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Abstract

We study the performance of a cloud-based GPU-accelerated inference server to speed up event
reconstruction in neutrino data batch jobs. Using detector data from the ProtoDUNE experiment
and employing the standard DUNE grid job submission tools, we attempt to reprocess the data by
running several thousand concurrent grid jobs, a rate we expect to be typical of current and future
neutrino physics experiments. We process most of the dataset with the GPU version of our processing
algorithm and the remainder with the CPU version for timing comparisons. We find that a 100-GPU
cloud-based server is able to easily meet the processing demand, and that using the GPU version of the
event processing algorithm is two times faster than processing these data with the CPU version when
comparing to the newest CPUs in our sample. The amount of data transferred to the inference server
during the GPU runs can overwhelm even the highest-bandwidth network switches, however, unless
care is taken to observe network facility limits or otherwise distribute the jobs to multiple sites. We
discuss the lessons learned from this processing campaign and several avenues for future improvements.
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1 Introduction

Machine learning (ML)-based algorithms have

been widely used in the field of neutrino physics,

for applications ranging from data acquisition to

data reconstruction and analysis [1–4]. A detec-

tor technology ideally suited for computer vision

applications in neutrino physics is that of liquid

argon time projection chambers (LArTPCs), which

are employed by the Deep Underground Neutrino

Experiment (DUNE) [5] and Short-Baseline Neu-

trino [6] experiments. ML applications are now

deeply integrated into the event reconstruction and

data analyses for the LArTPC experiments [7–9].
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The basic unit of data is a trigger record, also

known as an event or event record, which consists

of a series of time samples of detector readout chan-

nels at a fixed interval within a total specified time

window. The number of channels, sampling rate,

and readout window vary by experiment. Event

record sizes for the current generation of LArTPC

experiments are typically ≤1 GB and are expected

to increase in the next few years. With increased

event size, the event reconstruction, especially the

inference of ML algorithms, will become a chal-

lenge. Additionally, neutrino detectors are sensitive

to neutrinos from a core-collapse supernova in or

near the Milky Way. One of DUNE’s physics goals

is to rapidly reconstruct detector trigger records

from such a supernova to provide rapid localiza-

tion information to optical telescopes, placing a

premium on short event reconstruction times. We

have demonstrated GPU-accelerated ML inference

as a service, which significantly reduced the recon-

struction time for simulated neutrino events in

the ProtoDUNE experiment [10]. Later, we tested

the same GPU-as-a-Service (GPUaaS) approach

to process the entire ProtoDUNE Run I dataset to

demonstrate the scalability of this method. This

paper reports the results of those tests.

2 Infrastructure setup and

methods

2.1 ProtoDUNE description

The ProtoDUNE single phase detector

(ProtoDUNE-SP) [11, 12] is a liquid argon time

projection chamber (LArTPC) that serves as a

prototype for the first far detector module of

DUNE [5]. The ProtoDUNE-SP is installed at

the CERN Neutrino Platform [13]. It has an

active volume of 7.2 × 6.1 × 7.0 m3. The TPC

wires are read out by 15,360 electric channels at

a rate of 2 MHz. A typical event record consists

of 6000 time samples, corresponding to a 3ms

time window. Between October 10 and November

11, 2018, ProtoDUNE-SP was exposed to a beam

that delivers charged pions, kaons, protons, muons

and electrons with momenta in the range 0.3

GeV/c to 7 GeV/c. After the beam runs ended,

ProtoDUNE-SP continued to collect cosmic ray

and calibration data until July 20, 2020, after

which the detector decommissioning started. The

total number of trigger records during the beam

period, which consist of both beam interactions

and non-beam interactions such as cosmic rays, is

approximately 7.2 million.

A ProtoDUNE-SP TPC waveform recorded by

a single electric channel consists of both signals

and noise. There are typically three sources of sig-

nals. During the beam runs, the beam particles

can interact with the liquid argon inside the TPC

and produce both ionization electrons and scintilla-

tion light. Since ProtoDUNE-SP is located on the

Earth’s surface, it is subject to a large flux of cos-

mic ray muons, which induce signals over the entire

detector. There are also radioactive backgrounds

such as 39Ar that generate low energy signals on

the scale of a few hundred keV to a few MeV.

Figure 1 shows the event display of a 6 GeV/c pion

interaction in the ProtoDUNE-SP detector.

The first step in the reconstruction of events

in the TPC is the signal processing. The goal of

this stage is to produce distributions of charge

arrival times and positions given the input TPC

waveforms. The effects of induced currents due

to drifting and collecting charge, as well as the

response of the front-end electronics, are removed

through de-convolution. The charge arrival distri-

butions are used in subsequent reconstruction steps,

starting with hit finding. The hit finding algorithm

fits peaks in the wire waveforms, where a hit repre-

sents a charge deposition on a single wire at a given

time. Each hit corresponds to a fitted peak. The

hits are input to pattern recognition algorithms
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Fig. 1: A 6 GeV/c beam π+ interaction in the ProtoDUNE-SP detector [11]. The x axis shows the
wire number. The y axis shows the time tick in the unit of 0.5 µs. The color scale represents the charge
deposition.

such as Pandora [14–16]. This stage finds the high-

level objects associated with particles, like tracks,

showers, and vertices, and assembles them into a

hierarchy of parent-daughter nodes that ultimately

point back to the candidate neutrino interaction.

More details on the reconstruction workflow are

described in Ref. [11].

In ProtoDUNE-SP, a novel algorithm is devel-

oped based on a convolutional neural network

(CNN) to perform the classification of each recon-

structed hit as track-like or arising from electromag-

netic cascades [9]. These hit-level classifications

can be used alongside pattern recognition based

reconstruction algorithms such as Pandora to refine

the track or shower classification of reconstructed

particles. The CNN model was trained using Ten-

sorFlow [17]. In the DUNE code base this algorithm

is known as EmTrkMichelId; hereafter, we call this

algorithm EmTrk.

In order to improve the efficiency and speed

of the inference of ML algorithms in a large-

scale data processing, GPU acceleration specifically

for the ProtoDUNE-SP reconstruction chain has

been integrated without disrupting the native

computing workflow using the services for opti-

mized network inference on coprocessors (SONIC)

approach [10, 18]. With the integrated framework,

the most time-consuming task, track and particle

shower hit identification, runs faster by a factor

of 17. This results in a factor of 2.7 reduction

in the total processing time when compared with

CPU-only production. This initial test using a

small number of simulated ProtoDUNE-SP events

showed a viable, cost-effective way to solve the com-

puting challenge facing the neutrino experiments.

In this work, we report the results of reprocessing

the entire 7 million ProtoDUNE-SP events taken

during the test beam runs with the SONIC-enabled

framework.
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2.2 Inference server setup

The Nvidia Triton™ Inference Server is an open-

source inference serving software that helps stan-

dardize model deployment and execution; its goal

is to deliver fast and scalable AI in production [19].

NVIDIA provides multiple ways to deploy the

inference server on different cloud providers and

infrastructure types, including both bare metal

and containerized workloads.

This study uses a cloud-based deployment of

Nvidia Triton™ Inference Server within a Google

Cloud Kubernetes Engine [20] cluster on virtual

infrastructure provided by Google Cloud Platform.

The use of this technology enables us to deploy

a flexible GPUaaS model where a public end-

point takes remote inference requests from various

geographically distributed sources as depicted in

Figure 2. The Triton™ server running on the Google

cloud supports different backends. We use the Ten-

sorFlow (version 1.15.5) backend for the inference

of the EmTrk algorithm.

In a similar way as Ref. [10], this study uses sev-

eral Triton™ servers split into separate Kubernetes

deployments with common services for network-

ing and external load balancing in the form of

ingress objects [21]. One significant improvement

for the current study is the deployment of metrics

and monitoring which provided us with observ-

ability within the system in different states. In IT

and cloud computing, observability is the ability

to measure a system’s current state based on the

data it generates, such as logs, metrics, and traces.

It relies on telemetry derived from instrumenta-

tion that comes from the endpoints and services in

computing environments. Triton™ provides a built-

in metrics endpoint [22] that publishes plain-text

data in Prometheus format [23].

2.3 Methods

The DUNE collaboration undertook a production

campaign in 2021 to process ProtoDUNE-SP data

using the LArSoft toolkit [24] version v09 30 00.

Each production run during the beam period com-

prises several data files, each containing between

100 and 150 data records. In contrast to the previ-

ous work, in which DUNE simulation events were

processed by submitting jobs locally to a dedicated

queue, we submit jobs to process each file via the

current standard DUNE workflow management

and job submission systems [25, 26], thus requir-

ing no special treatment. Jobs may run either at

Fermilab or one of several remote sites that we

reach with opportunistic access enabled by the

OSG Consortium [27].

We begin from the existing reconstructed out-

puts and apply the updated EmTrk algorithm to

produce new outputs. Of the 7.2 million Proto-

DUNE events during the 2018 beam period, we

process 6.4 million through the SONIC infrastruc-

ture, and 800k with the CPU-only version of the

same algorithm for comparison. The OSG sites

included in the SONIC runs were chosen to be

geographically proximate to the location of the

Google Cloud GPU servers (which were in Iowa,

USA at the time) in order to minimize the latency

in data transmissions. Latency between the sites

and Google Cloud server as measured by the ping

utility was typically between 15 and 20 ms.

The difference in the time spent in the inference

step is the primary metric with which we assess

the advantage of GPUaaS over traditional CPU

processing. Each job produces a log file that sta-

tistically summarizes the time spent on each stage

of the event reconstruction for the job as a whole.

The log has no record of per-stage processing time

at the individual event level, but we can closely

approximate it by taking the difference between

the start times of consecutive events. We estimate



Springer Nature 2021 LATEX template

GPUaaS in ProtoDUNE data 5

Fig. 2: ProtoDUNE GPUaaS component diagram depicting local and remote batch inference runs
submitted from Fermilab and OSG Grid sites.

the per-event EmTrk duration by subtracting the

median non-EmTrk duration from the total event

duration, as the non-EmTrk stages display very

little time variation across events. The CNN-based

hit classification occurs in the EmTrk stage and is

the most time-consuming step in the event recon-

struction, typically accounting for more than 90%

of the processing time.

3 Results

3.1 CPU-only runs

We process a set of 13 runs using CPU-based

TensorFlow both at Fermilab and several off-site

locations. The off-site locations are the University

of Notre Dame, the University of Victoria, and

the high performance computing center at Wayne

State University. The TensorFlow version used in

the CPU-only runs is 2.3.1. Although the Tensor-

Flow version differs from that used in the backend

for the GPU runs, the main differences between

the two versions concern additional support for

advanced CPU instruction sets. We therefore do

not expect any significant performance differences

between the two versions in the GPU case. Table 1

summarizes the number of events processed at each

site and the median processing times. We did not

request any specific CPU type when submitting

these jobs since typical DUNE practice is to use

any and all available CPU types.

Table 1: List of CPU-only run sites and median
processing time

OSG Site N samples Median processing time (s)

FermiGrid 746603 79

Notre Dame 36082 68

Victoria 10944 52

Wayne State 4242 45

There is a clear dependence on processor type in

the EmTrk processing time distribution. In general,

more recent CPUs process events faster. Figure 3

shows the CPU-based EmTrk timing for each of

the CPU types currently available on the Fermilab

general purpose batch farm. We do not have access

to CPU type information outside of Fermilab and

thus group them together.
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Fig. 3: Timing distributions for CPU-only runs,
broken down by CPU type.

3.2 GPU runs

Our main processing effort uses the GPUaaS infras-

tructure as described. Figure 4 shows the average

EmTrk processing time when using the GPUaaS

infrastructure for our entire running period. The

first peak at approximately 20 s represents a fac-

tor of two improvement with respect to the fastest

CPU-only runs, and a factor of roughly 11 over

the slowest CPU runs. It is important to note that

the EmTrk times we report here are wall times

measured within the job, and thus include con-

tributions from network latency to and from the

server. There is another peak in the distribution

with a median of over 100 s, to which we now turn.

3.2.1 Outbound network saturation

During the first period of GPU running we

averaged between 200 and 2000 concurrent jobs.

Figure 5 shows the overlay of network traffic and

event processing start rate during the period of

September 30, 2021 to October 6, 2021. As the

event start rate increases because of the rise in the

Fig. 4: Average EmTrk times for GPU runs during
the period September 30, 2021 to October 20, 2021.
The double peak structure arises from periods dur-
ing which the outbound network connection from
the Fermilab grid processing center was saturated.

number of concurrent jobs, we see that the 100

Gb/s outbound network connection used by the

Fermilab data center where the jobs run becomes

saturated. While our jobs were not solely responsi-

ble for the saturation (the connection serves the

entire cluster), the saturation did result in a sig-

nificant increase in the average EmTrk processing

time as shown in Figure 6. The highest job con-

currency levels were on October 5, when unusually

low demand for computing resources from other

Fermilab experiments resulted in a large number of

opportunistic job slots being available at Fermilab.

We were, without any direct intervention, thus able

to scale up to approximately 6,000 concurrent jobs.

The monitoring does show switch saturation as

early as October 1, however. After learning of the

network saturation we implemented a concurrency

limit on jobs of approximately 600; thereafter the

jobs ran without incident and the EmTrk times

returned to pre-saturation levels (see Figure 7).
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Fig. 5: Overlay of network traffic and event pro-
cessing start rate at FermiGrid as a function of
time, which is a proxy for the number of concurrent
jobs. The origin day is September 30, 2021. The
solid line is the event start rate, the blue dot-dash
line is the outbound network traffic rate through
the 100 Gb/s switch at Fermilab used by the batch
processing cluster, and the black dashed line is the
ingress rate to the Google cloud server. We are
unable to disambiguate traffic sources through the
switch, so the blue dot-dash line represents the
total traffic as opposed to only traffic generated
by our processing campaign. We see that the net-
work switch was effectively saturated in multiple
instances, though Google ingress was not.

4 Discussion

In order to understand the impact of ProtoDUNE

jobs on the Fermilab network traffic, we plot the

distribution of event processing start rate versus

network traffic in Figure 8. Even though the net-

work traffic has contributions from all grid jobs at

Fermilab, there is a clear correlation between the

number of ProtoDUNE concurrent jobs and the

increase of network traffic. We fit a straight line

to the data points below the network traffic of 80

Gb/s. The slope of the best fit line is 4.2± 0.2 Gb,

which is the average outbound data transmission

per event. The intercept is 44 ± 2 Gb/s, which is

the average traffic from non-ProtoDUNE grid jobs.

Based on the discussion of transmission time in

Ref. [10], for 55,000 inferences per event, with each

Fig. 6: The average EmTrk duration before Oct.
7 as a function of the total network traffic through
the 100 Gb/s network switch at Fermilab used by
the batch processing cluster. The top plot shows
the real event rate. The bottom plot is the same
as the top one, with each column scaled separately
so the maximum amplitude is 1 for each column.

input a 48× 48 image at 32 bits, the total amount

of data transmitted is about 4.1 Gigabits per event.

This is consistent with the slope of the best fit

straight line. The spread in data with respect to

the straight line could be caused by the variation

in the number of non-ProtoDUNE grid jobs during

this period.

Figure 7 indicates that the average process-

ing time is roughly 25 s/event for the GPU

jobs. Assuming the entire 100 Gb/s bandwidth

is available to the ProtoDUNE jobs, the max-

imum number of concurrent ProtoDUNE jobs

we can run without saturating the network is
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Fig. 7: The average time spent in the EmTrk task
for all GPU jobs after October 8, when the network
saturation had subsided.

(100 Gb/s)/(4.1 Gb/event) · (25 s/event) ≃ 600.

This is consistent with the concurrency limit of

600 jobs that we implemented after October 7.

Based on the above discussions, we conclude

that, while overall computational time clearly

decreases using GPUaaS, one does have to take

particular care to understand what the expected

data movement requirements will be for jobs using

this architecture, and to set job concurrency limits

appropriate to the capabilities of each local comput-

ing site and input data source. HTCondor [28, 29]

in particular has the ability to define an arbitrary

kind of resource that each job requires; one could

define a “bandwidth” resource for these jobs, for

example. HTCondor additionally allows configur-

ing the job submissions to prevent more jobs to

start at a given site once the sum of consumed

resources by running jobs at that site reaches a

certain threshold. Therefore, if one knows the total

network capacity of each site hosting jobs, one can

configure per-site job limits and prevent network

saturation in an automated way.

4.1 Future improvements

A number of improvements to overall scalability

and ease of use are possible. In addition to auto-

matic job concurrency limits to prevent network

saturation as previously described, we are explor-

ing the possibility of compressing the data sent to

the GPU server to reduce the overall bandwidth

requirements. While a reduced payload would obvi-

ously increase job concurrency limits, that must

be balanced against the additional run time that

would be introduced in compressing and decom-

pressing the data on the worker node and server,

respectively. Another desirable area of improve-

ment is in overall ease of use and human effort

requirements. In the current setup we make use

of the standard DUNE Production job submission

infrastructure, which allows for a high degree of

automated job submission, but due to the current

nature of the cloud server it requires an authorized

individual to manually instantiate the GPU infer-

ence server before we submit jobs. Establishing a

method of automatically instantiating the server

at job submission time and automatically ramp-

ing it down when the associated jobs are complete

would avoid a clear possible failure point should

no authorized individuals be available when the

infrastructure is needed.

A second option to study is to use several geo-

graphically distributed inference servers instead of

a single server, while also spreading the job work-

load over a much broader range of sites. Expanding

the site pool has the advantage of making it much

less likely that any single site would get enough

work assigned to saturate its external connectivity,

and using several inference servers spread around

the world would help to mitigate the potential

problem of network latency becoming comparable

to the inference time. The cost changes in this sce-

nario (for example, the relative cost of three cloud

servers versus a single server three times the size)
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Fig. 8: The outbound network traffic vs. the average event start rate per second in 2-minute sliding
windows, on October 5 and October 6. Data from each day is denoted with a different marker type. The
color coding corresponds to the median EmTrk time for events in each sliding window. The linear fit to
the traffic below 80 Gb/s indicates that each event sends 4.2± 0.2 Gb of outbound traffic, on top of 44± 2
Gb/s of baseline traffic from non-ProtoDUNE sources.

must be assessed and taken into account. Another

consideration is how the overall event processing

times would change if the worker nodes were much

more geographically diffuse than they were for this

study. Since we stream the input data over the

network, longer network paths between the worker

nodes and input data sources may lead to the non-

EmTrk portions of the event processing taking

longer, which in turn affects the total event pro-

cessing time. DUNE is able to distribute data to

various storage elements around the world via the

Rucio framework [30], and pre-placing the data of

interest at storage elements close to the sites to be

used for processing may mitigate such concerns,

though it is not required.

Another potential avenue is to use the GPU

server infrastructure, but to use sites with GPUs

available on the worker nodes, and run an inde-

pendent server on each worker node. Several

high-performance computing sites have built or are

building clusters with readily available GPUs, and

in some cases with multiple GPUs on each worker

node, that would naturally lend themselves to such

a setup. If the jobs run on worker nodes with local

GPUs, external network connectivity limitations

become unimportant for carrying out the infer-

ence calculations. In fact, Triton™ allows the use

of shared memory for direct data transfer between

CPU and GPU when the GPU is local. While it
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may not be necessary to retain the server infras-

tructure in these cases, the advantage of doing so

is that the experiment software does not have to

be modified to directly access the GPU, making

it maximally portable and easier to maintain. We

plan to conduct a similar study using this type of

setup in the future.

5 Summary

We have reprocessed approximately seven million

data events from the ProtoDUNE detector installed

at CERN. We use an Nvidia Triton™ inference

server hosted on the Google Cloud Platform to

run the most computationally expensive step of

the workflow on a GPU, speeding up the required

processing time by more than a factor of two, even

comparing to the fastest CPU runs. Running at

a scale similar to that expected during regular

ProtoDUNE-II and DUNE operations, we see the

expected performance improvement until the net-

work switch through which the majority of our jobs

communicate becomes saturated. Despite that, the

cloud infrastructure easily kept up with demand

and demonstrates the viability of the GPUaaS

model at a level sufficient for current and future

high-energy physics experiments, as long as the

job concurrency levels at each site respect the

site’s network resource limits. With several promis-

ing avenues of improvement to explore, we expect

that this computing model will become even more

capable and easier to use in the future.
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