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Abstract

The idea of reduction of couplings consists in the search for relations between

seemingly independent couplings of a renormalizable theory that are renormaliza-

tion group invariant. In this article, we demonstrate the existence of such 1-loop

relations among the top Yukawa, the Higgs quartic and the gauge colour couplings

of the Type-II Two Higgs Doublet Model at a high-energy boundary. The phe-

nomenological viability of the reduced theory suggests the value of tan β and the

scale in which new physics may appear.

1 Introduction

An essential direction of the last decades in theoretical particle physics is to understand
the free parameters of the Standard Model (SM) in terms of a few fundamental ones, i.e.
to achieve a reduction of couplings (RoC) [1]. However, despite the numerous successes
of the SM regarding the description of elementary particles and the interactions among
them, there is significantly less progress when it comes to the freedom in the parameter
space. The problem of the large number of arbitrary parameters is deeply related to the
infinities that emerge at the quantum level. While renormalization succeeds in removing
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those infinities, it only does so at the cost of introducing counter terms, which leaves the
‘cured’ parameters free to be fixed by the experiment.

Although the success of the SM is undisputed, it is a widespread belief that it is
ultimately the low energy limit of a (more) fundamental theory. Under this light, one of the
most popular and efficient ways to reduce that freedom in parameter space is to introduce
a symmetry. A well known example of such an idea are the Grand Unified Theories
(GUTs) [2–7]. Within the GUT framework, gauge couplings are related and one can
even have a unified Yukawa sector. Unfortunately, beyond the minimal SU(5), which was
experimentally ruled out a long time ago, theories based on larger groups give rise to new
complications regarding the number of free parameters since new degrees of freedom are
necessary (i.e the channels of breaking the symmetry).

The RoC method was proposed as an alternative, systematic way to look for relations
among seemingly unrelated parameters [8–10] (see also [11–13]). This technique reduces
the number of independent parameters of a theory by relating either all (in its original
version) or a number of parameters to a single coupling, which is often called ‘primary
coupling’. For this approach to be considered systematic, two conditions should hold.
First, both the original and the reduced theory should be renormalizable. Second, the re-
lations among the various parameters involved should be renormalization group invariant
(RGI).

This idea was of course first applied on the SM almost four decades ago [14, 15] and,
while at the time it produced promising predictions for the top quark and Higgs boson
masses, their following respective experimental discoveries ruled them out as too light.
However, this work opened the way to a number of theories that extend the SM and are
based on the concept of the reduction of couplings, which had significant predictive power
and were [16–20] or continue to be [21, 22] successful.

In the present work we choose a minimal extension of the SM, namely the well known
Two Higgs Doublet Model (2HDM) [23] and, more specifically, its Type-II version (this is
just a convenience choice, since similar procedures as the one here described can be applied
to all versions). In particular, we use a version of the RoC technique first introduced in [24]
in search of a boundary scale at which we have New Physics. The elegance of this approach
is that only a second Higgs doublet is needed in order to fit the reduced model with the
current experimental constraints and pinpoint the scale above which new field content
and/or symmetries could come into effect.

2 Reduction of couplings basics

A brief description of the basic idea of reduction of couplings is first in order, as it was
introduced in [8] and consequently expanded over the next decades. The goal is to express
the couplings of a theory that are considered free in terms of one parameter, that is
considered to be more fundamental, called the primary coupling. The basic idea is to
search for renormalization group invariant (RGI) relations among parameters that reduce
the degree of arbitrariness of the parameter space.
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Such relations are in general of the form F (g1, · · · , gA) = const. for A number of
parameters, which should satisfy the partial differential equation (PDE):

µ
dF

dµ
= ~∇F · ~β =

A
∑

a=1

βa

∂F

∂ga
= 0 , (1)

where βa are the β-functions of each coupling ga, respectively, in order for F to be RGI.
This PDE is equivalent to the set of ordinary differential equations below, which are called
reduction equations (REs) [8–10],

βg

dga
dg

= βa , a = 1, · · · , A− 1, (2)

where now g and βg are the primary coupling and its respective β-function. There are
-maximally- A−1 independent RGI constraints in the A-dimensional space of parameters
imposed by the Fa’s, thus one could in principle express all parameters in terms of one
primary coupling, g.

However, the general solutions of the REs contain as many integration constants as
the number of the equations themselves. Thus, so far we have just traded an integration
constant for each coupling and these general solutions cannot be considered to have re-
duced the freedom of the parameter space. The crucial requirement is that the REs admit
power series solutions:

ga =
∑

n

ρ(n)a g2n(+1) , (3)

which preserve perturbative renormalizability. Remarkably, the uniqueness of these power
series solutions can be already decided at 1-loop level [8–10].

The possibility of a complete reduction of couplings described above is without doubt
very attractive, as the completely reduced theory features only one independent coupling.
However, in many cases this has been proven to be unrealistic. Therefore, fewer RGI
constraints are often imposed, leading to a partial reduction [14, 15] of the parameter
space.

3 Notation and parameters of the 2HDM

For the two Higgs doublets Φ1,Φ2 the most general renormalizable scalar potential can
be written as [25–27]:

Vh = m2
11Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −

(

m2
12Φ

†
1Φ2 + h. c.

)

+
1

2
λ1

(

Φ†
1Φ1

)2

+
1

2
λ2

(

Φ†
2Φ2

)2

+ λ3

(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+ λ4

(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+

[

1

2
λ5

(

Φ†
1Φ2

)2

+ λ6

(

Φ†
1Φ1

)(

Φ†
1Φ2

)

+ λ7

(

Φ†
2Φ2

)(

Φ†
1Φ2

)

+ h. c.

]

, (4)

3



where m2
11, m

2
22 and λ1,2,3,4 are always real, while m2

12 and λ5,6,7 are in general complex.
Since in this work we want to demonstrate the simplest possible application of RoC on a
2HDM, we choose to consider all of the above-mentioned parameters to be real.

The discrete symmetries introduced in the context of the Type-II scenario (in which
ui
R couple with Φ2, while diR and eiR couple with Φ1) ensure that

λ6 = λ7 , (5)

while in order to conserve the electric charge one needs:

λ4 < 0 . (6)

Furthermore, the potential is bounded from below if [27–29]

λ1 > 0 , λ2 > 0 ,
√

λ1λ2 + λ3 + λ4 − |λ5| > 0 . (7)

4 A first attempt of reduction

Let us now proceed with the reduction of the parameters of the model. As in past reduced
models, the best candidate for ‘primary’ coupling is the strong coupling, gs. A complete
reduction is not realistic, so we focus on the third fermionic generation Yukawa couplings.
Furthermore, reducing in favour of a dimensionless parameter only works for dimensionless
parameters, so m2

11, m
2
22 and m2

12 will remain free.
The gauge couplings g and g′ of the SU(2) and U(1) gauge groups, respectively, will

not be considered at the first stage of the reduction, but will be treated as corrections.
Since the bottom quark and tau lepton Yukawa couplings are much smaller than the top
Yukawa coupling, we do not take them into account in the following work for simplicity.
However, they can be straightforwardly incorporated into the following reduction scheme
in future studies of the model.

First, we have to specify the 1-loop renormalization group equations (RGEs), which
were given (for a general gauge theory and for the specific case of two scalar doublets)
in [30–35]. For coherency, we follow the notation of [27]. The gauge β-functions for the
model are given by:

Dgs =− 7g3s ≡ β3 (8)

Dg =− 3g3 ≡ β2 (9)

Dg′ = 7g′3 ≡ β1 , (10)

where D is the dimensionless differential operator 16π2µ(d/dµ). The top Yukawa β-
function (with the omission of yb and yτ ) is:

Dyt = βt = βt0 + βtc , (11)
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where

βt0 =
(9

2
y2t − 8g2s

)

yt (12)

βtc =
(

−
9

4
g2 −

17

12
g′2

)

yt , (13)

and it is understood that βt0 is the top Yukawa β-function without the g, g′ contributions,
which are notated as βtc . The λi β-functions -without the bottom and tau contributions-
are given by:

Dλi = βλi
= βλi0

+ βλic
, (14)

where again βλi0
are the λi β-functions without the g, g′ contributions βλic

and are given
as

βλ10
= 12λ2

1 + 4λ3
3 + 4λ3λ4 + 2λ2

4 + 2λ2
5 + 24λ2

6 + 12λ1λ
2
t − 12λ4

t (15)

βλ20
= 12λ2

2 + 4λ3
3 + 4λ3λ4 + 2λ2

4 + 2λ2
5 + 24λ2

7 (16)

βλ30
= (λ1 + λ2)(6λ3 + 2λ4) + 4λ2

3 + 2λ2
4 + 2λ2

5 + 4(λ2
6 + λ2

7) + 16λ6λ7 + 6λ3λ
2
t (17)

βλ40
= 2(λ1 + λ2)λ4 + 8λ3λ4 + 4λ2

4 + 8λ2
5 + 10(λ2

6 + λ2
7) + 4λ6λ7 + 6λ4λ

2
t (18)

βλ50
= λ5(2λ1 + 2λ2 + 8λ3 + 12λ4) + 10(λ2

6 + λ2
7) + 4λ6λ7 + 6λ5λ

2
t (19)

βλ60
= (12λ1 + 6λ3 + 8λ4)λ6 + (6λ3 + 4λ4)λ7 + 10λ5λ6 + 2λ5λ7 + 9λ6λ

2
t (20)

βλ70
= (12λ1 + 6λ3 + 8λ4)λ7 + (6λ3 + 4λ4)λ6 + 10λ5λ7 + 2λ5λ6 + 9λ7λ

2
t (21)

and

βλ1c
=

3

4
(3g4 + g′4 + 2g2g′2)− 3λ1(3g

2 + g′2) (22)

βλ2c
=

3

4
(3g4 + g′4 + 2g2g′2)− 3λ2(3g

2 + g′2) (23)

βλ3c
=

3

4
(3g4 + g′4 − 2g2g′2)− 3λ3(3g

2 + g′2) (24)

βλ4c
= 3g2g′2 − 3λ4(3g

2 + g′2) (25)

βλ5c
= − 3λ5(3g

2 + g′2) (26)

βλ6c
= − 3λ6(3g

2 + g′2) (27)

βλ7c
= − 3λ7(3g

2 + g′2) , (28)

where λt = yt sin β and tan β = v2/v1 is the well known ratio of the two Higgs vacuum
expectation values (vevs).

Proceeding with the reduction of λi and yt w.r.t. the primary coupling, gs and tem-
porarily ‘switching off’ the other two gauge couplings, the power series solutions of Eq. (3)
will be:

yt = ptgs (29)

λi = pig
2
s . (30)
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Substituting the solutions into the REs,

β3
dyt
dgs

= βt0 (31)

β3
dλi

dgs
= βλi0

, (32)

we get sets of pi, pt that depend on sin β and are RGI. Sadly, these solutions do not satisfy
Eq. (6) and Eq. (7) and, more importantly, for any choice of tanβ, the top quark pole
mass fails to go above 100 GeV.

One may proceed with taking into account the corrections that come from the other
two gauge couplings, in hope that their contributions may ameliorate the above results.
Now the full power series solutions of Eq. (3) will be:

yt = ptgs + qtg + rtg
′ (33)

λi = pig
2
s + qig

2 + rig
′2 , (34)

where pt, pi are known from the above procedure and the corresponding REs will be

β3
dyt
dgs

= βt (35)

β3
dλi

dgs
= βλi

. (36)

In order for Eqs. (35)-(36) to be solved w.r.t. qt, qi, rt, ri, one needs a further condition
such as [24]

D(qag) ∼ 0 , D(rag
′) ∼ 0 , (37)

where a = t, 1, ..., 7. However, these conditions only hold for µ ≥ 107 GeV and are not
RGI, thus we cannot have a successful reduction of the theory that way.

An extended discussion about ‘traditional’ (partial) RoC method applied directly to
the 2HDM, can be found in [36], where a reduction is performed for the Yukawa and Higgs
self-couplings in terms of the strong coupling. Using the bottom quark mass as input the
Higgs boson and top quark masses are predicted (with values which are now ruled out by
experiment), and also values for the lepton masses and the extra Higgs scalars were found,
but already in contradiction with the experimental results at the time. More recently,
a similar study of the RoC method specifically applied to the four types of 2HDM with
Natural Flavour Conservation with updated data was performed in [37], with similar,
albeit not identical, results.

5 A realistic approach to reduction

Since the ‘traditional’ partial RoC method proved to be too restrictive, the next step is
to try a reduction at a boundary scale, along the lines of [24] (also explained in [38]). The
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idea is simple: we solve the REs of Eqs. (35)-(36) at one specific scale, called the boundary
scale Mbdry, above which a covering theory is assumed, which is supposed to make these
solutions RGI. Below Mbdry we run the usual 2HDM RGEs, using the reduction solutions
as boundary conditions. Thus, using only the experimental values of the gauge couplings
and by fixing the tanβ value, we obtain the top quark pole mass and all λis at the EW
scale and, fixing the mass parameters of the scalar potential, we also obtain the light
Higgs boson mass.

The conditions of Eq. (37) demand that Mbdry ≥ 107 GeV. However, since we want to
treat g, g′ as corrections, we need their values not to be comparable to gs at the boundary
scale. Running the 2HDM gauge RGEs of Eqs. (8)-(10) it becomes clear that, while g′

continues to be much smaller than the other gauge couplings until very high energies, the
weak coupling starts ‘dangerously’ approaching gs around µ ∼ 108 GeV. This naturally
restricts the boundary scale at

Mbdry ∼ 107 GeV , (38)

which is the value used from now on. The reduction of yt to gs does not involve any of
the Higgs potential parameters and can be performed independently. As such, we reduce
the top Yukawa in favour of the strong coupling, first without the contributions of g, g′,
as above. Then, in order to solve the RE of Eq. (35) at the boundary Mbdry, we use the
values g(Mbdry) and g′(Mbdry) that we get from Eqs. (9)-(10) using their experimental
values at MZ . From three sets of possible reduction solutions at the boundary scale, the
only one that can lead to a phenomenologically viable top mass is

yt = 0.471gs − 0.119g + 1.228g′ . (39)

Using the above relation as boundary condition to the top Yukawa RGE, we obtain the
EW scale top Yukawa value. In order to satisfy the experimental constraint of [39],

mt = (172.69± 0.30) GeV , (40)

allowing a theoretical uncertainty of 1 GeV, the ratio of the two Higgs vevs has to be:

tanβ = 2.2± 0.5 . (41)

Now, with all the above information, we can perform the same reduction to the full
system of gs, yt and λi at Mbdry, including the corrections of g, g′. We get a large number
of possible solutions, not all of which are phenomenologically viable. Indeed, once we
impose the conditions of Eqs. (5)-(7), there are only four sets of reduction solutions that
confirm the light Higgs boson mass measurement [39],

mexp
h = (125.25± 0.17) GeV . (42)

We have estimated that our theoretical calculations have a 5 GeV uncertainty, due to
threshold corrections and higher order contributions. For the calculation of the light
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# pt p1 p2 p3 p4 p5 p6 p7

SET1 0.471 -1.377 -1.167 0 0 0 0 0

SET2 0.471 -1.377 -1.167 0 0 0 0 0

SET3 0.471 -1.109 -0.773 -0.955 0 0 0 0

SET4 0.471 -1.109 -0.773 -0.955 0 0 0 0

# qt q1 q2 q3 q4 q5 q6 q7

SET1 -0.119 4.606 4.198 -0.087 -0.060 -0.060 0 0

SET2 -0.119 4.598 4.189 0.124 -0.595 0 0 0

SET3 -0.119 3.652 2.819 3.317 0 0 0 0

SET4 -0.119 3.652 2.819 3.317 0 0 0 0

# rt r1 r2 r3 r4 r5 r6 r7

SET1 1.228 10.022 0.498 -1.033 -3.275 0 0 0

SET2 1.228 10.197 0.240 -0.415 -1.490 -1.490 0 0

SET3 1.228 7.929 1.245 5.518 -9.425 0 0 0

SET4 1.228 -3.196 0.312 8.017 -8.394 0 0 0

Table 1: The sets of solutions for Mbdry = 107 GeV and tan β = 2.2 that satisfy the
conditions of Eqs. (5)-(7) and yield a light Higgs boson mass within 5 GeV of Eq. (42).

Higgs mass we have chosen appropriate mass parameters of the Higgs potential such
that the mass of the CP odd scalar, mA, is 800 GeV, which is allowed by recent LHC
searches [40]. However, there is significant freedom in this parameter, since a variation
of ±400 GeV in mA gives a very small change in the value of mh, which is covered by
the theoretical uncertainty. The four reduction solutions are shown in Tab. 1, while the
results for their respective light Higgs masses are given in Tab. 2. It is obvious from
Tab. 1 and the λi β-functions that every solution has λ6,7 = 0, while λ5 vanishes for the
latter two solutions.

This is the first case in which the RoC method is applied on a non-supersymmetric
model and successfully fits the experimentally observed values for both the top quark
mass and the (light) Higgs boson mass. It assumes new physics at a specific energy
scale -either a covering symmetry or just new field content, or both- with RGI relations
among parameters. It is only a simplified example of what the method is capable of,
as it can be expanded to either be more restrictive or include other phenomena as well.
For example, a 2-loop analysis of the above can rule out some of the solutions, while it
can also be applied on a complex Higgs potential. In the latter case, it can result in a
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# mh (GeV)

SET1 127.28

SET2 120.87

SET3 121.20

SET4 122.81

Table 2: The light Higgs boson mass (in GeV) for each set of solutions of Tab. 1.

realistic description of explicit or spontaneous CP violation with minimal input, and it
may single out one of the six symmetries of the Higgs potential [27, 41] as the one that
naturally occurs from a reduced theory. Lastly, although the extension of the SM with
one scalar doublet is one of the simplest and most intuitive ways to tackle questions the
SM is unable to, the RoC technique can be applied in more field-rich models (or models
with larger symmetries like in [16–18, 20–22]). The natural continuation of the present
work under this perspective is the application of RoC on models that feature three Higgs
doublets (see for instance [42–48]). All the above mentioned cases and extensions are the
main subject of our future work.

6 Conclusions

In the present work we described the application of the reduction of couplings method on
the Two Higgs Doublet Model. In particular, the top Yukawa coupling and the quartic
Higgs couplings are expressed in terms of the strong gauge coupling, treating the other
two gauge couplings as corrections. The 1-loop reduction is performed at a boundary
scale Mbdry, over which a covering theory is assumed. The demand for phenomenological
viability of the model sets the scale over which new physics appear at Mbdry ∼ 107 GeV.
The reduction gives four sets of solutions, which fit the experimental limits for the top
quark mass and the (light) Higgs boson mass, using as input only the gauge coupling
values at MZ , while it fixes the value of tan β ∼ 2.2. Thus, the RoC method provides us
with a powerful tool to reduce the number of free parameters of a given theory, guiding
the direction of possible viable extensions of the Standard Model.
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