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Abstract: We compute the two-loop master integrals for leading-color QCD scatter-

ing amplitudes including a closed light-quark loop in tt̄H production at hadron colliders.

Exploiting numerical evaluations in modular arithmetic, we construct a basis of master

integrals satisfying a system of differential equations in ϵ-factorized form. We present the

analytic form of the differential equations in terms of a minimal set of differential one-forms.

We explore properties of the function space of analytic solutions to the differential equa-

tions in terms of iterative integrals which can be exploited for studying the analytic form of

related scattering amplitudes. Finally, we solve the differential equations using generalized

series expansions to numerically evaluate the master integrals in physical phase space. As

the first computation of a set of two-loop seven-scale master integrals, our results provide

valuable input for analytic studies of scattering amplitudes in processes involving massive

particles and a large number of kinematic scales.
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1 Introduction

Multi-loop Feynman integrals provide essential information about the analytic properties of

scattering amplitudes in quantum field theory. They are at the core of making theoretical

predictions for collider physics and are often the main bottleneck for the calculation of

precise predictions for scattering processes. A particular challenge is the computation of

Feynman integrals for two-loop five-particle processes. In recent years, great effort has

been dedicated to such computations resulting in the calculation of all integrals for fully

massless processes [1–7], all integrals for processes with one massive external particle and

all massless internal particles [8–13], and, more recently, the calculation of the first master
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integrals contributing to five-particle processes involving an external massive top-quark

pair and one massive propagator [14].

A particularly important five-point process is that of tt̄H production at hadron col-

liders, which gives a direct constraint on the top-quark Yukawa coupling. First observed

at the LHC in 2018 [15, 16], this process has by now allowed to constrain deviations from

a Standard-Model-like Yukawa coupling at the 10% level—an impressive achievement that

already challenges the precision of existing theoretical predictions. It is expected that by

the end of the high-luminosity run at the LHC, measurements will be able to constrain such

coupling at the 3-5% level and will be dominated by theory uncertainties [17, 18]. This

creates a pressing need for next-to-next-to-leading-order (NNLO) QCD corrections [19–21].

The tt̄H production process been studied extensively, with the leading-order (LO)

predictions known since the mid-eighties [22, 23]. Next-to-leading order (NLO) QCD cor-

rections were first computed in Refs. [24–29], and subsequently further improved by the

resummation of soft-gluon effects [30–36], the inclusion of first-order electroweak correc-

tions [37–39], the study of NLO off-shell effects [40–42], and the NLO QCD matching to

parton-shower event generators [43–46]. Recently, the first NNLO QCD calculation has

appeared [47], where the two-loop amplitudes were approximated by a soft expansion in

the momentum of the Higgs boson (pH → 0). Obtaining the exact two-loop scattering

amplitudes is thus of great importance for the completion of the NNLO QCD corrections

to tt̄H production at hadron colliders.

As a first step towards this goal, in this work we compute a set of two-loop master

integrals contributing to the production of a top-quark pair in association with a Higgs

boson at hadron colliders. We focus on the Feynman integrals arising in the calculation

of the leading-color two-loop QCD scattering amplitudes for the parton-level processes

gg, qq̄ → tt̄H including a closed light-quark loop. Examples of related Feynman diagrams

are given in figure 1 (see [48, 49] for a discussion about the color decomposition of related

scattering amplitudes). The corresponding amplitudes and Feynman integrals depend on

t̄

H

t

t̄

H

t

t̄

H

t

Figure 1: Examples of two-loop Feynman diagrams proportional to the number of light

flavors nf contributing to leading-color two-loop scattering amplitudes for the process

gg → tt̄H. The red double lines represent top quarks and the external cyan dashed line the

Higgs boson. Light quarks are represented by black solid lines and gluons by black wavy

lines.

seven different kinematic scales, including the mass of the top quark (which also enters
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internal lines of Feynman diagrams) and the mass of the Higgs boson. Importantly, we

note that these integrals also arise in the two-loop scattering amplitudes for processes such

as pp → tt̄Z and e+e− → tt̄+ 2j.

The set of Feynman integrals that we study is organized in terms of three integral fami-

lies and contains a total of 127 master integrals. We compute the integrals with the method

of differential equations [50–55], constructing a basis of master integrals that satisfies a set

of differential equations in ϵ-factorized form [55]. Having found such a basis, we uncover a

novel feature of these Feynman integrals: their analytic description requires a nested square

root function of the external kinematics. We then show that the differential equations can

be expressed in terms of 152 differential one-forms, of which we are able to express all

but four in d log form. In such a compact form, our analytic differential equations clearly

manifest the singularity structure of the integrals. We then explore the analytic properties

of the master integrals by considering the iterated integrals which arise in solutions to the

differential equations. Moreover, we solve the differential equations numerically using the

generalized series expansion method [56] as implemented in the DiffExp package [57].

The required boundary values in the numerical solutions are obtained with the auxiliary

mass flow method [58–60] as implemented in the AMFlow package [61]. We provide in

the ancillary files of this article a Mathematica implementation based on DiffExp that

allows to solve the system of differential equations for points in the physical phase space.

The rest of this article is organized as follows. In section 2 we present the kinematic

properties for the process studied and define a series of relevant Lorentz invariant func-

tions. In section 3 we define the families of Feynman integrals that we study and describe

the related master integrals. In section 4 we give details of our procedure to build the

basis of master integrals that satisfy ϵ-factorized differential equations and our method of

determining the analytic form of said differential equations. In particular we discuss the

determination of the corresponding “alphabet” of one-forms, and how we construct d log

forms. In section 5 we consider the analytic structure of Feynman integrals, first discussing

the alphabet in subsection 5.1 and then exploring the analytic properties of the correspond-

ing function space in subsection 5.2. In section 6 we present numerical results based on

generalized series expansions. We describe in subsection 6.3 the ancillary files provided

with this article. Finally, in section 7 we give our conclusions and outlook. Appendices A,

B, and C contain a detailed description of the integral bases we have constructed.

2 Scattering Kinematics and Notation

We consider the scattering process

q1(p4) q2(p5) → t(p1)H(p2) t̄(p3) , (2.1)

where the initial pair of partons (q1, q2) is either a gluon pair or a massless quark/anti-quark

pair. For convenience we work in an all-incoming convention for the external momenta,

such that momentum conservation is expressed as
∑5

i=1 pi = 0. The momenta fulfill the

on-shell conditions

p21 = p23 = m2
t , p22 = q2 , p24 = p25 = 0 , (2.2)
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where mt is the mass of the top quark and we have kept the momentum squared of the

external massive boson in terms of the variable q2. We write general kinematic invariants

in terms of the scalar products vij = 2pi · pj , although for convenience we sometimes also

use the Mandelstam variables sij = (pi + pj)
2. The kinematic invariants can be expressed

in terms of 7 independent variables which we choose to be

s⃗ = {v12, v23, v34, v45, v15,m2
t , q

2} , (2.3)

together with the parity-odd invariant

tr5 = 4iϵµναβ p
µ
1p

ν
2p

α
3 p

β
4 , (2.4)

which is written in terms of the fully antisymmetric Levi-Civita symbol. In terms of these

variables we can write all remaining scalar products as

v13 = v45 − v12 − v23 − 2m2
t − q2 ,

v14 = v23 − v45 − v15 + q2 ,

v24 = v15 − v23 − v34 − q2 ,

v25 = v34 − v12 − v15 − q2 ,

v35 = v12 − v34 − v45 + q2 .

(2.5)

When we consider the scattering process of equation (2.1), the physical phase space in the

diag(1,−1,−1,−1) Minkowski metric is a region in the space of Mandelstam variables that

is specified by the following set of inequalities

m2
t > 0 , q2 > 0 ,

v12 ≥ 2 mt q , v23 ≥ 2 mt q , v34 ≤ 0 , v15 ≤ 0 ,

v45 ≥ (2mt + q)2 , detG(pi, pj , pk) ≥ 0 , detG(p1, p2, p3, p4) ≤ 0 ,

(2.6)

where q =
√

q2, the indices i, j, k = 1, . . . , 5, and we define the Gram matrix according to

G(q1, . . . , qn)ij = qi · qj .
The integrals considered in this paper can be expressed in terms of a basis of spe-

cial functions. One finds that these functions possess algebraic branch points on various

surfaces. Some are given by the zero sets of the following Gram determinants

∆
(1)
3 = −4 detG(p1, p2) = v212 − 4m2

t q
2 , (2.7)

∆
(2)
3 = −4 detG(p2, p3) = v223 − 4m2

t q
2 , (2.8)

∆
(3)
3 = −4 detG(p1, p2 + p3) = (q2 + v23 − v45)

2 − 4m2
t v45 , (2.9)

∆
(4)
3 = −4 detG(p1 + p2, p3) = (q2 + v12 − v45)

2 − 4m2
t v45 , (2.10)

∆
(5)
3 = −4 detG(p2, p3 + p4) = (q2 + v34 − v15)

2 − 4q2(m2
t + v34) , (2.11)

∆5 = 16detG(p1, p2, p3, p4) = tr25 . (2.12)

An important subtlety here is that one cannot identify tr5 with
√
∆5 as the first picks

up a sign under parity, while the second is invariant. For simplicity, when handling the
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Figure 2: One-loop Feynman integrals whose maximal cut Baikov polynomials are related

to the C1 and C2 functions in equations (2.13) and (2.14). The red double lines represent

massive internal and external lines (associated to top quarks in tt̄H production) while the

dashed cyan line denotes an external off-shell line (associated to the Higgs boson in tt̄H

production).

algebraic branch points, we will use
√
∆5 instead of tr5 throughout this paper, analogous

to the conventions of Ref. [10]. Two further surfaces are given by the zero sets of of the

functions

C1 = q2(q2 − 4m2
t ) , (2.13)

C2 =
[
(q2 + v12)(q

2 + v23)− q2v45

][
(q2 + v12)(q

2 + v23)− (q2 − 4m2
t )v45

]
. (2.14)

These functions can be associated to the maximal cut of one-loop Baikov polynomials [62]

of the Feynman integrals in figure 2. Alternatively, they can be understood as modified

Cayley determinants (see e.g. Ref. [63]). Three additional functions associated to leading

singularities of the two-loop Feynman integrals shown in figure 3 will also be needed, and

we define them according to

r1 = (v24 + v25)
2 − 4q2v45 , (2.15)

r2 = [q2v35 + v23(v35 + v45)]
2 − 4m2

t v45[v23v25 − q2(v15 + v35)] , (2.16)

r3 = [q2v14 + v12(v14 + v45)]
2 − 4m2

t v45[v12v24 − q2(v14 + v34)] . (2.17)

In contrast to previous two-loop five-point master integral computations, the algebraic

branch point structure is richer and involves nested square roots. Indeed, we will need to

employ square roots of the quantities

N± = q2
(
Nb ±

√
N2

b −Nc

)
, (2.18)

where

Nb = q2
[
(v14 + v15)

2 + (v34 + v35)
2
]
− 2m2

t (v24 + v25)
2 , (2.19)

Nc = C1(v12 − v23)
2(v24 + v25 + 2v45)

2 . (2.20)
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Figure 3: Two-loop Feynman integrals with leading singularities associated to the r1, r2
and r3 functions in equations (2.15)–(2.17). Diagram lines are as in figure 2.

Note that there is a subtlety when considering square roots of N±, as such roots are not

algebraically independent from
√
C1. This follows as the N± fulfill

N+ ·N− = (q2)2 Nc . (2.21)

In practice, throughout this manuscript, we choose to use this relation to define the symbol√
N− in terms of the functions

√
N+ and

√
C1 according to

√
N− ≡

√
C1

q2(v12 − v23)(2q
2 + v12 + v23 − 2v45)√
N+

. (2.22)

When considering algebraic branch points an important associated algebraic object is the

Galois group. The Galois group is composed of all automorphisms of the field extension

that is implicitly defined by the functions with such branch point singularities. In previ-

ous two-loop five-point Feynman integral computations, the automorphisms were given by

transformations that flipped the signs of square roots in the algebraic functions. Naturally,

the more complicated square root structure that we find by considering square roots of

N± results in elements of the Galois group that are more intricate. Clearly, we have the

standard sign flip associated to
√
N+. However, we can see from equation (2.22) that the

sign flip of
√
N− is achieved simultaneously with the sign flip of

√
C1. Further, we also

have the automorphism

α :
√

N+ ↔
√
N− ,

√
N2

b −Nc ↔ −
√
N2

b −Nc , (2.23)

which simultaneously flips the sign of the “inner” square root, and swaps
√
N+ with

√
N−.

Finally, we also note that there is an interesting relevant kinematic map. Specifically,

the set of integrals maps into itself under

Z : p1 ↔ p3, p4 ↔ p5 . (2.24)

with p2 left unchanged. Under this map our set of independent kinematic variables in

equation (2.3) transforms as:

{v12, v23, v34, v45, v15,m2
t , q

2} Z−→ {v23, v12, v15, v45, v34,m2
t , q

2} , (2.25)
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and then all functions defined above transform under Z according to

∆
(1)
3 ↔ ∆

(2)
3 , ∆

(3)
3 ↔ ∆

(4)
3 , r2 ↔ r3 ,

√
N− → −

√
N− , (2.26)

while ∆
(5)
3 , ∆5, C1, C2, r1 and N+ remain invariant. Naturally, α and Z can be composed

and we denote the composition as [α ◦ Z], which acts on a function f as

[α ◦ Z](f) ≡ α (Z(f)) . (2.27)

3 Feynman Integral Families

There are six types of eleven-propagator Feynman integral families, namely one penta-box,

two hexa-triangle, and three hepta-bubble families that contribute to the considered scat-

tering amplitudes. We start by analyzing the number of master integrals that are associated

to them. To find them we construct integration-by-parts (IBP) identities [64–66] employing

numerical evaluations, independently obtained with the software packages Kira [67, 68]

and FIRE [69]. We find the following three main structures for the master integrals.

Penta-box integral family: This family is associated to the propagator structure of the

left diagram of figure 1. We find that this family has 111 master integrals, including

integrals with 3 to 8 propagators. We label this family of integrals as T1, and we

specify it below in detail. We notice that this integral family maps into itself under

the Z transformation introduced in the previous section.

Hexa-triangle integral family: This family is associated to the propagator structure of

the central diagram in figure 1. We find that this family contains 46 master integrals,

of which 38 are already contained in the T1 family. This leaves 8 distinct master

integrals all of which are contained in a penta-bubble subsystem with 19 master

integrals. We label this subsystem as T̃2
1 and specify it in detail below. The hexa-

triangle integral family does not transform into itself under the Z map, therefore the

8 distinct master integrals above map under Z to 8 additional independent master

integrals. We denote the corresponding integral family by Z(T̃2).

Hepta-bubble families: These families are associated to the propagator structure of the

right diagram in figure 1. They can be described in terms of the propagator structures

that result from a massless bubble insertion in each of the internal massless lines of

the corresponding one-loop diagram. We find that each of these families contain 19

master integrals, all of which are contained in the T1, T̃2, and Z(T̃2) families described

above.

In summary we have 127 two-loop master integrals, decomposed into three distinct

Feynman integral families that we denote as T1 (with 111 master integrals), T̃2 (with 8

1The T̃2 notation is chosen to remind that this (sub)family is part of a bigger 8-propagator family (to

be denoted as T2) that appears in the full calculation of tt̄H amplitudes and of which only the T̃2 portion

is relevant for this paper.
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independent master integrals), and Z(T̃2) (with 8 independent master integrals). In the

following subsections, as well as in Appendices A and B, we give further details about

them. We notice that for completeness, in Appendix C we also provide details of our basis

of one-loop master integrals for the propagator structure of the diagram shown in figure 7.

In the following, we will refer to the one-loop topology as T0.

3.1 The Penta-Box Family T1

The T1 family is an eleven-propagator Feynman integral family, where three propagators

are introduced to make the family complete, such that all scalar products between loop

momenta and external momenta can be expressed in terms of inverse propagators. It is

defined according to

T1[ν⃗] =

∫
ddℓ1

iπd/2

ddℓ2

iπd/2

ρ−ν9
9 ρ−ν10

10 ρ−ν11
11

ρν11 ρν22 ρν33 ρν44 ρν55 ρν66 ρν77 ρν88
, (3.1)

where ν⃗ = (ν1, · · · , ν11) is a vector of integers (the propagator powers) and νi ≤ 0 for

i = 9, 10 and 11. We work in dimensional regularization with d = 4 − 2ϵ and the inverse

propagators are defined according to

ρ1 = ℓ21 , ρ2 = (ℓ1 + p1)
2 −m2

t , ρ3 = (ℓ1 + p12)
2 −m2

t ,

ρ4 = (ℓ1 + p123)
2 , ρ5 = (ℓ1 + ℓ2)

2 , ρ6 = ℓ22 , (3.2)

ρ7 = (ℓ2 + p5)
2 , ρ8 = (ℓ2 + p45)

2 ,

where pi···j = pi+ · · ·+pj . These propagators correspond to the diagram shown in figure 4,

to which we add the three irreducible scalar products

5

4

3

2

1

7

ℓ2

6

5

8

ℓ1

4

3

2

1

Figure 4: The propagator structure associated to the T1 integral family, with the routing

of loop momenta ℓi (i = 1, 2) chosen as in equation (3.2). The red double lines represent

massive propagators or external on-shell momenta (with mass mt), the black solid lines

represent massless propagators or external on-shell momenta, and the cyan dashed line

represents an external off-shell momentum. The integers labeling the external lines refer to

the corresponding momenta pi (i = 1, · · · , 5) as defined in section 2, while the blue inner

integers correspond to the inverse propagators ρj (j = 1, · · · , 8) as defined in equation (3.2).

ρ9 = (ℓ1 − p5)
2 , ρ10 = (ℓ2 − p12)

2 −m2
t , ρ11 = (ℓ2 − p1)

2 −m2
t . (3.3)
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The integral family T1 defines a vector space of integrals. Each element of this vector

space can be systematically expressed in terms of basis elements with the help of IBP

identities. As described above, the dimension of this vector space is dim (T1) = 111. There

is a lot of freedom in the choice of a basis of integrals, the so-called master integrals,

and in section 4 we describe how we construct a basis that satisfies a set of differential

equations in ϵ-factorized form. In such way we make explicit the singularity structure of all

master integrals. We notice that 50 master integrals of T1 have never been studied in the

literature, with the rest being one-loop squared integrals, 3-propagator integrals, integrals

with all massless propagators, or integrals studied in Ref. [14]. In Appendix A we include

the definition of all 111 integrals in our basis.

3.2 The Penta-Bubble Family T̃2

The penta-bubble family T̃2 is defined according to:

T̃2[ν⃗] =

∫
ddℓ1

iπd/2

ddℓ2

iπd/2

ρ−ν7
7 ρ−ν8

8 ρ−ν9
9 ρ−ν10

10 ρ−ν11
11

ρν11 ρν22 ρν33 ρν44 ρν55 ρν66
, (3.4)

where νi ≤ 0 if i = 7, . . . , 11. The inverse propagators are defined according to

ρ1 = ℓ21 , ρ2 = (ℓ1 + p5)
2 , ρ3 = (ℓ1 + p15)

2 −m2
t ,

ρ4 = (ℓ1 + p125)
2 −m2

t , ρ5 = (ℓ1 + ℓ2 − p4)
2 , ρ6 = ℓ22 , (3.5)

which correspond to the diagram shown in figure 5. We add the following five irreducible

scalar products to complete the family

ρ7 = (ℓ1 − p3)
2 , ρ8 = (ℓ2 − p1)

2 , ρ9 = (ℓ2 − p2)
2 ,

ρ10 = (ℓ2 − p3)
2 , ρ11 = (ℓ2 − p4)

2 . (3.6)

The integral family T̃2 defines a vector space with dim(T̃2) = 19. As described above,

1

2

3

4

5

ℓ1

1

2

3

4

5ℓ2 6

Figure 5: The propagator structure associated to the T̃2 integral family, with the routing

of loop momenta ℓi (i = 1, 2) chosen in equation (3.5). See caption of figure 4 for details

on the notation.

only 8 of those integrals are not included in the T1 family, and 4 of them have never been

studied in the literature. Considering also the Z(T̃2) family introduces 16 more master

integrals in our analysis. In Appendix B we include the definition of all T̃2 master integrals

not included in T1.
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4 Differential Equations in ϵ-Factorized Form

The method of differential equations [50–55] has become one of the most used approaches

for computing master integrals, especially in the case of integrals involving multiple scales.

In practice, it turns out that obtaining the analytic form of the differential equation can be

challenging. Nevertheless, a major simplification is achieved when the master integrals are

chosen to satisfy a differential equation in ϵ-factorized form [55]. Despite great theoretical

progress (see e.g. [70–79]), finding such sets of master integrals for multi-scale problems

remains a major problem. In this section we give details of our approach to construct a

basis of master integrals satisfying ϵ-factorized differential equations, which builds upon

the approaches presented in Refs. [80, 81] and in Refs. [8, 10, 82].

Let us denote a basis of master integrals as J⃗ for a family of Feynman integrals T .

The integrals J⃗ are functions of the kinematic invariants s⃗ and the dimensional regulator

ϵ = (4 − d)/2. A basis of master integrals satisfies a set of first-order partial differential

equations

∂J⃗

∂si
= Bi(s⃗, ϵ) J⃗ , (4.1)

where the Bi(s⃗, ϵ) are N × N matrices, with N = dim(T ) and entries which are rational

functions of ϵ. If the choice of basis J⃗ does not include algebraic functions of s⃗, such as

square roots, then the differential equation matrices Bi(s⃗, ϵ) are also rational functions of

s⃗. Differential equations of the form (4.1) are neither easy to construct, nor easy to solve.

To remedy these difficulties, we change to a basis of master integrals I⃗ via J⃗ = UI⃗, which

satisfy differential equations of the form

∂I⃗

∂si
= ϵAi(s⃗)I⃗ . (4.2)

The differential equation matrices Ai(s⃗ ) are related to those of the original differential

equation by

ϵAi(s⃗) = U−1Bi(s⃗, ϵ)U − U−1∂U

∂si
. (4.3)

The key feature of equation (4.2) is that it is in “ϵ-factorized” form. In general, finding

a basis of master integrals I⃗ that satisfies such differential equations is a non-trivial task.

We describe our approach in the next section. In practice, we find that we are able to

achieve such an ϵ-factorized form with a change of basis matrix U that is algebraic in the

kinematic invariants and rational in ϵ. Hence, the Ai(s⃗ ) are algebraic in the kinematics

invariants.

In practice, it is useful to unify the 7 differential equations into a single one using the

language of differential forms. In such a language, we write that

dI⃗ = ϵ
κ∑

α=1

Mα ωαI⃗ , (4.4)

where we express the differential equation in terms of a set of κ linearly independent

differential one-forms ωα. We call such a one-form a “letter”, and the full collection of all
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κ letters, the “alphabet”. The coefficient matrices Mα are N × N matrices with rational

number entries.

In the following subsections we describe the procedure to construct our basis of master

integrals I⃗ that satisfy equation 4.4, alongside the associated set of letters ωα, and rational

number matrices Mα.

4.1 Construction of Master Integral Basis

In order to construct a basis of master integrals that satisfy an ϵ-factorized differential

equation, we follow the strategies employed in Refs. [8, 10, 82]. Starting from a choice of

master integrals, for example by following the Laporta algorithm [66], we construct the

differential equations (4.1) on a fixed kinematic point while keeping the full ϵ dependence.

This allows to explore the analytic form of the differential equations as a function of the

dimensional regulator for multiple choices of integral bases in an efficient way. We employ

the Kira program [67, 68] for these reductions using finite fields Fp where p is a large prime

number [83, 84]. We then follow a number of approaches to refine the basis choice, building

on experience from the literature and using a variety of techniques that we summarize here.

As a first step, we search for a collection of master integrals where the differential

equations are linear in ϵ. That is, we search for a basis such that the matrix Bi(s⃗, ϵ) in

equation (4.1) takes the form

Bi(s⃗, ϵ) = B
(0)
i (s⃗) + ϵB

(1)
i (s⃗) , (4.5)

We proceed in a bottom-up fashion, starting with master integrals with the fewest number

of propagators. For integrals with a low number of propagators, we search through a

collection of basis integrals with raised propagator powers, until the differential equations

take a form that is linear in ϵ. Often, such bases must be normalized by various ϵ-dependent

functions, which we read from the differential equations evaluated on a numerical kinematic

point. A number of such basis choices can be interpreted as dimension shift relations [85, 86]

of subloops, such as considering tadpole and bubble subloops into 2− 2ϵ dimensions. This

procedure gives rise to a large number of integrals in our basis, for example those given

in equations (A.16), (A.84) and (A.102). For many integrals with a higher number of

propagators, we instead consider simple tensor insertions in order to arrive at a differential

equation that is linear in ϵ.

From the refined starting point of equation (4.5), we apply a number of techniques to

obtain ϵ-factorized differential equations. For integrals with box or pentagon subloops, we

follow techniques introduced elsewhere in the literature [8, 10, 13]. Some examples were

constructed by considering a four-dimensional d log-form integrand analysis (see e.g. [74]).

Others make use of numerators built from ϵ-dimensional scalar products [4]

µij = ℓ
[d−4]
i · ℓ[d−4]

j , i, j = 1, 2 , (4.6)

where we write the loop momenta as ℓi = (ℓ
[4]
i , ℓ

[d−4]
i ), i.e. decomposing them in terms

of their 4- and (d − 4)-dimensional parts. Examples of integrands obtained through this
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procedure for T1 can be found in equations (A.89), (A.101) and (A.121), and for T̃2 in

equations (B.4), (B.8) and (B.9).

For many other integrals, it was fruitful to employ an approach based on the structure

of the ϵ → 0 limit of the differential equation matrix. One advantage of the linear-in-ϵ form

is that a change of basis matrix that satisfies

∂

∂si
U = B

(0)
i (s⃗ )U , (4.7)

will result in a differential equation in ϵ-factorized form. This allows us to use techniques

based on the Magnus exponential [87], which we combine with analytic reconstruction

techniques. In practice, we work sector by sector2, or equivalently block by block of B
(0)
i ,

and make a series of partial basis changes to sequentially improve the basis. In most

sectors we find that the B
(0)
i are triangular, and proceed in two stages. In the first stage,

we restrict our analysis of equation (4.7) to diagonal entries, which reduces equation (4.7)

to a collection of 1× 1 systems. In practice, we find that these systems take the form

∂

∂si
u = biu , where bi =

∂

∂si
log(b̃) , (4.8)

where u is a diagonal entry of U and bi are diagonal entries of B
(0)
i . By analytically recon-

structing the bi and integrating, we find an associated normalization of the corresponding

integral. We note that it may be the case that the bi are rational, while b̃ is algebraic. In

practice, we find that this procedure is often easier to automate than a leading singularity

calculation in momentum space. In the second stage, we can assume that the relevant block

of each B
(0)
i is strictly lower triangular. As an example, let us assume that the relevant

block is 2× 2. Larger cases can be similarly handled. One then has that

∂

∂si
U =

(
0 0

b10,i 0

)
U , where b10,i =

∂

∂si
b̃10 , (4.9)

and in practice we find that b̃10 is an algebraic function of the kinematics. This differential

equation is then solved by

U =

(
1 0

b̃10 1

)
, (4.10)

which can be read as an instruction to redefine the second integral in the block by subtract-

ing the first with a factor of b̃10. When encountering situations like this, we analytically

reconstruct b10 to find the associated basis change. Example of integrals obtained through

this procedure are in equations (A.104), (A.108) and (A.118) for T1.

A particular five-propagator sector, displayed in figure 6, involves 7 master integrals

and requires special attention, as the relevant block structure of B
(0)
i is not triangular. We

refer to this sector as the kite7. Four such integrals arise in a lower triangular block and so

an ϵ-factorizing basis can be constructed with the procedures described before. However,

2A sector of a Feynman integral family refers to integrals that share the same set of inverse propagators

with positive powers.
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Figure 6: The “kite7” sector with seven master integrals. When studying the differential

equations for these integrals using Magnus exponential techniques, the associated matrix is

not triangular. The result of the Magnus exponential for this sector introduces the nested

square roots
√
N± (see section 2).

it was necessary to study a non-triangular 3× 3 block. Here, we again start by focusing on

the diagonal entries, leading to normalizations for the involved integrals which eliminate

the diagonal elements of the B
(0)
i . This leads to studying the differential equation for the

integrals with the numerators

Ñ (1)
64 = ϵ3

√
q2 4

√
N2

b −Nc

(
1

ρ3
− 1

ρ2

)
,

Ñ (1)
65 = ϵ3

√
q2 − 4m2

t
4

√
N2

b −Nc

(
1

ρ3
+

1

ρ2

)
,

Ñ (1)
66 = ϵ2

m2
t v45(q

2 + v12)(q
2 + v23)

2q2 + v12 + v23

(
1

ρ2ρ6
+

1

ρ3ρ8

)
.

(4.11)

where the tilded notation highlights that this is an intermediate step in the production of

the final ϵ-factorized basis. The corresponding differential equations take the form

∂

∂si

Ĩ64
Ĩ65
Ĩ66

 =

 0 ai 0

ai 0 0

bi ci 0


Ĩ64
Ĩ65
Ĩ66

+O(ϵ), where ai =
1

4

∂

∂si
log(ã) , (4.12)

and ai, bi, ci and ã are algebraic functions of the kinematics. We then work to construct

a change of basis which renders the matrix lower triangular, and therefore amenable to

the previous techniques. This leads us to focus only on the upper 2× 2 block. To remove

this block, we solve the associated differential equation for the change of basis matrix of

equation (4.7) using the Magnus exponential. As the two off-diagonal entries involve the

same functions ai, the Magnus exponential truncates at its first order. Nevertheless, the

factor of 1
4 in equation (4.12) leads to a complicated algebraic procedure which eventually

results in removing the quartic roots in equation (4.11), but introducing the nested roots√
N± of equation (2.18). After this step, the resulting block is now lower triangular, and

can be handled as discussed above. To apply this procedure in practice, we reconstruct the

analytic form of the ai, bi and ci from numerical samples. The integrals obtained through

this procedure are presented in equations (A.65), (A.66) and (A.67).
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Altogether, using this suite of approaches, we were able to construct a basis of master

integrals that satisfy a set of differential equations in ϵ-factorized form. We present the full

set of basis integrals in the appendices A and B for the T1 and T̃2 families respectively.

4.2 Analytic Reconstruction of the Differential Equations

Given that the bases of integrals obtained in the last section satisfy a set of differential

equations in ϵ-factorized form, we are now in a position to compute the analytic form of the

differential equations. We follow the general procedure of Ref. [8]. We begin by computing

κ, the number of linearly independent letters ωα that arise in equation (4.4). As described

in Ref. [8], this can be computed from repeated numerical evaluations of the differential

equations. In practice, we find that the number of linearly independent letters, or the

dimension of the alphabet, is

κ = 152 . (4.13)

Furthermore, we observe that by itself the T1 family contains all 152 independent letters,

and that the families T̃2, Z(T̃2) and T0 can be expressed in terms of a subset of the same

letters.

Next, we focus on reconstructing a basis of letters, onto which we will later fit the

full differential equations. This approach avoids reconstructing the functional form of each

entry of the differential equations with numerical evaluations, which can become compu-

tationally prohibitive. Following Refs. [4, 5, 8], we choose a basis of linearly independent

letters by prioritizing entries of the differential equation that lie on the block-diagonal. In

practice, we find that 80 of the letters can be obtained from maximal-cut3, 70 from next-

to-maximal-cut, and 2 are found on next-to-next-to-maximal-cut differential equations.

Our approach to reconstructing the basis of letters is based upon expectations for their

analytic form. Given that we have found a basis with an ϵ-factorized differential equation

using only algebraic functions, we naively expect that the letters can be expressed in d log

form, i.e.

ωα = d log(Wα) . (4.14)

which gives a strong constraint on their analytic structure. We will return to the valid-

ity of this assumption later. Further constraints on the analytic structure of the letters

follow from their properties under Galois transformations. We start with letters that are

independent of the square roots and therefore have trivial Galois transformations. We call

these even letters. If a given letter ωα is even

ωα =
∑
i

ωα,i dsi , (4.15)

it is clear that the ωα,i are rational functions. Given the d log-form expectation, we should

have that

ωα,i =
∂
∂si

Wα

Wα
. (4.16)

3For a given integral sector we call the maximal-cut differential equations those obtained when working

modulo subsectors. Correspondingly, (next-to)k-maximal-cut differential equations are those that only keep

subsectors with k fewer propagators.
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Thus, irreducible polynomial factors of denominators of the ωα,i are natural candidates

for even letters. We therefore proceed to compute the rational functions ωα,i through

functional reconstruction techniques (see e.g. Refs. [84, 88]), and take the irreducible

factors as letter candidates. In practice, this procedure allowed us to compute a set of 33

Wα, which generate the full subspace of even letters ωα.

Next, we consider letters with non-trivial properties under Galois transformations.

We first consider those which do not depend on the nested roots
√
N± but may depend

on any other square root. In contrast to the even letters, finding the corresponding Wα

of equation (4.14) is considerably more challenging and we dedicate most of the rest of

this section to their determination. Due to the way in which the algebraic functions are

introduced into our choice of basis, the corresponding entries of the differential equation

matrices (and therefore letters) all pick up a sign under sign-flip Galois transformations.

We refer to these as odd letters. An important feature observed in all odd letters in two-loop

five-point computations to date is that the possible denominator factors of the associated

differential form correspond to the even letters. Given these two features, denoting the

relevant square root as
√
R, we are motivated to consider an initial ansatz for odd ωα of

the form

ωα =
1√
R

Nα∏
β(W

even
β )qαβ

, (4.17)

where Nα is a polynomially valued differential form and the qαβ take values in {0, 1}
and therefore select which even letters arise in the denominators. In order to determine

these exponents, given that the set of even letters has already been determined, we apply

univariate reconstruction approaches [89] to each of the individual ωα,i, and take the lowest

common multiple of the set in i of all denominators in the ωα,i.

Naturally, for each such letter, two steps remain: first we must determine the numera-

tors Nα and then we must perform the integration to rewrite ωα as a d log form. In practice

each of these steps are computationally and theoretically demanding. Instead, we perform

both operations together, using an ansatz approach. Specifically, we build ansätze for the

arguments of our d log forms Wβ using the function

Ω1(w,R) =
w −

√
R

w +
√
R

. (4.18)

For the purposes of the ansatz procedure, we will consider w as an unknown rational

function of the Mandelstam invariants. In order to constrain w, let us consider the structure

of a d log form arising from Ω1,

d log(Ω1(w,R)) =
−w(dR) + 2R(dw)√

R(w2 −R)
. (4.19)

Here, we see that the denominator of the d log form is given by w2 − R. If we write w =

wN/wD, where wX (with X either N or D) are polynomials and compare the denominators

of equation (4.19) and equation (4.17) we find

w2
N −Rw2

D ∼
∏
β

(W even
β )qαβ , (4.20)
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where we use ∼ to state that the left-hand side and right-hand side are (polynomially)

proportional. We therefore reduce the problem to finding polynomials wN and wD that

satisfy equation (4.20). This constraint is similar to that proposed in Ref. [90], however

here the product of even letters is known a priori.

In order to solve equation (4.20), we use two methods. First, we consider an ansatz for

wN and wD where they are taken to be as multivariate polynomials with rational numbers

as coefficients. That is, we write

wX =
∑

|γ⃗|=deg(wX)

τX,γ⃗

(
7∏

i=1

sγii

)
, (4.21)

where the τX,γ⃗ are unknown rational numbers, |γ⃗| =
∑

i γi and deg(f) is the total degree

of the polynomial f . The sum in equation (4.21) is over all exponents γ⃗ that have the same

degree as the wX . By equation (4.20), the degrees of wN and wD are constrained such

that their difference is the mass dimension of w. The degree of wD is therefore another

unknown, and in practice we vary this in the ansatz procedure. With this parametrization,

we can rewrite equation (4.20) as

w2
N −Rw2

D mod
∏
β

(W even
β )qαβ = 0 . (4.22)

The modulo operation can then be implemented with polynomial reduction techniques

that are commonly implemented in computer algebra systems (CAS). In this way, equa-

tion (4.22) becomes a quadratic set of constraints that the τX,γ⃗ must satisfy.

Let us consider how to solve equation (4.22) given the multivariate polynomial ansätze

for wN and wD. First, note that any rescaling of equation (4.21) of the form

(τN,γ⃗ , τD,γ⃗) → (λτN,γ⃗ , λτD,γ⃗) , (4.23)

for any non-zero λ, will leave w invariant. This implies that solutions to equation (4.22)

are not unique and come in families. This non-uniqueness can be avoided in any case where

we know that some τX,γ⃗ is non-zero as we can use the rescaling to set it to 1. For example,

if we consider a case where the degree of wD is 0, i.e. w is simply a polynomial, then it

is natural to use the rescaling to set wD = 1. In practice, we find that this results in a

quadratic system of equations for the (τN,γ⃗ , τD,γ⃗) that have a finite number of solutions.

Algorithms for enumerating the solutions of such systems are commonly implemented in

computer algebra systems. In practice, we find it helpful to further organize the system

by (repeatedly) solving all equations of the form x2 = 0. Nevertheless, if wD has non-zero

degree, then it is a priori unclear which term in wD is non-zero and we must walk through

all possibilities before we find a term which we can choose to have unit coefficient.

In practice, as the number of terms in a multivariate polynomial grows rapidly as a

function of the polynomial degree, the enumeration through all possible non-zero terms can

be computationally prohibitive. To address this problem, we consider a second approach.

Here, we single out one of the Mandelstam invariants, denoting it as si, which is chosen in
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an ad-hoc manner. We then consider an ansatz for wN and wD where they are univariate

rational function in the variable si, that is

wX =

deg(wX)∑
k=0

τ
(ŝi)
X,k (si)

k , (4.24)

where the τ
(ŝi)
X,k are rational functions of all invariants other than si. Here, we fix the degrees

in si of the wX to be the largest possible, without the left hand side of equation (4.20)

having greater degree in si than the right hand side of equation (4.20). With the ansatz

in equation (4.24), we again consider equation (4.22), this time implementing the modulo

operation using polynomial reduction with respect to only si. Once again, this leads to a

quadratic system of equations that the τ
(ŝi)
X,k solve. While one must also determine which

τ
(ŝi)
X,k is non-zero by enumeration, the number of terms in a univariate rational function is

much smaller, and is hence more tractable. Nevertheless, the τ
(ŝi)
X,k are rational functions,

and solving for them is a non-trivial exercise which we confront using an in-house imple-

mentation of “companion matrix” techniques (see, for example, Ref. [91, 92]). In practice,

we find this univariate ansatz method is able to handle the suite of complicated cases we

study in this work.

In summary, with this ansatz procedure, we are able to construct a collection of d log

forms whose denominators must correspond to the provided differential form. We then

use these even d log forms as an ansatz for the odd forms (under a single square root) of

the differential equations. The validity of this ansatz is confirmed by a numerical fitting

procedure. Importantly, we did not directly reconstruct the numerator of equation (4.17).

Instead, we have implicitly constructed it by using the expectation that equation (4.17)

corresponds to a d log form.

Beyond the letters which are odd under a single Galois transformation, there are also

letters which are odd under two such transformations. To handle these cases, we follow an

analogous approach to the one just described. Specifically, denoting the two corresponding

roots as
√
R1 and

√
R2, we start from an ansatz for the argument of the d log form using

the function

Ω2(w,R1, R2) =
w −

√
R1

√
R2

w +
√
R1

√
R2

, (4.25)

where w is again an unknown rational function. Finally, it is sometimes useful to consider

an ansatz for the argument of the d log form using the function

Ω̃(w0, w1

√
R1,

√
R2) =

(w0 + w1

√
R1 +

√
R2)(w0 − w1

√
R1 −

√
R2)

(w0 − w1

√
R1 +

√
R2)(w0 + w1

√
R1 −

√
R2)

. (4.26)

Here, w0 and w1 are unknown rational functions. Such forms of letters have been previously

found in multi-scale two-loop five-point amplitude calculations [8, 10, 14]. Indeed, early

iterations of the multivariate rational function ansatz procedure were used to determine

the most complicated letters in [10]. In practice, this can be a fruitful approach to simplify

the result as the mass dimension of the unknown functions in equation (4.26) is lower than

those of equation (4.25).
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We now return to the collection of letters that depend on the nested square roots√
N±. In these cases, we construct the full differential form using functional reconstruc-

tion techniques. In practice, this was the most computationally demanding reconstruction

procedure. In all but four cases, these were then integrated to d log forms using ad-hoc

techniques. The remaining four letters proved resilient to being cast in d log form. In these

cases, one can show that the geometry associated to the square roots in the integrand is

that of an elliptic curve. While there is a wealth of literature where such cases can be

cast in d log form, it is important to emphasize that this is a property of the form itself.

Indeed, a priori, algebraic forms involving an elliptic curve could correspond to differentials

of first, second or third kind. Given that the differential equation is in ϵ-factorized form,

and the change of basis matrix is only algebraic, this is perhaps a surprising statement.

Nevertheless, such cases have arisen [93]. Currently, we are not aware of any technique

that could definitively classify the nature of such algebraic forms and we suggest that this

would be an interesting avenue for future investigation.

Finally, with this complete alphabet in hand, we determine the rational number matri-

ces Mα of equation (4.4) using the procedure described in Ref. [8]. Specifically, we sample

the differential equation κ times, and use this information to fit the differential equations

onto the basis of letters, yielding the Mα and therefore the analytic form of equation (4.4).

Note that for this procedure to work it is enough to know the partial derivatives of the

letters ωα for which we could not find a d log form. We provide the results of this procedure

in the next section, as well as in a series of ancillary files that we describe in section 6.3.

5 Analytic Structure of the Feynman Integrals

Given our analytic determination of an ϵ-factorized differential equation for the Feynman

integrals studied in this paper, we are now in the position to investigate the analytic

structure of these integrals. In the following we first discuss the organization of the letters

in the alphabet of the differential equation and afterwards the analytic structures of the

solution of the Feynman integrals.

5.1 The Alphabet

In section 4, we described a procedure to determine a set of 148 out of 152 letters as d log

forms and that can be used to express the differential equation matrices. Here we present

the results of that procedure, that is the analytic forms for the letters. Almost all letters

are so-called d log-forms, and take the form

ωα = d log(Wα) , (5.1)

for some expression Wα that is algebraic in the Mandelstam invariants, depending on

a limited series of square roots defined in section 2. In a slight abuse of language, in

situations where there is no ambiguity, for letters ωα that are in d log form we will also call

the associated Wα a letter. As a first organizational criteria for the alphabet, we note that

a number of letters do not arise in iterated integral solutions before O(ϵ5) and hence do

not contribute to the NNLO QCD corrections to associated physical observables. We will
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return to this discussion in section 5.2. We denote the set of letters that do contribute as

relevant letters and consider these first.

The first set of relevant letters that we consider are those that appear in the first entry

of iterated integral solutions,

{W1, . . . ,W7}=
{
s12 −m2

t , s23 −m2
t , s34 −m2

t , s15 −m2
t , v45,m

2
t ,
q2+

√
C1

q2−
√
C1

}
. (5.2)

Note that one such letter is algebraic, and is odd under the Galois transformation associated

to
√
C1. This letter can readily be associated to the one-loop bubble shown in figure 2a.

Beyond the first entries, the letters can be organized in terms of the square roots that

arise. The first class does not depend on any square root and are denoted by even letters.

There are 33 such relevant letters, and we arrange them by mass dimension. Besides the

6 even letters already accounted for in the first entries, we find 13 additional letters which

are linear in Mandelstam invariants

{W8, . . . ,W20} = {q2, s12, s23, s34, s15, v24, v25, v14, v35,
v34 + v45, v15 + v45, s12 − s34, s23 − s15} . (5.3)

We make use next of the object tr±, which we define as4

tr±(i1, . . . , in) ≡ tr

([
1± γ5

2

]
/pi1

· · · /pin

)
. (5.4)

This object is multilinear in the momenta, and allows us to rewrite many expressions in a

form that manifestly vanishes in limits where involved momenta become soft.

We obtained 4 more even letters which are quadratic in Mandelstam invariants

{W21, . . . ,W24} = {tr+(4151), tr+(4353), tr+(15[2+3][4+5]), tr+(34[1+2][4+5])} , (5.5)

and 8 additional even letters which are cubic

{W25, . . . ,W32} = {tr+(125215), tr+(324234), tr+(124214), tr+(235325),
m2

t (v15−v34)
2 + q2v15v34,m

2
t v

2
25 + q2v15(v15+v25),

m2
t v

2
24 + q2v34(v24+v34),

m2
t ([v24+v25]

2 − 4q2v45)− s13(v12v23 − q2s13)} .

(5.6)

Finally, there is a single even letter that is quartic in Mandelstam invariants

W33 = tr+[43(4 + 5)151(4 + 5)3] , (5.7)

and a single even letter that is sextic

W34 = (m2
t v24v25)

2 + (q2)2v14v15v34v35

+ q2m2
t

(
[v14v15−v34v35]

2 − v24v25[v14v15+v34v35]
)
. (5.8)

4Let us comment on a subtlety in representing letters in terms of tr±. If one re-expresses such objects in

terms of Mandelstam invariants, one may find an explicit dependence on tr5 and not
√
∆5. In our alphabet,

in such a case we make the replacement tr5 →
√
∆5, such that all of our letters are parity invariant. This

is the same convention as used in Ref [10].
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Beyond these letters, there are letters which transform under the subgroup of the Galois

group associated to each square root. We first consider the letters which are invariant under

the Galois operation α associated to the nested roots
√
N± (see equation (2.23)), but do

transform under the Galois operation associated to a sign flip of the other square roots. As

it is standard, we organize these letters so that under the action of the associated Galois

group element, they pick up a sign. We begin with those that only transform non-trivially

under a single Galois transformation, organizing all letters making use of Ω1(w,R1) from

equation (4.18). Note that, in principle, w is a rational function, and we organize our letters

by the mass dimension of the numerator of w when considered in common denominator

form. Beginning with cases which are linear in Mandelstam variables we have the following

collection that depend on the roots of three-mass Gram determinants ∆
(n)
3 and r1

{W35, . . . ,W47} =

{
Ω1

(
v12,∆

(1)
3

)
, Ω1

(
v23,∆

(2)
3

)
, Ω1

(
2m2

t + v12,∆
(1)
3

)
,

Ω1

(
2m2

t + v23,∆
(2)
3

)
, Ω1

(
q2 + v23 + v45,∆

(3)
3

)
,

Ω1

(
q2 + v12 + v45,∆

(4)
3

)
, Ω1

(
v13 + v12,∆

(3)
3

)
,

Ω1

(
v13 + v23,∆

(4)
3

)
, Ω1

(
v15 − v14,∆

(3)
3

)
,

Ω1

(
v35 − v34,∆

(4)
3

)
, Ω1

(
v12 + v25,∆

(5)
3

)
,

Ω1

(
v23 + v24,∆

(5)
3

)
,Ω1(v24 + v25, r1)

}
.

(5.9)

The next set of letters is quadratic in the Mandelstam variables

{W48, . . . ,W59} =

{
Ω1

(
v12v15 − 2m2

t v25
v15

,∆
(1)
3

)
, Ω1

(
v23v34 − 2m2

t v24
v34

,∆
(2)
3

)
,

Ω1

(
v12v14 − 2m2

t v24
v14

,∆
(1)
3

)
, Ω1

(
v23v35 − 2m2

t v25
v35

,∆
(2)
3

)
,

Ω1

(
q2v15 − (2m2

t + v15)(v15 − v34)

v15
,∆

(5)
3

)
,

Ω1

(
v25(v13 + v14)− v12(v35 + v45)

v15
,∆

(5)
3

)
,

Ω1

(
v24(v13 + v35)− v23(v14 + v45)

v34
,∆

(5)
3

)
,

Ω1

(
q2 − 2m2

t + 2
m2

t v34
v15

, C1
)
, Ω1

(
q2(v25 + 2v15)

v25
, C1
)
,

Ω1

(
q2(v24 + 2v34)

v24
, C1
)
,

Ω1

(
(q2 + v12)(q

2 + v23)− q2v45, C2
)
,
tr+(1435)

tr−(1435)

}
,

(5.10)
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where we observe that only the last letter depends on
√
∆5 and can be written compactly

by making use of tr±. Next, we collect the letters whose numerator is degree 3 in common

denominator form,

{W60, . . . ,W69} ={
Ω1

(
2m2

t v24v25 − q2(v14v15 + v34v35)

v34v35 − v14v15
, C1
)
,

Ω1

(
2m2

t v45 + v12v23 − q2s13 − 2
m2

t v34v45
v15

, C2
)
,

Ω1

(
v14v35 − v13v45 − v34v45 + v15v35 −

2m2
t v15v45
v34

, r2

)
,Z(W62),

Ω1

(
v14v15 + (m2

t + s14)v25 + s25v45 −
(q2 + s25)v15v35

v25
, r2

)
,Z(W64),

Ω1

(
(m2

t − s23)v15v35 + q2s14v45 − (s23s25 +m2
t v25)v45

v15 + v45
, r2

)
,Z(W66),

Ω1

(
m2

t v35 − s23v35 − v23v45 +
2m2

t v25v45
v35

, r2

)
,Z(W68)

}
,

(5.11)

where we make use of the Z operation defined in equation (2.24). Furthermore, we find

that 5 letters can also be written compactly in terms of tr±.

{W70, . . . ,W74} =

{
tr+[124154]

tr−[124154]
,
tr+[124234]

tr−[124234]
,
tr+[125145]

tr−[125145]
,
tr+[125235]

tr−[125235]
,

tr+[143(4 + 5)15]

tr−[143(4 + 5)15]

}
.

(5.12)

Finally, there is a single sextic case

W75 = Ω1

(
v14v25−v15v24−v12v45 +

2

v25

[
q2v15v45 −W25w̃75

]
,∆5

)
, (5.13)

where we write the letter in a way that emphasizes its simplifications on the W25 = 0

surface and make use of the auxiliary function

w̃75 =
(m2

t v
2
24v25 + q2v34[v14v15 + v14v35 + v35v45])

(m2
t v24v25[v15 − v34]− q2[s24 + v12]v15v34)

. (5.14)

Beyond this, a number of letters depend on two square roots, and are odd under the

sign flip of each of them. We find that we can cast these in one of two forms. First,

there are 21 letters which make use of Ω2(w,R1, R2) of equation (4.25). While w could, in

principle, be a rational function, we find that it is always polynomial. Organizing again by
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the mass dimension of w, there are 10 quadratic cases

{W76, . . . ,W85} ={
Ω2

(
v12[v14 + v15]− 2m2

t [v24 + v25],∆
(1)
3 ,∆

(3)
3

)
,Z(W76),

Ω2

(
v13[v24 + v25]− v23[v14 − v15],∆

(1)
3 ,∆

(4)
3

)
,Z(W78),

Ω2

(
v12v23 − 2q2v13,∆

(1)
3 ,∆

(2)
3

)
,

Ω2

(
v12v23 + v45[2m

2
t − v13]− q2s13,∆

(3)
3 ,∆

(4)
3

)
,

Ω2

(
2q2s13 − v12[v12 + v23],∆

(1)
3 , r1

)
,Z(W82),

Ω2

(
v12v45 − q2[2s13 + v12]− s13v23,∆

(3)
3 , r1

)
,Z(W84)

}
.

(5.15)

We also obtained the following 10 cubic cases which are more complicated

{W86, . . . ,W95} ={
Ω2

(
w̃86,∆

(1)
3 , C2

)
,Z(W86),Ω2

(
w̃88,∆

(3)
3 , C2

)
,Z(W88),

Ω2

(
q2(v12v23 + 4m2

t v45 − q2s13), C1, C2
)
,

Ω2

(
w̃91,∆

(1)
3 ,∆5

)
,Z(W91),Ω2

(
w̃93,∆

(3)
3 ,∆5

)
,Z(W93),

Ω2

(
q2[2m2

t s13 + v15v34 + v14v35 − v13v45]− 2m2
t s24s25, C1,∆5

)}
,

(5.16)

where we have defined the following polynomials

w̃86 = q2m2
t (v34 + v35 − 3s13 − v23)

− v12[s13(s14 + s15) + v14v23 + v15v23 + v13v45] ,

w̃88 = q2s13(s13 + v12) + 2m2
t v23v45 + v12(v14v23 + v15v23 − s13v45 + v13v45) ,

w̃91 = v12(v15v23 + s13v25 − v12v35)

+ 2m2
t [s24s25 + v225 − q2(s13 + v45)]− 2q2s13v15 ,

w̃93 = v12(v15v34 − v14v35)− s13(v25v34 − v24v35) + v13v45(v24 − v25) .

(5.17)

At last, there is a single letter that is quartic in Mandelstam variables

W96 = Ω2(w̃96, C2,∆5) , (5.18)

where

w̃96 = [q2s13 − v12v23][v15v34 − v14v35 + s13v45]− 2m2
t [2q

2s13 + s24v12 + s25v23]v45 . (5.19)

Next, we have a number of letters which can be expressed more compactly in terms

of Ω̃(w0, w1

√
R1,

√
R2) of equation (4.26). Organizing by the mass dimension of w0, there
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are five linear cases

{W97, . . . ,W101} =

{
Ω̃

(
v25,

√
∆

(1)
3 ,

√
∆

(5)
3

)
,Z(W97),

Ω̃

(
q2 + v12,

√
∆

(1)
3 ,
√
C1
)
,Z(W99),

Ω̃

(
v34 − v15,

√
∆

(5)
3 ,
√
C1
)}

,

(5.20)

and 11 quadratic cases

{W102, . . . ,W112} =

{
Ω̃
(
v14(s34−s12)− v15v35 + v25v45, v45

√
C1,

√
r2

)
,Z(W102),

Ω̃

(
(q2 + v12)v14, v45

√
∆

(1)
3 ,

√
r3

)
,Z(W104),

Ω̃

(
v15v24 − v25v14, v45

√
∆

(1)
3 ,
√

∆5

)
,Z(W106),

Ω̃

(
v15v24 − v25v14 − v25v45, v45

√
∆

(5)
3 ,
√
∆5

)
,

Ω̃
(
(q2 + v23)v34,

√
C2,

√
r2

)
,Z(W109),

Ω̃
(
v15v34 + v15v35 + v34v45,

√
∆5,

√
r2

)
,Z(W111)

}
.

(5.21)

A remaining set of letters depend on the nested root, with non-trivial Galois properties.

Firstly, we have a set of 6 letters, which are odd with respect to the sign-flip of
√
N+, given

by

{W113, . . . ,W118} ={
Ω1

(
q2[v45 + s13 − q2], N+

)
, α(W113),

Ω1

(
q2[v12−v23], N+

)
Ω1

(
f1

v24+v25
, N+

)
, α(W115),

Ω1

N+([v14−v15]− [v34−v35]) + (q2 − 4m2
t )(v24−v25)f1

2(q2[v14−v15][v34−v35]−m2
t [v24−v25]2)−

√
N2

b −Nc

, N+

 ,

α(W117)

}
,

(5.22)

where we use the α operation defined in equation (2.23), W115 and W116 are given as

products of two Ω1 functions and we also introduced the following polynomial

f1 = q2(v12−v23)(v45 + s13−q2) . (5.23)
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We find a single letter that is odd under the α transformation (2.23)

W119 = Ω1

(
Nb + q2(4[2m2

t − v13]v45 − [v12 − v23]
2), N2

b −Nc

)
. (5.24)

A further set of 10 letters have non-trivial Galois transformations with respect to the sign

flips of both
√
N+ and another square root

{W120, . . . ,W129} ={
Ω2(f1, r1, N+) , α(W120),

Ω2

(
1

2
f1 +

N+

2q2
,∆

(3)
3 , N+

)
,Z(W122), α(W122), [α ◦ Z](W122),

Ω2

(
−q2[v12−v23]([q

2+v12][q
2+v23]− [q2−4m2

t ]v45), C2, N+

)
, α(W126),

Ω2

(
(N+r1 − f2

1 )f2 − 4q2N+∆5

N+(v25−v24) + q2f1([v15 − v14]− [v34 − v34])
, N+,∆5

)
, α(W128)

}
,

(5.25)

where we defined the auxiliary function

f2 = q2(v15v34 + v14v35 − v13v45)− 2m2
t (v24v25 − q2v45) . (5.26)

A remaining class of letters we were unable to express in terms of d log forms. All such

letters can be found in the maximal-cut differential equation of the kite7 integrals in figure

6. Notably, the four letters are generated by a single letter, ωE . Specifically, this set of

letters is given by

{ω130, . . . , ω133} =
{
ωE ,Z(ωE), α(ωE), [α ◦ Z](ωE)

}
, (5.27)

where one can write ωE in the form

ωE =
ΩE

m2
t (q

2 − v23)W32

√
∆

(2)
3

√
N+

√
N2

b −Nc

, (5.28)

where ΩE is a polynomially-valued differential form. Importantly, one can understand the

singularities of ωE by expanding around the zeros of the denominator, which correspond to

a number of surfaces. We find that around each such surface ωE has at worst single poles.

Analytic expressions for these one-forms are provided in the ancillary files (see section 6.3).

The final set of relevant letters are all square roots,

{W134, . . . ,W143} =
{√

C1,
√

∆
(1)
3 ,

√
∆

(2)
3 ,

√
∆

(3)
3 ,√

∆
(4)
3 ,

√
∆

(5)
3 ,
√
C2,
√

∆5,
√
r2,

√
r3

}
. (5.29)

Let us stress that {ω134, . . . , ω143} are Galois invariant as d log(
√
f) = 1

2d log(f). It is

interesting to note that the root
√
N2

b −Nc does not appear among the list of letters.
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Beyond this, we finally have a set of 9 irrelevant letters, which do not arise in solutions

to the differential equation before O(ϵ5), and hence are not expected to contribute to the

NNLO QCD corrections of associated physical observables. Firstly, we have two Galois

invariant letters

{W144, . . . ,W145} = {tr+(4252), tr+[53(4 + 5)141(4 + 5)3]} . (5.30)

These are followed by a set of Galois non-trivial letters,

{W146, . . . ,W151} ={
Ω1(v25 − v24, r1) ,

tr+[1425]

tr−[1425]
,
tr+[14153(4 + 5)]

tr−[14153(4 + 5)]
,

Ω1

(
(v12v23−q2s13)(v14v34+v15v35) + 2m2

t (v15−v34)(v35−v14)v45
v14v34−v15v35

, C2
)
,

Ω2

(
s13[v15v24 − v14v25] + q2[v15v34 − v14v35]− v45[s24v34 − s25v35], r1,∆5

)
,

Ω̃
(
v14v34 − v15v35,

√
C2,
√

∆5

)}
.

(5.31)

Finally, one of the square roots itself is an irrelevant letter:

W152 =
√
r1 . (5.32)

5.2 Analytic Structures of the Function Space

In this section, we explore properties of the space of functions that arises in the Feynman

integrals under consideration. Given the ϵ-factorized differential equation (4.4), one can

find solutions for the differential equation order by order in the dimensional regulator ϵ in

terms of Chen’s iterated integrals [94, 95]. These special functions have proven to be a

powerful tool for exploring analytic and numerical properties of multi-scale integrals (see

e.g. Refs. [7, 11, 13]). In the following, we discuss the classes of iterated integrals that

can arise in the solution to our differential equation and leave construction of dedicated

solutions to future work.

We denote by I⃗i the vector of pure integrals, where i = 0, 1 or 2 refers to the families

T0, T1, and T̃2 respectively (see section 3 and appendix C for details). We expand the

integrals in ϵ and define

I⃗i(ϵ, s⃗) =

∞∑
n=0

ϵnI⃗
(n)
i (s⃗) , (5.33)

where by construction the expansions start at O(ϵ0). By equation (4.4), each term in the

ϵ expansion can be constructed iteratively as

I⃗
(n)
i (s⃗) = b⃗

(n)
i (s⃗0) +

152∑
α=1

Mα

∫
γ
ωα I⃗

(n−1)
i (γ) , (5.34)

where γ is a path that connects the points s⃗0 and s⃗ and b⃗
(n)
i (s⃗0) are the vectors of boundary

values. In order to study the classes of iterated integrals that arise, in this section we
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work modulo boundary values, except for the leading term I⃗
(0)
i = b⃗

(0)
i (s⃗0), i.e. we set

b⃗
(n)
i (s⃗0) = 0 for n ≥ 1.

The integrals in equation (5.34) can be expressed in terms of the iterated integrals,

which we define recursively according to

[ωj1 , . . . , ωjm ]s⃗0 (s⃗) =

∫
γ
ωjm

[
ωj1 , . . . , ωjm−1

]
s⃗0
(γ) ,

[ ]s⃗0 (s⃗) = 1 .

(5.35)

These functions form a graded algebra with their weight defined by the depth m of nested

integrations. They also fulfill shuffle algebra relations [95]

[ωa1 , . . . , ωam ]s⃗0 (s⃗) [ωb1 , . . . , ωbn ]s⃗0 (s⃗) =
∑

c⃗∈a⃗�b⃗

[
ωc1 , . . . , ωcm+n

]
s⃗0
(s⃗) , (5.36)

where the shuffle operator � combines in all possible ways the components of the vectors

a⃗ and b⃗ but keeping always the relative order of the components of both of them. We use

these iterated integrals to express the master integral coefficients I⃗
(n)
i as a combination of

weight n functions

I⃗
(n)
i (s⃗) ∼ J⃗

(n)
i (s⃗) where J⃗

(n)
i (s⃗) =

152∑
j1,...,jn=1

c⃗
(n)
i;j1,...,jn

[ωj1 , . . . , ωjn ]s⃗0 (s⃗) , (5.37)

the coefficients c⃗
(n)
i;j1,...,jn

are vectors of rational numbers and ∼ is an equivalence relation

working modulo boundary terms b⃗
(n)
i (s⃗0) for n ≥ 1. According to equation (5.33), if we

assign a weight of −1 to ϵ, all master integrals have a uniform weight equal to 0 at all

orders in ϵ.

As one can see from equation (5.34), to construct these solutions we need the constants

I⃗
(0)
i . The boundary constants are obtained from numerical evaluations using AMFlow as

described in the upcoming section 6. We also provide for convenience the explicit weight-0

boundary terms in Appendices A, B and C. Using these boundary constants, we construct

the iterative solutions J⃗
(n)
i (s⃗).

We will now discuss a number of properties of these solutions. First, as commented at

the end of the previous subsection, we find that nine letters do not arise in iterated integral

solutions up to weight 4: {
ω144, . . . , ω152

}
, (5.38)

that is, they do not enter in any of the corresponding [ωj1 , . . . , ωjn ]s⃗0 functions appearing

in the solutions {J⃗ (n)
0 , J⃗

(n)
1 , J⃗

(n)
2 ,Z(J⃗

(n)
2 )} for n ≤ 4. Next, we analyze the space of lin-

ear combinations of iterated integrals that arise in the combined solutions to all two-loop

Feynman integrals considered in this work, in order to give an idea of the complexity of the

function space. First, we compute the number of linearly independent functions at each

order in ϵ, finding 121 linearly independent functions at weight 4. Furthermore, we have

explicitly checked that the linear relations that one finds between the J⃗
(n)
i are also linear

relations of the J⃗
(n′)
i for n′ < n ≤ 4. That is, relations at higher weight also hold at lower
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n Linearly independent Irreducible

1 7 7

2 31 16

3 85 69

4 121 114

Table 1: Working modulo boundary constants up to weight 4, the number of linearly

independent and irreducible functions at each weight n for the combined set of two-loop

integral solutions {J⃗ (n)
1 , J⃗

(n)
2 ,Z(J⃗

(n)
2 )}.

n

√
∆

(1)
3

√
∆

(2)
3

√
∆

(3)
3

√
∆

(4)
3

√
∆

(5)
3

√
∆5

√
C1

√
C2

√
r1

√
r2

√
r3

√
N+

1 0 0 0 0 0 0 1 0 0 0 0 0

2 1 1 1 1 1 0 5 1 0 0 0 0

3 4 4 4 4 4 1 6 4 0 1 1 2

4 6 6 9 9 4 7 6 6 1 1 1 2

Table 2: Working modulo boundary constants up to weight 4, the number of linearly

independent functions at each weight n that are odd under the operation
√
X → −

√
X,

which arise in the combined set of two-loop integral solutions {J⃗ (n)
1 , J⃗

(n)
2 ,Z(J⃗

(n)
2 )}.

weight. It would be interesting to find an explanation for this phenomenon. Due to the

shuffle algebra of equation (5.36), some of these functions are actually products of lower

weight functions. Therefore, we also compute the number of linearly independent func-

tions modulo such shuffle relations, which we obtain with the help of the PolyLogTools

package [96]. This tells us the number of linearly independent irreducible functions and we

find 114 such irreducible functions at weight 4. We summarize the results of this analysis

in table 1. The total number of independent master integrals in the families T1, T̃2 and

Z(T̃2) is 127. Given that we encounter at weight four 121 linearly independent functions,

it means, that modulo boundary constants, there are six non-trivial relations between the

master integrals arising at weight 4.

In order to further understand the properties of the functions which arise as solutions

to our differential equations, we also explore the behavior of the space of special functions

under Galois transformations. More precisely, in table 2 we show the number of linearly

independent functions in the solutions to the two-loop integrals, {J⃗ (n)
1 , J⃗

(n)
2 ,Z(J⃗

(n)
2 )},

for k = 1, . . . , 4 that are odd under the transformation
√
X → −

√
X. The only Galois

transformation acting non-trivially at weight 1 is that of the sign flip of
√
C1. Galois

transformations associated to sign flips of five-point square roots, i.e
√
∆5,

√
r2,

√
r3, do

not enter until weight 3. The Galois transformation associated to the sign flip of the nested

root
√
N+ first acts non-trivially at weight 3. Interestingly, the Galois transformation

associated to the sign flip of
√
r1 first acts non-trivially at weight 4. Finally, we also

studied the number of linearly independent functions arising in the two-loop integrals,
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{J⃗ (n)
1 , J⃗

(n)
2 ,Z(J⃗

(n)
2 )}, which are odd under the action of α. At weights 1 and 2 there are

no such functions, while at weights 3 and 4 there is a single such function.

6 Numerical Evaluations of the Master Integrals

In this section, we present numerical results obtained for the master integrals. The compact

structure of their analytic differential equations (4.4) makes it naturally suitable for efficient

numerical evaluations. While a more detailed implementation ready for phenomenologi-

cal studies is left to future work, here we provide tools for their evaluation and present

benchmark values up to order O(ϵ4) for all of the integrals in the physical phase space

for the scattering process in (2.1). In terms of Mandelstam invariants, this space is de-

fined by the relations in (2.6). Our numerical evaluations make use of the public packages

AMFlow [61] and DiffExp [57].

6.1 Boundary Values

Solving linear differential equations requires a single set of boundary values, the b⃗
(n)
i (s⃗0)

vectors in equation (5.34). For numerical solutions these boundary values can be computed

to very high precision, in generic regions of parameter space and up to high orders in ϵ

with the auxiliary mass flow method [58–60]. We use this method to extract boundary

values, with 100 decimal digit precision, in the physical region employing the correspond-

ing implementation provided in the AMFlow package [61]. First, we use AMFlow to

numerically compute a set of scalar master integrals in the following phase space point in

the physical region (2.6)

s⃗0 =

{
562

11
,
89

11
,−36

13
,
305

3
,−52

21
,
9

56
,
360

197

}
, (6.1)

with s⃗ as in equation (2.3) and where the figures are in units of the regularization scale.

Afterwards, we perform basis transformations into the bases constructed in section 4.1,

I⃗i(s⃗0) (i = 0, 1, 2), keeping terms up to O(ϵ4). We deliver the boundary values in the

ancillary files (see section 6.3).

6.2 Numerical Results and Validation

In this section, we provide numerical benchmark results for the following phase space points

in the physical region (2.6)

s⃗1 =

{
19

3
,
46

3
,−24

7
,
383

5
,−61

28
,
25

118
,
97

896

}
,

s⃗2 =

{
124

3
,
34

3
,−100

13
,
518

5
,−36

5
,
176

255
,
37

9

}
,

s⃗3 =

{
47 , 5 ,−25

12
, 96 ,−23

49
,
149

593
,
62

61

}
,

s⃗4 =
{
73781 , 74098 ,−82315 , 307009 ,−76978 , (173)2 , (125)2

}
,

(6.2)
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with s⃗ as in equation (2.3) and were figures are in units of the regularization scale. These

points have been chosen randomly in the physical phase space, except for s⃗4 where we have

forced the invariants m2
t and q2 to have values associated to corresponding parameters of

the Standard Model of particle physics. We use the differential equations (4.4) to transport

the master integrals I⃗i from the boundary (6.1) to the points s⃗j for j = 1, . . . , 4. To this

end, we employ the method of generalized series expansions (see e.g. Refs. [8, 56]) using

the implementation provided by the package DiffExp [57].

This procedure works directly for obtaining numerical results for the master integrals

I⃗0 and I⃗2 associated to the families T0 and T̃2 respectively. However, to evaluate I⃗1(s⃗j) we

required an additional step. This is due to a feature of the DiffExp package. DiffExp

numerically solves the differential equation by moving on a straight segment between the

initial and final points. As it does this, it requires to perform analytic continuations when

crossing singularities, which might be endpoints of branch cuts. In particular DiffExp has

implementations to handle the analytic continuation of logarithmic functions and those of

square roots of polynomials. However, our ϵ-factorizing basis of master integrals for the T1

family, specifically in the kite7 integrals shown in equations (A.65) and (A.66), include the

nested square roots
√
N± of equation (2.18).

Due to this feature, and for practical reasons, we choose to resolve this by constructing

an auxiliary integral basis where the integrals in (A.65) and (A.66) are replaced by

N aux
64 = ϵ3(q2)2

(
1

ρ3
− 1

ρ2

)
, (6.3)

N aux
65 = ϵ3(q2)2

(
1

ρ3
+

1

ρ2

)
, (6.4)

while all other integrals match our ϵ-factorizing basis. Using equation (4.3) we transform

the differential equations of the ϵ-factorizing basis to the auxiliary basis, which results in

differential equations matrices Bi(s⃗, ϵ) that are explicitly linear in ϵ, as in equation (4.5).

We explicitly checked for the auxiliary basis the integrability condition[
Bi(s⃗, ϵ), Bj(s⃗, ϵ)

]
=

∂Bj(s⃗, ϵ)

∂si
− ∂Bi(s⃗, ϵ)

∂sj
. (6.5)

In this auxiliary basis, the basis integrals do not involve nested square roots, and therefore

neither do the matrices Bi. In this way, we construct a form of the differential equation

suitable for use with the DiffExp package. We provide these expressions in the ancillary

files (see subsection 6.3). After the transport is done we make a basis change from the

auxiliary basis to the ϵ-factorizing basis. We note that the file size of the differential

equations in the auxiliary basis is considerably larger than the ϵ-factorized basis. Indeed,

this is a general feature of working with an ϵ-factorized basis, which renders compact

analytic expressions for the differential equations.

In tables 3, 4, and 5 we show numerical results up to O(ϵ4) for the point s⃗1 of equa-

tion (6.2). We include a selection of our master integrals in the families T1 and T̃2, but

in the ancillary files we provide high-precision numerical results for all master integrals

for the integral families T0, T1, T̃2 and Z(T̃2). Tables 3 and 4 display some of the most
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O(ϵ0) O(ϵ1) O(ϵ2) O(ϵ3) O(ϵ4)

(I⃗1)88 0 0 −1.697405869 8.990085874

+2.959793778 i

−23.70912261

+12.35416236 i

(I⃗1)89 0 0 0 −3.703380133

+5.885655074 i

−15.40231055

−6.37555295 i

(I⃗1)90 0 0 0 3.703380133

−5.885655074 i

13.15415510

+20.45624479 i

(I⃗1)91 0 0 5.811380795

−2.687806077 i

−14.63593742

+31.14397715 i

−66.82494671

−70.56864014 i

(I⃗1)92 0 −1.461994703 i −4.592991817

+4.774264642 i

−2.99771383

−17.32856509 i

31.78963784

−7.30297630 i

(I⃗1)93 0 0.4534743273 −2.546669141

−1.424631615 i

10.954658459

+0.602688704 i

−12.24416802

+16.57486204 i

Table 3: Numerical results up to O(ϵ4) for the integrals (I⃗1)88 through (I⃗1)93 evaluated at

the phase space point s⃗1 of equation (6.2). See equations (A.99)–(A.104) for the definition

of the integrals.

O(ϵ0) O(ϵ1) O(ϵ2) O(ϵ3) O(ϵ4)

(I⃗1)109 0 0 0 −3.703380133

+5.885655074 i

2.149576969

−10.432322830 i

(I⃗1)110 0 0 0 0 0

(I⃗1)111 0 0 −1.306045093

−12.647039669 i

2.05552771

+25.35139955 i

−85.55528965

−75.93834102 i

Table 4: Numerical results up toO(ϵ4) for the integrals (I⃗1)109 through (I⃗1)111 evaluated at

the phase space point s⃗1 of equation (6.2). See equations (A.120)–(A.122) for the definition

of the integrals. Consistent with the fact that it is an evanescent integral (see e.g. [97]) we

find that the value of (I⃗1)110 is 0 through O(ϵ4).

complex integrals in T1: the box-triangle integrals (A.99)–(A.104) and the penta-box inte-

grals (A.120)–(A.122). We choose to display the integrals (A.99)–(A.104) since they involve

five-point kinematics, and mix with the kite7 integrals via the differential equation during

integration. In addition we provide in table 5 the penta-bubble integrals (B.8) and (B.9)

of T̃2.

We observe that high-precision evaluation can be achieved with our differential equa-

tions and leave more detailed analysis of numerical features to future work. Although we

consider these numerical explorations to be preliminary, we note that when compared to

evaluations using the AMFlow package, the evaluations based on our differential equa-
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O(ϵ0) O(ϵ1) O(ϵ2) O(ϵ3) O(ϵ4)

(I⃗2)18 0.5 −4.931720031

+4.712388980 i

6.90383844

−36.51486280 i

63.72515614

+86.40251641 i

−188.2874920

−14.5546057 i

(I⃗2)19 0 0 0 3.703380133

−5.885655074 i

11.33274441

+26.71395384 i

Table 5: Numerical results up to O(ϵ4) for the integrals (I⃗2)18 and (I⃗2)19 evaluated at the

phase space point s⃗1 of equation (6.2). See equations (B.8) and (B.9) for the definition of

the integrals.

tions took more than two orders of magnitude less computation time to achieve results

with comparable precision, using comparable computing resources.

The high-precision numerical evaluations that we have obtained provide a highly non-

trivial validation of the analytic form of the differential equation that we have computed.

Indeed we compared the results obtained with independent evaluations using AMFlow in

all the points s⃗j (j ≥ 1). We find excellent agreement, that is, agreement to 95 or more

decimal digits. We have also performed comparisons with fully numerical integrations for

a handful of integrals via sector decomposition [98] and tropical Feynman integration [99],

employing the corresponding implementations in the packages pySecDec [100] and feyn-

trop [101]. Agreement is observed, though restricted to only the few decimal digits that

the numerical integration errors allow.

6.3 Ancillary Files

We provide a series of ancillary files containing our analytic results, numerical benchmarks,

and the computer script we use for numerical solutions to the differential equations. Here,

we describe each of the files included.

README.md: Instructions to run the computer script transport.wl and a description of all

ancillary files.

transport.wl: A script which performs the transport of all integral families to one of the

phase space points in equation (6.2), as specified by a command-line argument.

roots.m: Contains the definition of all square roots (see Section 2) appearing in the dif-

ferential equations.

oneForms.m A list of all 152 one-forms as described in Section 5.1.

X/muijs.m: Replacement rules for the expressions for µij insertions in terms of inverse

propagators ρi for the integral families

X ∈ { T0, T1, T2, ZT2 } .

X/basis.m: Machine-readable files containing the definitions of our integral bases as writ-

ten in the Appendices A, B, and C.
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X/M alpha.m: The rational coefficient matrices Mα of the corresponding one-forms for the

integral family X.

T1/deq/d 1.m: The entries of the differential equation matrix in the auxiliary integral basis

of T1 which can be written in d log form.

T1/deq/d{v12,v23,v34,v45,v15,mTsq,qsq} {0,1}.m: These 14 files provide the extra

differential equation matrices in the T1 auxiliary basis, to complete the information

included in T1/deq/d 1.m.

X/boundaries.m: Contain values of the ϵ-factorizing integral basis (see appendix A-C) at

the point s⃗0 in equation (6.1) with 100 digit accuracy for all integral families.

X/benchmarks/sn.m: Benchmark numerical results with 30-digit accuracy for all master

integrals at the points s⃗n specified in equation (6.2).

points.m: Machine-readable version of the physical phase space points in equation (6.2).

7 Conclusions

In this paper we have presented the first set of two-loop master integrals needed for the

NNLO QCD corrections to tt̄H production at hadron colliders. These seven-scale master

integrals are some of the most complex ones computed to date. We have provided the

master integrals needed for the calculation of the two-loop leading-color QCD scattering

amplitudes that are proportional to the number of light flavors (nf ) for the processes

gg, qq̄ → tt̄H. We have constructed a basis of master integrals that satisfy ϵ-factorized

differential equations and have computed the analytic form of the differential equations that

they fulfill in a compact manner, by writing them in terms of 152 differential one-forms.

Some of these differential one-forms involve complicated algebraic functions of invariants,

including nested square root functions. Using Chen’s iterated integrals we also studied the

properties of the functions that arise in solutions of the master integrals. Furthermore, we

have provided high-precision numerical evaluations employing generalized series expansions

and boundary values obtained with the auxiliary mass flow method. These numerical

evaluations provide a highly non-trivial validation of our results.

Given the phenomenological relevance of the associated production of a top-quark pair

and a Higgs boson, our results will have an important impact in the physics programs

at the LHC and the high-luminosity LHC. We expect to continue refining the numerical

implementations of the integrals presented here to allow fast and precise evaluations of the

associated scattering amplitudes. We also anticipate to continue studying a larger set of

master integrals as needed for a complete set of scattering amplitudes for this process at

leading color, beyond the light-quark loop case, where preliminary investigations show the

presence of Feynman integrals with elliptic maximal cuts.
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A Master Integral Basis for the T1 Feynman Integral Family

In this appendix we provide the definition of all master integrals that we have computed

for the Feynman integral family T1 which is shown in equations (3.1), (3.2), and (3.3). We

organize them in subsections from the integrals with the least (3) to the integrals with the

most (8) propagators.

For each integral we provide information which exactly specifies it and can be used

to reproduce our results in any common software for computing Feynman integrals. This

includes:

IBP sector: A binary code computed for each integral sector, i.e. for each group of

integrals that share the same set of inverse propagators with positive powers. A

sector is defined by the non-negative propagator powers ν⃗ = {ν1, . . . , ν11} according

to

sector ≡
11∑
n=1

2n−1Θ(νn − 1/2) .

Figure: Each integral sector is shown with a figure that contains the associated propaga-

tors in accordance with the full family presented in figure 4.

Numerator insertions: For each integral we present its corresponding numerator inser-

tion N (1)
j where the superscript indicates that this integrand belongs to the T1 family

and where the index j is an integer between 1 and 111. That is, the integral is defined

as (
I⃗1

)
j
=

∫
ddℓ1

iπd/2

ddℓ2

iπd/2

N (1)
j

ρν11 ρν22 ρν33 ρν44 ρν55 ρν66 ρν77 ρν88
,

where νi ∈ {0, 1}. Notice that we employ kinematic invariants and functions defined

in section 2.
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For completeness, we also print the values of the integrals at weight 0 as used in the

discussion of iterated integral solutions of section 5.2,

I⃗
(0)
1 =

{
1, 1, 0,−1

2
, 0,−1, 0,−1, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

1

2
, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0,−1

4
, 0, 0,−1

4
, 0, 0, 0,−1

6
, 0,− 5

12
, 0,− 5

12
, 0,−1

6
, 0,−1

4
,

0,−3

4
, 0,−5

6
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1

4
, 0, 0,−5

6
, 0,−3

4
, 0,−1

4
,

0,−5

4
, 0,−5

4
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

5

24
, 0,

1

6
, 0,

11

24
, 0,

5

12
,

11

24
, 0,

5

12
,
5

24
, 0,

1

6
, 0, 0, 0, 0

}
.

(A.1)

I⃗1: 3 Propagator Integrals

Sector: 50

1

2

3

4

5

5

2

6

N (1)
1 =

ϵ2(1− 2ϵ)(1− 3ϵ)(2− 3ϵ)

(1− 4ϵ)m2
t

. (A.2)

Sector: 52

1

2
3

4

5
5

6

3

N (1)
2 = ϵ2

(
q2 + v12

ρ6
− 2m2

t

ρ3

)
1

ρ5
, (A.3)

N (1)
3 = ϵ2(q2 +m2

t + v12)
1

ρ3ρ5
. (A.4)

Sector: 56

1

2

3
4

5
4

5

6

N (1)
4 =

ϵ(1− 2ϵ)(1− 3ϵ)(2− 3ϵ)

v45
. (A.5)

Sector: 82

1
2

3

4
5

7

5

2

N (1)
5 = ϵ2(m2

t + v15)
1

ρ2ρ7
, (A.6)

N (1)
6 = ϵ2

(
2m2

t

ρ2
− v15

ρ5

)
1

ρ7
. (A.7)

Sector: 84

1

2
3

4
5

7

5

3

N (1)
7 = ϵ2(m2

t + v34)
1

ρ3ρ7
, (A.8)

N (1)
8 = ϵ2

(
2m2

t

ρ3
− v34

ρ5

)
1

ρ7
. (A.9)

Sector: 146

1
2

3
4

5

2

5

8

N (1)
9 = ϵ2(q2 +m2

t + v23)
1

ρ2ρ8
, (A.10)

N (1)
10 = ϵ2

(
2m2

t

ρ2
− q2 + v23

ρ5

)
1

ρ8
. (A.11)
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Sector: 162

123

4

5

6

8

2 N (1)
11 =

ϵ2(1− 2ϵ)(1− ϵ)

m2
t

. (A.12)

I⃗1: 4 Propagator Integrals

Sector: 54

1

2

3

4

5

2

3
65

N (1)
12 = ϵ3

√
∆

(1)
3

1

ρ5
, (A.13)

N (1)
13 = ϵ2

√
C1

[
(1− 2ϵ)

(
1

ρ2
+

1

ρ3

)
− ϵ

ρ5

]
. (A.14)

Sector: 58

1

2

3

4

5

2

4
65

N (1)
14 = ϵ3

√
∆

(3)
3

1

ρ5
, (A.15)

N (1)
15 = ϵ2

[
(1− 2ϵ)(q2 +m2

t + v23)
1

ρ2

− ϵ(q2 + v23 + v45)
1

2ρ5

]
. (A.16)

Sector: 60

1

2

3

4

5

4

3
65

N (1)
16 = ϵ3

√
∆

(4)
3

1

ρ5
. (A.17)
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Sector: 85

1

2

3

4

5

1

3
75

N (1)
17 = ϵ3(q2 + v12 − v34)

1

ρ5
. (A.18)

Sector: 86

1

2

3

4

5

2

3
75

N (1)
18 = ϵ3

√
∆

(5)
3

1

ρ5
, (A.19)

N (1)
19 = ϵ2

√
C1

[
(1− 2ϵ)

(
1

ρ2
+

1

ρ3

)
− ϵ

ρ5

]
. (A.20)

Sector: 89

1

2

3

4

5

1

4
75

N (1)
20 = ϵ2(1− 2ϵ)(1− 3ϵ) . (A.21)

Sector: 90

1

2

3

4

5

2

4
75

N (1)
21 = ϵ3(q2 + v23 − v15)

1

ρ5
. (A.22)
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Sector: 147

1

2

3

4

5

2

1
85

N (1)
22 = ϵ3

√
∆

(3)
3

1

ρ5
. (A.23)

Sector: 149

1

2

3

4

5

3

1
85

N (1)
23 = ϵ3

√
∆

(4)
3

1

ρ5
, (A.24)

N (1)
24 = ϵ2

[
(1− 2ϵ)(q2 +m2

t + v12)
1

ρ3

− ϵ(q2 + v12 + v45)
1

2ρ5

]
. (A.25)

Sector: 150

1

2

3

4

5

3

2
85

N (1)
25 = ϵ3

√
∆

(2)
3

1

ρ5
, (A.26)

N (1)
26 = ϵ2

√
C1

[
(1− 2ϵ)

(
1

ρ2
+

1

ρ3

)
− ϵ

ρ5

]
. (A.27)

Sector: 165

1

2

3

4

5
6
8

1
3 N (1)

27 = ϵ2(1− 2ϵ)(q2 +m2
t + v12)

1

ρ3
. (A.28)

Sector: 166

1

2

3

4

5

6
8

2
3

N (1)
28 = ϵ2(1− 2ϵ)

√
C1

1

ρ3
. (A.29)
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Sector: 169

1

2

34

5
6
8

1
4

N (1)
29 = ϵ2(1− 2ϵ)2 . (A.30)

Sector: 170

1

2

34

5
6
8

2
4

N (1)
30 = ϵ2(1− 2ϵ)(q2 +m2

t + v23)
1

ρ2
. (A.31)

Sector: 178

1

2

3

4

5 8

6
25

N (1)
31 = ϵ3

√
∆

(3)
3

1

ρ2
, (A.32)

N (1)
32 = ϵ3

√
∆

(3)
3

1

ρ5
, (A.33)

N (1)
33 = ϵ2

[
m2

t v45
ρ2ρ6

+ ϵ(q2 + v23 − v45)

(
1

ρ2
+

1

2ρ5

)]
.

(A.34)

Sector: 180

1

2

3

4

5 8

6
35

N (1)
34 = ϵ3

√
∆

(4)
3

1

ρ3
, (A.35)

N (1)
35 = ϵ3

√
∆

(4)
3

1

ρ5
, (A.36)

N (1)
36 = ϵ2

[
m2

t v45
ρ3ρ8

+ ϵ(q2 + v12 − v45)

(
1

ρ3
+

1

2ρ5

)]
.

(A.37)

I⃗1: 5 Propagator Integrals

Sector: 62

12

3 4

5

2

3

4

65

N (1)
37 = ϵ3(1− 2ϵ)

√
∆

(2)
3 , (A.38)

N (1)
38 = ϵ3

√
C2

1

ρ5
. (A.39)
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Sector: 87

1

2 3

4

5

1

2

3

75

N (1)
39 = ϵ3(1− 2ϵ)

√
∆

(1)
3 , (A.40)

N (1)
40 = ϵ3(q2 + v12)v15

1

ρ5
. (A.41)

Sector: 91

1

2

3 4

5

1

2

4

75

N (1)
41 = ϵ3(1− 2ϵ)

√
∆

(3)
3 , (A.42)

N (1)
42 = ϵ3v45v15

1

ρ5
. (A.43)

Sector: 93

1

2

3 4

5

1

3

4

75

N (1)
43 = ϵ3(1− 2ϵ)

√
∆

(4)
3 , (A.44)

N (1)
44 = ϵ3v34v45

1

ρ5
. (A.45)

Sector: 94

12

3 4

5

4

3

2

75

N (1)
45 = ϵ3(1− 2ϵ)

√
∆

(2)
3 , (A.46)

N (1)
46 = ϵ3v34(q

2 + v12)
1

ρ5
. (A.47)
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Sector: 118

1

2

3 4

5
2

5
3

6

7

N (1)
47 = ϵ4(q2 + v12 + v15 − v34) , (A.48)

N (1)
48 = ϵ3v15(q

2 + v12)
1

ρ5
. (A.49)

Sector: 122

1

2

3

4

5
2

5
4

6

7

N (1)
49 = ϵ4(v45 + v15) , (A.50)

N (1)
50 = ϵ3v45v15

1

ρ5
. (A.51)

Sector: 124

12

3

4

5
4

5
3

7

6

N (1)
51 = ϵ4(v34 + v45 − v12 − q2) , (A.52)

N (1)
52 = ϵ3v45v34

1

ρ5
. (A.53)

Sector: 151

1

2 3

4

5

1

2

3

85

N (1)
53 = ϵ3(1− 2ϵ)

√
∆

(1)
3 , (A.54)

N (1)
54 = ϵ3

√
C2

1

ρ5
. (A.55)

Sector: 167

1

2

3

4

5
6
8

1
2

3

N (1)
55 = ϵ3(1− 2ϵ)

√
∆

(1)
3 . (A.56)
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Sector: 171

1

2

3

4

5
6
8

1
2

4

N (1)
56 = ϵ3(1− 2ϵ)

√
∆

(3)
3 . (A.57)

Sector: 173

1

2

3

4

5
6
8

1
3

4

N (1)
57 = ϵ3(1− 2ϵ)

√
∆

(4)
3 . (A.58)

Sector: 174

1

2

3

4

5

6
8

4
3

2

N (1)
58 = ϵ3(1− 2ϵ)

√
∆

(2)
3 . (A.59)

Sector: 181

1

2

3

4

5
6

5
8

1

3 N (1)
59 = ϵ4

√
∆

(4)
3 . (A.60)
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Sector: 182

1

2

3

4

5

6
5

8

3

2

N (1)
60 = ϵ4

√
r1 , (A.61)

N (1)
61 = ϵ3v45

√
∆

(2)
3

1

ρ8
, (A.62)

N (1)
62 = ϵ3v45

√
∆

(1)
3

1

ρ6
, (A.63)

N (1)
63 = ϵ3

√
C2

1

ρ5
, (A.64)

N (1)
64 = ϵ3

[√
N+

2

(
1

ρ3
− 1

ρ2

)
+

√
C1
√
N−

2q2

(
1

ρ3
+

1

ρ2

)]
,

(A.65)

N (1)
65 = ϵ3

[√
N−
2

(
1

ρ3
− 1

ρ2

)
+

√
C1
√
N+

2q2

(
1

ρ3
+

1

ρ2

)]
,

(A.66)

N (1)
66 = ϵ2

m2
t v45(q

2 + v12)(q
2 + v23)

2q2 + v12 + v23

(
1

ρ2ρ6
+

1

ρ3ρ8

)
+ ϵ3

(
C

(1)
66

1

ρ5
+ C

(2)
66

1

ρ6
+ C

(3)
66

1

ρ8

)
+ ϵ3

(
C

(4)
66

(
1

ρ3
+

1

ρ2

)
+ C

(5)
66

(
1

ρ3
− 1

ρ2

))
(A.67)

+ C
(6)
66

[
ρ2 N (1)

36 − ρ3 N (1)
33 + ρ2ρ8 N (1)

3

]
+ C

(7)
66

[
ρ5 N (1)

28

]
+ C

(8)
66

[
ρ6 N (1)

26 − ρ8 N (1)
13

]
+ C

(9)
66

[
ρ3ρ6 N (1)

10 + ρ2ρ8 N (1)
2

]
+ C

(10)
66

[
ρ3ρ6 N (1)

9

]
.
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The coefficients for N (1)
66 read

C
(1)
66 =

(q2 + v12)(q
2 + v23)− (q2 − 2m2

t )v45
2

, (A.68)

C
(2)
66 =

(2m2
t + v12)(q

2 + v23)v45
2q2 + v12 + v23

, (A.69)

C
(3)
66 =

(2m2
t + v23)(q

2 + v12)v45
2q2 + v12 + v23

, (A.70)

C
(4)
66 =

1

2

[
Nb −m2

t (v12 − v23)
2 − 2q2v245

2q2 + v12 + v23
+ (q2 + 2m2

t )v45

]
, (A.71)

C
(5)
66 =

(v12 − v23)

2

[
(q2 −m2

t )−
q2v45

2q2 + v12 + v23

]
, (A.72)

C
(6)
66 =

2(q2 + v23)

2q2 + v12 + v23
, (A.73)

C
(7)
66 =

q2 − 2m2
t√

C1
, (A.74)

C
(8)
66 =

(q2 − 2m2
t )(v12 − v23)

2(2q2 + v12 + v23)
√
C1

, (A.75)

C
(9)
66 =

q2 + v12
2(2q2 + v12 + v23)

, (A.76)

C
(10)
66 =

v12 − v23
2q2 + v12 + v23

. (A.77)

Sector: 186

1

2

34

5
6

5
8

2

4

N (1)
67 = ϵ4

√
∆

(3)
3 . (A.78)

Sector: 211

1

23

4

5

8
5

7

2

1

N (1)
68 = ϵ4(v15 + v45 − v23 − q2) , (A.79)

N (1)
69 = ϵ3v45v15

1

ρ5
. (A.80)
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Sector: 213

1

2

3

4

5

8
5

7

3

1

N (1)
70 = ϵ4(v34 + v45) , (A.81)

N (1)
71 = ϵ3v34v45

1

ρ5
. (A.82)

Sector: 214

1

2

3

4

5

8
5

7

3

2

N (1)
72 = ϵ4(q2 + v23 + v34 − v15) , (A.83)

N (1)
73 = ϵ3v34(q

2 + v23)
1

ρ5
. (A.84)

Sector: 242

1

2

34

5

8

7

6

52

N (1)
74 = ϵ3v45(m

2
t + v15)

1

ρ2
, (A.85)

N (1)
75 = ϵ3v45

(
v15
ρ5

− m2
t

ρ2

)
. (A.86)

Sector: 244

1

2

34

5

6

7

8

53

N (1)
76 = ϵ3v45(m

2
t + v34)

1

ρ3
, (A.87)

N (1)
77 = ϵ2v45

(
v34
ρ5

− m2
t

ρ3

)
. (A.88)
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I⃗1: 6 Propagator Integrals

Sector: 95

1

2

3

4

5

1

2

3

4

75

N (1)
78 = ϵ3(1− 2ϵ)

√
C2 , (A.89)

N (1)
79 = ϵ3

√
∆5

µ11

ρ5
. (A.90)

Sector: 126

4

5

1

2

3

2

5

4

3
6

7

N (1)
80 = ϵ4

√
r2 , (A.91)

N (1)
81 = ϵ3

√
∆5

µ11

ρ5
. (A.92)

Sector: 175

1

2

3

4

5

8
6

4 3

21

N (1)
82 = ϵ3(1− 2ϵ)

√
C2 . (A.93)

Sector: 183

1

2 3

4

5
3

5

1

2
8

6

N (1)
83 = ϵ4(q2 + v12)

√
∆

(3)
3 . (A.94)
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Sector: 190

12

3

4

5

2

5

4

3
6

8

N (1)
84 = ϵ4(q2 + v23)

√
∆

(4)
3 . (A.95)

Sector: 215

5

4

2

3

1

3

5

1

2
8

7

N (1)
85 = ϵ4

√
r3 , (A.96)

N (1)
86 = ϵ3

√
∆5

µ11

ρ5
. (A.97)

Sector: 245

3

5

1

4

2
8

5

6

7
3

1

N (1)
87 = ϵ4v45(v12 − v34 + q2) . (A.98)
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Sector: 246

1

2

4

3

5

8

5

6

7
3

2

N (1)
88 = ϵ4v45

√
∆

(5)
3 , (A.99)

N (1)
89 = ϵ3

√
∆5

µ12

ρ5
, (A.100)

N (1)
90 = ϵ3

√
∆5

µ22

ρ5
, (A.101)

N (1)
91 = ϵ3v45

[
q2ρ9

(
1

ρ2
− 1

ρ3

)
+ 2ϵ(v34 − v15)

− (q2 + v23)
ρ7
ρ8

+ (q2 + v12)
ρ7
ρ6

]
, (A.102)

N (1)
92 = ϵ3v45

√
C1

[
ρ9

(
1

ρ2
+

1

ρ3

)
+ 2ϵ

+ ρ7

(
1

ρ8
+

1

ρ6

)]
, (A.103)

N (1)
93 =

ϵ3 v45
v15 − v34

[
ϵ
(
(v15 − v34)

2 − q2(v15 + v34)
)

+ (m2
t (v15 − v34)

2 + q2v15v34)

(
1

ρ2
+

1

ρ3

)]

− v15 + v34
v15 − v34

q2

2
√
C1

N (1)
92 . (A.104)

Sector: 250

1

4

3

5

2
6

5

8

7
2

4

N (1)
94 = ϵ4v45(v23 − v15 + q2) . (A.105)

I⃗1: 7 Propagator Integrals

Sector: 247

1

4
3

5

2

6

5

8

7

1

2

3

N (1)
95 = ϵ4(q2 + v12)v15v45 , (A.106)

N (1)
96 = ϵ4v45

√
∆

(1)
3 ρ9 , (A.107)

N (1)
97 = ϵ4(q2 + v12)

[
v45ρ11 − (v23 − v15 + q2)ρ6

]
, (A.108)

N (1)
98 = ϵ4

√
∆5µ12 . (A.109)
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Sector: 251

3

5
1

4

2
8

5

6

7

4

2

1

N (1)
99 = ϵ4v15v

2
45 , (A.110)

N (1)
100 = ϵ4v45

√
∆

(3)
3 ρ9 , (A.111)

N (1)
101 = ϵ4v45

[
v45ρ11 +

1

ϵ
(q2 + v12)

ρ6
ρ5

(
ρ8 −

ρ4
2

)]
. (A.112)

Sector: 253

3

5
1

4

2

8

5

6

7

4

3

1

N (1)
102 = ϵ4v34v

2
45 , (A.113)

N (1)
103 = ϵ4v45

√
∆

(4)
3 ρ9 , (A.114)

N (1)
104 = ϵ4v45

[
v45ρ10 +

1

ϵ
(q2 + v23)

ρ8
ρ5

(
ρ6 −

ρ1
2

)]
. (A.115)

Sector: 254

3

5
1

4

2

8

5

6

7

4

3

2

N (1)
105 = ϵ4(q2 + v23)v45v34 , (A.116)

N (1)
106 = ϵ4v45

√
∆

(2)
3 ρ9 , (A.117)

N (1)
107 = ϵ4(q2 + v23)

[
v45ρ10 − (v12 − v34 + q2)ρ8

]
, (A.118)

N (1)
108 = ϵ4

√
∆5µ12 . (A.119)

I⃗1: 8 Propagator Integrals

Sector: 255

5

4

3

2

1

7

6

5

8
4

3

2

1

N (1)
109 = ϵ4v45

√
∆5µ11 , (A.120)

N (1)
110 = ϵ4v45

√
∆5µ12 , (A.121)

N (1)
111 = ϵ4v45

√
C2ρ9 . (A.122)

B Master Integral Basis for the T̃2 Feynman Integral Family

In this appendix we provide the definitions of all master integrals that we have computed

for the Feynman integral family T̃2 which is shown in equations (3.4), (3.5), and (3.6).

Notice that we do not include definitions of integrals in this family that coincide with

those presented in appendix A (see section 3 for details). We present the definitions in

subsections organized from the integrals with the least (4) to the integrals with the most

(6) propagators.

– 48 –



For each integral we provide information which exactly specifies it, as explained in

the introduction to Appendix A. The generic integral belonging to this integral family is

defined as: (
I⃗2

)
j
=

∫
ddℓ1

iπd/2

ddℓ2

iπd/2

N (2)
j

ρν11 ρν22 ρν33 ρν44 ρν55 ρν66
,

where the superscript of the numerator insertion N (2)
j indicates that this integrand belongs

to the T̃2 family, where the index j is an integer between 1 and 19, and where νi ∈ {0, 1}.
Notice that we employ kinematic invariants and functions defined in section 2.

For completeness, we also print the values of the integrals at weight 0 as used in the

discussion of iterated integral solutions of section 5.2,

I⃗
(0)
2 = Z

(
I⃗

(0)
2

)
=
{
− 1

2
, 0,−1, 1, 0, 0,−1

8
, 0, 0, 0, 0,

1

2
, 0, 0,−1

8
, 0, 0,

1

2
, 0
}
. (B.1)

I⃗2: 4 Propagator Integrals

Sector: 53

5

1

2

3

4

1

3
65

N (2)
5 = ϵ3(q2 + v23 − v15)

1

ρ5
. (B.2)

Sector: 57

2

1

5

4

3

4

1
65

N (2)
7 = ϵ3v34

1

ρ5
. (B.3)

I⃗2: 5 Propagator Integrals

Sector: 55

1 2

3

45

1

2

3

65
N (2)

12 = ϵ3(1− 2ϵ)v15 . (B.4)
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Sector: 59

5

1

2 3

4

1

2

4

65
N (2)

13 = ϵ3(1− 2ϵ)(q2 + v12 − v34) . (B.5)

Sector: 61

1

2 3

45

1

3

4

65

N (2)
14 = ϵ3(1− 2ϵ)

√
∆

(5)
3 , (B.6)

N (2)
15 = ϵ3(q2 + v23)v34

1

ρ5
. (B.7)

I⃗2: 6 Propagator Integrals

Sector: 63

1

2

3

4

5

1

2

3

4

56

N (2)
18 = ϵ3(1− 2ϵ)v15(q

2 + v12) , (B.8)

N (2)
19 = ϵ3

√
∆5

µ11

ρ5
. (B.9)

C Master Integral Basis for the T0 Feynman Integral Family

For completeness in this appendix we provide a basis of pure master integrals for the one-

loop Feynman integral family related to the propagator structure of the diagram in figure 7

and defined as follows:

T0[ν⃗] =

∫
ddℓ1

iπd/2

1

ρν11 ρν22 ρν33 ρν44 ρν55
, (C.1)

where the inverse propagators are defined by:

ρ1 = ℓ21 , ρ2 = (ℓ1 + p1)
2 −m2

t , ρ3 = (ℓ1 + p12)
2 −m2

t ,

ρ4 = (ℓ1 + p123)
2 , ρ5 = (ℓ1 − p5)

2 . (C.2)
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1

2

3

4

5

1

ℓ1

2

3

4

5

Figure 7: The propagator structure asociated to the T0 integral family, with the routing of

loop momenta chosen in equation (C.1). See caption of figure 4 for details on the notation.

This family has dim (T0) = 18 and we present our choice of pure master integral in the

following subsections organized from the integrals with the least (1) to the integrals with

the most (5) propagators.5

For each integral we provide information which exactly specifies it, as explained in

the introduction to Appendix A. The generic integral belonging to this integral family is

defined as: (
I⃗0

)
j
=

∫
ddℓ1

iπd/2

N (0)
j

ρν11 ρν22 ρν33 ρν44 ρν55
,

where the superscript of the numerator insertion N (0)
j indicates that this integrand belongs

to the T0 family, where the index j is an integer between 1 and 18, and where νi ∈ {0, 1}.
Notice that we employ kinematic invariants and functions defined in section 2.

For completeness, we also print the values of the integrals at weight 0 as used in the

discussion of iterated integral solutions of section 5.2,

I⃗
(0)
0 =

{
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

2
,
3

2
,
3

2
,
1

2
, 0
}
. (C.3)

I⃗0: 1 Propagator Integral

Sector: 2

123 4 5

2 N (0)
1 =

ϵ(1− ϵ)

m2
t

. (C.4)

5We notice that a canonical basis for this integral family has already been presented in Ref. [102].
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I⃗0: 2 Propagator Integrals

Sector: 5

1

2
3

4

5
1

3

N (0)
2 = ϵ(q2 +m2

t + v12)
1

ρ3
. (C.5)

Sector: 6

1

2

3

4

5

3
2

N (0)
3 = ϵ

√
C1

1

ρ2
. (C.6)

Sector: 9

1

2

3
4

5 1

4

N (0)
4 = ϵ(1− ϵ) . (C.7)

Sector: 10

1
2

3
4

5
2

4

N (0)
5 = ϵ(q2 +m2

t + v23)
1

ρ2
. (C.8)

Sector: 18

1
2

3

4
5 5

2

N (0)
6 = ϵ(m2

t + v15)
1

ρ2
. (C.9)

Sector: 20

1

2
3

4
5

5

3

N (0)
7 = ϵ(m2

t + v34)
1

ρ3
. (C.10)

I⃗0: 3 Propagator Integrals

Sector: 7

1

2

3

4

5

2

3
1

N (0)
8 = ϵ2

√
∆

(1)
3 . (C.11)
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Sector: 11

1

2

3

4

5

2

1
4

N (0)
9 = ϵ2

√
∆

(3)
3 . (C.12)

Sector: 13

1

2

3

4

5

4

3
1

N (0)
10 = ϵ2

√
∆

(4)
3 . (C.13)

Sector: 14

1

2

3

4

5

3

2
4

N (0)
11 = ϵ2

√
∆

(2)
3 . (C.14)

Sector: 22

1

2

3

4

5

2

3
5

N (0)
12 = ϵ2

√
∆

(5)
3 . (C.15)
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I⃗0: 4 Propagator Integrals

Sector: 15

12

3 4

5

2

3

4

1

N (0)
13 = ϵ2

√
C2 . (C.16)

Sector: 23

1

2 3

4

5

1

2

3

5

N (0)
14 = ϵ2v15(q

2 + v12) . (C.17)

Sector: 27

1

2

3 4

5

1

2

4

5

N (0)
15 = ϵ2v45v15 . (C.18)

Sector: 29

1

2

3 4

5

1

3

4

5

N (0)
16 = ϵ2v45v34 . (C.19)
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Sector: 30

12

3 4

5

4

3

2

5

N (0)
17 = ϵ2v34(q

2 + v23) . (C.20)

I⃗0: 5 Propagator Integrals

Sector: 31

1

2

3

4

5

1

2

3

4

5

N (0)
18 = ϵ2

√
∆5 µ11 . (C.21)

References

[1] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar

five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001

[1511.05409].

[2] C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the

Simplified Differential Equations approach, JHEP 04 (2016) 078 [1511.09404].

[3] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar

scattering amplitudes, JHEP 10 (2018) 103 [1807.09812].

[4] S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar

hexa-box integrals, JHEP 01 (2019) 006 [1807.11522].

[5] S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude

in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [1812.08941].

[6] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master

Integrals for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 123

(2019) 041603 [1812.11160].

[7] D. Chicherin and V. Sotnikov, Pentagon Functions for Scattering of Five Massless

Particles, JHEP 20 (2020) 167 [2009.07803].

[8] S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, Two-Loop Integrals for

Planar Five-Point One-Mass Processes, JHEP 11 (2020) 117 [2005.04195].

– 55 –

https://doi.org/10.1103/PhysRevLett.116.062001
https://arxiv.org/abs/1511.05409
https://doi.org/10.1007/JHEP04(2016)078
https://arxiv.org/abs/1511.09404
https://doi.org/10.1007/JHEP10(2018)103
https://arxiv.org/abs/1807.09812
https://doi.org/10.1007/JHEP01(2019)006
https://arxiv.org/abs/1807.11522
https://doi.org/10.1103/PhysRevLett.122.121603
https://arxiv.org/abs/1812.08941
https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1103/PhysRevLett.123.041603
https://arxiv.org/abs/1812.11160
https://doi.org/10.1007/JHEP12(2020)167
https://arxiv.org/abs/2009.07803
https://doi.org/10.1007/JHEP11(2020)117
https://arxiv.org/abs/2005.04195


[9] D.D. Canko, C.G. Papadopoulos and N. Syrrakos, Analytic representation of all planar

two-loop five-point Master Integrals with one off-shell leg, JHEP 01 (2021) 199

[2009.13917].

[10] S. Abreu, H. Ita, B. Page and W. Tschernow, Two-loop hexa-box integrals for non-planar

five-point one-mass processes, JHEP 03 (2022) 182 [2107.14180].

[11] D. Chicherin, V. Sotnikov and S. Zoia, Pentagon functions for one-mass planar scattering

amplitudes, JHEP 01 (2022) 096 [2110.10111].

[12] A. Kardos, C.G. Papadopoulos, A.V. Smirnov, N. Syrrakos and C. Wever, Two-loop

non-planar hexa-box integrals with one massive leg, JHEP 05 (2022) 033 [2201.07509].

[13] S. Abreu, D. Chicherin, H. Ita, B. Page, V. Sotnikov, W. Tschernow et al., All Two-Loop

Feynman Integrals for Five-Point One-Mass Scattering, 2306.15431.

[14] S. Badger, M. Becchetti, E. Chaubey and R. Marzucca, Two-loop master integrals for a

planar topology contributing to pp →ttj, JHEP 01 (2023) 156 [2210.17477].

[15] CMS collaboration, Observation of ttH production, Phys. Rev. Lett. 120 (2018) 231801

[1804.02610].

[16] ATLAS collaboration, Observation of Higgs boson production in association with a top

quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173

[1806.00425].

[17] ATLAS collaboration, HL-LHC projections for signal and background yield measurements

of the H → γγ when the Higgs boson is produced in association with t quarks, W or Z

bosons, Tech. Rep. ATL-PHYS-PUB-2014-012, CERN, Geneva (2014).

[18] CMS collaboration, Prospects for the measurement of t̄tH production in the opposite-sign

dilepton channel at
√
s = 14 TeV at the High-Luminosity LHC, Tech. Rep.

CMS-PAS-FTR-21-002, CERN, Geneva (2022).

[19] LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs

Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 1610.07922.

[20] A. Huss, J. Huston, S. Jones and M. Pellen, Les Houches 2021—physics at TeV colliders:

report on the standard model precision wishlist, J. Phys. G 50 (2023) 043001 [2207.02122].

[21] K. Agashe et al., Report of the Topical Group on Top quark physics and heavy flavor

production for Snowmass 2021, 2209.11267.

[22] J.N. Ng and P. Zakarauskas, A QCD Parton Calculation of Conjoined Production of Higgs

Bosons and Heavy Flavors in pp̄ Collision, Phys. Rev. D 29 (1984) 876.

[23] Z. Kunszt, Associated Production of Heavy Higgs Boson with Top Quarks, Nucl. Phys. B

247 (1984) 339.

[24] W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper, M. Spira and P.M. Zerwas, Higgs

radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805

[hep-ph/0107081].

[25] W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper, M. Spira and P.M. Zerwas, NLO

QCD corrections to t anti-t H production in hadron collisions, Nucl. Phys. B 653 (2003)

151 [hep-ph/0211352].

[26] L. Reina and S. Dawson, Next-to-leading order results for t anti-t h production at the

Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101].

– 56 –

https://doi.org/10.1007/JHEP01(2021)199
https://arxiv.org/abs/2009.13917
https://doi.org/10.1007/JHEP03(2022)182
https://arxiv.org/abs/2107.14180
https://doi.org/10.1007/JHEP01(2022)096
https://arxiv.org/abs/2110.10111
https://doi.org/10.1007/JHEP05(2022)033
https://arxiv.org/abs/2201.07509
https://arxiv.org/abs/2306.15431
https://doi.org/10.1007/JHEP01(2023)156
https://arxiv.org/abs/2210.17477
https://doi.org/10.1103/PhysRevLett.120.231801
https://arxiv.org/abs/1804.02610
https://doi.org/10.1016/j.physletb.2018.07.035
https://arxiv.org/abs/1806.00425
https://cds.cern.ch/record/1741011
https://cds.cern.ch/record/2804006
https://arxiv.org/abs/1610.07922
https://doi.org/10.1088/1361-6471/acbaec
https://arxiv.org/abs/2207.02122
https://arxiv.org/abs/2209.11267
https://doi.org/10.1103/PhysRevD.29.876
https://doi.org/10.1016/0550-3213(84)90553-4
https://doi.org/10.1016/0550-3213(84)90553-4
https://doi.org/10.1103/PhysRevLett.87.201805
https://arxiv.org/abs/hep-ph/0107081
https://doi.org/10.1016/S0550-3213(03)00044-0
https://doi.org/10.1016/S0550-3213(03)00044-0
https://arxiv.org/abs/hep-ph/0211352
https://doi.org/10.1103/PhysRevLett.87.201804
https://arxiv.org/abs/hep-ph/0107101


[27] L. Reina, S. Dawson and D. Wackeroth, QCD corrections to associated t anti-t h production

at the Tevatron, Phys. Rev. D 65 (2002) 053017 [hep-ph/0109066].

[28] S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson

production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438].

[29] S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production

with top quarks at the large hadron collider: NLO QCD corrections, Phys. Rev. D 68 (2003)

034022 [hep-ph/0305087].

[30] A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Soft gluon resummation for associated

tt̄H production at the LHC, JHEP 03 (2016) 065 [1509.02780].

[31] A. Broggio, A. Ferroglia, B.D. Pecjak, A. Signer and L.L. Yang, Associated production of a

top pair and a Higgs boson beyond NLO, JHEP 03 (2016) 124 [1510.01914].

[32] A. Broggio, A. Ferroglia, B.D. Pecjak and L.L. Yang, NNLL resummation for the associated

production of a top pair and a Higgs boson at the LHC, JHEP 02 (2017) 126 [1611.00049].

[33] A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Associated tt̄H production at the LHC:

Theoretical predictions at NLO+NNLL accuracy, Phys. Rev. D 97 (2018) 114007

[1704.03363].

[34] A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B.D. Pecjak and I. Tsinikos, Top-quark

pair hadroproduction in association with a heavy boson at NLO+NNLL including EW

corrections, JHEP 08 (2019) 039 [1907.04343].

[35] W.-L. Ju and L.L. Yang, Resummation of soft and Coulomb corrections for tth production

at the LHC, JHEP 06 (2019) 050 [1904.08744].

[36] A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Associated top quark

pair production with a heavy boson: differential cross sections at NLO+NNLL accuracy,

Eur. Phys. J. C 80 (2020) 428 [2001.03031].

[37] S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs

hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [1407.0823].

[38] Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO and EW NLO

corrections to tt̄H production with top quark decays at hadron collider, Phys. Lett. B 738

(2014) 1 [1407.1110].

[39] S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD

corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015)

184 [1504.03446].

[40] A. Denner and R. Feger, NLO QCD corrections to off-shell top-antitop production with

leptonic decays in association with a Higgs boson at the LHC, JHEP 11 (2015) 209

[1506.07448].

[41] A. Denner, J.-N. Lang, M. Pellen and S. Uccirati, Higgs production in association with

off-shell top-antitop pairs at NLO EW and QCD at the LHC, JHEP 02 (2017) 053

[1612.07138].

[42] D. Stremmer and M. Worek, Production and decay of the Higgs boson in association with

top quarks, JHEP 02 (2022) 196 [2111.01427].

[43] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and

– 57 –

https://doi.org/10.1103/PhysRevD.65.053017
https://arxiv.org/abs/hep-ph/0109066
https://doi.org/10.1103/PhysRevD.67.071503
https://arxiv.org/abs/hep-ph/0211438
https://doi.org/10.1103/PhysRevD.68.034022
https://doi.org/10.1103/PhysRevD.68.034022
https://arxiv.org/abs/hep-ph/0305087
https://doi.org/10.1007/JHEP03(2016)065
https://arxiv.org/abs/1509.02780
https://doi.org/10.1007/JHEP03(2016)124
https://arxiv.org/abs/1510.01914
https://doi.org/10.1007/JHEP02(2017)126
https://arxiv.org/abs/1611.00049
https://doi.org/10.1103/PhysRevD.97.114007
https://arxiv.org/abs/1704.03363
https://doi.org/10.1007/JHEP08(2019)039
https://arxiv.org/abs/1907.04343
https://doi.org/10.1007/JHEP06(2019)050
https://arxiv.org/abs/1904.08744
https://doi.org/10.1140/epjc/s10052-020-7987-6
https://arxiv.org/abs/2001.03031
https://doi.org/10.1007/JHEP09(2014)065
https://arxiv.org/abs/1407.0823
https://doi.org/10.1016/j.physletb.2014.09.022
https://doi.org/10.1016/j.physletb.2014.09.022
https://arxiv.org/abs/1407.1110
https://doi.org/10.1007/JHEP06(2015)184
https://doi.org/10.1007/JHEP06(2015)184
https://arxiv.org/abs/1504.03446
https://doi.org/10.1007/JHEP11(2015)209
https://arxiv.org/abs/1506.07448
https://doi.org/10.1007/JHEP02(2017)053
https://arxiv.org/abs/1612.07138
https://doi.org/10.1007/JHEP02(2022)196
https://arxiv.org/abs/2111.01427


pseudoscalar Higgs production in association with a top–antitop pair, Phys. Lett. B 701

(2011) 427 [1104.5613].

[44] M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trocsanyi, Standard Model Higgs

boson production in association with a top anti-top pair at NLO with parton showering,

EPL 96 (2011) 11001 [1108.0387].

[45] H.B. Hartanto, B. Jager, L. Reina and D. Wackeroth, Higgs boson production in association

with top quarks in the POWHEG BOX, Phys. Rev. D 91 (2015) 094003 [1501.04498].

[46] F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector

bosons at NLO in QCD: impact on ttH searches at the LHC, JHEP 02 (2016) 113

[1507.05640].

[47] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and C. Savoini, Higgs Boson

Production in Association with a Top-Antitop Quark Pair in Next-to-Next-to-Leading Order

QCD, Phys. Rev. Lett. 130 (2023) 111902 [2210.07846].
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