Higgs 2023 Conference, 27 Nov. - 2 Dec. 2023, Beijing

Elena Mazzeo

On behalf of the ATLAS Collaboration

UNIVERSITÀ **DEGLI STUDI DI MILANO**

The Higgs boson self-coupling

The *bbyy* final state

What's **special** about the $b\bar{b}\gamma\gamma$ final state?

Highest BR for a SM Higgs be QCD background.

Very **low BR** for a SM Higgs b

- Excellent trigger and record for photons with ATLAS.

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

		bb	WW	ττ	ZZ
oson (58%) but large	bb	34%			
Usur (JU70), Dut large	WW	25%	4.6%		
	ττ	7.3%	2.7%	0.39%	
ooson (0.2%), but:	ZZ	3.1%	1.1%	0.33%	0.069%
onstruction efficiency	ΥY	0.26%	0.10%	0.028%	0.012%

- Excellent di-photon invariant mass $m_{\gamma\gamma}$ resolution (1-2 GeV).

The $HH \rightarrow bbyy$ analysis

in 13 TeV pp collision data collected by the ATLAS experiment during the full Run 2 of the LHC (=140 fb⁻¹).

Signal $\rightarrow \sigma(HH) \approx 32.8 \text{ fb} @ 13 \text{ TeV}!$

HH production via ggF

and via **VBF**. Included in the optimization for the first time in the $b\bar{b}\gamma\gamma$ channel!

ggF	VBF
- Dominant production mode.	 Peculiar VBF signature with 2 hard forward jets helps
 Drives the sensitivity to SM HH production and to 	to isolate VBF HH events from bkg.!
self-coupling modifier κ_{λ} . Thanks to the	 Additional sensitivity to self-coupling modifier κ_λ.
triangle diagram.	 Unique probe to the quartic HHVV vertex = κ_{2V}.

Non-resonant (continuum) bkg.

 \square Main contribution from $\gamma\gamma$ production + additional jets. Rate $(\gamma\gamma) = \mathbf{10}^3 \times \text{rate} (H \to \gamma\gamma) =$ $10^6 \times \text{rate} (HH \rightarrow b\bar{b}\gamma\gamma).$

Higgs 2023

GeV

Events / 2.5

18

14<u></u>

12

10F

6

2

Analysis recipe

1. Event selection.

- An event selection aimed at retaining $H \rightarrow b\bar{b}$ and $H \rightarrow \gamma\gamma$ candidates is applied.
- A Machine Learning (ML)-based VBF-jet tagger is used to identify candidate VBF jets.
- 2. Categorization.

- Selected events are divided into mutually exclusive **categories**.
- Based on the $m^*_{b\bar{b}\gamma\gamma}$ invariant mass and ML techniques.
 - Targeting ggF + VBF HH production and separate SM and BSM-like scenarios.

3. Signal & Background Modelling & Systematic uncertainties.

The signals and backgrounds are modeled in the $m_{\gamma\gamma}$ spectrum.

- The continuum bkg. shape and normalization are data-driven.
- The impact of each source of **systematic uncertainty** is evaluated.

- Affecting the HH or single Higgs yields, or the position and width of the $m_{\gamma\gamma}$ peak, + custom systematic (= spurious signal) on continuum bkg. modelling.
- Statistical model & interpretations.

- ullet The results are extracted via a maximum-likelihood unbinned fit on the $\mathbf{m}_{\gamma\gamma}$ distributions.
- We search for an **excess** over the expected background, and we set **exclusion limits** on the **HH**

signal strength and **set constraints** on the **coupling modifiers** κ_{λ} , κ_{2V} !

Event selection & categorization

BDT outputs!

Event selection & categorization

BDT outputs!

Categorization

• A separate BDT is trained in each $m^*_{b\bar{b}\gamma\gamma}$ bin, to separate di-Higgs ggF + VBF signals from backgrounds.

	Low Mass	ŀ
Signal	 ggF HH with anomalous κ_λ values. VBF HH with anomalous values for κ_λ and κ_{2V}. 	 SM ggF HH SM + anoma
Background	 All single Higgs processes γγ + ttγγ samples 	

• Based on the BDT outputs, 4 and 3 categories are defined in the Low Mass and **High Mass regions**!

Higgs 2023

Both the BDTs use the **same set** of **input variables**. High Mass Good discriminating power Targeting VBF between HH signals and bkg. **Ious VBF HH** samples - Photon kinematic variables. - **b-jet** kinematic variables. **m***_ **bb**γγ - $H \rightarrow bb$ -targeting variables; Extra-jet related variables.

- Categories specifically optimized to target simultaneously both the ggF HH and VBF HH production.
- Maximize the sensitivity to SM HH + a wide range of **anomalous**
 - κ_{λ} and κ_{2V} values!

signals

jets.

Event-shape

variables.

Signal extraction

The statistical results are derived by performing an unbinned maximum likelihood fit to the $\mathbf{m}_{\gamma\gamma}$ distribution in $m_{\gamma\gamma} \in [105, 160]$ GeV.

	Resonant (HH and single H)	Non-resonant (continuum background)
Modelling in - Re	esonant peak around m _H ≈ 125 GeV.	- Smoothly falling background.
the m _{YY} – Mo	lodelled by a double-sided crystal ball fitted on SM ggF	- Modelled using an exponential function , whose shape
spectrum H	H + VBF HH Monte-Carlo events.	parameter and normalization are fitted from data.

160

Mitigated impact of continuum bkg. modelling syst. unc.

- No excess of events w.r.t. background expectation.
- We interpret the results in terms of:

• Constraints @ 95% CL on the coupling **modifiers** κ_{λ} and κ_{2V} .

Upper limits on HH production and constraints on κ_{λ} and κ_{2V}

• Exclusion limits are set on the di-Higgs signal strength at 95% CL.

Upper limits on μ (HH) @ 95% CL.

	Observed	Expected
µ(HH)	4.0	5.0

Higgs 2023

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

• Best-fit values for κ_{λ} and κ_{2V} and their 68% and 95% confidence intervals are evaluated via a profile log-likelihood ($-2\Delta \ln(L)$) scan.

Summary

- Searching for Higgs boson pair production constitutes the only direct probe to the trilinear Higgs self-coupling modifier κ_i .
- Exploiting the two dominant production modes, via ggF HH and VBF HH, allow to probe both κ_{2} and the quartic HHVV interaction κ_{2V} .
- This updated search for Higgs boson pairs in the **b**byy final state using data collected by the ATLAS detector during the full Run 2 was presented.

• No excess of events was observed w.r.t. background only expectations.

This analysis places upper limits on the di-Higgs signal strength, as well as **95% CL constraints** on κ_{λ} and κ_{2V} .

95% CL upper limits on HH signal strength				95% CL c	on
	Observed	Expected		Kλ	
µ(HH)	4.0	5.0		K _{2V}	
			-		-

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

11

Thank you for your attention!

Higgs pair production at the LHC

In the SM, di-Higgs production at the LHC is dominated by the gluon-gluon Fusion (ggF HH) mechanism.

The subdominant production mode for Higgs pairs is via Vector-Boson-Fusion (VBF HH).

Higgs 2023

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

Drives the **sensitivity** to κ_{λ} .

- $\sigma_{ggF}^{SM}(HH) = 31.05 \text{ fb} @ 13 \text{ TeV}.$
 - 1/1000 times the production rate for single Higgs!
- This is an **extremely rare** process!
 - Can be strongly **enhanced** by **BSM**
 - values of the Higgs couplings, e.g. $\kappa_{\lambda} \neq 1$.

Expected SM HH and single Higgs production in the 140 fb⁻¹ dataset registered by ATLAS during the full Run 2.

	140 fb ⁻¹
HH	4000
HH→bbγγ	12
Single H	8 million

 $1/20 \times \sigma_{ggF}^{SM}(HH)!$

- $\sigma_{VBF}^{SM}(HH) = 1.726 \text{ fb} @ 13 \text{ TeV}.$
- The peculiar **VBF signature** involves **two** highly energetic forward jets.

- Helps to **isolate** this **production mode**.
- Provides additional sensitivity to κ_{λ} .
- **Unique** probe to the **quartic** *HHVV* **vertex**.

EFT interpretations for the $HH \rightarrow bb\gamma\gamma$ analysis

provides 1-dimensional and 2-dimensional constraints on anomalous Higgs boson couplings in the EFT framework!

HEFT

• Only minimal assumption are set in the scalar sector.

The observed Higgs boson is a singlet.

• In the HEFT framework, ggF HH production is affected by 5 Wilson coefficients and their operators.

 c_{hhh} , c_{tth} , c_{tthh} , c_{ggh} , and c_{gghh} .

SM-like HH BSM-like HH couplings couplings

• We would like to set limits on the HH cross-section for 7 HEFT benchmarks.

Benchmark	C_{hhh}	C _{tth}	c_{ggh}	c_{gghh}	C _{tthh}	_
SM	1.00	1.00	0	0	0	_
1	5.11	1.10	0	0	0	
2	6.84	1.03	-1/3	0	1/6	
3	2.21	1.05	1/2	1/2	-1/3	
4	2.79	0.90	-1/3	-1/2	-1/6	
5	3.95	1.17	1/6	-1/2	-1/3	
6	-0.68	0.90	1/2	1/4	-1/6	
7	-0.10	0.94	1/6	-1/6	1	

1-dimensional constraints on c_{i}
and c_{gghh} and 2-dimensional
likelihood scans in the (c_{hhh}, c_{gg})
and (c_{hhh}, c_{tthh}) planes.
The parametrization allows to
all HEFT couplings.

In addition to interpreting the statistical results in terms of constraints on the coupling modifiers κ_{λ} and κ_{2V} , the $HH \rightarrow b\bar{b}\gamma\gamma$ analysis

15

EFT interpretations for the $HH \rightarrow bb\gamma\gamma$ analysis

A summary of the constraints on the EFT couplings set by the $HH \rightarrow b\bar{b}\gamma\gamma$ analysis is presented here.

Higgs 2023

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

16

EFT interpretations for the $HH \rightarrow bbbb$ analysis

The new $HH \rightarrow bbbb$ analysis with full Run 2 data has also provided an interpretation of their statistical results in both the HEFT and **SMEFT** frameworks!

Parameter	Expected (Constraint	Observed	Constraint
	Lower	Upper	Lower	Upper
c _H	-20	11	-22	11
c_{HG}	-0.056	0.049	-0.067	0.060
$c_{H\square}$	-9.3	13.9	-8.9	14.5
c_{tH}	-10.0	6.4	-10.7	6.2
c_{tG}	-0.97	0.94	-1.12	1.15

Higgs 2023

EFT interpretations for the $HH \rightarrow b\bar{b}b\bar{b}$ analysis

Higgs 2023

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

2-dimensional limits in the planes $(\mathbf{C}_{\mathbf{i}}, \mathbf{C}_{\mathbf{H}}),$ where C_i is one of the **SMEFT** couplings $C_{H\Box}, C_{tH}, C_{tG}, C_{HG}.$

Outlook for HL-LHC: projections of the old Run 2 $HH \rightarrow bb\gamma\gamma$ analysis

- With the Run 2 old and new HH analyses we made a nice step in improving our constraints on SM HH production as well as anomalous κ_{λ} and κ_{2V} values.
- However, the **final statement** about **HH production** and coupling is expected only after the HL-LHC data-taking.

The HH Run 2 old analyses in the three golden c projected to the HL-LHC data-taking scenario!

2

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

	Four systematic u	ncertainty schemes:
the trilinear self-	No syst. unc.	Optimistic scenario: no syst. unc.
hannels were	Baseline	 Experimental and theoretical u Modelling uncertainties same a Luminosity unc. scaled by 0.6
	Theoretical unc. halved	 Theoretical unc. halved. Experimental, luminosity and nuncertainties same as Run 2.
$\gamma\gamma$, DD $\tau\tau$, and DDDD!	Run 2 syst. unc.	Pessimistic scenario: same unc. a

The **bbyy** channel is expected to provide the **leading sensitivity** to κ_{λ} at the **HL-LHC**!

68%

 K_{λ}

HL-LHC prospects for $HH \rightarrow b\bar{b}b\bar{b}$ and HH combination: <u>ATL-PHYS-</u> PUB-2022-053.

Outlook for HL-LHC: projections of the old Run 2 $HH \rightarrow bb\gamma\gamma$ analysis

- With the Run 2 old and new HH analyses we made a nice step in improving our constraints on SM HH production as well as anomalous κ_{λ} and κ_{2V} values.
- However, the **final statement** about **HH production** and the **trilinear self**coupling is expected only after the HL-LHC data-taking.

The HH older Run 2 analyses in the three golden channels were projected to the HL-LHC data-taking scenario!

 $\sqrt{s} = 14$ TeV, 3000 fb⁻¹!

No syst. unc.	Optimistic scenario: no syst. unc.
Baseline	 Experimental and theoretical unc. ha Modelling uncertainties same as Run Luminosity unc. scaled by 0.6
Theoretical unc. halved	 Theoretical unc. halved. Experimental, luminosity and modell uncertainties same as Run 2.
Run 2 syst. unc.	Pessimistic scenario: same unc. as Run

Four systematic uncertainty schemes:

- While **Run 2** analyses are **mostly** statistically limited, the systematic uncertainties start to be a **limiting factor** in the analysis sensitivity at HL-LHC!
- Crucial to start now to understand and tackle our dominant systematics!

HL-LHC prospects for $HH \rightarrow b\bar{b}b\bar{b}$ and HH combination: <u>ATL-PHYS-</u> PUB-2022-053.

Other di-Higgs searches: ATLAS

Other di-Higgs searches: ATLAS new Run 2 analyses

	HH → bbγγ	
Status	 New result! The paper is on ArXiv, and was submitted to JHEP. 	NevChe
Constraints on σ _{ggF+VBF} (HH)	Expected $5.0 \times \sigma^{SM}$ Observed $4.0 \times \sigma^{SM}$	E× Oł
Constraints on κ_{λ}	$ \begin{array}{c} \begin{array}{c} & \textbf{ATLAS Preliminary} \\ & \textbf{Observed} \\ & \textbf{HH} \rightarrow b \overline{b} \gamma \gamma \\ & \textbf{S} = 13 \text{ TeV}, 140 \text{ fb}^{-1} \\ & \textbf{HH} \rightarrow b \overline{b} \gamma \gamma \\ & \textbf{S} \\ & \textbf{G8\% CL: } \kappa_{\lambda} \in [0.6, 5.2] \\ & \textbf{95\% CL: } \kappa_{\lambda} \in [-1.2, 6.1] \\ & \textbf{95\% CL: } \kappa_{\lambda} \in [-1.2, 6.1] \\ & \textbf{95\% CL: } \kappa_{\lambda} \in [-2.8, 7.8] \\ & \textbf{2} \\ & \textbf{1} \\ $	
Constraints on κ _{2ν}	$F_{R} = \begin{bmatrix} 7 & ATLAS \text{ Preliminary} & Observed \\ \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1} & \cdots & Expected \\ HH \rightarrow b\bar{b}\gamma\gamma \\ & 0bserved \\ & 68\% \text{ CL: } \kappa_{2V} \in [0.3, 1.9] \\ & 95\% \text{ CL: } \kappa_{2V} \in [-0.5, 2.7] \\ & Fxpected \\ & 68\% \text{ CL: } \kappa_{2V} \in [-1.1, 3.3] \\ & 2 \\ & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \kappa_{2V} \end{bmatrix}$	- 2∆log(L)

Other di-Higgs searches: CMS

the HH searches based on data collected by CMS are shown below.

• The current constraints on the di-Higgs production signal strength, VBF HH production cross section, κ_{λ} , and and κ_{2V} obtained from

Allowed κ_{λ} values	Allowed κ_{2V} values	
[-0.89, 7.12]	_	
[-1.25, 6.85]	[0.67, 1.38]	

Other di-Higgs searches: CMS

the HH searches based on data collected by CMS are shown below.

bb WW $\kappa_{2V} = 1.0^{+1.3}_{-1.3}$

 $\kappa_{2V} = 3.5^{+1.2}_{-6.1}$

bb yy 🐥 $\kappa_{2V} = 2.1^{+0.8}_{-2.8}$

bb ττ 🐥 $\kappa_{2V} = 1.1^{+0.8}_{-0.8}$

bb bb 🐥 $\kappa_{2V} = 1.5^{+0.2}_{-0.4}$

 $\kappa_{2V} = 1.0^{+0.2}_{-0.2}$

• The current constraints on the di-Higgs production signal strength, VBF HH production cross section, κ_{λ} , and and κ_{2V} obtained from

ggF HH cross section

presented in the two plots below.

• The contribution of the box diagram, triangle diagram, and their interference to the ggF HH cross section in the m_{HH} spectrum is

Definition of m^{*} $bb\gamma\gamma$

- the resolution of the $b\bar{b}\gamma\gamma$ invariant mass for the resonant $X \to HH \to b\bar{b}\gamma\gamma$ decay with respect to the usual $\mathbf{m}_{b\bar{b}\gamma\gamma}$ variable.
- Therefore, for historical reasons, $\mathbf{m}^*_{\mathbf{b}\bar{\mathbf{b}}\gamma\gamma}$ is also adopted as a discriminant variable also for the **non-resonant** $HH \rightarrow b\bar{b}\gamma\gamma$ **search**.

• The reduced 4-object invariant mass $\mathbf{m}^*_{\mathbf{b}\bar{\mathbf{b}}\gamma\gamma}$, defined as $\mathbf{m}^*_{\mathbf{b}\bar{\mathbf{b}}\gamma\gamma} = \mathbf{m}_{\mathbf{b}\bar{\mathbf{b}}\gamma\gamma} - (\mathbf{m}_{\gamma\gamma} - \mathbf{125} \text{ GeV}) - (\mathbf{m}_{\mathbf{b}\bar{\mathbf{b}}} - \mathbf{125} \text{ GeV})$, significantly improves

600

Data and MC samples

• Data:

This analysis relies on the **full Run2 dataset**.

• MC samples:

Signals

• ggF HH samples at NLO

- Nominal samples use Powheg + Pythia8.
- Alternative samples are based on Powheg + Herwig7.

- With $\kappa_{\lambda} = 1$ (SM case) and $\kappa_{\lambda} = 10$.
- VBF HH samples at LO

- Nominal samples use MadGraph + Pythia8.
- Alternative samples are based on MadGraph + Herwig7.

- SM sample + 12 samples with BSM values for the coupling modifiers κ_{λ} , κ_{2V} , and κ_{V} .

Amounting to an integrated luminosity of **140 fb**⁻¹.

Triggers & Pre-selection

- A combination of **di-photon** and **single-photon triggers** are used to maximize the efficiency.
- 2015: HLT_g120_loose - 2015+2016: HTL_g35_loose_g25_loose - 2016+2017+2018: HLT_g140_loose - 2017+2018: HLT_g35_medium_g25_medium_L12EM20VH Require two loose or medium photons with (sub-)leading $p_T > 35(25)$ GeV.

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

Require one loose photon with $p_T > 120 \text{ or } 140 \text{ GeV}.$

Especially relevant for $H \rightarrow \gamma \gamma$ decays with highly boosted Higgs bosons, where the two photons cannot be resolved!

VBF-jet tagger

Needed to calculate the VBF-related input variables for the BDTs!

• The BDT is trained on the SM VBF HH sample, considering events with at least 4

jets, using di-Higgs and VBF jet-related variables are used as input features.

Signal	Signal Jet pairs where both jets are truth- matched to a true VBF quark.	
Background	All the other jet pairs, where at least one jet is not truth-matched.	excluded

- A **BDT score** is assigned to each **jet pair** in an event.
- The selected VBF-jets correspond to the di
 - jet system with the highest BDT score!

The **BDT-based** VBF jet tagger is able to **recover** a fraction of **+7%** of **correctly classified VBF** jet pairs with respect to the simpler recipe, based on the di-jet invariant mass m_{ii}!

• The categorization BDTs rely on kinematic variables for the training, including the VBF-targeting variables m_{ii} and $\Delta \eta(j_1, j_2)$.

BDT applied to all the **possible jet pairs** of an event, and used to select the jet pair that is most likely to arise **from VBF production**!

ady selected as **b-jets** are

the true jet, and a true VBF quark is $\Delta R < 0.3$.

Efficiency for ggF HH and VBF HH signals

Higgs 2023

Data/MC comparison: High Mass categories

• Plots showing the agreement between data and MC in the $m_{\gamma\gamma}$ spectrum for the High Mass categories are presented below.

Data/MC comparison: Low Mass categories

• Plots showing the agreement between data and MC in the $m_{\gamma\gamma}$ spectrum for the Low Mass categories are presented below.

Higgs 2023

Fit results: High Mass categories

• Plots showing the fit results to data in the $m_{\gamma\gamma}$ spectrum for the High Mass categories are presented below.

Fit results: Low Mass categories

• Plots showing the fit results to data in the $m_{\gamma\gamma}$ spectrum for the Low Mass categories are presented below.

Higgs 2023

Systematic uncertainties

The impact of each source of systematic uncertainty has to be quantified and included when performing the statistical analysis.

The systematic uncertainties are **propagated** through the **full analysis workflow**! They may result in $\pm 1\sigma$ variations for the expected yields or the shape parameters for the signal HH and single Higgs **Peak position** and **peak width** for the resonant shape processes!

		ggF HH	VBF HH	Single Hig
Theory	Cross section and branching fraction	 BR(γγ) (2.9%) and BR(bb) (1.7%) PDF + α_S (3%) Scale + mtop (^{+6%}-23%) 	 BR(γγ) (2.9%) and BR(bb) (1.7%) PDF + α_S (2.1%) Scale (0.04%) 	 BR(γγ) (2.99 Heavy Flave uncertainty (100%, only ggF, VBF, a WH)
	Acceptance	ggF HH parametrization	VBF HH parametrization	_
Exp.	Scale, PDF + α _s , Parton Shower • Pile-up modelling; • Di-photon trigger efficiency; • Photon identification and isolation efficient • Photon energy scale and resolution; • Jet energy scale and resolution; • Jet vertex tagger efficiency; • Flavour tagging efficiencies.			
	Shape	Photon energy scale, photon energy resolution.		

Search for Higgs boson pair production in the bbyy final state from 13 TeV pp collision data with the ATLAS detector

35

Impact of the systematic uncertainties on the upper limits on $\mu_{\rm HH}$

- The sensitivity of this $HH \rightarrow b\bar{b}\gamma\gamma$ analysis is completely dominated by the limited Run 2 statistics!
- It is however interesting to study the **impact** of **systematic uncertainties** on the upper limits on μ_{HH} .

Evaluated by fixing the corresponding NPs to the best-fit values and repeating the limit calculation.

This $HH \rightarrow b\bar{b}\gamma\gamma$ Run 2 analysis

Systematic uncertainty source	Relative impact [%]
Experimental	
Photon energy resolution	0.4
Photon energy scale	0.1
Flavour tagging	0.1
Theoretical	
Factorisation and renormalisation scale	4.8
$\mathcal{B}(H \to \gamma \gamma, b\bar{b})$	0.2
Parton showering model	0.2
Heavy-flavour content	0.1
Background model (spurious signal)	0.1

• The impact of the **spurious signal** uncertainty is **suppressed** w.r.t. the **previous analysis** (where the effect on the upper limit was found to be $\sim 3\%$).

Thanks to the new **high-efficiency background template** adopted for measuring this uncertainty!

Old $HH \rightarrow b\bar{b}\gamma\gamma$ **Run 2 analysis**

		Relative impact of the systematic	incertainties [%]
Source	Туре	Nonresonant analysisReso HH m_X	nant analysis = 300 GeV
Experimental			
Photon energy resolution Let energy scale and resolution	Norm. + Shape	0.4 < 0.2	0.6
Flavor tagging	Normalization	< 0.2	0.2
Theoretical			
Factorization and renormalization scale	Normalization	0.3	< 0.2
Parton showering model	Norm. + Shape	0.6	2.6
Heavy-flavor content	Normalization	0.3	< 0.2
$\mathcal{B}(H \to \gamma \gamma, b\bar{b})$	Normalization	0.2	< 0.2
Spurious signal	Normalization	3.0	3.3

According to the latest HL-LHC projections, the **spurious signal** is expected to be one of the major limiting factors for the sensitivity of the $HH \rightarrow bb\gamma\gamma$ analysis at the **HL-LHC stage**!

Crucial to address this systematic uncertainty now!

