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Abstract

Efficient and accurate algorithms are necessary to reconstruct particles in the
highly granular detectors anticipated at the High-Luminosity Large Hadron
Collider and the Future Circular Collider. We study scalable machine learn-
ing models for event reconstruction in electron-positron collisions based on a
full detector simulation. Particle-flow reconstruction can be formulated as a
supervised learning task using tracks and calorimeter clusters. We compare a
graph neural network and kernel-based transformer and demonstrate that we can
avoid quadratic operations while achieving realistic reconstruction. We show that
hyperparameter tuning significantly improves the performance of the models.
The best graph neural network model shows improvement in the jet transverse
momentum resolution by up to 50% compared to the rule-based algorithm. The
resulting model is portable across Nvidia, AMD and Habana hardware. Accurate
and fast machine-learning based reconstruction can significantly improve future
measurements at colliders.

1ar
X

iv
:2

30
9.

06
78

2v
6 

 [
ph

ys
ic

s.
da

ta
-a

n]
  1

6 
Ju

l 2
02

4



1 Introduction

One of the main approaches for event reconstruction at the Large Hadron Collider
(LHC) is currently based on the particle-flow (PF) algorithm [1–13], which com-
bines measurements from different subdetectors to produce a holistic particle-based
description of the entire event. For the planned High Luminosity LHC (HL-LHC) [14]
program, due to the installation of new highly granular detector subsystems such
as high-granularity calorimeter (HGCAL) for Compact Muon Solenoid (CMS), the
reconstruction algorithms have to be revisited or new algorithms have to be devel-
oped to fully make use of the data which has a significantly higher complexity.
Similarly, for possible future experimental programs such as the Future Circular Col-
lider (FCC) [15, 16], existing algorithms have to be retuned or new ones developed,
possibly many times for each new detector scenario under study. Therefore, it is nec-
essary to develop high-fidelity PF reconstruction algorithms that are at the same
time computationally efficient, and can be easily extended to new detector concepts
without significant manual work. Moreover, if algorithms can be found that can recon-
struct events from highly granular detectors with improved fidelity, e.g. in terms of
jet response, this may have important implications towards the sensitivity and thus
cost-effectiveness of future experiments.

There has been considerable interest in and development of machine learning
(ML)-based reconstruction methods, including for PF reconstruction. Models for PF
reconstruction based on computer vision were investigated in [17]. In order to train a
model that reconstructs events consisting of a variable number of particles, a recipe for
a loss function based on attractive and repulsive potentials was given in Ref. [18]. In
Ref. [19], a version of this loss was used together with a graph neural network (GNN)-
based approach to reconstruct events with high particle multiplicity accurately. This
approach was successfully applied in the CMS experiment [20, 21]. Recently, Ref. [22],
demonstrated that a network architecture based on learning a hypergraph structure
can improve jet reconstruction. In parallel, clustering using ML has been demonstrated
for high-granularity calorimeter reconstruction [23]. Extending beyond particle recon-
struction, there is considerable interest and progress in reconstructing full decay trees
using ML [24, 25].

One of the critical challenges for PF reconstruction is the highly granular nature of
the data: events can comprise hundreds of thousands of heterogeneous measurements
in various detector subsystems. This motivates studying models that can scale to large
input multiplicities and efficiently process full events or batches of events simultane-
ously for improved throughput. To support such studies, it is beneficial to establish
open realistic simulated datasets with sufficient granularity to test various approaches.

In this paper, we utilize an open dataset of electron-positron (e+e−) collision events
at a center of mass energy

√
s = 380GeV with full GEANT4 simulation, suitable for

detector reconstruction, available in the EDM4HEP [26] format for future studies.
The specific center of mass energy was chosen due to being well studied as one of
the initial proposed scenarios for CLIC and thus the baseline reconstruction software
is available and tuned. However, nothing in our proposed approach is specific to the
center of mass energy or the specific detector configuration.
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Fig. 1: A conceptual overview of the machine-learned particle flow approach based
on tracks, hits and clusters on one simulated tt event.
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(a) The raw tracker, calorimeter and muon chamber hits, embedded in position space,
with the size of the marker proportional to the hit energy. (b) Tracking algorithms
reconstruct charged particle tracks from the tracker hits, shown with their extrapolated
trajectories. (c) The calorimeter hits are clustered to correspond better to individual
particles. (d) The machine-learned particle flow algorithm reconstructs charged and
neutral hadrons, photons, electrons and muons based on the tracks and clusters from
the previous step, shown with their extrapolated trajectories.

We test two types of scalable ML models as benchmarks that can process full events
consisting of tens of thousands of measurements, while avoiding memory allocation
or computations that scale quadratically with the input size. Using charged particle
tracks and clusters of calorimeter energy deposits, we minimize a particle-based loss
function and monitor physics metrics that quantify event reconstruction performance
during training. We report the results of an extensive hyperparameter optimization
(HPO) of the GNN-based model performed using high performance computing (HPC)
resources. We then evaluate the model’s physics and computational performance, as
well as its portability and quantization compatibility.

We approach the challenge of high-fidelity full event reconstruction via particle
flow using two alternative scalable machine learning models: kernel-based transformers
and graph neural networks using locality-sensitive hashing. After a large-scale hyper-
parameter optimization, we find that the GNN-based model can reconstruct physics
events with a higher degree of fidelity compared to the rule-based baseline. At the
same time, its computational cost scales linearly with the size of the input event, which
is desirable for future deployment scenarios in high-granularity detectors. Moreover,
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we demonstrate the portability of the model to several computational hardware pro-
cessors from Nvidia, AMD, and Intel Habana. The model can also be scaled naturally
to lower-level datasets consisting of raw detector hits, if tuned tracking or clustering
algorithms are not available. Our proposed approach for particle flow reconstruction
is summarized in Fig. 1. We identify steps for future development and also publish
the code and datasets following the findable, accessible, interoperable, and reusable
(FAIR) principles [27–29] for reproducibility and future development.

2 Methods

In this section, we describe the loss function for particle flow reconstruction, the specific
neural network (NN) approaches as well as the procedure for dataset generation.

2.1 Loss function

The optimization goal for full event particle reconstruction follows the machine-learned
particle flow (MLPF) approach previously used in Refs. [19–21], and applies a physics-
inspired ansatz to simplify the event-based reconstruction loss to a particle-based
classification and regression loss.

The input to the model is a set of detector elements: charged tracks and calorimeter
clusters (or alternatively, raw calorimeter hits), each described by a feature vector x ∈
X. The input features for the tracks consist of the track pT, the pseudorapidity of the
particle momentum (track tangent) η, the azimuthal angle of the particle momentum
ϕ, the track goodness-of-fit χ2 and the number of degrees of freedom Ndof , the slope

of the track tanλ = pz/
√
p2x + p2y, the signed impact parameter D0 with respect to

the origin (0, 0, 0) at interaction point in the xy plane, the signed curvature of the
track Ω = sign(q)/R defined via the track radius R and charge q, the position of
the track along the z-axis Z0 with respect to the origin [30]. For calorimeter clusters,
the features consist of transverse energy ET, η, ϕ, electromagnetic calorimeter energy
EECAL, hadronic calorimeter energy EHCAL, Cartesian spatial coordinates x, y, z; the
number of hits and the cluster size, measured in standard deviations of the hit sets in
x, y, and z.

The target of the model is a set of stable particles such as charged and neutral
pions, photons, electrons, and muons, defined through sufficient energy matched to
detector hits and with a Pythia8 8 status code 1. This specific choice of target
particles represents a reasonable optimization target, but may not be optimal for all
cases. The definition of an optimal ground truth for particle reconstruction is left to
future work. Each particle is described by a particle type, charge, and continuous four-
momentum values, combined to form a target feature vector y ∈ Y . The goal of the
model is, for each event, to reconstruct the set Y , given the setX, i.e. Φ(X) → Y ′ ≃ Y .
To make the set-to-set translation tractable with ML, and to be able to treat particle
multiplicities in the range of |X|, |Y | ≃ 104 with a single model pass, each target
particle is associated with a single unique input element.
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The target particles are assigned to input elements by an injective, non-surjective
function based on a physics prior. The general approach is based on the object con-
densation (OC) [18], which includes a potential between inputs and outputs. Here, we
only associate charged particles to tracks and neutral particles to the highest-energy
calorimeter cluster (or hit), as a tradeoff between expressiveness and computational
cost. The event reconstruction loss can be written as a sum over the input elements
in each event

L(Y, Y ′) =
∑
i

Lcls(yi, y
′
i) + Lreg(yi, y

′
i). (1)

Here, Lcls(yi, y
′
i) is a classification loss between the predicted and target particle

type and charge labels. The classification task is imbalanced, so we use the focal
loss [31] for particle type classification, which assigns greater weight to samples that
are difficult to classify. Similarly, Lreg(yi, y

′
i) is a regression loss for the momentum

components, where we use the Huber loss [32] to reduce the effect of outliers.
We note that in the recent hypergraph-based reconstruction method [22], the strict

particle-to-element association is completely avoided, and the associations are instead
made an optimization target for an intermediate model. This hypergraph reconstruc-
tion approach shows excellent physics performance on small jet-based samples, but
further work is needed to extend it to full events with large particle multiplicities and
to demonstrate computational feasibility on realistic datasets.

2.1.1 Scalable neural network models

We now move to the specific NN structure of the reconstruction model Φ(X). It could
be implemented with a simple feedforward network over the individual feature vectors
of each input element, i.e. ϕ(x) → y′. However, such a model would be unable to
consider correlations between related input elements, such as tracks and calorimeter
clusters (or hits) arising from a single particle.

An early approach proposed for full-event reconstruction previously used a GNN
with a learnable graph structure between the input nodes [19]. This is conceptu-
ally similar to a transformer with full self-attention, which has also recently been
thoroughly investigated [22].

However, the evaluation of full self-attention can be computationally demanding
and prohibitive for large input multiplicities (≥104) [33]. Such input multiplicities can
be easily reached when considering all tracks and calorimeter clusters in future high
luminosity collider events. It is possible that the local nature of the problem can be
exploited directly by first pre-partitioning the event and running the full attention-
based model only on subsets. However, this requires careful implementation to avoid
artifacts from partitioning and subsequent stitching.

Here, we study models that can naturally scale to large input multiplicities
by avoiding pairwise memory allocations or computation. Increasing the input
multiplicity that ML models can process simultaneously without manual splitting
also receives considerable attention in the literature because of its wide range of
applications [34, 35], and our approaches are based on existing research:
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• The first model uses a dynamically learned graph structure [19], but avoids a full
quadratic allocation or computation by using a learnable binning based on local-
ity sensitive hashing (LSH) in each graph building layer [20, 21], inspired by the
Reformer architecture [36]. This approach divides each event into bins of fixed size
based on a learnable function.

• The alternative model is a kernel-based transformer in which the softmax self-
attention layer is approximated using positive orthogonal random features [37]. This
approach uses a mathematical approximation based on random projections to avoid
computing the full attention.

Both of these approaches avoid memory allocations or computations that are
quadratic in input multiplicity. The LSH-based approach was first used in [19], initially
being paired with a k-nearest neighbors (kNN) graph structure in each bin. In this
paper, we instead use an all-to-all fully connected graph in each bin, as we have found
it to significantly outperform the kNN based approach computationally as well as in
terms of fidelity. Moreover, in this paper, we compare the LSH+GNN approach with
the kernel-based transformer alternative systematically. Thus, this paper offers the
first detailed comparison of alternative scalable models for particle flow reconstruction.

Fig. 2: One layer of the locality sensitive hashing based graph neural network.
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(a) The input event of N tracks and clusters (elements) is described by a list of
N feature vectors, one F -dimensional vector per element. (b) Each element is first
assigned into a bin based on a learnable function, denoted with the color of the box.
(c) The elements are then sorted according to the bin, such that elements in the same
bin are consecutive. (d) In each bin, a full all-to-all learnable adjacency matrix is
constructed between all the elements in the bin, with the learned element-to-element
association illustrated by the color of the matrix element. (e) This matrix is used
for message passing in each bin, multiplying the corresponding bin feature vectors
with the learned adjacency matrix. (f) The output is a list of N transformed feature
vectors, one D-dimensional vector for each track or cluster. Each input and output
vector is represented by a single gray box, the order of the input and output feature
vectors is preserved.
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The LSH-based GNN is constructed as follows. A full all-to-all graph between N
input elements (tracks and clusters) in the event would have dimensionality N2, which
for an event with N = 103 tracks and clusters would require N2 = 106 individual
associations to be stored and computed for each layer. Instead, we split the event
dynamically into bins with a fixed and constant size B ≪ N , and define the element-
to-element connectivity only in each bin, each bin requiring B2 associations. For an
event with N input elements, the number of bins is then determined dynamically
at runtime by NB = N/B, with the last bin being padded if necessary. Therefore,
instead of computing an N ×N adjacency matrix for each layer, we instead compute
a three-dimensional NB × B × B adjacency matrix. This means that an event with
N = 103 elements and bin size B = 102 would consist of NB = 10 bins, requiring
BN2

B = 105 instead of N2 = 106 individual associations. The graph structure defined
by the association matrix consists of NB disjoint graphs of B elements each, which is
not a major limitation because the graph building layers can be stacked multiple times,
each building different disjoint graphs. From a physics point of view, it is reasonable to
expect that nearby (for some learnable definition of neighborhood) inputs should have
a stronger association than input elements in highly separated parts of the detector.
This graph building layer can be implemented using elementary matrix operations in
a fully batched and differentiable way using TensorFlow [38, 39]. This is similar
to manually partitioning and restitching the event, but achieved directly in the NN
model using fully differentiable operations, rather than with a manual heuristic. The
GNN is based on stacked layers of graph building and convolution, with the number
of layers being a configurable hyperparameter.

The alternative kernel-based transformer model avoids quadratic scaling using the
following approach. For N elements, given queries Q ∈ RN×dq and keys K ∈ RN×dk ,
the attention mechanism encodes a value matrix V ∈ RN×dv as

Attn(Q,K, V ) = softmax

(
QK⊺

√
dk

)
V. (2)

Here, the softmax(QK⊺) operation creates a full N×N matrix. As in Ref. [37], we
define a transformation ψ(x) → x′ that transforms an input feature map x using
predetermined random projections to a new feature space x′. For a sufficiently large
number of random projections, attention can be approximated as

Attn(Q,K, V ) ≃ Q′(K ′⊺V ) (3)

where Q′ and K ′ are the query and key matrices after the random feature mapping
ψ, respectively. Allocation of the entire N×N matrix is avoided, since the order of
operations is changed to first multiply keys with values and then subsequently with
queries. In the special case of self-attention, Q, K, and V are all derived from X
through a linear layer, and the self-attention mechanism can be seen as an analogy
to graph building and message passing. A visual overview of the supervised learning
setup, as well as the LSH model structure, is shown in Fig. 2.
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The complete model for PF reconstruction is then implemented based on stacked
layers of LSH-based GNN or self-attention and feedforward networks, with the number
of layers being a Hyperparameter (HP).

2.1.2 Dataset

Having defined NN models for PF reconstruction that avoid O(N2) memory allocation
and computational scaling, we train and test them on a realistic dataset. We generate
e+e− collision events with Pythia8 (v8.306) [40] and carry out a complete detector
simulation with GEANT4 (v11.0.2) using the Key4HEP framework (v2023-01-15) [41].
In particular, we use the Compact Linear Collider (CLIC) detector model [42, 43],
along with the Marlin reconstruction code [44], and the Pandora package [45–47] for a
baseline PF implementation. The CLIC detector model is chosen because it is publicly
available, well documented and realistic, and similar to detector concepts that are in
use at LHC, or under consideration for either HL-LHC or FCC.

The CLIC detector model is based on the CMS detector at CERN. It features a
superconducting solenoid with an internal diameter of 7m, providing a magnetic field
of 4T in the center of the detector. Silicon pixel and strip trackers, the electromagnetic
(ECAL) and hadron calorimeters (HCAL) are embedded within the solenoid. Each
subdetector is divided into a barrel and two endcap sections. The ECAL is a highly
granular array of 40 layers of silicon sensors and tungsten plates. The HCAL is built
from 60 layers of plastic scintillator tiles, read out by silicon photomultipliers, and steel
absorber plates. The muon system surrounding the solenoid consists of 6 and 7 layers
of resistive plate chambers interleaved with yoke steel plates in the endcap and barrel
respectively. Two smaller electromagnetic calorimeters, LumiCal and BeamCal, cover
the very forward region of the detector on either side of the interaction point [42, 43].

Collision events are generated with different physics processes to test the out-of-
distribution performance of the model. In particular, we use Pythia8 to generate
≃106 inclusive tt, ZH, fully hadronic WW each, and ≃2×106 qq events. Furthermore,
we generate ≃7× 105 of tt PU10 events with a beam-induced hadronic overlay gg →
qq interactions, corresponding to an average of 10 additional interactions per event,
known as pileup (PU), to test the stability under varying conditions. We also generate
single e±, µ±, K0

L, π
0, π±, neutron, and photon particle gun samples, with a uniform

energy distribution in E ∈ [1, 100]GeV, generated using the ddsim [48] package, ≃ 106

events each for performance tests. The qq and tt were split in an 80/20 ratio to form
train/test samples, while the ZH, WW, tt PU10 and single particle gun datasets were
never used in training.

The datasets with generator particles; reconstructed tracks, hits and calorimeter
clusters; as well as reconstructed particles from the baseline Pandora algorithm are
saved in the EDM4HEP format, including all the relevant associations. Overall, the size
of the dataset is approximately 2.5TB before preprocessing to the ML-specific format
using the tfds library [49]. The raw datasets in EDM4HEP format, along with the scripts
and configurations to generate the data, are available at [50].

There are about 50–500 tracks or calorimeter clusters per event, while the multi-
plicity for raw calorimeter hits is considerably larger at 5–15× 103 per event. In this
paper, we analyze the datasets at the level of the tracks and calorimeter clusters to

8



study the physics performance of models. We note that it is straightforward to apply
the model on tracks and raw calorimeter hits, however, we leave this analysis for a
follow-up paper. The input elements and target particles have different underlying sig-
natures in different samples, depending on the physics process, therefore the models
will have to demonstrate out-of-distribution generalization.

Jets are defined by clustering particles with the generalized kT algorithm (R =
0.7, p = −1) for e+e− colliders [51, 52] with a minimum pT ≥ 15GeV. No additional
quality cuts are applied on the jets at this stage. We also evaluate the p⃗miss

T and total
3D momentum of the reconstructed and generated particles. The missing transverse
momentum vector p⃗miss

T is calculated as the negative vector sum of the transverse
momenta of all particles in an event, and its magnitude is denoted as pmiss

T . We use
these quantities to assess the performance of MLPF and the baseline PF reconstruction
with respect to the ground truth defined by the generator particles.

3 Results and discussion

Fig. 3: The model validation loss and physics performance throughout training for
the graph neural network and kernel-based transformer, before and after hypertuning.
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(GNN, red) and kernel-based transformer (TF, blue) models before (dashed lines) and
after hyperparameter optimization (HPO, solid lines), evaluated using 10 trainings,
each trained on four Nvidia A100 devices in a distributed data-parallel manner. Lower
values correspond to better physics performance. Only the loss is explicitly minimized,
the jet and pmiss

T resolution improvement emerges from the minimization of the loss
function. We show the evolution of these quantities during the full training process,
where only the random seed differs in each run. The shaded regions show the standard
deviation of the metrics across the runs.

Several steps were taken to ensure efficient training on large-scale datasets. The
models can be implemented using matrix operations in native TensorFlow. Given
the varying size of events, the model implements variable-sized batching, supporting
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batching events at fixed batch size increments, with the batch size inversely propor-
tional to the size of the events in the batch. This was necessary to reduce the amount
of zero-padding, and to enable automatic kernel compilation, so that a limited number
of kernels have to be compiled for each bucket size increment. Since the total size of
the datasets can reach several terabytes, efficient larger-than-RAM training is enabled
through dynamic dataset loading and interleaving using the TensorFlow datasets
library. The model supports mixed-precision training in bfloat16 and float16. The
training in bfloat16 results in loss values that are stable and largely compatible with
that of float32, while we find that the dynamic loss scaling for float16 results in
NaN gradients and does not converge. At the time of writing, software support for
bfloat16 in TensorFlow is limited, such that the operations are not placed on ten-
sor cores and the use of bfloat16 does not result in increased training throughput,
while training with float16 results in moderate speedups of 30–40% for the GNN
model. Improving training throughput using bfloat16 is the focus of future work.

An extensive HPO was performed for both the GNN- and kernel-based transformer
model using the JURECA supercomputer [53]. JURECA is a pre-exascale modu-
lar supercomputer operated by Jülich Supercomputing Centre at Forschungszentrum
Jülich. The system consists of a flexible Data Centric (DC) module, based on the Atos
BullSequana XH2000. It has, among others, 192 accelerated compute nodes with four
NVIDIA A100 GPUs and two AMD EPYC 7742 CPUs each. We employ a similar
approach to HPO as in Ref. [54], using Bayesian Optimization in combination with
the ASHA [55] algorithm. The optimization was performed in a distributed manner
on 96 GPUs spread over 24 compute nodes, consuming roughly 7000 and 5000 GPU
hours for the optimization of the kernel-based transformer and the GNN model respec-
tively. The hyperparameter optimization details can be found in Supplementary Note
1: Hyperparameter optimization.

The performance improvements achieved from HPO are presented in Fig. 3. We
find that the optimized versions of both the GNN and the kernel-based transformer
significantly outperform the unoptimized versions. The relevant evaluation criterion
for model selection is the reconstruction of jets and pmiss

T compatible with those at
the generator level, a target that is not explicitly trained for, but can be reached
by minimizing the particle-level loss. The optimized version of the GNN significantly
outperforms the kernel-based transformer, although both use a similar number of
trainable parameters (≃5×106). As the GNN-based model has significantly improved
validation loss and physics performance, we focus on it for the rest of this paper.

First, we study the performance of the chosen GNN model on single particle gun
samples that were never used in training. In Fig. 4, we see that the performance of
the baseline PF and our proposed MLPF algorithm is broadly similar for charged
hadrons, while the efficiency and fake rate for neutral hadrons and photons are higher
for PF, especially at low calorimeter cluster energies. Apart from differences in accep-
tance thresholds that we observe here, we do not expect or observe significant physical
differences on single particle gun samples. The pT and energy response distributions
are broadly similar for all particle types. From this, we conclude that while not per-
fect, the baseline PF algorithm is reasonably well tuned and represents a meaningful
comparison point.
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Fig. 4: Performance of the particle flow (PF) and machine-learned particle flow
(MLPF) algorithms on single particle gun samples.
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in (c). The efficiencies are parameterized as a function of track pT or cluster energy.
The charged hadron fake rate is shown in (d), the neutral hadron fake rate in (e), the
photon fake rate in (f). For efficiency and fake rate, we show the binomial statistical
uncertainties from limited samples. We show the pT response of charged hadrons in
(g), and the energy response of neutral hadrons in (h) and photons in (i).

We also report the single-particle truth and reconstructed distributions for all
held-out samples in Figs. 5 and 6, as well as for jets in Fig. 7.

The physics performance in event-level quantities is summarized in Fig. 8. The jet
response distribution of the baseline PF algorithm is somewhat asymmetric, as the
baseline jets are biased towards higher pT values with respect to the matched generator
jet, while the distribution from our proposed algorithm is significantly more symmetric
around unity. This is due to the overall momentum regression being optimized on the
samples directly in MLPF.
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We use ZH, WW and tt PU10 events to evaluate out-of-distribution perfor-
mance. We evaluate the jet response by clustering reconstructed particles into jets, by
matching the reconstructed and generator-level jets, and computing the ratio of recon-
structed to generator-level jet pT. In all samples, the fraction of reconstructed jets from
the GNN-based MLPF is the same or higher than for PF, with generally an improved
jet response width, quantified by the interquartile range (IQR) and median compared
to the rule-based baseline. This improvement over the baseline was not observed before
hyperparameter tuning. We also evaluate the total 3-momentum response for either
PF or MLPF particles, and find that the MLPF model improves both the median and
IQR of the total 3-momentum response distributions for all samples.

To compare the momentum resolutions between the different approaches, while
accounting for the differences in the momentum scales, we evaluate the metric of the
IQR divided by the median of the response distributions. We quantify the evolution of
this metric for the jet pT (total event 3-momentum) in bins of generator-level jet pT
(generated total event 3-momentum) on the tt with 10 PU interactions (tt PU10) sam-
ple in Fig. 9. The baseline PF and proposed MLPF algorithms behave qualitatively
similarly, with improved response IQR over median values at higher generator-level
jet pT (total 3-momentum), while the MLPF algorithm consistently outperforms the
baseline PF on this sample by up to 50%. This improvement has important implica-
tions for the sensitivity of key measurements at future colliders, such as those involving
Higgs bosons that decay to bottom quark-antiquark pairs [56].

An important factor in the development of scalable ML-based full event recon-
struction models is improving the computational throughput in future deployment
scenarios. Possible approaches to improve inference throughput could include more
efficient model formulations and implementations [57], sparsity and quantization.
Therefore, we compare the inference scalability of the rule-based PF implementation
on CPU and the proposed scalable GNN implementation on GPU with respect to
increasing input multiplicity, with the results summarized in Fig. 10. Inference scaling
tests of the GNNmodel are tested on a small, 8GB consumer GPU (Nvidia RTX2060S)
to emulate a resource-constrained scenario in edge deployment.

The rule-based version is run with 25, 50, 100 and 200 generated π− particles
per event for 10 events. We generated three different sets of these events varying the
random seed each time, and measured the runtime of the particle-flow module in
Key4HEP. The runtime of the baseline increases nonlinearly with increasing particle
multiplicity, and segmentation faults occur for more than approximately 200 particles
per event, possibly due to the baseline code and configuration not being tuned for
such a high number of particles. Currently, it is only possible to track memory usage
of the full baseline reconstruction chain, not individual algorithms. However, we find
that the maximum memory requirements increase approximately linearly from about
2GB for 25 particles to about 8GB for 200 particles.

The GNN model is run with a varying input size on an 8GB consumer GPU multi-
ple times to average over random fluctuations. Both the batch size B, i.e., the number
of batched events (B ∈ {1, 2, 4, 8, 16}) and the event size N , i.e., the number of input
elements per event (N = 256n for n ∈ [1, 40]) are varied independently. The infer-
ence runtime scales approximately linearly with N . We note that B ≫ 1 is required
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to saturate the GPU, but this is highly model and device specific. The maximum
GPU memory of our proposed MLPF algorithm varies between about 300MB for the
smallest tested configurations (B = 1, N = 256 to about 4.5GB for the largest tested
configuration (B = 16, N = 10240), with allocations scaling in a stepwise manner due
to the LSH binning.

We confirm that the ML-based reconstruction based on the LSH-binned GNN for
full event reconstruction avoids the quadratic scaling present in a typical rule-based
full event reconstruction algorithm. It is likely that additional effort will be able to
significantly improve the performance of both algorithms. For example, in CMS, a
k-dimensional tree [60] is used to avoid quadratic scaling [11]. With aggressive quan-
tization, the throughput of ML models can be significantly improved with a negligible
performance degradation [61].

At this point, it is not meaningful to compare the absolute throughput of the rule-
based model on a CPU and the ML-based model on a GPU, as neither method is
particularly optimized for throughput, and the comparison is strongly affected by the
specific choice of hardware.

The training scalability is also tested, with results presented in Fig. 10, on three
different HPC centers with different accelerator hardware: Nvidia H100 GPUs from
Flatiron Institute’s CoreSite cluster [62], AMD MI250 GPUs from the LUMI super-
computer [63], and Intel Habana Gaudi HPUs from the Voyager supercomputer [64].
The LUMI supercomputer features GPU nodes with 64-core AMD Trento CPUs and
four AMD MI250X cards, each card consisting of two accelerator chips. Voyager is
an NSF-funded supercomputer with 42 first-generation Intel Habana Gaudi (train-
ing) nodes, each with eight cards, two first-generation Intel Habana Goya (inference)
nodes, a 400GbE Arista switch, and 3PB of Ceph file system available at the San
Diego Supercomputer Center located at the University of California San Diego. Intel
Habana also provided additional access to eight Gaudi2 nodes in an HLS-Gaudi2 Deep
Learning Server [65]. For the training tests, there are some differences in the config-
uration on the HPCs. For the AMD processors, multi-card training was implemented
with a mirrored worker configuration, while for the Nvidia and Habana processors,
Horovod [58] was used. Events were zero-padded to a regular size of 512 elements
per event. A batch size of 250 events per device was used for the Nvidia, AMD, and
Habana Gaudi2 processors, while a batch size of 100 per device was used for the
Habana Gaudi processors. We observe nearly linear scaling or better for all processors.
The scaling for the Habana Gaudi1 (Gaudi2) processors is enhanced by the all-to-all
non-blocking intra-node network connection, where each processor has a 100 (300)Gb
network connection to every other processor [64, 65].

4 Conclusions

We have used a realistic simulation for the CLIC detector, conceptually similar to
existing and future detector designs, to develop scalable machine learning models for
full event particle flow reconstruction. We compare two scalable machine learning (ML)
models: a graph neural network (GNN) model that uses locality sensitive hashing
(LSH), and a kernel-based transformer using large-scale hyperparameter optimization
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(HPO). Both of these models avoid quadratic scaling in memory and computation,
thus allowing the processing of events from highly granular detectors. We find that a
GNN model significantly outperforms the kernel-based transformer alternative and the
baseline Pandora-based particle-flow (PF) on the basis of individual particles as well as
event-level quantities such as jets and total 3-momentum. Improved particle-level and
event-level reconstruction can result in significant improvements for future flagship
analyses such as those involving the Higgs boson decaying to bottom quarks. At the
same time, the flexible and learnable LSH approach allows one to process complex
events expected at future detectors with up to 104 particles per event efficiently, while
supporting various existing hardware accelerators such as Nvidia, AMD and Habana
without additional porting effort. Our work contributes to the existing body of research
by proposing a new, challenging open dataset for particle flow reconstruction studies,
by defining relevant benchmarks and by identifying efficient models that can solve these
benchmarks better than existing rule-based algorithms without additional tuning.

Further research is possible in several directions. First, it would be useful to repeat
this exercise using the simulation from detectors that are taking data in Run 3 of
the Large Hadron Collider (LHC), e.g. in CMS, to study the performance of the
reconstruction in more realistic conditions, and also study the reconstruction per-
formance on real data. Second, we are currently using a simple particle-based loss,
while the use of contrastive-adversarial learning methods may allow one to account for
event-level discrepancies more effectively [66]. Third, the hypergraph model [22] shows
promising physics performance but currently only supports small input sequences. It
may be interesting to extend the hypergraph construction over dynamically binned
events using the LSH approach. While the current model works at the level of tracks
and calorimeter clusters, our proposed approach scales naturally to cases where one
considers the raw detector hits directly as an input, possibly allowing direct event
reconstruction without having to tune clustering or tracking algorithms. It may also be
useful to construct features using semi-supervised or unsupervised learning from real
data, to reduce the reliance on simulated datasets for supervised learning [67]. Fur-
thermore, large-context models are continuously improving, and it may be interesting
to apply the latest developments such as FlashAttention [68, 69] on the models in
this paper. For improving throughput on e.g. CPUs, quantization has shown promise,
and it may be interesting to investigate if this can be repeated for the type of models
proposed for PF reconstruction. Finally, it is important to integrate the proposed ML-
based reconstruction models into reconstruction frameworks such as CMSSW and
Key4HEP.
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the Estonian Scientific Compute Infrastructure and NICPB for awarding this project
access to the LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted
by CSC (Finland) and the LUMI consortium through Estonian Scientific Compute
Infrastructure.

Datasets and software published following the findable, accessible, interoperable,
and reusable (FAIR) principles support open, transparent, and reusable research,
and therefore we thank our colleagues at the relevant collaborations for releasing
the Key4HEP, Marlin, EDM4HEP and CLICdp software to the wider community, and
encourage the wider adoption of the FAIR principles.

15



We are grateful to the reviewers and the editor for their careful reading of the
manuscript and their comments which significantly improved the clarity of this paper.

We would also like to thank Nilotpal Kakati and Etienne Dreyer for cross-checks
of our published code and datasets.

Competing interests

The authors declare no competing interests.

16



Fig. 5: The generated (truth) and reconstructed kinematic distributions for baseline
particle flow (PF) and the proposed machine-learned particle flow (MLPF) algorithm.
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Fig. 6: The generated (truth) and reconstructed kinematic distributions for baseline
particle flow (PF) and the proposed machine-learned particle flow (MLPF) algorithm
for electrons and muons.
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(dashed line) and the machine-learned algorithm (solid line) for electrons hadrons in
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Fig. 7: The generated (truth) and reconstructed kinematic distributions for baseline
particle flow (PF) and the proposed machine-learned particle flow (MLPF) algorithm
for jets.
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The pT (a) and η (b) distributions of generated jets for tt, qq, WW and ZH, and
the ratio between the reconstructed and generated jet distributions for the baseline
algorithm (dashed line) and the machine-learned algorithm (solid line).
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Fig. 8: Jet and total 3-momentum response in the validation samples, comparing the
baseline particle flow (PF) and the machine-learned particle flow (MLPF).
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Fig. 9: The jet and total 3-momentum resolution, comparing the baseline particle
flow (PF) with the machine-learned algorithm (MLPF).
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Fig. 10: Computational performance of the baseline particle flow (PF) and the pro-
posed machine-learned algorithm in inference and training.
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thread is approximately 1,s/event at the reference point of 100 charged pions, which
corresponds to approximately 96± 3 tracks and 170± 20 clusters. The runtime of the
machine-learned particle flow (MLPF) algorithm on the Nvidia RTX2060S GPU at
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CPU thread. On panel (c), we demonstrate the scaling of the training performance
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