MD RESULTS OF SEMGRID MEASUREMENTS

reported by

G.C. Schneider

MD Participants	- :	J. Dieperink F. Perriolat G.C. Schneider C.H. Sicard
Date	:	13.8.1984 18h00 - 22h00.
Subject	:	Test and calibration of SEMGRID's MSG 258.268.278 (TT2) and MSG 2509 (AA Ejection Line).

After some problems with the synchronization to the proton test beam cycle (APTST) the beam profiles and emittances could be acquired and displayed by the SPS SEMGRID equipment, the GESPACK computer and the new software.

Figures 1 to 3 show the beam profiles by the SEMGRID's MSG 258, MSG 268, MSG 278 for test beams of about 3.E10 ppp (only 1 grid in the beam for low energy beams!).

The letters have the following meaning :

```
V = Vertical
H = Horizontal
W = Width (2 Sigma [mm])
P = Position (offset from center [mm])
S = Sum (beam intensity [ppp])
E = Emittance (estimated E.=(2*Sigma)^2/Beta)
```

```
EV = Vertical emittance [pi*mm*mrad]
EH = Horizontal Emittance "
AV = Vertical Alpha
AH = Horizontal Alpha
BV = Vertical Beta [m]
BH = Horizontal Beta [m]
```

Ellipse Parameters

Later measurements with the SEMGrid's are presented in Figure 4 to 6. Figure 4 was obtained with a high intensity CT beam (\sim 2.El3 ppp).

Figures 5 and 6 belong to low intensity CT beams (2E12 ppp).

The accuracy of these emittance measurements could not be determined as no other (better) emittance informations were available.

The SEMGRID MSG 2509 in the AA Ejection line could not be tested as no beam passed through this line.

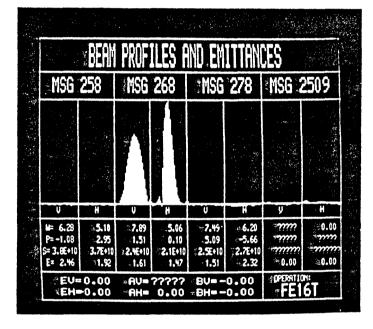
Figure 7 shows test signals with Gaussian profiles.

Figure 8 gives the MENU from which one of the 5 operations can be selected. All settings are done automatically to the corresponding operations (gains, betas, matrix parameters etc.) For the 3 first high energy operations 3 SEMGRID's are used simultaneously for the emittance measurement.

The low energy operations 4 and 5 still need the selection of the desired SEMGRID number as only one can be used at a time (blow up).

After the measurement and the display of the results the program comes back with the MENU presentation.

- 2 -


The transfer of the measured data to the NORD Computer via IDI (intelligent device interface) was also tested and worked correctly. The presentation on the console display could no more be checked due to lacking time.

Distribution (Open)

J. Bosser, SPS L. Burnod, SPS

		PROF	ILES F	nd Em	ITTAN	CES	
- MSG	258	- MSG	268	MSG	278	MSG	2509
U	H	Ų	H	U	H	<u>J</u>	H
H= 6.65 P=-1.11 S=3.2E+10 E= 2.75	5.15 2.53 3.0E+10 1.96	77777 ** 0.00 *******************************	-0.00 2.5E+19	-0.00 -0.00 9.2E-30 	-0.00 -0.00 8.7E+15 7.3t	777777 777777 77777777 0.00	0.00

Fig.1

•		2					ta ta santa Managarta Managarta		
		BEAM	PROFI	ILES P	ND EM	ITTAN	ES		
	MSG	258	MSG	268	MSG	278	MSG 2	2509	1997 - 1997 1997 - 1997 - 1997 - 1997 1997 -
			•						
	U		U	H	Ű.	H	y	T H	
	H= 77777 P= 77777 S= 7777777 E= 2.75	:::8.08 ::=0.09 ::2.0E+20 ::1.96	7.46 01.60 03.7E+10 01.49	5.50 -0.20 3.32+10 -1.73	*7.49 *5.09 *2.5£+10 * 1.51	~6.20 ~5.66 2.7£+10 2.32	0.00 <u>ww</u> . 0.00	.9.09 	
		0.00	≪ RV= ≈ RH=	????? 0.00			-presental	6T	

Fig.2

Fig.3

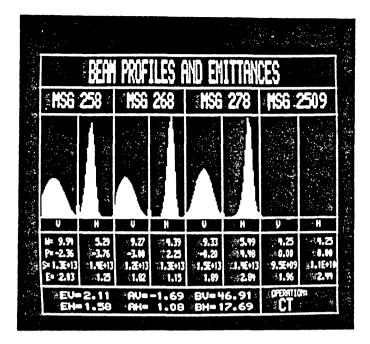


Fig.4

	#BEAM	PROF	ILES	nd En	ITTAN	CES 🥼		
MSG	258	MSG	268	MSG	278	MSG 2509		
	····································							
V	H	V		V	H	y	- H	
H= 5.21 P=-3.24 S= 2.4E+12 E= 0.56	-3.86 ∞ 0.19 ≅ 2.3£+12 ∞ 0.67	51.91 51.18 52.22+12 0.51	3.27 94.51 2.22+12 ~0.64	2.4.78 0.79 2.46+12 0.50	3.31 2.3E+12 3.59	ننننن د. ننننن د. نننن د.	0.00 	
	0.55			BV=4 ~BH= 1		PERATIC CT	jk i	

					$\gamma \gamma \gamma^{-1}$		· · ·		
8. No. 1		BEAM	PROF	LES A	ND:EM	ITTAN	ES		
1998 - 1998 - 1998 1998 - 1998 - 1998 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 19	MSG .	258 ×	MSG	268	MSG	278	SMSG #	2509	
· · · · · · · · · · · · · · · · · · ·					「「「「「「」」」				
5	V	H	V	H	V	H	y	Н	
	H= 5.17 P=-3.23 S= 2.3E+12 E= 0.55		9.90 3.14 12.22+12 0.51	_3.26 _34.31 _2.1E+12 _30.63	0.49 0.82 2.46+12 0.49	4,01 3,40 2,2£+12 1,51	۵۰۵۵ نینندند. نندند.	0.00 سنندن 0.00	
	'EH	0.53	* AV= AH=	-1.88	BV=4 BH=1	9.94 7.59	CPERATI CT	011:	

Fig.5

Fig.6

		PROF	ILES (ND EP	ITTAN	ES &	
: MSG	258	* MSG	268	- MSG	278	MSG .	2509
				「」 - 1.4.7 - 人子			
						A SA REAL PARTY	
	FN				ľł		
V	s H	V	H	V	r∍ H	્ર પ્ર	2 H -
H= 4.30 P= (0.00 S= 2.7EH2 E= (0.38	3.127 30.00 5.1EH2 190.82		94.26 9.00 1.1E+03 51.08	1.25	4.25 4.00 1.6E+03	4.25 5.14 5.72+00	4.2 4.0 5.1 2.1

Fig.7

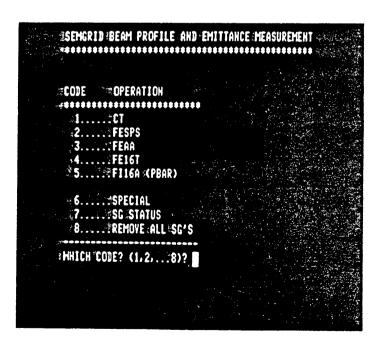


Fig.8