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For High Energy Physics (HEP) experiments, such as the Large Hadron Collider (LHC) experiments, 
the calorimeter is a key detector to measure the energy of particles. Incident particles interact with 
the material of the calorimeter, creating cascades of secondary particles, so-called showers. A detailed 
description of the showering process relies on simulation methods that precisely describe all particle 
interactions with matter. Constrained by the need for precision, the simulation of calorimeters is 
inherently slow and constitutes a bottleneck for HEP analysis. Furthermore, with the upcoming high 
luminosity upgrade of the LHC and a much-increased data production rate, the amount of required 
simulated events will increase. Several research directions have recently investigated the use of Machine 
Learning based models to accelerate particular calorimeter response simulation. These models typically 
require a large amount of data and time for training, and the result is a simulation tuned specifically to 
this configuration. Meta-learning has emerged recently as a fast learning algorithm using small training 
datasets. In this paper, we use a meta-learning approach that “learns to learn” to generate showers from 
multiple calorimeter geometries, using a first-order gradient-based algorithm. We present MetaHEP, the 
first application of the meta-learning approach to accelerate shower simulation using very high granular 
data and using one of the calorimeters proposed for the Future Circular Collider (FCC), a next-generation 
of high-performance particle colliders.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The nearest future is very exciting for High Energy Physics 
(HEP), especially for the Large Hadron Collider experiments and 
their high-luminosity upgrade (HL-LHC) foreseen for 2029 [1]. The 
increase of luminosity means more data will be gathered, enabling 
new and higher precision measurements. This will require a cor-
responding increase in the amount of Monte Carlo (MC) simulated 
data, which already is a major consumer of the computing time 
for most experiments [2,3]. In order to fit within the available re-
sources, HEP experiments are carrying out multiple R&D activities, 
including efforts to accelerate the simulation using so-called fast 
simulation techniques [3–6]. Some of those methods are already 
successfully applied in ATLAS [7], CMS [8], and LHCb [9].

Detailed simulation of particle transport through a model of a 
detector is performed using the Geant4 toolkit [10]. It allows to 
emulate a particle’s interactions with matter by transporting it step 
by step by a small distance. This process evaluates the probabilities 
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of interactions with the material of the detector. The energy of ex-
citations and particles that are not simulated such as low-energy 
electrons, positions and photons are registered as energy deposi-
tions.

Interactions may produce secondary particles, which are added 
to the queue of particles, and simulated once the step-by-step 
propagation of the previous particle is completed. This detailed 
simulation is often referred to as a full simulation.

In a typical HEP collider experiment, a detector is comprised 
of light tracking devices to measure the momenta of the charged 
particles, one or more calorimeters to measure the energy of elec-
trons, positrons, photons, and hadrons (both charged and neutral) 
and finally a muon tracking system to measure the momenta of 
muons. The basic principle of calorimetry depends on the cre-
ation of cascades of the secondary particles and their absorption 
in the dense material of the calorimeter. Those showers are com-
posed of many particles and thus their simulation is computation-
ally intensive. Calorimeters are typically the slowest detectors to 
simulate [11]. The acceleration of the simulation of showers in 
calorimeters is vital to address the computing challenges ahead.

Techniques for the fast simulation of showers rely on replac-
ing the detailed step-by-step simulation of particle interactions 
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Fig. 1. Visualization of a single shower initiated by a 10 GeV electron and simulated with Par04 example [32]. Energy is deposited in a cylindrical mesh around the incident 
particle momentum. Projections in the lateral plane (a) and the longitudinal plane (b) are shown.
with matter with instantaneous creation of energy deposits in the 
detector. An example visualization of the deposited energy in a 
simulation of a 10 GeV electron is shown in Fig. 1. Such response 
of the detector to an incoming particle can be parametrized, with 
the goal of maintaining sufficient precision while decreasing the 
simulation time. Several approaches have been studied and ap-
plied in the experiments. One of the possibilities is to reuse several 
times the same detailed simulation [12] or to approximate with 
mathematical formulas the shape of the shower [13]. Given the 
complexity of the showers and the difficulty to model the statisti-
cal fluctuations, it is tough to address the fast shower simulation 
with high precision using current models, especially for granular 
calorimeters. Those solutions are therefore used only in the regions 
of the detector in which performance is not of utmost importance, 
or for the physics analysis that require very high statistics of sim-
ulated data, with fewer constraints on their precision.

In recent years, deep learning techniques have achieved great 
success in various science areas. In HEP, deep learning techniques 
have been used for fast simulation of detector responses such as 
in [14–19]. These studies focused on a single detector geometry 
using a large amount of data for training, which was found neces-
sary to achieve good performance.

Meta-learning [21] is a learning-to-learn approach. Historically, 
this idea first appeared in 1987 [22]. In this family of methods 
neural networks are trained to get as inputs their own weights 
and predict weight updates. In Ref. [23] meta-learning with gradi-
ent descent and backpropagation was first proposed. This approach 
was extended for use in reinforcement learning [24]. A meta-
learning approach takes a distribution of tasks, where each task 
corresponds to a learning problem. The goal is then to produce 
a quick learner which can generalize from small amounts of data 
examples. Model-agnostic meta-learning (MAML) [25] is a meta-
learning algorithm whose optimization problem is learning the 
initialization parameters (weights) of a neural network. These pa-
rameters constitute the meta-knowledge and they are learned dur-
ing a meta-training step. They can be used as initialization weights 
of the model and subsequently tuned for a new task. We refer to 
task-specific tuning as adaptation.

Reptile [26] is a first-order gradient-based meta-learning algo-
rithm, i.e., it performs stochastic gradient descent (SGD) on each 
task in a standard way as opposed to MAML which computes 
the second derivatives. This makes Reptile more computationally 
and memory efficient, while the optimization problem remains the 
same as for MAML.

In this paper, we present MetaHEP, a generalizable and reusable 
solution for fast shower simulation. Our model is trained on mul-
tiple detector geometries and adapts quickly to a new one. To the 
2

best of our knowledge, MetaHEP is the first application of a gener-
ative meta-learning approach for fast shower simulation in HEP. It 
uses highly granular data, making it suitable for detectors of cur-
rent and future experiments, such as the Future Circular Collider 
(FCC) [27].

2. Related work

Generative models such as generative adversarial networks 
(GANs) [39] and variational autoencoders (VAEs) [40] have been 
explored as a promising approach for fast shower simulation in 
HEP. Early applications using GANs [14] were implemented for 
electromagnetic shower simulation. The authors showed that GANs 
were able to generate highly realistic showers and reduce the com-
putational cost of simulation by up to two orders of magnitude 
compared to full Geant4 simulation. Ref. [15], presents the first 
application of GANs and VAEs for calorimeter shower simulation of 
photons in the ATLAS detector. The two models use the readout of 
the energy deposits recorded by the cells of the ATLAS calorimeter. 
The computational time to generate new showers with these mod-
els was also reduced up to two orders of magnitude compared to 
the full Geant4 simulation, with a very small memory footprint of 
the order of 5 MB [20]. Because the ATLAS cell structure is not ho-
mogeneous, FastCaloGAN [19], another GAN-based model for fast 
simulation in the ATLAS detector, uses a voxelisation procedure to 
group the spatial energy deposits in each calorimeter layer from 
the Geant4 full simulation data into volumes called voxels. In fact, 
FastCaloGAN parameterizes the interactions of particles in the AT-
LAS calorimeter using 300 GANs, one for each particle type and η
slice in which the reference samples are produced. FastCaloGAN 
uses the Wasserstein GAN with a gradient penalty (WGAN-GP) 
term in the loss function of the discriminator.

In addition to the above-mentioned models, other approaches 
have also been explored. In Ref. [18], a combination of VAEs and 
GANs known as the bounded information bottleneck autoencoder 
(BIB-AE) [41], is used to simulate electromagnetic showers in the 
central region of the Silicon-Tungsten calorimeter of the proposed 
ILD [28]. The authors show that using a modified BIB-AE for gener-
ation can accurately model all tested relevant physics distributions 
to a higher degree than achieved by traditional GANs. Normaliz-
ing flows have also been explored. The authors of CaloFlow [17]
introduce a fast detector simulation framework based on nor-
malizing flows. They also introduce a new validation metric of 
fast simulation approaches based on a classifier to test whether 
pFast Sim(x) = pF ullSim(x). This is achieved by training a classifier on 
FullSim data and if it performs similarly to a classifier trained on 
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Table 1
Dimensions of the physical layout of the studied detectors.

Detector 1st material 2nd material Number of
thickness (mm) thickness (mm) layers

SiW cylinders 0.3 mm 1.4 mm 90
SciPb cylinders 1.2 mm 4.4 mm 45
PbWO4 cylinders 200.25 mm - 1
SiW FCC-ee 0.5 mm 1.9 mm 40

FastSim data, then this means that the FastSim data are well ap-
proximating the FullSim data.

3. Calorimetry and datasets

A particle entering the calorimeter initiates a cascade of sec-
ondary particles. Those particles deposit energy and produce fur-
ther particles until the full energy of the primary particle is ab-
sorbed (or until the particle escapes the calorimeter).

The description of the three-dimensional shape of a shower is 
usually done by splitting the representation along the shower axis, 
i.e., the direction of the incident particle, to create the longitudi-
nal profile, and in the transverse plane, named the lateral profile. 
The development of showers depends on the energy, the type and 
the direction of the incident particle, as well as on the character-
istics of the detector or its detailed geometry: material, size, and 
thickness. The denser the detector, the smaller the size of the pro-
duced shower. For convenience, one can express the longitudinal 
and lateral distance from the shower axis in the material-specific 
units: the radiation length1 z/X0 and the Moliére radius2 r/R M . 
The values of z/X0 and r/R M units are used commonly to describe 
and compare different calorimeters, and they are also the basis 
of the material-independent shower parametrisation GFlash [13]. 
The importance of these units for MetaHEP is described further in 
Sec. 3.2.

3.1. Calorimeter geometry description

In this paper, we consider four different calorimeter geometries. 
Three geometries are idealised versions of calorimeters serving as 
demonstrators. They are setups of concentric cylinders with in-
terchanging layers of materials. The first geometry uses layers of 
silicon and tungsten (SiW), the second one uses scintillator and 
lead (SciPb) and the third one consists of a single material, lead 
tungstate (PbWO4). The fourth geometry used in this paper is a 
more realistic geometry, studied in the context of the electron-
positron FCC-ee experiment [29] and based on the CLIC detec-
tor [30]. This geometry comprises flat silicon sensors, placed in an 
octagonal pattern in the transverse cross-section of the detector. 
Silicon sensors are accompanied by a number of materials, most 
notably tungsten, but also readout and electrode plates, and in-
clude spacing in between layers. The important physical character-
istics of those detectors are summarised in Table 1. For the FCC-ee 
calorimeter, only the thickness of silicon and tungsten are men-
tioned as the first and second materials, respectively. The source 
file for the FCC-ee calorimeter can be found in [31].

Fig. 2 presents a comparison of basic shower characteristics for 
the studied detectors. It is shown using the example of 64 GeV 
electrons entering the detectors perpendicularly to the cylinder 

1 The radiation length is the average distance over which an energetic electron 
loses 1 − e−1 of its energy by bremsstrahlung. It is also on average 7/9 of the mean 
free path an energetic photon travels before creating e−e+ pair.

2 The Moliére radius is defined as the radius of a cylinder in which particle de-
posits on average 90% of its initial energy.
3

Table 2
Dimensions of the dynamic mesh readout (presented in Fig. 3b) 
of the studied detectors.

Detector R P N �r �z
(mm) (mm)

SiW cylinders 18 50 45 2.3 3.4
SciPb cylinders 18 50 45 4 5.6
PbWO4 cylinders 18 50 45 4.9 4.5
SiW FCC-ee 18 50 45 4.9 5.05

axis. The distribution of energy deposits in a single readout cell is 
presented in Fig. 2a. The readout structure of the detectors is de-
scribed in detail in Sec. 3.2. The largest energy deposits are made 
in the cells of the lead tungstate calorimeter (PbWO4) as this is 
the homogeneous detector, where the absorber is also the material 
in which the deposited energy is recorded. This is also visible in 
the distribution of the total energy presented in Fig. 2b. Almost all 
of the energy of the incident particle is deposited in the homoge-
neous calorimeter and only a few per cent for the other sampling 
detectors.

The longitudinal shower profile is shown in Fig. 2c in metric 
units, and in Fig. 2d in units of radiation length. The latter distri-
bution demonstrates how expressing the longitudinal distance in 
terms of material-specific units can help to generalize the shower 
profile despite the difference in materials. The same conclusion can 
be drawn for the lateral shower profile, shown in Fig. 2e in metric 
units, and in Fig. 2f in units of Moliére radius.

3.2. Detector readout

The basic idea behind MetaHEP is connected to the construc-
tion of the detector readout. In order to obtain similar information 
on energy deposits from different detectors, an innovative scoring 
mesh is implemented, independent of the physical readout of the 
detector. The advantage of this definition is that it allows a high 
granularity segmentation of energy deposited in the simulation, 
independently of the angle at which a particle enters the detec-
tor. Moreover, such a representation of a shower with mesh cell 
size expressed in material-specific units facilitates generalization 
to different geometries.

The principle of energy scoring in this mesh is the following: 
whenever a particle enters the volume of the calorimeter, its mo-
mentum direction is used to define the position and the orienta-
tion of the cylindrical readout structure, which is centred around 
the particle momentum, as shown in Fig. 3a. The metric size of the 
mesh determines the granularity of the produced showers and can 
differ for each of the studied geometries. It should remain similar 
when expressed in material-specific units. Moreover, the number 
of mesh cells should remain identical, as it is directly linked to 
the design of the ML parameterisation model. The cylindrical read-
out is presented in Fig. 3b. Dimensions of the mesh readout for 
the studied geometries are summarised in Table 2. The number of 
mesh cells has been optimized to contain on average 95% of en-
ergy of 1 TeV electrons.

3.3. Datasets

Simulation of single electrons in the studied detectors has been 
performed with geant4 producing datasets used in this paper. The 
energy of incident electron ranges from 1 GeV to 1 TeV (in powers 
of 2, in total 11 energy values: 1 GeV, 2 GeV, 4 GeV, . . ., 1024 GeV) 
and incident angle θ from 50◦ to 90◦ (in a step of 10◦ , in total 5 
angles). Particles with an incident angle θ of 90◦ are perpendicular 
to the detector axis. Incident angle φ is sampled uniformly from 0 
to 360◦ for a cylindrical detector and is set to 90◦ for a realistic 
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Fig. 2. Comparison of basic shower characteristics for the studied geometries.

Fig. 3. Energy scoring mesh.
4
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Fig. 4. Shower energy deposition in 4 selected layers of a 1 TeV electron entering the SiW calorimeter at an incident angle of 90◦ .

Fig. 5. MetaHEP workflow.
detector. In the latter case, due to the lack of φ symmetry one 
needs to consider both φ and θ as input. 10’000 particle showers 
are simulated for each energy and angle. Separate samples were 
generated for the sake of validation studies.

Idealised, cylindrical detectors used in this paper are simulated 
with the ParO4 example of geant4 toolkit [32] with the dimen-
sions of the materials and the readout mesh described in Table 1
and Table 2, respectively. Full simulation of the model of an FCC-
ee detector is performed with the FCCSW [33], a common software 
for all FCC experiments using the turnkey software stack Key4HEP 
[34]. Datasets that were used in the initial training of the model 
(SiW and SciPb) are available on Zenodo [35]. Datasets simulated 
with the PbWO4 cylindrical geometry and the FCC-ee detector are 
used to demonstrate the power of MetaHEP, the adaptation step. In 
order to demonstrate that the model can learn from a small subset 
of a dataset, only 30% of the available statistics (for each energy 
and angle) is used for the meta-training.

Fig. 4 shows a shower energy deposition in (x,y) coordinates for 
four selected layers of the SiW cylindrical detector, for a primary 
electron with an energy of 1 TeV. It shows the evolution of the 
shower, with small deposits in the first and last layers, and the 
bulk of the energy deposited in the middle.

4. Meta learning with generative modelling

We now describe our meta-generative model. First, we present 
the experimental setup and then describe how we can approx-
imate a generation function for fast shower simulation using a 
meta-learning model.
5

4.1. Proposed workflow

Fig. 5 represents the different modules of the MetaHEP solu-
tion workflow. The preprocessing module allows us to prepare the 
simulated data, using the representation of showers in the read-
out mesh described in Sec. 3.2. This module is also used to encode 
condition information such as detector identifier, the energy of the 
particle initiating the shower, and the angle at which the particle 
enters the detector. The detector identifier is encoded as a one-hot 
encoding vector of size 3, i.e., the first detector gets [0,0,1] and the 
second [0,1,0] and the third gets [1,0,0].

The preprocessed data is then used by the meta-generative 
model for training and adaptation. After this step, the model is 
converted into a format such as JSON or ONNX that can be used 
for inference in C++ (Geant4 inference). ParO4 [32] is a Geant4

example which demonstrates how to use a generative model in-
corporating inference libraries such as LWTNN [36], ONNX runtime 
[37] and LibTorch [38]. Running inference within the same frame-
work that performs full simulation enables direct comparison of 
full and fast simulation, and, more importantly, its application in a 
HEP experiment data production cycle. Two stages of optimization 
are used, one at training and one at the inference phase. The for-
mer is used to search for the best set of hyperparameters of the 
model with an optimized number of trainable parameters. The lat-
ter is used for inference, enabling further optimization to reduce 
the memory footprint of the model.

In order to model a physics phenomenon, such as a detector re-
sponse to a traversing particle, a certain number of occurrences of 
this phenomenon are simulated. Analysis of the distributions de-
scribing measured properties of these events on a statistical basis 
provides insight into the quality of the modelling. The validation 
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Fig. 6. VAE model architecture.
Fig. 7. Average longitudinal profile after 50 and 360 adaptation steps using a mini-
batch of 100 samples of 64 GeV electrons entering the PBWO4 calorimeter at an 
incident angle of 90◦ . The error bars indicate the statistical uncertainty of the ref-
erence data and the synthesized samples.

is a key module of the workflow used to assess the performance 
of the model. In our study, validation is based on comparing dis-
tributions of shower observables between full and fast simulation. 
These observables characterise shower properties such as longitu-
dinal and lateral profiles. The longitudinal profile describes how 
the energy is deposited by a shower as a function of the depth of 
the calorimeter i.e., the z-axis, shown in Fig. 3b. The lateral profile 
represents the energy density distribution as a function of the ra-
dial coordinate i.e., the r-axis shown in Fig. 3b. The first and second 
moments of those distributions are also checked in the validation 
phase, together with the basic distributions of energy: single cell 
distributions and the total deposited energy i.e., the sum of the 
energies of all cells. To evaluate the generative capability of the 
model, a standalone validation procedure is performed (in Python) 
during or after the training/adaptation phase. On the other hand, 
at the inference stage, when the model is being run within Geant4, 
is used to ensure that the fast simulation is accurate after mapping 
the inferred energies to positions in the calorimeter. The result of 
the two validation procedures should be identical.

In this paper, we will only focus on the meta-generative model 
component.

4.2. Generative fast shower simulation model

Variational Autoencoders (VAEs) combine ideas from represen-
tation learning and probabilistic latent variable modelling to de-
rive a class of deep learning models. Representation learning ap-
proaches have been widely used for supervised and unsupervised 
tasks, and in particular with deep learning architectures, with the 
multiple non-linear transformations yielding more abstraction and 
potentially more useful representations [42].
6

The model used in this paper is a VAE. A VAE is composed of 
two stacked deep neural networks acting as encoder and decoder. 
The encoder learns a meaningful representation of the input data 
with a variational principle. This representation in a latent space 
has a lower dimensionality than the input. The decoder, on the 
other hand, learns the inverse mapping, thus reconstructing the 
original input from this latent representation. The VAE is designed 
with a prior on the representation space therefore to constrain the 
encoded distributions to be Gaussian distributions. The encoder 
network is tasked to return the mean and the covariance matrix 
describing those distributions. The loss function that is optimized 
during the training of the VAE is composed of two parts. The first 
is a regularization loss to minimize the Kulback-Leibler divergence 
[43] between encoded distributions and the prior’ Gaussian dis-
tributions. The second is a reconstruction loss to minimize the 
error by computing the binary cross-entropy between the input 
and the version reconstructed using the latent representation. In 
domain applications, we are often interested in conditional learn-
ing. In our work, the VAE model is tasked to learn a conditional 
probability density based on information about the detector iden-
tifier, the particle’s energy, and the particle’s incident angle. The 
VAE architecture used in this work is shown in Fig. 6. It comprises 
4 hidden layers with widths of 100,50,20,15 and 15,20,50,100 for 
the encoder and decoder respectively.

4.3. Meta learning for fast shower simulation

In this paper, we use Reptile [26] as a meta-learning approach. 
Let θ denote the initial model parameters and t a task from the 
set of tasks. In our case, a task corresponds to learning to simulate 
showers from one detector geometry. For a randomly sampled task 
t , the optimization problem is to minimize Et[Lt(U k

t (θ))], where 
Lt represents the loss of the task t , k is the number of steps or 
updates and U denotes the updating operator such as gradient de-
scent. The loss function is the VAE loss constructed as a binary 
cross entropy loss and a Kulback-Leibler divergence.

Reptile, described in Algorithm 1, is an iterative algorithm. It 
first starts by sampling a task from the distribution of tasks, trains 
on the task, and then moves the initial weights of the model to-
wards the trained weights [26].

Algorithm 1 Reptile algorithm [26].
Initialize θ , the vector of initial parameters

for iteration = 1, 2, ... do

Sample task t , corresponding to loss Lt on weight vectors η
Compute η = U k

t (θ), denoting k steps of SGD or Adam

Update θ ← θ + ε(η − θ).

end for

As an alternative to the last step of the algorithm, θ −η is con-
sidered as a gradient and plugged into an Adam optimizer. In our 
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Fig. 8. Shower shape observables for a sample of 3’000 electrons of 64 GeV entering the PBWO4 calorimeter at incident angle of 90◦ . The error bars indicate the statistical 
uncertainty of the reference data and the synthesized samples.
Reptile implementation, we use k=10 as the number of steps of 
Adam optimization. We use 100’000 iterations for the Reptile train-
ing loop, and periodically every 1’000 iterations the performance of 
the model is checked on a particular geometry using a minibatch 
(100) of shower inputs. The meta-training was completed in ap-
proximately 10 hours on an NVIDIA Quadro RTX 8000 GPU3 with 
a processing power of 4608 cores and clock speeds of 1395 MHz 
and 7001 MHz for graphics and memory respectively.

5. Experimental validation

The key idea behind the meta-learning approach is that in-
stead of starting the training process from scratch on every new 
geometry, we can use the meta-knowledge, accumulated during 
the meta-training step, for a faster and more data-efficient adap-

3 The meta-training used 20 GB of the total GPU memory (46 GB).
7

tation. This refers to learning from prior experience and using this 
meta-knowledge to guide the search for optimal model parameters 
for a new geometry. In our Reptile training loop or meta-training, 
only two detector geometries of cylindrical SiW and SciPb are used 
to build the meta-knowledge. The remaining two geometries of 
cylindrical PBWO4 and SiW FCC-ee are used to demonstrate the 
adaptation capabilities of the model. Once the adaptation is done, 
only the decoder network is used as a generator to perform infer-
ence. The input inference vector is constructed by sampling from 
a 10D Gaussian distribution. The condition vector is comprised of 
the values of the particle energy, the incident angle and the detec-
tor identifier. The results of inference, the fast simulation (MLSim) 
are compared to the full simulation (FullSim).

5.1. Fast adaptation with a cylindrical calorimeter

To test the adaptation on a new detector a full simulation 
sample of PBWO4 cylindrical geometry is used. The weights of 
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Fig. 9. Shower energy observables for a sample of 3’000 electrons of 64 GeV entering the PBWO4 calorimeter at incident angle of 90◦ .
the model are first initialized with the meta-knowledge and the 
adaptation process is checked every 10 steps and stopped after 
1000 adaptation steps. This allows identifying at which point fur-
ther adaptation brings no further improvement to the validation 
distributions. The adaptation progress on the longitudinal profile 
distribution is illustrated in Fig. 7. After 50 steps the generated 
longitudinal profile is in poor agreement with full simulation, but 
with 360 steps there is a substantial agreement with a maximum 
relative difference at or below 1% that can be seen in the ratio plot 
(MLSim/FullSim)

The results of shower observables are presented in Fig. 8 for 
shower shapes and in Fig. 9 and Fig. 10 for energy distributions. 
Fig. 8a, Fig. 8b and Fig. 8c compare the longitudinal shower shape: 
profile distribution, its first moment, and its second moment, re-
spectively. Fig. 8d, Fig. 8e and Fig. 8f compare the lateral shower 
shape: profile distribution, its first moment, and its second mo-
ment, respectively. All of those distributions show good agreement 
between the full and fast simulation. The longitudinal distribution 
of energy can also be compared by looking at the distribution of 
accumulated energy within one layer. Fig. 10 shows the energy 
deposited per layer for each of the 45 layers in the detector. Plot-
ted with a logarithmic scale on the vertical axis, they demonstrate 
good agreement between full and fast simulation. It is also visible 
in Fig. 9a, of the distribution of the total energy deposited in the 
calorimeter. Except for the tails of the distribution, the total de-
posited energy is modelled within a few per cent accuracies of the 
full simulation.

Having a further look into energy validation, Fig. 9c and Fig. 9d 
show a distribution of energy deposited in a single cell of the mesh 
readout. Both of those histograms represent the same data, with a 
difference in the width of the bin: the first one shows a constant 
8

bin width in energy (drawn on a logarithmic axis) and the sec-
ond one shows a constant bin width in the logarithm of energy. 
This distribution shows the biggest challenge of our ML model 
and the mismatch between full and fast simulation. There is an 
overabundance of low-energetic energy deposits in the calorimeter 
in fast simulation, and thus an underestimation of high-energetic 
deposits. This is also visible in the distribution of the number of 
created deposits shown in Fig. 9b. Fast simulation creates around 
1.6 times more deposits than full simulation. This can be linked to 
the typical VAE issue of blurriness in the generated images [44,45]. 
The main objective of further studies is to address this issue by 
re-designing the underlying ML model. A second direction of stud-
ies will investigate what is the actual meaning of this cell energy 
mismodelling for the physics analysis. The readout mesh that we 
employ is highly granular and after mapping this mesh readout to 
the physical readout of the detector, cell energy distribution from 
fast simulation may get closer to full simulation. However, we do 
not expect it to improve considerably for high granular detectors, 
which are of particular importance for future experiments.

5.2. Fast adaptation with a realistic calorimeter

The second test of MetaHEP’s capabilities is done on the SiW 
FCC-ee detector, which is very different from the other three de-
tectors considered so far. As it is a detector with a realistic layout, 
it is much more complicated and differs considerably from the 
detectors used in the initial training. For the adaptation to this de-
tector, the weights of the model are first initialized with the same 
meta-knowledge as in the previous test presented in Sec. 5.1, i.e., 
on the pre-trained model to cylindrical SiW and SciPB detectors. 
The adaptation process is checked every 10 steps and is stopped 



D. Salamani, A. Zaborowska and W. Pokorski Physics Letters B 844 (2023) 138079
Fig. 10. Accumulated energy deposited in each layer of the PBWO4 calorimeter for 
a sample of 3’000 electrons of 64 GeV entering at an incident angle of 90◦ . To 
enhance the clarity of the illustration, only a subset of the rows (four out of the 
total of nine that represent the 45 layers) are depicted.

after 2000 adaptation steps. Compared to the cylindrical PbWO4
calorimeter, the number of adaptation steps necessary to get a very 
good agreement with the full simulation is almost 3 times higher. 
We attribute the extra effort required to more complex geome-
try and the significant differences in the layout from the detectors 
used for the initial training.

The results of shower observables after 1000 adaptation steps 
are presented in Fig. 11 for shower shapes and in Fig. 12 for energy 
distributions. Fig. 11a, Fig. 11b and Fig. 11c compare the longitudi-
nal shower shape: profile distribution, its first moment, and its sec-
ond moment, respectively. Fig. 11d, Fig. 11e, and Fig. 11f compare 
the lateral shower shape: profile distribution, its first moment, and 
its second moment, respectively. All of those distributions show 
a good agreement between the full and fast simulation. The same 
applies to the total energy distribution in the calorimeter, shown in 
Fig. 9a. Except for the tails of the distribution, the total deposited 
energy is modelled with a few per cent accuracies by the fast sim-
ulation. The single-cell energy distribution remains the least-well-
modelled distribution. It is shown in Fig. 12c for constant energy 
bin width and in Fig. 12d. For the FCC-ee SiW detector, there is 
a slightly better agreement of the distributions than for the previ-
9

Table 3
Comparison between traditional training and adaptation using the sim-
plified calorimeter geometry PBWO4. The value of speed-up is calculated 
w.r.t. 3900 steps of traditional training, comparing the results of the same 
accuracy. The experiments were run on a workstation equipped with an 
AMD EPYC 7282 16-core processor with a clock speed of 2800 MHz. The 
architecture is x86-64.

Approach Number of steps Time Speedup

Traditional training 400 20 min -
Traditional training 3900 3 h 15 min -
Adaptation 400 20.5 s ×527

Table 4
Comparison between the adaptation phase of the cylindri-
cal PBWO4 and the realistic FCC-ee calorimeter. The exper-
iments were run on a workstation equipped with an AMD 
EPYC 7282 16-core processor with a clock speed of 2800 
MHz. The architecture is x86-64.

Detector Number of adaptation steps Time (s)

PBWO4 360 19
FCC-ee 1000 51

ously studied detector (PbWO4), but there is still an overabundance 
of low-energetic cells. It is very prominent also in the distribution 
of the number of created deposits shown in Fig. 12b. Fast simula-
tion creates around 5 times more deposits than full simulation. All 
conclusions about the model accuracy drawn in the previous sec-
tion, Sec. 5.1, remain. It will be especially interesting to complete 
the study looking at the mapping to the physical readout of the 
detector, which is on an immediate list of plans.

5.3. Adaptation and traditional training

Typically ML models are trained from scratch for a specific 
task (for a specific calorimeter in our case) using a fixed learn-
ing algorithm, which we will call “traditional” training. In order to 
show the strength of the MetaHEP approach, we first compare this 
meta-learning approach to a “traditional” training and then to a 
pre-trained model on a single geometry (SiW) using the simplified 
calorimeter geometry PBWO4and the same model architecture, il-
lustrated in Fig. 6.

Fig. 13 shows the longitudinal profile for the same number of 
training/adaptation steps and for a higher number of steps for the 
traditional case. One can conclude that adaptation, after the initial 
meta-training, provides a faster solution to converge. Traditional 
training requires many more steps to converge (here is shown to 
be almost 4000 steps).

On top of that, as shown in Table 3, the time to run 400 steps 
of adaptation is 20.5 s compared to 1200 s for the same number 
of 400 steps of the traditional training4 on the same CPU. The ulti-
mate speed-up, allowing to achieve the same accuracy, shows that 
adaptation is 500 times faster than traditional training. This num-
ber will depend on the detector, and Table 4 shows the adaptation 
time needed for cylindrical PBWO4 detector described in Sec. 5.1
and the realistic FCC-ee calorimeter presented in Sec. 5.2. More 
time is needed for a more complicated detector, however, it is still 
a very fast adaptation (below 1 min). Adaptation naturally requires 
the meta-training step, which itself will take time, however, the 
ultimate goal is to provide meta-trained models for the commu-
nity so that they can be reused by different users. Therefore this 
cost will be hidden from them and paid by the developers of those 
pre-trained models.

4 For the meta-training approach, we save checkpoint models every 10 steps and 
for the traditional training every 100 steps. The same number of steps is considered 
in the comparison shown in Table 3.
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Fig. 11. Shower shape observables for a sample of 3’000 electrons of 64 GeV entering the FCC-ee SiW calorimeter at an incident angle of 90◦ and azimuthal angle of 90◦ . 
The error bars indicate the statistical uncertainty of the reference data and the synthesized samples.
To show the strength of the MetaHEP, we compare the adap-
tation after the meta-training (using the two detector geometries 
SiW and SciPb) to a pre-trained model on a single detector geom-
etry (SiW) and fine tuning it using the PBWO4 geometry. Fig. 14
shows the longitudinal profile for this comparison. One can con-
clude that the adaptation after the meta-training phase is more 
efficient by comparing the same number of adaptation steps (400), 
the fine-tuning after a pre-training on a single geometry would 
need around four times steps (1600) to well model this distri-
bution. This explains that the knowledge learned during the pre-
training is very specific to the used detector and it would take 
more steps to converge (compared to a meta-training) in the fine-
tuning process. This means that new detectors that are more dif-
ferent from the one used in the pre-training could be even more 
difficult to get the agreement right. Note that the time to run 400 
steps for the adaptation after meta-training or the fine-tuning after 
pre-training on a single geometry remains the same.
10
For the FCC-ee, Fig. 15 shows the longitudinal profile compar-
ing the adaptation after meta-training to traditional training to a 
fine-tuning after a pre-training on a single geometry. The number 
of steps for all three approaches for the FCC-ee is higher than the 
simplified calorimeter geometry PBWO4 as this is a more compli-
cated detector.

6. Conclusions

Deep learning has seen great successes in HEP for fast sim-
ulation of a specific calorimeter geometry. This approach needs 
to be trained on a large dataset and requires considerable re-
sources. In this paper, we presented MetaHEP: a generalizable and 
reusable solution for fast shower simulation using a VAE meta-
trained model with Reptile. It requires a custom simulation, to 
allow the creation of a virtual readout and scoring the energy in 
a highly granular mesh. The granularity of this mesh has a direct 



D. Salamani, A. Zaborowska and W. Pokorski Physics Letters B 844 (2023) 138079

Fig. 12. Shower energy observables for a sample of 3’000 electrons of 64 GeV entering the FCC-ee SiW calorimeter at an incident angle of 90◦ and azimuthal angle of 90◦ .
Fig. 13. Average longitudinal profile comparing the FullSim (blue) to the adaptation 
after meta training (red) to a traditional training with 400 (pink) and 3900 (light 
blue) steps, using a minibatch of 100 samples of 64 GeV electrons entering the 
PBWO4 calorimeter at an incident angle of 90◦ . The shown error bars indicate the 
statistical uncertainty of the reference data and the synthesized samples.

impact on the simulation time, as the deposits must be placed in-
side the detector. Fine-tuning of the granularity will be possible 
once MetaHEP is tested on more realistic geometries. The first re-
sults on the tested detectors show very promising results. There is 
a remaining challenge: the accurate modelling of single-cell distri-
bution, but the study for its improvement is ongoing. Furthermore, 
it is linked to the choice of the underlying ML model and has no 
bearing on the application of meta-learning. The power of Meta-
HEP is its ability to generalize by learning parameter initialization 
11
Fig. 14. Average longitudinal profile comparing the FullSim (blue) to the adaptation 
after meta training (red) to a fine tuning after a pre-training on a single detector 
geometry with 400 (pink) and 1600 (light blue) steps, using a minibatch of 100 
samples of 64 GeV electrons entering the PBWO4 calorimeter at an incident angle 
of 90◦ . The shown error bars indicate the statistical uncertainty of the reference 
data and the synthesized samples.

that can be fine-tuned quickly on a new detector. We showed this 
is 500 times faster than training from scratch on datasets of this 
detector. In future work, we will investigate many input geome-
tries in the meta-training, in order to achieve optimized weights 
for new test detectors, seeking to improve further the adaptation 
step. This is of great importance for detectors that are being de-
signed for future experiments.
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Fig. 15. Average longitudinal profile comparing the FullSim (blue) to the adaptation 
after meta training (red) to a traditional training (pink) and to a fine tuning after 
a pre-training on a single detector geometry (light blue), using a minibatch of 100 
samples of 64 GeV electrons entering the FCC-ee calorimeter at an incident angle of 
90◦ . The shown error bars indicate the statistical uncertainty of the reference data 
and the synthesized samples.

Declaration of competing interest

The authors declare the following financial interests/personal 
relationships which may be considered as potential competing in-
terests: Dalila Salamani reports financial support was provided by 
CERN-EP-RD.

Data availability

A link to the data has been provided in the document.

Acknowledgements

This work benefited from support by the CERN Strategic R&D 
Programme on Technologies for Future Experiments [46] and has 
received funding from the European Union’s Horizon 2020 Re-
search and Innovation programme under Grant Agreement No. 
101004761.

References

[1] Large Hadron Collider, Longer term LHC schedule, http://lhc -commissioning .
web .cern .ch /schedule /LHC -long -term .htm, 2022.

[2] C. Bozzi, LHCb Computing Resource usage in 2021, LHCb-PUB-2022-011, 
CERN-LHCb-PUB-2022-011 CERN, Geneva, Feb 2022, http://cds .cern .ch /record /
2802075.

[3] ATLAS Collaboration, ATLAS Software and Computing HL-LHC Roadmap (No. 
CERN-LHCC-2022-005), 2022.

[4] C.M.S. Offline, Software and Computing, CMS Phase-2 Computing Model: 
Update Document, CMS-NOTE-2022-008, CERN-CMS-NOTE-2022-008, CERN, 
Geneva, Jul 2022, https://cds .cern .ch /record /2815292.

[5] LHCb Collaboration, LHCb CPU Usage Forecast, https://cds .cern .ch /record /
2696552, Oct 2019.

[6] A. Boehnlein, F. Simon, F. Hernandez, D. Britton, R. Bolton, C. Biscarat, et al., 
HL-LHC Software and Computing Review Panel, 1st Report (No. CERN-LHCC-
2020-012), 2020.

[7] ATLAS Collaboration, AtlFast3: the next generation of fast simulation in ATLAS, 
arXiv preprint arXiv:2109 .02551, 2021.

[8] S. Abdullin, P. Azzi, F. Beaudette, P. Janot, A. Perrotta, CMS Collaboration, The 
fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 (3) (Decem-
ber 2011) 032049, IOP Publishing.

[9] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin, E. Zakharov, 
Generative Models for Fast Calorimeter Simulation: the LHCb Case, EPJ Web of 
Conferences, vol. 214, EDP Sciences, 2019, p. 02034.

[10] Geant4 Collaboration, Geant4–a simulation toolkit, Nucl. Instrum. Methods 
Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 
250–303.

[11] M. Rama, G. Vitali, Calorimeter fast simulation based on hit libraries LHCb 
Gauss framework, EPJ Web Conf. 214 (2019) 02040, https://doi .org /10 .1051 /
epjconf /201921402040.
12
[12] E. Barberio, J. Boudreau, B. Butler, S.L. Cheung, A. Dell’Acqua, A. Di Simone, 
et al., Fast simulation of electromagnetic showers in the ATLAS calorimeter: 
frozen showers, J. Phys. Conf. Ser. 160 (1) (April 2009) 012082, IOP Publishing.

[13] G. Grindhammer, M. Rudowicz, S. Peters, The fast simulation of electromag-
netic and hadronic showers, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. 
Spectrom. Detect. Assoc. Equip. 290 (2–3) (1990) 469–488.

[14] M. Paganini, L. De Oliveira, B. Nachman, CaloGAN: simulating 3D high energy 
particle showers in multilayer electromagnetic calorimeters with generative 
adversarial networks, Phys. Rev. D 97 (1) (2018) 014021, https://doi .org /10 .
1103 /PhysRevD .97.014021.

[15] ATLAS Collaboration, Deep generative models for fast shower simulation in AT-
LAS, ATL-SOFT-PUB-2018-001, https://cds .cern .ch /record /2630433, 2018.

[16] M. Erdmann, J. Glombitza, T. Quast, Precise simulation of electromagnetic 
calorimeter showers using a Wasserstein generative adversarial network, Comp. 
Softw. Big Sci. 3 (1) (2019) 1–13.

[17] C. Krause, D. Shih, Caloflow: fast and accurate generation of calorimeter show-
ers with normalizing flows, arXiv preprint arXiv:2106 .05285, 2021.

[18] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Krüger, 
Getting high: high fidelity simulation of high granularity calorimeters with 
high speed, Comp. Softw. Big Sci. 5 (1) (2021) 1–17.

[19] The ATLAS Collaboration, AtlFast3: the next generation of fast simulation in 
ATLAS, Comp. Softw. Big Sci. 6 (7) (2022).

[20] ATLAS Collaboration, Deep generative models for fast shower simulation in AT-
LAS, ATLAS-SIMU-2020-04-002, https://cds .cern .ch /record /2836604, 2018.

[21] D.K. Naik, R.J. Mammone, Meta-neural networks that learn by learning, in: 
[Proceedings 1992] IJCNN International Joint Conference on Neural Networks, 
vol. 1, IEEE, June 1992, pp. 437–442.

[22] J. Schmidhuber, Evolutionary principles in self-referential learning, or on learn-
ing how to learn: the meta-meta-... hook, Doctoral dissertation, Technische 
Universität München, 1987.

[23] J. Schmidhuber, A possibility for implementing curiosity and boredom in 
model-building neural controllers, in: Proc. of the International Conference on 
Simulation of Adaptive Behavior: From Animals to Animats, 1991, pp. 222–227.

[24] J. Storck, S. Hochreiter, J. Schmidhuber, Reinforcement driven information ac-
quisition in non-deterministic environments, in: Proceedings of the Interna-
tional Conference on Artificial Neural Networks, vol. 2, Paris, October 1995, 
pp. 159–164.

[25] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation 
of deep networks, in: International Conference on Machine Learning, PMLR, 
July 2017, pp. 1126–1135.

[26] A. Nichol, J. Achiam, J. Schulman, On first-order meta-learning algorithms, arXiv 
preprint arXiv:1803 .02999, 2018.

[27] FCC Collaboration, FCC physics opportunities: future circular collider concep-
tual design report volume 1, Eur. Phys. J. C 79 (6) (2019) 474.

[28] The ILD Collaboration, The ILD detector at the ILC, arXiv:1912 .04601, 2019.
[29] FCC Collaboration, FCC-ee: the lepton collider: future circular collider concep-

tual design report volume 2, Eur. Phys. J. Spec. Top. 228 (2) (2019) 261–623.
[30] D. Arominski, J.J. Blaising, E. Brondolin, D. Dannheim, K. Elsener, F. Gaede, et al., 

A detector for CLIC: main parameters and performance, arXiv preprint arXiv:
1812 .07337, 2018.

[31] FCC Collaboration, FCCDetectors, FCCeeCLD, https://github .com /HEP-FCC /
FCCDetectors /blob /v0 .1pre09 /Detector /DetFCCeeCLD /compact /FCCee _o2 _v02 /
ECalBarrel .xml.

[32] Geant4 Collaboration, Par04 example. Machine learning inference for fast sim-
ulation in Geant4, https://gitlab .cern .ch /geant4 /geant4 /-/tree /master /examples /
extended /parameterisations /Par04.

[33] J. Cervantes, J. Faltova, G. Ganis, C. Helsens, J. Hrdinka, C. Neubüser, et al., 
A Software Framework for FCC Studies: Status and Plans, EPJ Web of Confer-
ences, vol. 245, EDP Sciences, 2020, p. 05018.

[34] G. Ganis, C. Helsens, V. Völkl, Key4hep, a framework for future HEP experi-
ments and its use in FCC, Eur. Phys. J. Plus 137 (1) (2022) 149.

[35] High Granularity Electromagnetic Calorimeter Shower Images [Data set], Zen-
odo https://doi .org /10 .5281 /zenodo .6082201.

[36] Lightweight Trained Neural Network Library, https://github .com /lwtnn /lwtnn.
[37] Open Neural Network Exchange runtime, https://github .com /microsoft /

onnxruntime.
[38] PyTorch C++ frontend, https://pytorch .org /cppdocs /frontend .html.
[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et 

al., Generative adversarial nets, Adv. Neural Inf. Process. Syst. 27 (2014).
[40] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv preprint arXiv:

1312 .6114, 2013.
[41] S. Voloshynovskiy, M. Kondah, S. Rezaeifar, O. Taran, T. Holotyak, D.J. Rezende, 

Information bottleneck through variational glasses, arXiv preprint arXiv:1912 .
00830, 2019.

[42] L. Dinh, D. Krueger, Y. Bengio, Nice: non-linear independent components esti-
mation, arXiv preprint arXiv:1410 .8516, 2014.

[43] M.I. Jordan, Z. Ghahramani, T. Jaakkola, L. Saul, Introduction to variational 
methods for graphical models, Mach. Learn. 37 (1999) 183–233.

http://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
http://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
http://cds.cern.ch/record/2802075
http://cds.cern.ch/record/2802075
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibBF622867D91849FB234167CC6E697A3Cs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibBF622867D91849FB234167CC6E697A3Cs1
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2696552
https://cds.cern.ch/record/2696552
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib8A851BD6305F298237E6580BF22BE82Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib8A851BD6305F298237E6580BF22BE82Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib8A851BD6305F298237E6580BF22BE82Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibDEE97E00A3706AB21AAB08593F8150A8s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibDEE97E00A3706AB21AAB08593F8150A8s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib4ED63A296EDCA3D24952B2CA5AC382E2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib4ED63A296EDCA3D24952B2CA5AC382E2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib4ED63A296EDCA3D24952B2CA5AC382E2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib121DB68A0E02181D8343507A2B70ADC8s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib121DB68A0E02181D8343507A2B70ADC8s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib121DB68A0E02181D8343507A2B70ADC8s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA03C70530E6AB09C84D240894318C0D2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA03C70530E6AB09C84D240894318C0D2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA03C70530E6AB09C84D240894318C0D2s1
https://doi.org/10.1051/epjconf/201921402040
https://doi.org/10.1051/epjconf/201921402040
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib1330B5CE6F20134FDAEC1AAA279EC4B9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib1330B5CE6F20134FDAEC1AAA279EC4B9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib1330B5CE6F20134FDAEC1AAA279EC4B9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA47D46908B6EC8B9B78956F1E047A64As1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA47D46908B6EC8B9B78956F1E047A64As1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA47D46908B6EC8B9B78956F1E047A64As1
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://cds.cern.ch/record/2630433
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB6BD443EFF08D7B9D621FFB967EF8C24s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB6BD443EFF08D7B9D621FFB967EF8C24s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB6BD443EFF08D7B9D621FFB967EF8C24s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibEA5DE76912EC2D4C2ECE96A0EEBB90CEs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibEA5DE76912EC2D4C2ECE96A0EEBB90CEs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib69F8A173A21142A258FD24204F42A371s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib69F8A173A21142A258FD24204F42A371s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib69F8A173A21142A258FD24204F42A371s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib81D49D6E1793784FF2C1ACEBB8DADD89s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib81D49D6E1793784FF2C1ACEBB8DADD89s1
https://cds.cern.ch/record/2836604
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibCA72879FC0444740B103FE205EFF88ABs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibCA72879FC0444740B103FE205EFF88ABs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibCA72879FC0444740B103FE205EFF88ABs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB32D6FDFF2DCF2FFABB8D77C76A30365s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB32D6FDFF2DCF2FFABB8D77C76A30365s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB32D6FDFF2DCF2FFABB8D77C76A30365s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib629C10D119E60230D93EA5D510C69DCFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib629C10D119E60230D93EA5D510C69DCFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib629C10D119E60230D93EA5D510C69DCFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAF3462F73E19D1FE794F34DD192A9DF9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAF3462F73E19D1FE794F34DD192A9DF9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAF3462F73E19D1FE794F34DD192A9DF9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAF3462F73E19D1FE794F34DD192A9DF9s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0379B8623F05B7AFF4ED439D2BFCDE59s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0379B8623F05B7AFF4ED439D2BFCDE59s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0379B8623F05B7AFF4ED439D2BFCDE59s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA44B9F61B43631A04F181B6AB1259E51s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA44B9F61B43631A04F181B6AB1259E51s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib03B92E6A03E427DBC7B3D10D5AB1AB42s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib813BA79A8074380B9567A15453EA0FDFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib813BA79A8074380B9567A15453EA0FDFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib8135EE22FF8859D33499499CF695019Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib8135EE22FF8859D33499499CF695019Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib8135EE22FF8859D33499499CF695019Bs1
https://github.com/HEP-FCC/FCCDetectors/blob/v0.1pre09/Detector/DetFCCeeCLD/compact/FCCee_o2_v02/ECalBarrel.xml
https://github.com/HEP-FCC/FCCDetectors/blob/v0.1pre09/Detector/DetFCCeeCLD/compact/FCCee_o2_v02/ECalBarrel.xml
https://github.com/HEP-FCC/FCCDetectors/blob/v0.1pre09/Detector/DetFCCeeCLD/compact/FCCee_o2_v02/ECalBarrel.xml
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB70A1781645D03575E2DD4E6AB860F71s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB70A1781645D03575E2DD4E6AB860F71s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibB70A1781645D03575E2DD4E6AB860F71s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib81312070F91A4EC87A888FAFCD2177DEs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib81312070F91A4EC87A888FAFCD2177DEs1
https://doi.org/10.5281/zenodo.6082201
https://github.com/lwtnn/lwtnn
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://pytorch.org/cppdocs/frontend.html
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib787700A547309B9912534D7C3540B79Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib787700A547309B9912534D7C3540B79Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA9423D60164F001A6715546C56C77154s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibA9423D60164F001A6715546C56C77154s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAD317D8D95B538B90B0522D0D44F25EFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAD317D8D95B538B90B0522D0D44F25EFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bibAD317D8D95B538B90B0522D0D44F25EFs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib3F4FE0096324C19C86E6C6A2FC1E3B8Es1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib3F4FE0096324C19C86E6C6A2FC1E3B8Es1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib7E7E76FCB3495175F24CD55501A57B9Bs1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib7E7E76FCB3495175F24CD55501A57B9Bs1


D. Salamani, A. Zaborowska and W. Pokorski Physics Letters B 844 (2023) 138079
[44] Michele Sebag, V. Berger, Michèle Sebag, Variational Auto-Encoder: Not All Fail-
ures Are Equal, 2020.

[45] S. Zhao, J. Song, S. Ermon, Towards Deeper Understanding of Variational Au-
toencoding Models, 2017.

[46] M. Aleksa, C. Joram, P. Farthouat, A. Onnela, J. Blomer, C. Gargiulo, et al., Strate-
gic R&D; Programme on Technologies for Future Experiments (No. CERN-OPEN-
2018-006), 2018.
13

http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0A89A321499257FCE1FDA3E60C5533A2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0A89A321499257FCE1FDA3E60C5533A2s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib53F5BA3309CA67343B3AB50DA8FE5F07s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib53F5BA3309CA67343B3AB50DA8FE5F07s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0D5236B59F05B31A4E797041FEB2EC46s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0D5236B59F05B31A4E797041FEB2EC46s1
http://refhub.elsevier.com/S0370-2693(23)00413-6/bib0D5236B59F05B31A4E797041FEB2EC46s1

	MetaHEP: Meta learning for fast shower simulation of high energy physics experiments
	1 Introduction
	2 Related work
	3 Calorimetry and datasets
	3.1 Calorimeter geometry description
	3.2 Detector readout
	3.3 Datasets

	4 Meta learning with generative modelling
	4.1 Proposed workflow
	4.2 Generative fast shower simulation model
	4.3 Meta learning for fast shower simulation

	5 Experimental validation
	5.1 Fast adaptation with a cylindrical calorimeter
	5.2 Fast adaptation with a realistic calorimeter
	5.3 Adaptation and traditional training

	6 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


