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1 . Summary

One method of testing feedback control systems and elec

trical networks such as amplifiers, filters, cables or delay line 
magnets is to send a step pulse or some other test pulse into the 

network and observe how it is transmitted or reflected. One obtains 
an output signal y(t) of a characteristic shape. The computer pro* 

gramme analyses this shape, compares it with the input pulse and 
produces plots of the frequency response, i.e. amplitude and phase 

of the network.

2· Principle and use of the programme

The programme in compiled version consists of 54 binary 
cards plus a small FORTRAN subroutine which contains the formula 
of the Laplace transform of the test input pulse. It can be run 
as an express job because it requires I6OOO memory locations and 
not more than 10 sec central processor time on the CDC 66ΟΟ com

puter.
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For example, we may have used a time domain reflectometer
with an attached x-y-recorder which plots the reflected or transmitted
pulse on paper, or we may have photographed a transient on an oscillo
scope as shown in fig. 1. We take readings of the signal y(t) and the
time t in N £ 4 consecutive points and punch this number N into the
first data card and the values t and y(t) into the following cards as
shown in table 1· It is not necessary to take readings at equal time
intervals but to take only the more significant points (e.g. maxima

and minima) because the programme connects these points by a fairly

smooth curve (cubic Lagrange interpolation) and calculates 600 equi
distant sampling points situated in the middle of every time interval.

In the last data card we punch the maximum frequency up to
which we want to plot the frequency response (see table 1, frequency
unit ≈ 1/time unit, e.g. sec and Hz or nanosec and GHz).

Now the programme carries out the Laplace transform from

the time domain into the frequency domain replacing the integral by
a sum: The signal y(t) is multiplied by G*"3ω°^ j_n 600 sampling

points. These products are multiplied by the time interval
t = (tn - tj)/600 and summed up. This yields the complex amplitude

at a frequency ω0. The process is repeated for frequencies ω0,
2ωo, jω0, ... 500 ωo in order to obtain detailed plots of frequency

response. Then the 5∞ complex amplitudes of the output pulse are
divided by the amplitudes of the input pulse in order to evaluate the
network function (e.g.’’gairi’or transfer function of an amplifier).

The amplitudes of the input pulse are evaluated in an exchangeable
subprogramme COMPLEX FUNCTION SPECTR(F) containing the Laplace trans
form of the input pulse (e.g. step pulse). Finally, the magnitude
and phase of the network function are evaluated, the 5∞ points are

connected by linear interpolation and plotted on the CALCOMP plotter.
We obtain two plots 10 x I4 inches of the amplitude and phase lag
(modulo 36O0) versus frequency as shown in fig. 2a, 2b.
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The following difficulties have arisen by the fact that the 
signal is recorded, only from t = t^ to t^, whereas the integral should 
extend from - Oo to + c*o. If we want the integral to vanish for t $ t^ 

we have to shift the base line vertically from y(t) to y(t)*y(t^), 
otherwise the programme would return the frequency response of a signal 
which jumps at t ≈ t^ from y = 0 to y(tp. But even if the base line 
is clamped to zero at t = t^ a second difficulty arises at the end of 
the record in fig. 1, because the signal at t is not zero and one can
not extend the numerical integration with 600 sampling points to infi
nity. Therefore, the numerical integration is carried out only up to 
t = t∩ and an analytical expression is added for the integral from t 
to infinity using the stationary value y = y(t^). Much computer time 
has been saved by the use of the complex notation rather than a Fourier 
series with real terms, because the factor is evaluated only once

and the other 600 · 5θθ = 300000 terms follow from recurrent multiplica
tion.

3· Examples of subroutines for various test pulses

a) Responses to a step pulse

Fig. 1 shows a step pulse which has been sent through a

300 MHz low-pass filter for the wide band pick-up station. The Laplace 
transform of an ideal step pulse is l/p where p = jωis the complex 

frequency. We write this Laplace transform of the input pulse into 
the following subprogramme for the analysis of step pulse responses:

c/mplex function spectr(f)
C0MM/N PIBY2, PI2

0MEGA = PI2*F
SPECTR=CMPLX(θ.,-1.//MEGA)

RETURN
END

Quantities PIBY2=π/2 and PI2=2π are I5 digit constants which wer© 

stored in the COMMON store for convenience and may be referenced by 

the subprogramme. It can be seen that the real part of SPECTR is zero
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and the imaginary part - j/ω. If the bandwidth of the oscilloscope 
does not allow to show all details or if the rise time of the step 

pulse is not negligibly small, a correction can be made multiplying 
the spectrum by a bandwidth limiting factor

whore f is the upper frequency limit where the oscilloscope atte
nuates by 1 neper = 8.686 db or alternatively t is the rise time 
from 10 °/o to 90 The Gaussian error distribution function

has been assumed for the spectrum and the error integral for the rise 

of the test pulse, because a preamplifier with a linear phase response 
(no phase distortion) should have such an amplitude response. For 
example, the spectrum of a step pulse with 0.15 nanosoc rise time 
which produced the response in fig. 1, is given by the following 

subroutine s

complex functi/n spectr(f)
C0MM0N PIBY2,PI2

RISETM≈O.15
/MEGA=PI2*F
SPECTR≈CMPLX ( 0., -EXP (-(1 .75 5*RISETM*F ) **2 ) /0MEGA )

RETURN
END

The results are shown in fig. 2a and 2b, Wo assumed that the input 
pulse occurred at tθ. If we shift the origin of the time scale so 
that the output pulse is delayed by r, this only adds a linear phase 
φ = ωτ to the phase response. This may be useful when comparing 
input and output pulses on a long cable where the phase shifts would 

otherwise bo impracticably largo. The programme can also be used 
to analyse reflected pulses.
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Fig. J shows how the step pulse of a time domain reflecto
meter is reflected on one of our BNC 75 Ω terminations which have a 
parasitic capacity. In this case one has to change the polarity of 
the signal before entering the data into the computer (in order to 
obtain the correct phase). The reflected signal p(t) measured in 
percent of a completely reflected pulse was punched into the data 

cards, and the same subprogramme with 0.15 nsec rise time was used. 
The results are shown in fig. 4a> 4^· The reflection coefficient

starts with a phase of -90° (parasitic capacity) and its magnitude 

increases with frequency up to 4I % nt 5·θ GHz. It seems to be com
pensated at 4»6 GHz (resonance). It would be difficult to measure 
this frequency response directly with a bridge because of the presence 
of other reflections on the same cable.

b) Spectrum analysis and response to a short unit impulse

The simplest subprogramme is the following:

COMPLEX FUNCTION SPECTR(f)

SPECTR≈I.
RETURN
END

If we use it to analyse the transient in fig. 5y we obtain the plots 
in fig. 5a and 5b that show the spectrum of the output pulse without 
any modification (division by 1.). However, SPECTR=1. can also 
be regarded as the Laplace transform of a short unit impulse 
(Dirac P -function) that could have been sent through some amplifier 
of limited bandwidth and therefore produces an output pulse which 
is much longer than the test pulse. In this case we would also use 
the above subprogramme and fig. 5⅛ would be the frequency res
ponse of the amplifier.
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c) Exponentially decaying Pulsθi_square_pulse

We can use any test pulse of which the Laplace transform 
is known, e.g. a pulse obtained by a condenser discharge with time 
constant RC = 14*0 msec and initial voltage $0 V. Then we have the 
subroutine

COMPLEX FUNCTION SPECTR(P)

C0W0N PIBY2,PI2 
COMPLEX P

P=CMPLX(O.,PI2*F)
RC=14.8 
SPECTR=5O.*RC/(1.+P*RC)

RETURN
END

P = J2πf is the complex frequency. We can multiply the spectrum 
by a constant in order to increase the amplitude and we can delay

— pT
a pulse by τ multiplying the Laplace transform by e . Example 
of a negative step pulse of J V which is delayed by 2.1 msec?

P=CMPLX(O.,PI2*F)
TAU=2.1
S PECTR≈CEXP(P*TAU)*(-3./P)

If we have a sequence of pulses we add the Laplace transforms (linear 
superposition). A positive step plus a delayed negative step of the 
same height form a square pulse of length τ:

COMPLEX FUNCTION SPECTR(F) 
C/MM/N PIBY2,PI2 

COMPLEX P

P≈CMPLX(O.,PI2*F)
TAU=2.1 
SPECTR≈J./P-CEXP(P*TAU)*3,/P

RETURN
END
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In all preceding cases a rise time correction can bo made by multi
plying the whole SPECTR by the factor .

4· Final remarks

This programme is called ’’SNOPSER” because it is the counter
part of another computer programme ’’RESPONS” which solves the inverse 
problem, i.o. to calculate the transient response of a network of which

the frequency response has been measured or is given by a mathematical
expression in terms of the circuit elements. It has been used to calcu

late for example how various signals arc transmitted through long cables
plus an amplifier or how a control system responds to a sudden pertur

bation. Both programmes accept the same subroutines ”SPECTR(f)”. With 
this pair of computer programmes we have a free choice between measure

ments of transient response or frequency response whichever is more 
practical.

H. ÏÏ. Ums tatter

Distributionσ (open)

Scientific Staff MPS and SI
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Table 1 INPUT 
DATA



Fig. 1 1 ns/div.

Fig. 3 time base: 0.2 ns/div., 
vertical: 2% /division.
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