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Abstract
The Dynamic Aperture is an important concept for the

study of non-linear beam dynamics in a circular accelerator.
The DA is defined as the extent of the phase-space region in
which the particle’s motion remains bounded over a given
finite number of turns. Such a region is determined by the
imperfections in the magnetic fields, beam-beam effects,
electron lens, electron clouds, and other non-linear effects.
The study of the DA provides insight into the mechanisms
driving the beam lifetime, which is essential for the oper-
ation of existing circular accelerators, such as the CERN
Large Hadron Collider, as well as for the design of future
ones. The standard approach to numerical evaluation of the
DA relies on the ability to accurately track initial conditions,
distributed in phase space, on the required time scale, and
this is computationally demanding. To accelerate the angular
DA calculation, we propose the use of a Machine Learning
technique for the angular DA regression based on simulated
HL-LHC data. We demonstrate the implementation of a
Deep Neural Network model by measuring the time and as-
sessing the performance of the angular DA regressor, as well
as carrying out studies with various hardware architectures
including CPU, GPU, and TPU.

INTRODUCTION
The study of dynamic aperture (DA), defined as the extent

of the connected phase-space region in which the single-
particle dynamic is bounded, provides insight into the single-
particle, non-linear beam dynamics and mechanisms driving
the time evolution of beam losses [1], which is essential for
the design and operation of existing [2, 3] and future circular
accelerators [4].

The numerical calculation of the DA involves tracking a
large number of initial conditions in phase space for many
turns [5, 6]. This method is computationally demanding,
especially for large accelerators such as the CERN Large
Hadron Collider (LHC) [2], and for this analytical scaling
laws have been studied for several years [6, 7]. In general,
in the accelerator community, there is growing interest in
developing methods to accelerate the DA calculation while
maintaining its accuracy.

In recent years, Machine Learning (ML) techniques have
emerged as a promising approach to accelerate DA evalua-
tion (see, e.g. [8–11]). By training a model on a large data set
of simulated initial conditions, an ML algorithm can learn
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the complex mapping between the initial conditions and the
angular DA (defined below) and provide a fast and accurate
prediction of the angular DA for new sets of initial condi-
tions and machine configurations. This approach has the
potential to reduce the computational cost of DA evaluation
and enable faster accelerator parameter optimisation.

Here, we propose to use machine learning techniques to
speed up angular DA evaluation based on simulated data
obtained using the High Luminosity LHC (HL-LHC) lattice
[3]. We investigated the use of a Deep Neural Network
(DNN) model to regress the angular DA as a function of
the initial conditions. We study the performance of this ML
model on various hardware architectures and compare it
with the standard simulation method.

SIMULATED SAMPLES
To train the ML model, we simulated several accelerator

configurations using MAD-X [12] and the V1.0 HL-LHC
lattice in the injection configuration at 450 GeV [13]. We
varied six accelerator parameters, namely the betatron tunes
𝑄𝑥, 𝑄𝑦, chromaticities 𝑄′

𝑥, 𝑄′
𝑦, strength of the Landau oc-

tupoles (using the current, 𝐼𝑀𝑂, powering the octupoles)
and the realisations (sometimes also called seeds) of the
magnetic field errors assigned to the various magnet fam-
ilies. Furthermore, both Beam 1 and Beam 2 have been
considered in these studies. For this first study, we limited
the parameters sampling to two 𝑄𝑥, 𝑄𝑦 scans (8 𝑄𝑥 values
in [0.255, 0.295] and 9 𝑄𝑦 values in [0.280, 0.325]) and a
𝑄′, 𝐼MO scan (15 𝑄′ values in [0, 15] and 17 𝐼MO values in
[−40, 40]A) for Beam 1 and Beam 2 and 60 possible real-
isations of the magnetic errors. This resulted in a total of
29880 sets of accelerator parameters.

The phase space was probed by tracking with SixTrack
[14] for 105 turns a set of initial conditions selected along 11
polar angles, evenly distributed in ]0, 𝜋/2[ and 290 radial
amplitudes, evenly distributed in [0.0𝜎, 20𝜎]. An example
of the results of these computations in the 𝑥 − 𝑦 space is
shown in Fig. 1 for a specific accelerator configuration, in
which the stability time, i.e. the time taken by the orbit to
reach an amplitude corresponding to a numerical overflow,
is provided for each initial condition.

The input for the surrogate model is given by the parame-
ters describing the accelerator configuration and the polar
angle, the regressor will learn for each accelerator configu-
ration the value of the last stable amplitude for that angle,
which we call angular DA. When considering the angle as an
additional parameter, the number of samples is increased to
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Figure 1: Stability distribution given in units of beam 𝜎 for
a specific accelerator configuration.

328680. From this number, 10% of the samples were used
for validation during training, and 10% was used only to test
the performance of the model, not for training.

To prevent extreme angular DA values from affecting the
regressor [15], we cap values above 10 𝜎, as they are outliers
in a distribution ranging from 0 𝜎 to 20 𝜎. Additionally, to
make the training data set more representative of any angular
DA value, a weighting scheme based on the inverse angular
DA distribution was used. This ensured that the less common
angular DA values had higher weights, resulting in a more
accurate regression model throughout the range of angular
DA values.

NETWORK ARCHITECTURE AND
TRAINING

As our data set is limited to about 328k samples, which
is considered a small size to train a deep learning model
[16], we decided to test a simple Deep Feed Forward Neural
Network and train with the NADAM optimiser [17]. The
network was developed using the TensorFlow library [18].
Architecture and hyperparameters were optimised by ran-
dom search with the Keras Tuner framework [19]. The best
model consists of four hidden layers with 1024, 512, 256
and 32 nodes, respectively. Batch normalisation and dropout
(5%) were added between hidden layers to improve perfor-
mance and avoid overfitting. The loss used for the regressor
is Mean Absolute Error (MAE) function. The initial learn-
ing rate is 5 × 10−4 and is halved every 5 sequential epochs
if the validation loss is not improved. We found training for
80 epochs to be sufficient for convergence.

REGRESSOR FOR THE ANGULAR
DYNAMIC APERTURE

Results
The MAE of the angular DA regressor is 0.64(0.65) beam

𝜎 for the test (train) data set. This suggests that the regressor
is making relatively accurate predictions, with errors that
are generally small compared to the typical range of angular
DA values. Although the Mean Absolute Percentage Error
(MAPE) is 8.1(8.2)% for the test (train) data set, the Abso-
lute Percentage Error (APE) distribution indicates that the
angular DA regressor has the same accuracy throughout the
range of angular DA values, rather than being biased towards
specific values.

In addition, analysis of the angular DA scatter histogram
in Fig. 2 reveals that the model performs well for most of
the data points, with a tight cluster around the diagonal line,
indicating accurate predictions. Furthermore, only 5.62%
of the test data set has an APE greater than 10%. These
higher errors are likely due to the limited size of the train
data set and the number of accelerator parameters, causing a
non-linear relationship between the input parameters and the
angular DA values. To better understand and address these
predictions, we plan to investigate the impact of new input
parameters on the accuracy of the model, and to explore
potential ways to improve the model’s performance.

Figure 2: Angular DA predicted as a function of the expected
angular DA values for the test data set.

Timing Performance
Various factors, such as the number of samples and ac-

celerator parameters, can significantly impact the training
and evaluation time of a model, leading to an increase in
computational costs and memory requirements.

To address this challenge, we compared timing perfor-
mance using mixed precision operations and a fixed batch
size of 128 samples for four hardware architectures with our
angular DA regressor: an Apple M1 Pro [20], a NVIDIA
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Titan V [21], a NVIDIA A100 Tensor Core [22], and Google
TPU v2-8 [23].

We tested the Apple M1 Pro on a MacBook Pro laptop.
The Titan V was accessed through CERN workstations, util-
ising 48 AMD Ryzen Threadripper 2970WX CPU cores
for data loading and pre-processing tasks. The A100 was
accessed via the Google Colab platform with 12 available
Intel Xeon 2.20 GHz CPU cores. Google TPU v2-8, a cloud-
based accelerator optimised for deep learning workloads,
was accessed through the Google Colab platform.

The Titan V outperformed other devices in terms of I/O
time (0.012 ms/batch) due to the higher number of avail-
able cores for data loading and pre-processing tasks. On the
other hand, the Google TPU had the highest I/O time (0.092
ms/batch) due to the need to transfer data to and from the
cloud, which introduced network latency. However, the TPU
outperformed other devices in terms of training (4 ms/batch)
and validation time (3 ms/batch), indicating that it is opti-
mised for deep learning workloads and has a low latency I/O
pipeline that does not compete for CPU resources.

Both Titan V and A100 had similar performance in train-
ing (7 ms/batch) and validation (2 ms/batch), outperforming
M1 Pro (49 ms/batch for training and 9 ms/batch for valida-
tion) in terms of training and validation time, indicating that
they are better suited for large-scale ML workloads.

Despite the relatively small data set used in this study (20
MB), future studies with larger data sets and more accelerator
parameters should consider I/O time as bottlenecks can occur
and affect training and validation times.

DISCUSSION
Examples of angular DA reconstruction carried out by

our regressor for four accelerator configurations (available
only in the test data set) are shown in Fig. 3.

As mentioned above, the data set used in this study is
relatively small, with only 328680 instances. This may have
limited the complexity of the surrogate model, as deep learn-
ing models typically require large amounts of data to achieve
their full potential [24]. Therefore, it is likely that the predic-
tive accuracy of the regressor will improve with larger data
sets. Furthermore, the model accuracy could improve by
including additional dynamical variables, such as the phase
advance between Interaction Points, the amplitude detuning,
the linear coupling, and others.

Note also that the average inference time of the angular DA
regressor for a batch size of 128 samples is approximately
1.4 s using GPUs (approximately 0.12 s/machine configura-
tion), which is significantly faster than the average 5 day run
time of a full simulation submission of 4800 HL-LHC accel-
erator configurations using the standard approach based on
MAD-X and SixTrack combined with the BOINC system
[25] to submit multiple tracking jobs in parallel (approxi-
mately 90 s/machine configuration). Therefore, the angular
DA regressor is about 750 times faster than the standard
approach in terms of computing time per machine configu-
ration.

As a MAPE of 8.1% could be considered high in the
context of deep learning [26], it may not completely replace
traditional simulations for predicting angular DA values
due to its sub-optimal accuracy. As the physics of unstable
chaotic motion is only accessible via tracking, traditional
simulations are still essential in determining whether initial
conditions are chaotic. For this reason, one could use the
regressor in conjunction with tracking to reduce the number
of simulations required and ensure reliable results.

Figure 3: Angular DA regressor in the test data set.

CONCLUSIONS
Our study explored the potential of ML techniques, specif-

ically a DNN model, for predicting the angular DA of cir-
cular accelerators. Although the results showed promising
performance of the model, with relatively low errors in pre-
dicting angular DA values (MAE of 0.64 beam 𝜎), more
research is necessary to confirm its effectiveness in a larger
and more diverse data set. Furthermore, our results indi-
cate that deep learning can reduce the computational cost of
angular DA evaluation. This approach could enable faster
machine parameter optimisation and, in the future, perhaps
even real-time monitoring and control of beam dynamics in
circular accelerators. However, tracking is still essential to
determine whether the dynamics of certain initial conditions
is chaotic.
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