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1. Introduction

The slow ejected beam from the synchrotron is not an ideal
constant flux of protons, but shows considerable intensity fluctuations.
These fluctuations present a handicap to the experimental physicists.

In order to determine the effect of the structure on an experiment, and
to assist in the adjustment of the ejection, some quantitative measure

of the structure is required.

This report discusses the use of the autocorrelation func-
tion and the effective spill time as measures of the burst structure.
These give a measure of the average structure over the burst, this being
of most relevance to the physics experiments as they involve a considerable
stochastic element., The instantaneous time structure of the burst is, of
course, of great interest but is unsuitable as a quantitative measure of
the structure,

Three methods of measuring the high frequency structure are
examined and compared. It is shown how these high frequency measurements
can be combined with measurements of the low frequency structure to give

the overall characteristics of the burst,

2. The effective spill time

A major problem in most experiments is that of chance events:
events which cannot be distinguished from real events but which result
from more than one primary particle. This problem is accentuated by the

presence of structure on the beanm,

It will be shown later that the number of chance events C
resulting from two primary particles increases with the square of the
beam intensity. If we define the proton flux of the ejected burst as the

signal m(t) starting at t = O and finishing at t = T, then we can write

T

c oc'[ n2(t) dt (1)
70
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whereas the number of real events is
Ts
R ecf n(t) at (2)
0
The fraction R/C is a sort of signal to noise ratio and can
always be increased by decreasing the intensity and hence increasing the
duration of the experiment. For best efficiency, howefer, the mean inten-
sity EK%T and the ratio R/C should both be as high as possibie, which
leads to the figure of merit

Dpg = B(E) (3)

alx

and if we write

T
r 8

I
n(t) = T é m(t) dt (4)

where»lTPS is the PS repéetition time, we have

Ts
..;2

[ n(t) dt | 1

0 _

ps =TT e (5)
s

j mz(t)'dt, s

0

The first factor in this expression for D has the dimensions of time and

is called the effective spill time (1),°(2), (3) T, wherc

D

T

D i m(t) dt :| 2

Te = gs (6)
£ n%(4) at

Te is the time over which the same number of protons, evenly spread out in

timey would give the same number of chance coincidences. Thus
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T

e
PS=Tf;S<1 (7)

D

is the machine duty factor which should be as high as possible. It can never
be unity due to the time required to accelerate the protons and the duty
factor of septa, etc. We can, however, define an ejection duty factor

De’ where

T
D, = 7 (8)

De depends only on the burst structure and could conceivably reach unity.

3. The auto-correlation function

The burst auto-correlation function (or its frequency
domain equivalent, the power spectrum) gives information about the average
frequency structure of the burst. This is of interest for two recasons.
FPirstly not all experiments depend on the structure .in the same way; in
particular it will be shown later that Te is often a pessimistic mea-
sure of the structure. Secondly knowledge of the frequency structure can

help in diagnosing and removing the cause of the structure.

The auto-correlation function can also be used to calculate
the effective spill time Te' Hexe we define the autowcorrelation function
as

T
]

[ n(t) m(t-7) dt (9)

"0

1}

A(T)

and it can be shown that
?s 2 Ts
[ﬁjo m(t) dt :] [ A7) ar '
T = o= = —TS (10)

e TS
/’ m(t) dt A(0).
0

since m(t) = 0 for t <0, t > Ty
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Both A(7) and Te are difficult to measure accurately
due to the wide range of frequencies and times involved, namely frequencies
up to several tens of MHz and burst times of around 200 msec. In the PS,
however, we can meke the simplifying assumption that the structure consists

of a high frequency ripple modulated by the low frequency structure so
that

n(t) = r (t) » 1(t) (11)

where 1r(t) is the RF structure of period T = 2.1 psec and 1(t) is the
low frequency shape which has been shown (4),(5) to have no significant
frequency components above about 3 kHz, Then

T
-]

_Z) r(t) . 1(t) . r(t-7) . L(t-7) dt

A(T)

ff{T nT
) , f r(t) o r(t-1) . 1(t) . 1(t-7) at
n=1 (n-1)T

and if 1(t) is considered constant over the short time T

T T
]

A(T) %[r(t) . r(t-7) dt [ 1(t) . 1(t-7) dt
0

fl

A(r) . a(7) (12)

Ar(T) is the auto-correlation function of the high frequency structure

and gives the information required for debunching (or rebunching)studies.
The cffective spill length Te can be obtained as
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/.S A(T) ar [ ) Ar(T) . Al(r) ar

-7 -T
T = 2 = 5
© A(0) 4,(0) . A (0)
TS/T nT
T Ar('r) . A‘.L(T) ar
L.

) n:-;T /7 (n-1)T

bl ~

Ar(O) . Al(O)

Assuming as before that .A.l(T) can be considercd constant

over a time interval T we have
T

|

Ts
Ar(T) ar . [ Al('r) ar
0 -7

Ar(O) . Al(O)

T

£ 4 (7) ar
_ 7 =D o7 (13)
A (0)

Hi-

where Telf is Te measured neglecting the high frequency componcnts,

and Dr is a high frequency duty factor

T T
l Ar(’r) ar £ Ar(‘r) . Al(‘r) ar
D = =
T Ar(O) T Ar(O) . Al(o)
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A(T) ar

- (14)
T A(0)

O\

as we can assume Al(’r) = Al(O) = constant over the interval 0 < %t s T.

Thus Dr can be obtained by measuring A(7) over the first 2.1 psec.

Now A.(T) and T

(4T (5)

combining the low and high frequency mecasurements the complete burst

olf 2re easily measured using regular

computer sampling since only low frequencies are involved. So
characteristics can be obtained.

As an example consider the effect of a sinusoidal ripple
on the burst, of relative amplitude H - so- that

m(t) =1+ Hcoswt

The auto=correlation function is

2n/w

Ar(T) = ‘éﬂ [ (1 + H cos wt) (1 + H cos w(t+r) dt
T 7o

2

1 + %—- cos wT (15)

Thus the auto=-corrclation function also shows a sinusoidal ripple but of

magnitude gI__z_ o The duty factor for 0 <H <1 is
2
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= — (16)

which gives 66 % for 100 % modulation.

4. Chance Coincidences

As mentioned in section 2 a major experimental problem is
that of chance events. In this section expressions for the number of
chance events are derived. It is shown that the effective spill time is
often pessimistic, i.cs indicates too many chance events. The corrcct
number of chance events for any particular cxperiment is derived in terms

of the auto-corrclation function.

The proton beam is used against a target to produce "cvents".
The number of events produced is usually so much smaller than the number
of incident protons (~ 104 per nano-sccond) that we can consider the pro-
duction process as stochastic, with the probability a(t) of an event being
proportional to flux of incident protons. Thus
T

S

a(t) = k m(t) and f a(t) at = N (17)
0

where N 1is the number of events per burst.
Agsume the counting rate is

a = constant (18)
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Now for the very short time interval dt where
a . dt << 1 (19)

the probability of observing one particle P1(dt) will be

P1(dt) = a dt (20)
and of observing no particles
Po(dt) =1 ~a dt (21)

From this we obtain the probability of obscrving x particles in the time

interval t + dt as

Px(t+dt) = P1(dt) . PX_1(t) + Po(dt) . Px(t) (22)

or with (20) and (21)

Px(t+dt) - Px(t)

= a(p__, (%) - P (%)) (23)
dt
P (t + dt) - P_(%) a P_(%)

and with %S 22 = —E— (24)

at at

we have dPx(t)

W = a(B,_,(t) - P_(%)) (25)
at
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This equation can bec solved for various values of x %o obtain

e-at gat}x
xl

r, (%)

=3t

with Po(t) e (26)

which 1s the Poisson distribution.

Consider the probability of a coincidence in a gate time L,

related to the occurrence of an event in time dt. This can be written

af = a dt . (1 - ”2P) (27)

i.es the joint probability of an event in time dt and at least one event
in the subsequent gate time L. If

all << 1 (28)
then cquation (27) becomes
2

df = a°L at (29)

and over the time T the total number of coincidences is

w0

f=a"LT (30)
the well known cquation for chance coincidences.

Now consider the casec wherc the probability of observing
a particle in the time dt is the time variable a(t) as defined by (17).
The derivation of the distribution in this case is more complicated 6 ’
so only the result is quoted here. This gives the probability of x events

in the time +t starting from to as
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n

Px(to’t)

with
t

exp l: -_[ a( 7) d'r:l

%

Po(to!t)

Equation. (27) for the probability of a coincidence becomes

t+L _
ar = a(t) . at [1 - exp<- [ a(t) dt>-l
t
and for
t+L
[ a(t) dt << 1
t
this gi#es
t+L
af = a(t) dtf a(t) dt
t

and the total number. of coincidences is

TS t+L
f = [ a(t) [ a(t) at . dat
-Ts t
T L
T |
;‘[ a(t) ] a(t+r) ar . dt
~T 0
8
L T

f a(t) a(t+r) at . dr

S

t —-x
ch_.'- [a(r) dTJ epr: -j a( 1) d'r]
to to

(31)

(32)

(33)

(34)

(35)

(36)
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and using equation (17) we have
L

£ = K° [A(T) ar (37)
0

since the auto=correlation function is an even function of 7. Also from

equation (17) we have

T
g km(t) dt = N (38)
N
k= o (39)
f m(t) dt
0

so that
) ZL A(T) ar
£ =N
l:fzém(t)'dt] 2

Equation (40) gives the number of chance coincidences in terms of the

{40)

auto=correlation function and the total number of counts.

The special case where the gate ftime I -is short compared

with any variation in A(7) gives for equation (37)

2

f=%"1L . A(0)

aTS
K21 é P (t) dt (41)

the result used in section 2 that the number of chance coincidences is
proportional to the square of the intensity. From equation (40) for

this special case we have
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2
f =N L
Ts 2
m(t) dt
0
2
N° L
= 77 (42)
e
2
or Te = IL (43)

It can be proved that

A(T) < A(0) " (44)

L

so that [ A(r) ar < L . A(0) (45)
0

so that if any structure of frequency comparable to or higher fhan'% is
present then the number of coincidences given by equation (40) will be
less than that given by equation (42)1 This is equivalent to saying

that Te is a worst case measure of the structure and will be pessimistic
if the coincidence time of the experiment is large compared with some of
the frequencies in the structure. This is especially relevant to spark
chamber experiments which have a coincidence time of about 1 usec, thus
being rather insensitive to bunch structure but sensitive to structure

at the revolution frequency and below,

It is possible to define an effective spill time for each
experiment, Texp’ from equation (42) so that

fexp = Texp (46)
PS/7305



- 13 -

where fexp is the number of coiincidences in the particular experiment.
From (40) we have

L . A(0)
T =T (47)

exp e A
[ A(T) ar

lees Texp is always greater than Te'

5« Time interval measurement

In this method the time T between two events 7 and 4L are
added together and displaycd on a scope. L is the time resolution between

ordinates on the scope and the number of ordinates is Tmax/L’
The probability of observing a time between Tand ™L
starting at time +t 'in the interval dt 1is the joint probability of an

event in time dt, no event between t and t+7, at lcast one event

between t+7 and t+7+L. This gives

t+T t+74L
ﬁ:a&%ﬁ&@[iha@)%].<1-u4}f ““dq > (48)
B A

Assuming the resolution time L short. compared with variation in a(t)
and L a(t+7) << 1 (48) Dbecomes

t+7

&f = L.a(t) a(t+7) exp [—[ a(t) dt]'dt (49)
%
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t+7

If we now put jl a(t) dt =4 T (50)
t

and assume & is a constant, the total becomes

T
£=1 e—éT[ ° a(t) a(t+r) dt (51)
0

o

Le ™ k%, A(r) (52)

Thus the display on the scope is proportional to the auto-correlation
function multiplied by the "wiggle factor" e~ which under suitable
conditions can be assumed to be a decaying -exponentisl of time ponstant

1/(Average counting rate).

6. Measurement using delayed coincidences

In this method the pulse train. from the detector is put
into a coincidence unit of resolution time L along with the pulse train
delayed by the time T, The number of events N and the number of co-
incidences f are counted. The probability of observing a coincidence
derived from an event at time +t in the interval dt 1is the joint pro-

bability of an event in dt and at least one cvent between t + 7~ L and

L 2
t+ T+ 5 . This gives
t+T+%
af = a(t) at <1 - exp l:-[ a(t) dt :l) (53)
t+r—%

which gives, using the same assumptions as before about the shortness of L

df = L a(t) . a(t+7) dt (54)
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and the total number of coincidences f is

£ =%k21 A(r) (55)
N L = il (56)
] A1) ar
=T
- NTéL a (57)

Using several delay channels, or scanning the delay, enables
a relative auto~correlation function tc be plotted out. The assumptions
made in section 3 about the periodicity of Ar(T) and the slowness of

change of Al(T) allow us to write here

A(2.1 psec) = A(0) (58)

so that equation (57) gives

T, = T (59)

where £2 ’ is the number of coincidences where the delay is 2.1 usec,

i.e. the period of Ar(T). Equation (59) is often used to calculate the
effective spill time.

T« Use of two detectors

In practice it is impossible to resolve events closer than
about 20 nsec so the above measurement can give no information about

A(r) for T < 20 nsec, It must be noted, however, that since we have
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assumed A(7) ~ A(7+2.1 usec); the required information can be obtained
by measuring to 7 = 2.7 psec + 20 nsec, At least this is true for the
delayed eoincidence method., In the time~interval method the "wiggle fae-
toxr" e—ﬁ7. intervenes and it may be desirable to measure right down

to 7 = 0, This can be accomplished using two detectors and two targets

with counting rates

i

a1(t) k, n(t)

25 (%)

k, n(t + t1) (60)

where t' is the time difference between the two detectors. If we assume
a1(t) = az(t) = a(t) and %' = O then the mathematics developed above

applies directly. Otherwise some small modifications have to be made.

Now whereas two detectors are feasible, two targets may not
be. If the two detectors look at the same target we have the problem of
coincidences in roughly a + 10 nsec region being due to secondary par-
ticles from the same event. Suppose we assume that each proton hitting
the target produces a mean of n secondary particles which are isotro-
pically emitted. (This is not sirictly true. Thc secondaries are not
emitted isotropically, nor is n independent of the angle to the beam
axis at which the target is seen by the detectors. One can, however,
definc an effective solid angle g , and if Q is small and the viewing
angle does not change, n can be taken as constant.) BRach of the par-
ticles detected in the first detector is then accompanied by n other
particles, and the probability of detecting one of the particles in the
second detector is nQ where 0 is the solid angle through:which the

2 2
second detector looks at the target. The number of true coincidences

adding to the chance coincidences for delays 7t <10 nsec will be, assu-

ming a, =&, = a= constant,

f =aT «nf (61)
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whereas the number of chance coincidences will be

f = a2 LT
o) s,

so the percentage contribution of time

with a solid angle @, = 10°, =n = 10,
per sec we would obtain a contribution

true coincidences would be observed.

(62)

coincidences is

(63)

.0t = 20 nsec and a = 106 counts

of 0.5 %. For T > 10 nsec no more

The above suggests the following set-up for measuring the

time=-interval distribution:

Beam

detector II

PS/7305
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8. The direct measure of the auto-correlation function

As mentioned above computer sampling techniques are used

at low frequencies to obtain Al(T) and T_ This could also be done

for the high frequencies if the true signallfm(t) is available. At low
frequencies regular sampling is used but this is difficult at the higher
frequencies. A procedure which could be used with two sampling heads is
to take two samples of m(t) separated by the time T , read these into the
computer, then form the product m(t) . m(t~7). This would be repeated for
a range of delays O <€ 7 < 2.1 usecs, The whole vprocess could then be re-

peated Q times and the auto~correlation function formed as

A(T) = mn(t) . m(t-7) (64)

1
e
This assumes the sampling process to be asynchronous, i.e. the samples

will be spread in a random fashion over the burst.

A signal m(t) proportional to the flux of ejected protons
could be obtained from a photo-multiplier looking at some light producing
material in the beam, With the available proton flux ( ~1O4 Per nanoe
second) an output signal of ~ 10 mA should be obtainable from a low gain
high current photo-multiplier. This would give a signal of ~ 1 volt when
matched directly into a cable so as to preserve the high frequencies,
Such a signal could easily be sampled using sampling scope techniques,

with a sampling aperture in ihe nanosecond region.

9. Comparison of thefthree methods

The above three methods of measuring the high frequency
structure can be compared in terms of systematic accuracy, hardware re-

quirements, and time for a given statistical accuracy.

The time interval method is the only one which shows a

theoretical inaccuracy, this being due to the "wiggle factoxr" e-aT. This
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can always be diminished by reducing the average counting rate, with

obvious repercussions on the measurement time.

Hardware requirements

The time interval method obtains its result from equipment
which is standard for physics experiments and easy to use. It is rather
expensive however. The delayed coincidence method again uses . standard
equipment. Two possibilities are available here: firstly one delay channel,
coincidence unit, and counter can be used and the delay varied in order
to plot the auto-correlation function; secondly a battery of delay channels,
etc. can be used to build up all points on the auto~correlation function

separately.

The first method is very economical in hardware but re-
quires active operator intervention, is slower, and can give errors if
the process is non-~stationary. The second method requires a lot of equip~

ment.

The direct method requires a special monitor and sampling
circuits. The conversion and. computer read-in equipment are standard.
Side advantages of the special monitor are that it enables the instanta-
neous time structure to be viewed, allows analogue spectrum analysis, and
provides an accurate low noise monitor for the observation of lower fre~

quencies.

Time required for statistical accuracy

Assume a sinusoidal ripple on the burst of form
m(t) =1 4+ H cos gt
Section 3 gives the auto-correlation function as

H2
Alr) = % + 5= coser
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and the duty factor as

2
M- 4 / / A E—)
- [ 2

2o g /

A 14 % ripple on the beam will therefore give a 1 % ripple on the auto-
correlation function and a 1 % reduction in effective spill time. Now
consider the measurement time required to resolve a 1 % ripple on the

auto~correlation function.

a) Coincidence method

Equation (57) shows that the relative auto-correlation
function is given by the number of coincidences. Thus a resolution
of 1 % requires 100 coincidences, and an accuracy of 1 % requires ap-
proximately 104, Assuming the counting rate a(t) approximately con-
stant, equation (30) gives the time required for f coincidences as

£

T = (65)
a2L

Using a coincidence gate time L of 10 nanosec and the
maximum practicable telescope ccnting rate of a = 106 per sec, the
counting time T becowes i sec, i.e. 5 machine pulses at 200 msec per

burst.

b) Time interval measurement

Equation (65) also gives the time required for the time
interval measurement. In order to limit the effect of the wiggle factor
o8t 1 equation (52), however, the counting rate must be limited. Allow=
ing a droop of 10 % over the first 2.1 psec gives a counting rate of
50 kHz, Again taking the resolution as 10 nsec (giving 210 ordinates
over the first 2.1 psec) the measuring time T is 20 secs or 100 machine
pulses., This assumes that every time interval can be measured, as is the
case in the equipment to be built at Nimrod by E. G. Sandels for CERN.

A normal multichannel analyser has a dead time of 50 usec which reduces

its speed by a factor of 3 to 4 over the time mentioned above.
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¢) Direct method

Here each delayed product can easily be measured to better
than 1 %. An even spread of delayed products across the 2.1 psec period
is required however, and if this is approximated by random sampling a
statistical error is introduced. This is difficult to calculate and
depends on the frequencies present. 200 samples may perhaps be adequate,
this giving 10 samples on average over one period of the bunch frequency.
A dead time of 50 psec is reasonable for computer read in so that one
average delayed product will require 10 msec. Again for 10 nsec resolution
210 points will be required, giving a total time of 2 secs or 10 machine
pulses.
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