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1• Introduction

The slow ejected beam from the synchrotron is not an ideal 
constant flux of protons, but shows considerable intensity fluctuations. 
These fluctuations present a handicap to the experimental physicists. 
In order to determine the effect of the structure on an experiment, and 
to assist in the adjustment of the ejection, some quantitative measure 
of the structure is required.

This report discusses the use of the autocorrelation func­
tion and the effective spill time as measures of the burst structure. 
These give a measure of the average structure over the burst, this being 
of most relevance to the physics experiments as they involve a considerable 
stochastic element. The instantaneous time structure of the burst is, of 
course, of great interest but is unsuitable as a quantitative measure of 
the structure.

Three methods of measuring the high frequency structure are 
examined and compared. It is shown how these high frequency measurements 
can be combined with measurements of the low frequency structure to give 
the overall characteristics of the burst,

2. The effective spill time

A major problem in most experiments is that of chance events: 
events which cannot be distinguished from real events but which result 
from more than one primary particle. This problem is accentuated by the 
presence of structure on the beam.

It will be shown later that the number of chance events C 
resulting from two primary particles increases with the square of the 
beam intensity. If we define the proton flux of the ejected burst as the 
signal m(t) starting at t = 0 and finishing at t = T then we can write s

(1)
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whereas the number of real events is

(2)

The fraction R/C is a sort of signal to noise ratio and can 
always be increased by decreasing the intensity and hence increasing the 
duration of the experiment. For best efficiency, however, the mean inten­
sity m(t) and the ratio R/C should both be as high as possible, which 
leads to the figure of merit

(3)

and if we write

where TPS is the PS repetition time, we have 

(4)

(5)

The first factor in this expression for B has the dimensions of time, and 
is called the effective spill time Tθ where

(6)

Tθ is the time over which the same number of protons, evenly spread out in 
time* would give the same number of chance coincidences. Thus
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(7)

is the machine duty factor which should be as high as possible. It can never 
be unity due to the time required to accelerate the protons and the duty 
factor of septa, etc. We can, however, define an ejection duty factor 
D , where e7

(6)

D depends only on the burst structure and could conceivably reach unity, e

5. The auto-correlation function

The burst auto-correlation function (or its frequency 
domain equivalent, the power spectrum) gives information about the average 
frequency structure of the burst. This is of interest for two reasons. 
Firstly not all experiments depend on the structure .in the same wayj in 
particular it will be shown later that Tθ is o.ften a pessimistic mea­
sure of the structure. Secondly knowledge of the frequency structure can 
help in diagnosing and removing the cause of the structure.

The auto-correlation function can also be used to calculate 
the effective spill time Tθ. Here we define the auto-correlation function 
as

(9)

and it can be shown that

(10)

since m(t) =0 for t < 0, t > TS . 
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Both A(t) and T are difficult to measure accurately θ
due to the wide range of frequencies and times involved, namely frequencies 
up to several tens of MHz and burst times of around 200 msec. In the PS, 
however, we can make the simplifying assumption that the structure consists 
of a high frequency ripple modulated by the low. frequency structure so 
that

(11)

whore r(t) is the HP structure of period T = 2.1 μsec and l(t) is the 
low frequency shape which has been shown (4),(5) to have no significant

frequency components above about 5 kHz. Then 

and if l(t) is considered constant over the short time T

(12)

Ar(r) is the auto-correlation function of the high frequency structure 
and gives the information required for debunching (or rebunching)studies.

The effective spill length Tθ can be obtained as
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Assuming as before that A1(r ) can be considered constant 
over a time interval T wo have

(15)

where T is Tθ measured neglecting the high frequency components, 
and D is a high frequency duty factor
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(U)

as we can assume = A^(θ) = constant over the interval 0 < t ≤ T.
Thus can be obtained, by measuring A( t) over the first 2.1 μsec.

Now A1(T ) Tolf are easily measured using regular 
computer sampling ’ (5) since only low frequencies arθ involved. So 

combining the low and high frequency measurements the complete' burst 
characteristics can be obtained.

As an example consider the effect of a sinusoidal ripple 
on the burst, of relative amplitude H so that

The auto-correlation function is

(15)

Thus the auto-correlation function also shows a sinusoidal ripple but of 
magnitude  The duty factor for 0 ≤ H ≤ 1 is 
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(16)

which gives 66 % for 100 modulation.

4* Chance Coincidoncos

As mentioned in section 2 a major experimental problem is 
that of chance events. In this section expressions for the number of 
chance events are derived. It is shown that the effective spill time is 
often pessimistic, i.e. indicates too many chance events. The correct 
number of chance events for any particular experiment is derived in terms 
of the auto-correlation function.

The proton beam is used against a target to produce ’’events'’. 
The number of events produced is usually so much smaller than the number 
of incident protons 10^ per nano-second) that we can consider the pro­

duction process as stochastic, with the probability a(t) of an event being 
proportional to flux of incident protons. Thus

(17)

where N is the number of events per burst.

Assume the counting rate is

a = constant
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Nov; for the very short time interval dt where

(19)

the probability of observing one particle P^(dt) will bo

(20)

and of observing no particles

(21)

From this we obtain the probability of observing x particles in the time 
interval t + dt as

(22)

or with (20) and (21)

(23)

and with (24)

we have (25)
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This equation can be solved, for various values of x to obtain

with (26)

which is the Poisson distribution.

Consider the probability of a coincidence in a gate time L, 
related to the occurrence of an event in time dt. This can be written

(27)

i.e. the joint probability of an event in time dt and at least one event 
in the subsequent gate time L. If

(28)

then equation (27) becomes

(29)

and over the time T the total number of coincidences is s

(30)

the well known equation for chance coincidences.

Nov; consider the case where the probability of observing 
a particle in the time dt is the time variable a(t) as defined by (17). 
The derivation of the distribution in this case is more complicated , 
so only the result is quoted here. This gives the probability of x events 
in the time t starting from tθ as
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(51)

with

(52)

Equation (27) for the probability of a coincidence becomes

and for

(55)

this gives

(54)

and the total number of coincidences is

(55)
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and using equation (17) we have

(37)

since the auto-correlation function is an even function of r • Also from 
equation (17) we have

or

(38)

so that

(39)

(40)

Equation (40) gives the number of chance coincidences in terms of the 
auto-correlation function and the total number of counts.

The special case where the gate time L is short compared 
with any variation in A(r) gives for equation (57)

(41 )

the result used in section 2 that the number of chance coincidences is 
proportional to the square of the intensity. From equation (40) for 
this special case we have
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(42)

or

It can be proved that

(43)

so that

(44)

(45)

so that if any structure of frequency comparable to or higher than  is 
present then the number of coincidences given by equation (40) will be 
less than that given by equation (42). This is equivalent to saying 
that Tθ is a worst case measure of the structure and will be pessimistic 
if the coincidence time of the experiment is large compared with some of 
the frequencies in the structure. This is especially relevant to spark 
chamber experiments which have a coincidence time of about 1 μsec, thus 
being rather insensitive to bunch structure but sensitive to structure 
at the revolution frequency and below.

It is possible to define an effective spill time for each 
experiment, Texp , from equation (42) so that

(46)
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where feXp the number of coincidences in the particular experiment. 
From (40) we have

(47)

i.e* T is always greater than T •
OX J) 0

5« Time interval measurement

In this method the time r between two events t and r+L are 
added together and displayed on a scope. L is the time resolution between 
ordinates on the scope and the number of ordinates is r /L.

max

The probability of observing a time between rand r+L 
starting at time t in the interval dt is the joint probability of an 
event in time dt, no event between t and t+r, at least one event 
between t+r and t+r+L. This gives

(48)

Assuming the resolution time L short.compared with variation in a(t) 
and L a(t+T) « 1 (4θ) becomes

(49)
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If we now put (50)

and assume a is a constant, the total becomes

(51)

(52)

Thus the display on the scope is proportional to the auto-correlation 
 function multiplied by the "wiggle factor" e which under suitable 

conditions can be assumed to be a decaying exponential of time constant 
1/(Average counting rate).

6, Measurement Using delayed coincidences

In this method the pulse train, from the detector is put 
into a coincidence unit of resolution time L along with the pulse train 
delayed by the time r . The number of events N and the number of co­
incidences f are counted. The probability of observing a coincidence 
derived from an event at time t in the interval dt is the joint pro­
bability of an event in dt and at least one event between t + t- —■ and 

ji *-
t + r + ~ , This gives

(53)

which gives, using the same assumptions as before about the shortness of L
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and the total number of coincidences f is

(55)

(56)

(57)

Using several delay channels, or scanning the delay, enables
a relative auto-correlation function to be plotted out. The assumptions
made in section 5 about the periodicity of Ar(T) and the slowness of
change of A^(Tr) allow us to write here

(5θ)

so that equation (57) gives

(59)

  where f^ is the number of coincidences where the delay is 2.1 μsec,
i .e. the period of A^(r). Equation (59) is often used to calculate the
effective spill time.

7• Use of two detectors

In practice it is impossible to resolve events closer than
about 20 nsec so the above measurement can give no information about
A(t) for t < 20 nsec. It must be noted, however, that since we have
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assumed A(t) ~ A(r+2.1 μseo), the required information can be obtained 
by measuring to t =2.1 μsec + 20 nsec. At least this is true for the 
delayed βoincidence method. In the time-interval method the "wiggle fa*- 

Ttor" e intervenes and it may be desirable to measure right down
to 7=0, This can be accomplished using two detectors and two targets 
with counting rates

(60)

where tl is the time difference between the two detectors. If we assume 
a^(t) = a^(t) = a(t) and t’ = 0 then the mathematics developed above 
applies directly. Otherwise some small modifications have to be made.

Now vξhereas two detectors are feasible, two targets may not 
be. If the two detectors look at the same target we have the problem of 
coincidences in roughly a + 10 nsec region being due to secondary par­
ticles from the same event. Suppose we assume that each proton hitting 
the target produces a mean of n secondary particles which are isotro­
pically emitted. (This is not strictly true. The secondaries are not 
emitted isotropically, nor is n independent of the angle to the beam 
axis at which the target is seen by the detectors. One can, however, 
define an effective solid angle q , and if Ω is small and the viewing 
angle does not change, n can be taken as constant.) Each of the par­
ticles detected in the first detector is then accompanied by n other 
particles, and the probability of detecting one of the particles in the 
second detector is nΩ^ w^ere Ω is the solid angle through* which the 
second detector looks at the target. The number of true coincidences 
adding to the chance coincidences for delays r <10 nsec will be, assu­
ming a^ = = a = constant,

(61)
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whereas the number of chance coincidences will be

(62)

so the percentage contribution of time coincidences is

(65)

6with a solid angle ~ 10 , n =» 10, ,Δt = 20 nsec and a = 10 counts 
per sec we would obtain a contribution of 0.5 %. For t > 10 nsec no more 
true coincidences would be observed.

The above suggests the following set-up for measuring the 
time-interval distribution:
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8. The direct measure of the auto-correlation function

As mentioned above computer sampling techniques are used 
at low frequencies to obtain A^(r) and This could also be done
for the high frequencies if the true signal m(t) is available. At low 
frequencies regular sampling is used but this is difficult at the higher 
frequencies. A procedure which could be used with two sampling heads is 
to take two samples of m(t) separated by the timer , read these into the 
computer, then form the product m(t) • m(t-r). This would be repeated for 
a range of delays 0 ≤ r ≤ 2.1 μsec. The whole process could then be re­
peated Q times and the auto-correlation function formed as

(64)

This assumes the sampling process to be asynchronous, i.e. the samples 
will be spread in a random fashion over the burst.

A signal m(t) proportional to the flux of ejected protons 
could be obtained from a photo-multiplier looking at some light producing 
material in the beam. With the available proton flux ( ^10^ per nano­

second) an output signal of 10 mA should be obtainable from a low gain 
high current photo-multiplier. This would give a signal of ~ 1 volt when 
matched directly into a cable so as to preserve the high frequencies’. 
Such a signal could easily be sampled Using sampling scope techniques’, 
with a sampling aperture in the nanosecond region.

9. Comparison of the three methods

The above three methods of measuring the high frequency 
structure can be compared in terms of systematic accuracy, hardware re­
quirements, and time for a given statistical accuracy.

The time interval method is the only one which shows a
— qT theoretical inaccuracy, this being due to the "wiggle factor" e • This 
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can always be diminished by reducing the average counting rate, with 
obvious repercussions on the measurement time.

Hardware requirements

The time interval method obtains its result from equipment 
which is standard for physics experiments and easy to use. It is rather 
expensive however. The delayed coincidence method again uses standard 
equipment. Two possibilities are available here: firstly one delay channel, 
coincidence unit, and counter can be used and the delay varied in order 
to plot the auto-correlation function^ secondly a battery of delay channels, 
etc. can be used to build up all points on the auto-correlation function 
separately.

The first method is very economical in hardware but re­
quires active operator intervention, is slower, and can give errors if 
the process is non-stationary. The second method requires a lot of equip­
ment.

The direct method requires a special monitor and sampling 
circuits. The conversion and. computer read-in equipment are standard. 
Side advantages of the special monitor are that it enables the instanta­
neous time structure to be viewed, allows analogue spectrum analysis, and 
provides an accurate low noise monitor for the observation of lower fre­
quencies .

Time required for statistical accuracy

Assume a sinusoidal ripple on the burst of form

Section 3 gives the auto-correlation function as
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and. the duty factor as

A 14 % ripple on the beam will therefore give a 1 % ripple on the auto­
correlation function and a 1 % reduction in effective spill time. Now 
consider the measurement time required to resolve a 1 % ripple on the 
auto-correlation function.

a) Coincidence method

Equation (57) shows that the relative auto-correlation 
function is given by the number of coincidences. Thus a resolution 
of 1 % requires 100 coincidences, and an accuracy of 1 % requires ap­
proximately 10^. Assuming the counting rate a(t) approximately con­

stant, equation (50) gives the time required for f coincidences as

(65)

Using a coincidence gate time L of 10 nanosec and the 
maximum practicable telescope counting rate of a = 10$ per sec, the 

counting time T becomes i sec, i.e. 5 machine pulses at 200 msec per 
burst.

b) Time interval measurement

Equation (65) also gives the time required for the time 
interval measurement. In order to limit the effect of the wiggle factor 
e"^ in equation (52), however, the counting rate must be limited. Allow­
ing a droop of 10 % over the first 2.1 μsec gives a counting rate of 
50 kHz. Again taking the resolution as 10 nsec (giving 210 ordinates 
over the first 2.1 μsec) the measuring time T is 20 secs or 100 machine 
pulses. This assumes that every time interval can be measured, as is the 
case in the equipment to be built at Nimrod by E. G. Sandels for CERN. 
A normal multichannel analyser has a dead time of 50 μsec which reduces 
its speed by a factor of J to 4 over the time mentioned above.
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c) Direct method

Here each delayed product can easily be measured to better 
than 1 %. kn even spread of delayed products across the 2.1 μsec period 
is required however, and if this is approximated by random sampling a 
statistical error is introduced. This is difficult to calculate and 
depends on the frequencies present. 200 samples may perhaps be adequate, 
this giving 10 samples on average over one period of the bunch frequency. 
A dead time of 5θ μsec is reasonable for computer read in so that one 
average delayed product will require 10 msec. Again for 10 nsec resolution 
210 points will be required, giving a total time of 2 secs or 10 machine 
pulses.
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