to make u as closed as possible to 60°.


N=20 / Leell = 6.1654 M=58.97 (0.1638)

4. How to make dispersion suppressors I MA is little different from 60° y to decrease the su modulation caused by edge focuerny further. Using six variable Fifs Di Di Li, Lz to match pix condition (From A -> B) Sys = ByA BHB = BHA B, = Bo (If m 12 not for from 600) Fortunately

For tunately $B_1 = B_0$ (If $\mu_1 = 2$ not far from bo^0) $L_1 = 2.18 \, \text{m}$ $F_1' = 0.524$ $D_2' = -0.528$ (Nor cell $E_1' = 0.429$ $E_2' = -0.462$ (F=0.45 $E_2' = 0.485$) $L_1 = -0.52$ $L_2 = -0.462$ (F=0.45 $E_2' = 0.485$) $L_3 = -0.462$ (0.1758) $L_4 = -0.52$ (0.1758)

AMM = 4.30 - 20x 0.1638 = 1.024 AMN = 430 - 20x0.17

i for each perrod in insertion.

SUH, ≈ f = My = 0.1707 ≈ 61. 95°.

Bn= 15.22 Sv= 11.34.

Symmetric condition around the ring is distorted.

How to raise the y value in left side.

 $\alpha_{pi} \rightarrow \frac{1}{1}$

From A to A"

matching condition

 $\begin{vmatrix} \beta_{H} |_{A} = \beta_{H} |_{A}^{u} \\ \beta_{M} |_{A} = \beta_{M} |_{A}^{u} \\ \beta_{N} = \beta_{N}^{v} |_{A}^{u} = \beta_{N}^{v} \\ \beta_{N} = \beta_{N}^{v} |_{A}^{u} = 0 \\ \alpha_{P} |_{A}^{u} = \alpha_{P}^{v} |_{A}^{u} \\ \alpha_{P} = \beta_{N}^{u} = \beta_{N}^{u} \\ \alpha_{P}$

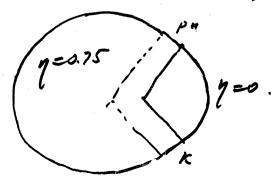
Bu. Br modulation as small as possible.

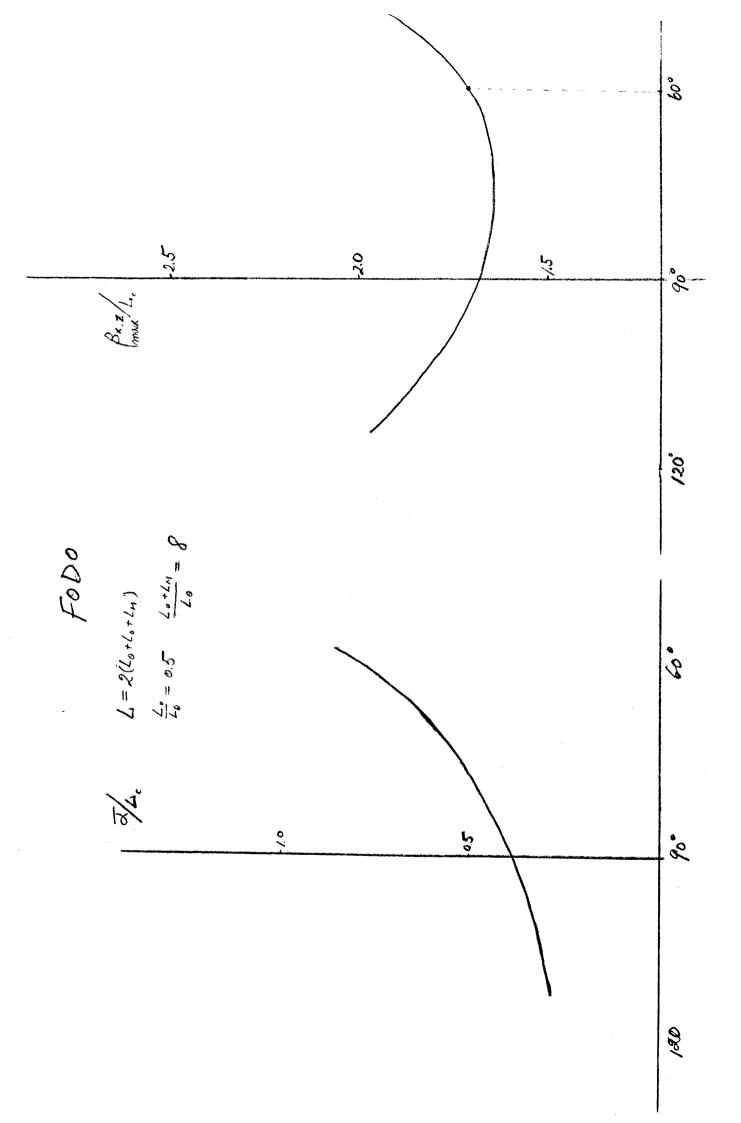
17 O'S as variable

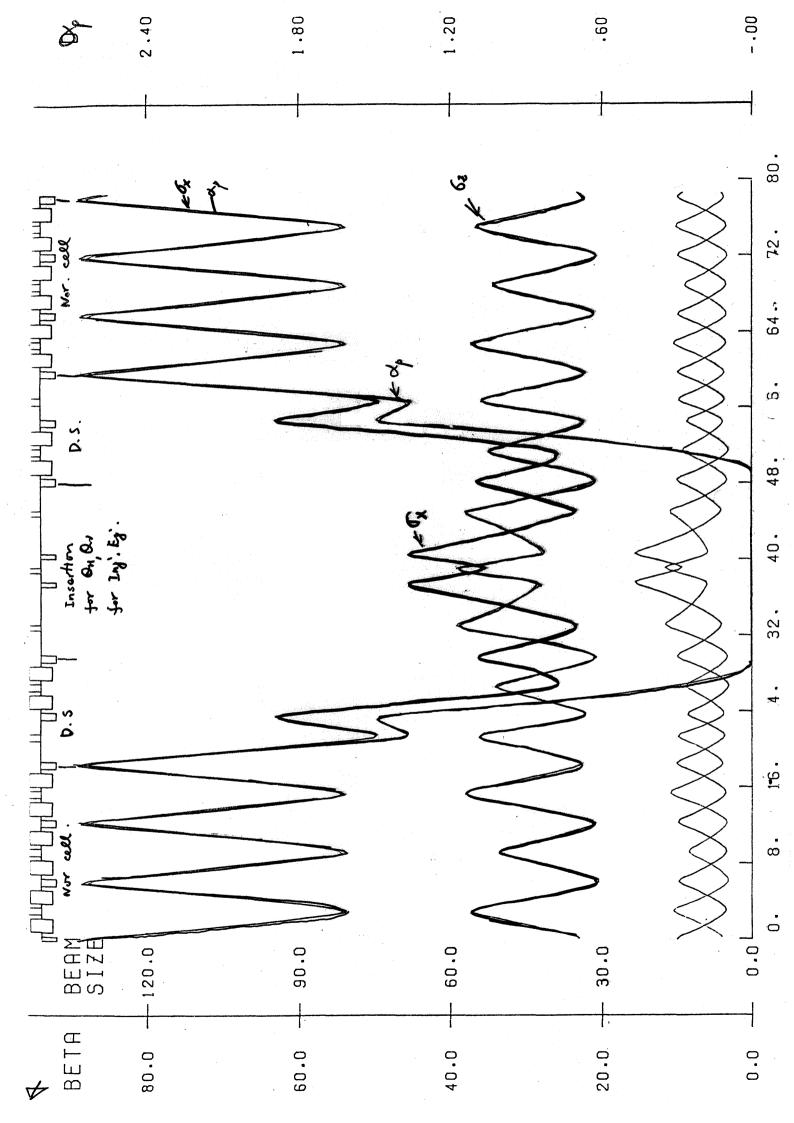
Alas. Maximum variable 15.

The sum of the second second $\overline{\alpha}_{p}$ from (2) $-\Delta K \propto_{p_0} O_0^2 \beta_{p_0}^{2n} > 0$ \therefore meanwhile $\Delta M_H \propto \Delta K \beta_{H_0} < 0$ Final result $\overline{\alpha} = 4$. $\delta_1 = 2.49$ $\eta = 0.093$ 11 Q_s must change

6. Possible next steps improvement.


U Or-On=1


e But port


3) Chromaticity

Increase field strength is dispersion suppressores
To 1.87 (may also in nor cell), in order to
have space for sentupole arrongment
(dynamic compensations chrometricity)

4. Increase the region of 770.

21/08/82

75.03

VERSION

1982

LATTICE

皇

		× × × × × ×
		X X X X X X X X X X X X X X X X X X X
μ	GAMMA TR.	• • × × • • × × • • × ×
$^{\prime\prime}$ AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	XMAX(H)	*X X X X X X X X X X X X X X X X X X X
### 1-00 ###	TAM	**************************************
: 窓中/ 00 毎 中 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RI	X
E HEM-UJOROUN - HANDORUN - HANDORUN - HANDORUN - HANDORUN - HEMBOROUN BONDAO - COA 40 V BRINDAU - HANDORUN - HONDORUN - H	Q(V) QP	X X X X X X X X X X X X X X X X X X X
- ๛๑๛๛ ๔๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	COSHU(V)	X X X X X X X X X X X X X X X X X X X
######################################	BETAMAX(H)	X X X X X X X X X X X X X X X X X X X
	PRI	•
		4.0108 KXXXXXXXXX KXXXXXXXXX 4008
1 S	SMU	0000 XXXXXX XXXXXXX 148 SE
		# X X B

25/08/82 VERSION 75.03 1982 AUG TEST

ELEM

INITIAL

ALPHAP ALPHAP (M) ALPHAH ALPHAV ito oto oto ottado conto ottado conto ocotodo contodo muno composição conto otrado conto ocotodo conto cont ANG (MR) c hurreque-innementarion de constitución de c DIST(M)

```
\begin{array}{c} \texttt{Porsored on the poly folia 4.4} & \texttt{Intersion} & \texttt{Antion} & \texttt{Antion
\frac{1}{2} \frac{1}
\frac{1}{2} \frac{1}
 doction doctor contro of the office of the office of office of office of office office
```

1.6.5

			× × × × × ×
			59 XXXXXXXXXXXXXXXXXXXXXXX
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	GAMMA TR.	2.9759	**************************************
α	AX(H)	9,4541	* × × × × × × ×
2V E E D RR O O V RR O M V O 4 O RUN V O R — V — 4 R O R 4 — V — RO V RU RO O 4 O V D R O 4 O V D RO O 4 A V D LO O C O V D C O C O V D C O C O C O C O C O C O C O C O C O C	AMAX (V)	14,1349	HAP = 2.8124 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	V) BET	00	42 × × × × × × × × × × × × × × × × × × ×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	QPRIME (-4.63	HAP = 2.8 XXXXXXXX XXXXXXXX
CDDOODLADDALOOLADDALOODLADDALOODLADDALOOLADDALOOLADDALOODDDUNGODDDUNGODDDUNGODDDUNGODDDUNGODDDUNGODDDUNGODDDUNGODDDUNGODDDUNGO	(A) D	4,3328	VERAGE ALPI XXXXXXXXXX XXXXXXXXX
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	SMU (V	-,49706	X X X
######################################	BETAMAX (H)	25,0356	_ x x
ceceo euceu ecuaceu ec	PRIME (H)	-6,0677	(XXXXXXXXX)
20000001111111111111111111111111111111	Q (H)	4.3082	VERAGE X = 0 XXXXXXXXXXX XXXXXXXXXXX
L C L L L L L L L L L L L L L L L L L L	E	-,35759	000 XXXXXXXX XXXXXXXX
	0P 7P	0.0000	DP/P = 0.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.149 SECONDS

TIME =

B. Autin R. Brillinge G. Carron Fang C. Johnson E. Jones H. Korrol C. Heteger F. Pedersen W. Prinkl A. Poncet K.H. Sofrindl R. Sherrocod C. Taylor L. Thorndell S. van der bleer EJN Wilson	PS PS AAOMINION PS	V. Chohan L. Henry S. Haury L. Rinolf- M-Hartini	おおおおお
C. Rubbia D. Höhl P. Rifevre W. Havdt J. Boser Y. Beconner E. Browzet	EP PS PS PS ISR PS PS		
Dr. G. Piskounov R. Johnson	Novonibiral		

Anne

Voier une liste de distribution pour le rapport jusse. 10 coprés gour moi pour envoi au personnes dont je me souviedrai plus ta de Merer Mohat Kopal

AA Long Town Note " 17

Summary of the meeting of August 31, 1982

PRESENT: B. AUTIN, R. BILLINGE, R. BROWN, V CHOHAN, W. HARDT, R. JOHNSON,

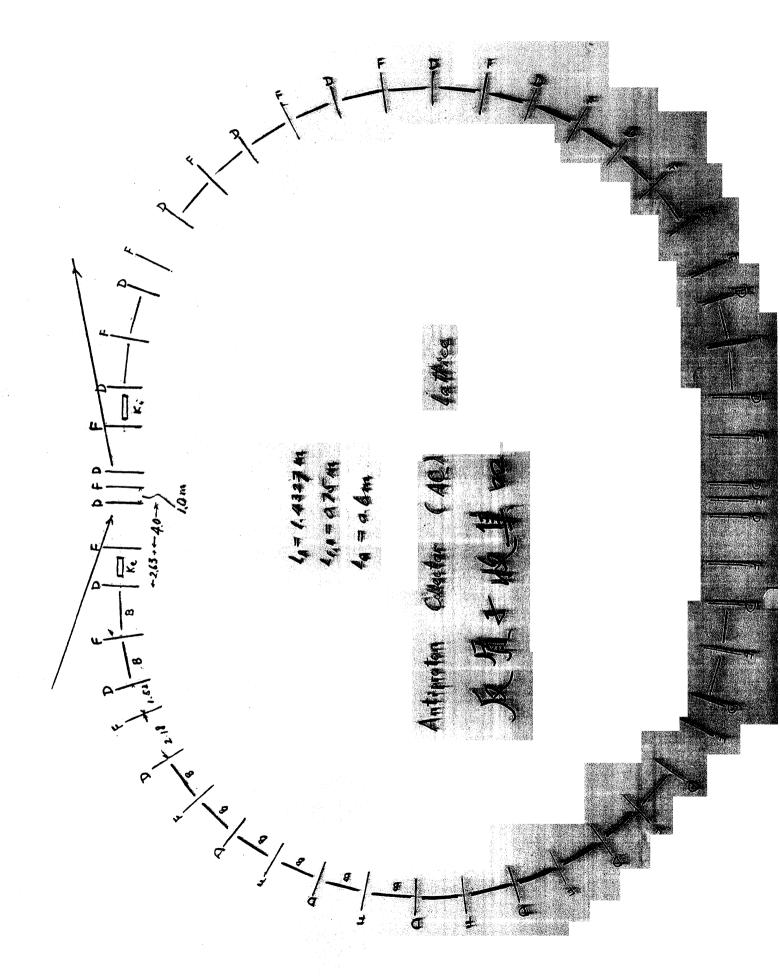
E. JONES, H. KOZIOL, C. METZGER, G. NASSIBIAN, K. H. SCHINDL,

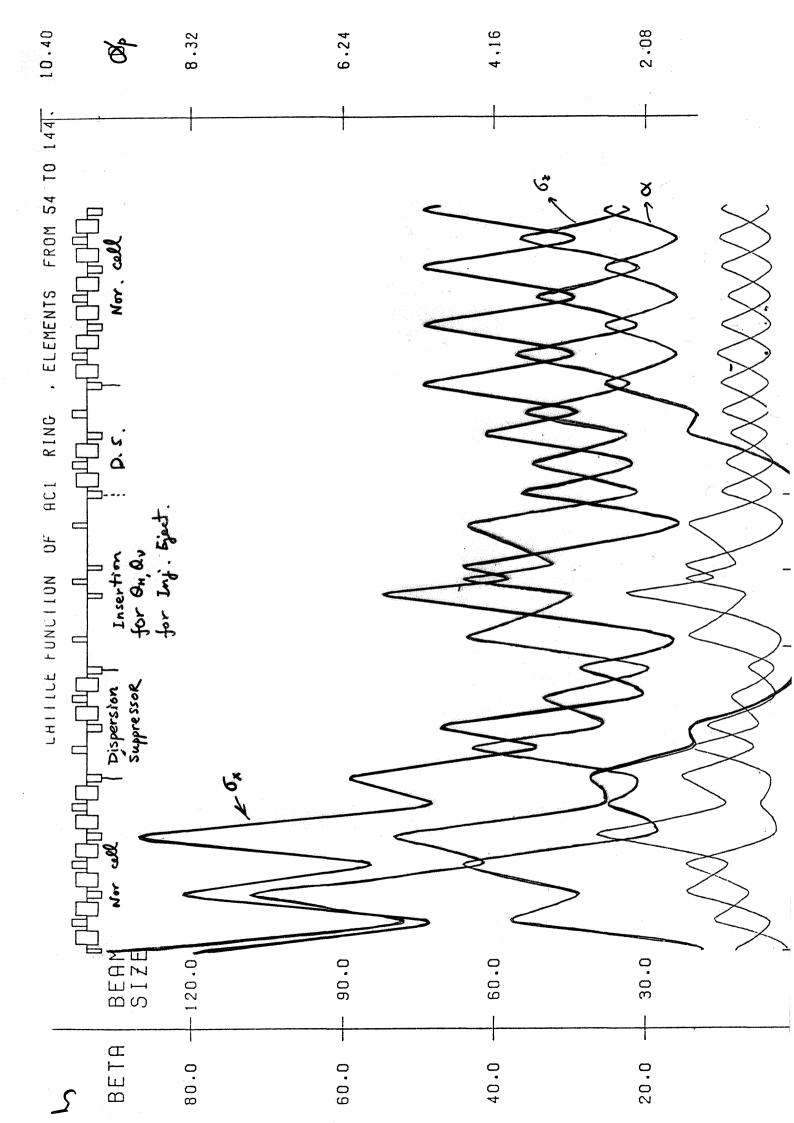
J.C. SCHNURIGER, R. SHERWOOD, A. SULCIVAN, H.H. UMSTAETTER,

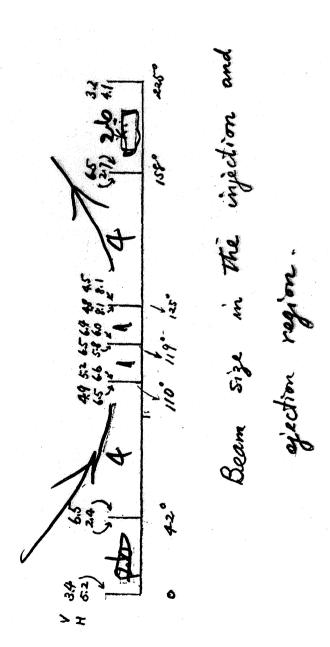
S. VAN DER MEER, E. J. N. WILSON.

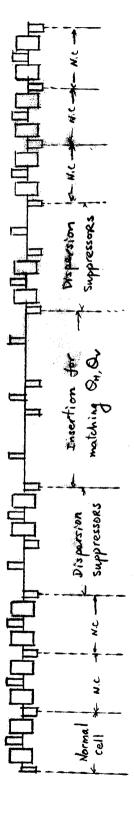
To pic : Lattice of the Antiproton Collector, by S. X. FANG

The lattice of the Antiproton Collector (AC) has a focusming structure which vories with time in order to cope with two regimes of operation.


During the bunch rotation regime, the dispersion in revolution frequency h is small in order its maintain the RF voltage low. This situation is maintained during a quarter of the synchrotron period and, for simplicity, corresponds to y so in the following but it is obvious that y can be adjusted to any finite value in practice.


Once the beam is debrunched, the quadrupole currents are voried in one half of the ring to reach the "cooling" regime under these conditions, the half ring which is still in its initial state is isochronous and the signal picked up by the cooling electrodes is transmitted without alteration to the cooling kickers. In contrast, in the other halfring


The dispersion in particle flight time is high, it corresponds to any value of 0.1 and the population of the beam sample sensed by the pick ups is fastly renewed at each turn. The attached copies of transparencies describe the properties of the proposed AC ring


V	Page
Rung shape	A
1/2 ring structure	2
Marin parameters	3
Characteristic functions in the "bunch rotation" regime	4
- "cooling" regime	5
Apertures in dipoles and quedrupoles for 30011 mm-mod emittance	6
Injection / ejection region	7
Basic arguments for the choice of the lattice	8-15

B. AUTIN

