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1 Introduction

A long-standing dream for an effective field theorist is to determine the cut-off scale at which
the effective field theory (EFT) must break down and new physics should arise. The logic of
naturalness has served this purpose in the history of High Energy Physics, but we might be
living times of change, where this logic is failing for the first time when applied to the mass of
the Higgs boson or to the cosmological constant. Instead, a more modern perspective suggests
to use guiding principles arising from requiring ultra-violet (UV) consistency of the EFT; in
particular, consistency with a UV completion in a Quantum Gravity (QG) theory — since
our universe of course includes gravitational interactions. The power of UV consistency to
constrain low energy physics is supported by results of the Swampland [1–7] and the S-matrix
bootstrap [8, 9] programs. Moreover, they can provide information about the scale at which
the EFT (weakly coupled to Einstein gravity) drastically breaks down and must be replaced
by a quantum gravity description. Interestingly, in certain regimes of the space of parameters
of the EFT, this cut-off scale can be much lower than the Planck scale.

The Distance Conjecture [10] in the Swampland program provides the concrete mechanism
by which the EFT drastically breaks down: the existence of an infinite tower of states
becoming light in the perturbative regimes. The presence of a tower signals the breakdown of
semiclassical Einstein gravity at a cut-off scale known as the species scale [11–15]. In string
theory, all continuous parameters are given by the vacuum expectation value of some scalar
fields, so scanning over different values of the EFT parameters is tantamount to moving within
the scalar field space of the theory (known as the moduli space if they happen to be exactly
massless). From this perspective, perturbative regimes correspond to infinite distance limits
in field space, where one typically recovers some approximate global symmetry [16–21]. Since
global symmetries are not allowed in quantum gravity, it is precisely in these perturbative
corners where the quantum gravity cut-off (i.e., the species scale) can get much lower than
the Planck scale, possibly leading to observable quantum gravity effects at low energies.

However, the Distance Conjecture does not specify the rate at which the tower becomes
light, only that it should do so exponentially in terms of the traversed geodesic field space
distance. Therefore, it is not possible to give a quantitative bound on the EFT cut-off
unless we specify the lowest possible value for this exponential rate. Moreover, to derive
the species scale one needs to know in principle about all towers of states becoming light,
and not only the leading (i.e. lightest) one, which complicates the story considerably. In
recent years, a lot of work has been dedicated to sharpen this conjecture and constrain the
nature of the tower of states in the context of string theory compactifications, with the
goal of finding perhaps some universal bound for the exponential rate of the mass of the
tower, and as a byproduct, the cut-off scale.

In this work, we have found that all (up to now explored) string theory examples seem to
follow a very simple and sharp pattern relating the characteristic mass of the leading tower
of states mt, and the species scale Λsp, which is given asymptotically by

∇⃗mt
mt

· ∇⃗Λsp
Λsp

= 1
d − 2 , (1.1)

where the product is taken using the metric in the moduli space and d is the spacetime
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dimension of our theory. This is quite surprising given the rich casuistics that typically arise
when checking diverse string theory compactifications. In a companion paper [22], we present
the pattern and its consequences, while here we will mainly discuss the string theory evidence.
Notice that when written in terms of the number of light species (i.e. the number of weakly
coupled fields whose mass falls at or below the species scale), (1.1) reduces to

∇⃗mt
mt

· ∇⃗N

N
= −1 , (1.2)

since Λsp = MPl; d N−1/(d−2). The universality of the pattern, which becomes independent
of the number of spacetime dimensions or the nature of the infinite distance/perturbative
limit, is at the very least tantalizing, and suggests that there might be an underlying reason
constraining the structure of the tower. Notice that (1.2) puts constraints on the variation
on the density of states below the species scale and the rate at which they are becoming
light. Roughly speaking, the more dense the spectrum becomes, the faster the species scale
goes to zero and therefore the slower the tower should become light.

Since by definition mt ≤ Λsp, eq. (1.1) implies a definite bound on how slow the tower
mass can go to zero asymptotically in comparison to the species scale. Upon using our pattern
above, we obtain a lower bound for the exponential rate of the tower given by 1√

d−2 , which
reproduces precisely the bound proposed in the sharpened Distance Conjecture [23]. This is
closely related to the Emergent String Conjecture [24], as the bound is saturated by a tower
of oscillator modes of a fundamental string, while Kaluza-Klein modes usually have larger
exponential rates. Hence, understanding the pattern (1.2) from the bottom-up opens a new
avenue to test the Emergent String Conjecture independently of string theory.

In this paper, we provide evidence for the pattern by checking multiple string theory
constructions in different number of spacetime dimensions and with different amounts of
supersymmetry. This includes setups with maximal supergravity, theories with sixteen or
eight supercharges and 4d N = 1 settings arising from diverse string theory compactifications.
For each different level of supersymmetry, we have selected a few representative examples
to illustrate the realization of the pattern. In certain moduli spaces, we can even derive
the pattern in full generality. However, for the moment, it should be taken purely as an
observation, since we do not have a clear-cut argument that allows us to discern whether
it is a lamppost effect or a general feature of quantum gravity. We believe, though, that it
is interesting either way. In the former case, it provides at the very least an elegant and
universal constraint that summarizes the casuistics of infinite distance limits observed in
known string theory compactifications. In the latter case, it could be the definite criterium
that characterizes the tower of the Distance Conjecture and constrains its exponential mass
decay rate, providing therefore information about the quantum gravity cut-off of an EFT
from the bottom-up perspective. The aim of this work is to bring the attention to this pattern
so as to invite everyone to test it in more examples and look for a bottom-up rationale. On
the quest for such a bottom-up explanation we have also investigated whether the pattern
could arise from the Emergence Proposal [2, 3], and identified some sufficient conditions that
the structure of the towers of states should satisfy to allow eq. (1.1) to hold, which can be
motivated by Swampland or string theory considerations.
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The outline of the paper is as follows. We start with an explanation of the pattern and
its consequences in section 2, and provide evidence for it in large classes of string theory
compactifications in the rest of the paper. Section 3 is dedicated to setups of maximal
supergravity, sections 4 and 5 to theories with sixteen and eight supercharges, respectively,
whilst section 6 analyzes diverse 4d N = 1 string theory compactifications. In section 7, we
give the first steps towards providing a bottom-up rationale and identify some underlying
sufficient conditions. We conclude in section 8 with some final remarks.

Guide to read this paper. Since this is a long paper, we provide here a guide to help the
reader navigate through it, according to their interest. Thus, a minimal read would include,
apart from the introduction and conclusions, sections 2 and 7. The first one describes in
detail how and why the pattern works, even in the multi-moduli case (see also section 3.1),
as well as its most immediate consequences. The latter explains how it can be motivated
from a bottom-up perspective, emphasizing what are the sufficient conditions for it to hold,
based both on Swampland considerations and examples taken from the rest of the text. With
this, one can get a general understanding of the pattern. In a companion paper [22], we
summarize the main results of these two sections and present the pattern for a more general
audience, including some further remarks. On the other hand, the reader interested in the
details behind its realization in concrete string theory constructions is encouraged to go
through sections 3 to 6, which constitute the bulk of this paper. In these sections, several
string theory examples in different dimensions and with different levels of supersymmetry are
thoroughly discussed. The different setups can be read independently, and can also serve as
a review of the string theory tests of the Distance conjecture along different types of infinite
distance limits that have been performed in the literature in the past years.

2 The pattern and its consequences

Consider a d-dimensional theory containing a set of massless scalars (moduli), weakly coupled
to Einstein gravity as follows

Lscalar =
1

2κ2
d

Gij(ϕ) ∂ϕi · ∂ϕj , (2.1)

where Gij(ϕ) is the field space metric in the moduli space Mϕ spanned by the vacuum
expectation value (vev) of the massless scalars. According to the Distance Conjecture [10],
we should have an infinite tower of states becoming exponentially light along every infinite
distance geodesic within this moduli space. In other words, along any such limit there should
exist a tower with scaling m ∼ e−λ∆ϕ as ∆ϕ → ∞, where λ is an order one coefficient and
∆ϕ denotes the traversed geodesic distance.

Following [23, 25, 26], let us define the ζ-vectors of the towers — also referred to as
scalar charge-to-mass ratios1 — by

ζi ≡ −∂i logm , (2.2)
1The name originates from the Scalar Weak Gravity Conjecture [27], as these vectors measure the strength

of the scalar force induced by the moduli in comparison to the gravitational one (see also [28–32]).
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where the index is raised with the (inverse) field metric Gij(ϕ). These ζ-vectors provide
information about how fast the tower becomes light. More concretely, the exponential rate of
the mass of the tower is given by the projection of ζ⃗ along the asymptotic geodesic direction,
i.e. λ = ζ⃗ · T̂ , where T̂ is the normalized tangent vector of the geodesic approaching the
infinite distance limit. Note that λ depends on the trajectory taken, so that is not an intrinsic
property of the tower m. Given the set of all possible towers becoming light, we will denote
by mt the one that does so at the fastest rate (i.e. λt is the largest exponent).

Due to the presence of the infinite towers of light states, the EFT dramatically breaks
down at some cut-off scale known as the species scale Λsp [11–15]. Above this scale, it is not
possible to have a semiclassical Einstein gravity description anymore. The value of the species
scale will depend on the nature and mass of the towers becoming light. In general, it is given by

Λsp ≃ MPl; d

N
1

d−2
, (2.3)

with N being essentially the number of species — i.e. weakly coupled light fields — at or
below the species scale itself. In other words, it is given by

N =
∫ Λsp

0
ρ(m)dm , (2.4)

where ρ(m) is the density of species per unit mass. Hence, not only the leading but all light
towers of states indeed matter when computing Λsp. Given the masses and structure of the
towers, the species scale can be computed using the above two equations. This cut-off can
be motivated both by perturbative arguments of renormalizing the graviton propagator [33–
37] as well as black hole entropy arguments [14, 15]. Equivalently, the species scale also
determines the scale at which higher derivative gravitational terms become of the same order
as the Einstein tree-level one, which has been proven to be a more powerful technique to
identify the species scale in string theory setups [38–41] (see also [42] for a derivation in
the context of S-matrix bootstrap).

Since the towers become massless asymptotically, the species scale will also vanish in the
infinite distance limit, but this typically happens at a different rate than that of the towers.
Analogously, following [43], we can define the Z-vectors as follows

Z i
sp ≡ −∂i log Λsp , (2.5)

providing the rate at which the species scale goes to zero asymptotically.
Depending on the infinite distance limit under consideration, we will have a different

microscopic interpretation of the leading tower and the species scale, which is tied to the
value of their exponential rates. In principle, the relation between mt and Λsp is independent
of their exponential decay rates as we move in the moduli space Mϕ.

However, interestingly, by exploring a plethora of string theory compactifications, we find
that the variation of the mass of the leading tower and the species scale seem to be always
related by the following simple constraint that is satisfied asymptotically:

ζ⃗t · Z⃗sp = Gij (∂i logmt) (∂j log Λsp) =
1

d − 2 , (2.6)
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where d is the spacetime dimension of our theory. This pattern holds universally in all the
string theory examples that we present in this paper, regardless of the nature of the infinite
distance limit and the microscopic interpretation of the light towers. Even more interestingly,
using (2.3), we can re-write the pattern as

Gij (∂i logmt) (∂j logN) = −1 , (2.7)

which is moreover independent of the number of dimensions. This hints toward a universal
relation between the density of states becoming light and their characteristic mass. The
faster they become light as we approach the infinite distance limit, the less dense the towers
can get, and viceversa. In some sense (that we will make more concrete later), the variation
of the mass and the number of states in the moduli space act as ‘dual variables’.

Implied bounds on the exponential decay rates. Notice that a relation like (2.6)
implies a lower bound for the scalar charge-to-mass ratio of the leading tower asymptotically,
since the latter should be always lighter than the species scale, i.e. mt ≤ Λsp. This consistency
condition implies |ζ⃗t · Z⃗sp| ≤ |ζ⃗t|2 and, therefore,

|ζ⃗t|2 ≥
1

d − 2 , (2.8)

which leads to the lower bound for the exponential rate of the leading tower

λt = |ζ⃗t| ≥
1√

d − 2
, (2.9)

recently proposed in the sharpened Distance Conjecture [23]. Analogously, in those cases
(as it happens in all known examples) in which there exists a tower ζ⃗ ∝ Z⃗sp satisfying the
pattern (2.6), then one gets an upper bound on the exponential rate of the species scale
since |Z⃗sp| ≤ |ζ⃗|, yielding

λsp = |Z⃗sp| ≤
1√

d − 2
, (2.10)

which matches the recently proposed bound in [39]2 based both on EFT arguments and
string theory evidence.

Notice that the above bounds are always saturated by the oscillator modes of a funda-
mental string. Hence, if we assume that Kaluza-Klein (KK) towers always have a larger
exponential rate λt (as indeed happens in all examples known so far), we are essentially
recovering the Emergent String Conjecture (ESC) [24] as well, assuming that membranes
decay at a slower rate than particles and strings, which is the case in all known string theory
examples (see also [44]). It would be interesting, though, to show that the only possible
towers of states satisfying the pattern are indeed KK towers or oscillator string modes (as
implied by the ESC) from a purely bottom-up perspective.

2The pattern (2.6) is only valid asymptotically, and this is why it is consistent that the constant in the
upper bound for the species scale is fixed to 1√

d−2 . This might get modified when moving to the interior of
the moduli space.
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We want to remark that the pattern (2.6) is much more concrete than previous analyses
as it provides a sharp equality relating the asymptotic behavior of the species scale and the
leading tower of states, instead of just some bound on their respective decay rates. We expect
that, upon further exploration, this may highly constrain the nature of the possible towers
of states predicted by the Distance Conjecture.

Furthermore, we can also recover the recently proposed lower bound for the exponential
rate of the species scale (named the Species Scale Distance Conjecture [43]),

λsp ≥ λsp, min = 1√
(d − 1)(d − 2)

, (2.11)

if we assume (based on string theory evidence) that the maximum possible value for the
exponential rate of the leading tower is given by that of a KK tower decompactifying one
(unwarped) extra dimension, i.e. λt, max =

√
d−1
d−2 . In this regard, all the examples analyzed

in the present paper can be equivalently seen to provide further evidence in favor of the
bound (2.11).

First steps towards decoding the pattern. Before getting into more complicated
examples, let us first show how the pattern is satisfied for the case of a single modulus
and a single tower of states becoming light. Let us consider two cases; either the leading
tower is a KK tower or a tower of string oscillator modes, as dictated by the Emergent
String Conjecture and as observed in all string theory examples so far. The species scale
associated to a KK tower decompactifying n (unwarped) extra dimensions is given by the
higher dimensional Planck mass

Λsp ≡ MPl; d+n = MPl; d

(
mKK, n

MPl; d

) n
d+n−2

, (2.12)

as can be derived from applying (2.3) and (2.4) to an equi-spaced tower with mk = k1/nmKK, n,
where k = 1, . . . ,∞. By dimensional reduction of the theory, it is also well-known that the
exponential rates of the KK tower and the species scale read

ζKK, n =
√

d + n − 2
n(d − 2) , ZKK, n =

√
n

(d + n − 2)(d − 2) , (2.13)

where ZKK, n can be obtained from ζKK, n upon using (2.12). It can be easily checked that
this always reproduces the pattern (2.6) independently of the number of dimensions that
get decompactified,

ζKK, n · ZKK, n = 1
d − 2 . (2.14)

Let us remark, though, that the above expressions for the exponential rates are valid when
decompactifying to a higher dimensional vacuum, since the story is more complicated when
the theory decompactifies to a running solution instead, as recently shown in [26]. We will
comment more on this in section 4.
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The other relevant case is that of a tower of string oscillator modes. If these states
arise from a fundamental string, we have

ζosc =
1√

d − 2
= Zosc , (2.15)

since the species scale coincides with the string scale (up to maybe logarithmic corrections
that will not be relevant here) due to the exponential degeneracy of states at the string
scale. It is then automatic that

ζosc · Zosc =
1

d − 2 . (2.16)

In summary, for a single modulus, the pattern implies that the exponential rate of the
species scale verifies λsp = ((d − 2)λt)−1 or, in other words, Λsp ∼ m

1/(d−2)λ2
t

t , which holds
regardless of whether we consider KK or stringy towers. In the multi-moduli case, though,
these vectors are not parallel to each other in general. Thus, the pattern is not giving a
direct relation between the exponential rates along a given trajectory, but rather between the
scalar charge-to-mass vectors ζ⃗t and Z⃗sp as we take an asymptotic limit. This is essential
for the pattern to hold in a multi-moduli setup.

At this moment, the claimed universality of the pattern should surprise you for two
reasons:

• The structure of the tower fixes the relation between mt and Λsp at a given point of
the moduli space. However, a priori, this relation is independent of the exponential
decay rate of mt and Λsp as we move in moduli space. The pattern implies that they
are not independent but can be derived from each other, leading to a universal relation
satisfied both for KK and string towers.

• The pattern is satisfied even in the presence of multiple towers, when the species scale
is not simply determined by the leading tower. For instance, we will see that there can
be regions of the moduli space where e.g., the leading tower is a KK tower while the
species scale corresponds to some string scale. Even then, the pattern is still satisfied as
the angle between the vectors precisely compensates for the change in the magnitude,
such that (2.6) holds in a non-trivial manner. The same occurs when decompactifying
to a larger number of dimensions than those associated to the leading tower, due to the
presence of other subleading KK towers that change the value of the species scale.

Sometimes, it gets useful to define the convex hull of the ζ-vectors of all light towers
in a given asymptotic regime [25], since this provides us information about which tower is
dominating along each direction. Analogously, one can define the convex hull of Z-vectors
of the species scale as in [43], thus informing us about the nature of the infinite distance
limit, namely the quantum gravity theory above Λsp. Notice, though, that these convex
hulls can only be defined if there is a region of moduli space in which the hull of the scalar
charge-to-mass vectors does not change. In such a case, it follows from (2.6) that both
polytopes are dual to each other, as hinted in [43]. This implies, in particular, that given any
one of them one can simply retrieve the other upon imposing the aforementioned relation as

– 8 –
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a constraint. Therefore, both convex hulls contain the same information. It is then equivalent
to keep track of all towers becoming light along a given trajectory (which allows one to
compute the species scale), than to focus just on the leading tower along all asymptotic
geodesics of a given asymptotic regime. Starting from a tower in some particular limit, we
can then use the pattern to predict the nature of the towers in other asymptotic limits,
and even reconstruct global information about how different limits (and different duality
frames) glue together in moduli space.3

In the upcoming sections we will test this pattern in the multi-moduli case within several
familiar string theory vacua, differing in the number of spacetime dimensions, the amount of
supersymmetry preserved, etc. We will see that the pattern is always satisfied, independently
of how complicated the tower structure may look like a priori.

3 Derivation in string theory setups with 32 supercharges

We begin by deriving the pattern in string theory compactifications with 32 supercharges,
i.e. maximal supergravity setups arising from toroidal compactifications of M-theory. The
advantage of these setups is that the ζ-vectors associated to the leading towers of states
take some very specific values that remain fixed as we move within the moduli space. This
will allow us, in turn, to show that the pattern (2.6) is verified in full generality at every
infinite distance limit of the moduli space.

Due to the simplicity of these setups, we can basically summarize the results in two main
scenarios that highlight the key features underlying the realization of the pattern. Hence,
we will first explain these main features, and then exemplify them in concrete examples of
M-theory toroidal compactifications down to d = 9, 8 later on. We finish the section by
generalizing the discussion to any number of spacetime dimensions for the sake of completeness.

3.1 Summary of underlying key features

Consider a D-dimensional theory compactified down to d = D−n spacetime dimensions, both
preserving maximal supersymmetry in flat space. As shown in [23], such setups in Minkowski
space satisfy the Emergent String Conjecture [24], in the sense that every infinite distance
limit corresponds either to an emergent string limit or to some decompactification. Hence,
there are essentially two main scenarios, depending on whether the species scale associated
to a given asymptotic regime corresponds to a higher dimensional Planck mass or to the
fundamental string scale. In the following, we explain the underlying key features that make
a relation like (2.6) to be satisfied in these two cases, which we will later exemplify in some
concrete examples. For a detailed derivation of the relevant formulae involved see appendix A.

Perturbative string limit. This first scenario is characterized by having the species scale
equal to the string scale. Hence, the Z-vector of the species scale is the same than the
ζ-vector associated to the tower of string oscillator modes. However, this does not necessarily
mean that the tower of string modes is the leading one. As noted in [46], if we have both a

3This will be explored in more detail in [45] where we will present some rules about how to glue different
asymptotic limits together, which can be equivalently derived from maximal supergravity string theory setups,
or from assuming the pattern (2.6).
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(a) KK and emergent string limit. (b) Two KK limits.

Figure 1. Sketches depicting two possibilities in multi-field limits for maximal supergravity, both
in d = 8, with vectors associated to light towers in blue and to the species scale in red. (a)
Decompactification of two internal dimensions and an emergent string limit. The species scale is
controlled by the oscillator modes of the string unless we move along the decompactification direction,
where it coincides with the ten-dimensional Planck mass. In this case, ρ̂ and ϕ̂ denote the normalized
radion and the ten-dimensional dilaton. (b) Two decompactification limits, of one and two internal
dimensions, with towers ζ⃗KK, 1 and ζ⃗KK, 2 (as well as the total volume, ζ⃗KK, 3). Note that unless we
decompactify a single cycle, the species scale is controlled by the eleven-dimensional Planck mass.
The axes ρ̂ and ρ̂′ correspond to the normalized radions associated to decompactifying the 1- and
2-cycles, respectively.

KK and a string tower becoming light, the species scale will indeed correspond to the string
scale (even if the KK tower is parametrically lighter) as long as the string scale remains
below the species scale associated to the KK tower (i.e. the higher dimensional Planck mass).
Hence, the most general scenario with Λsp ≃ ms can contain both KK and string modes
below the species scale. For the sake of concreteness, let us focus on the KK tower associated
to the overall volume of the compactification space and the oscillator modes arising from a
fundamental string already existing in the higher dimensional theory. We can then restrict
to a slice of the tangent space of the moduli space spanned by the overall volume modulus
ρ̂ and the string dilaton ϕ̂. The relevant ζ-vectors for such towers within this subspace are
(in the flat frame {ϕ̂, ρ̂}, cf. eqs. (A.1)–(A.8)) [23, 43]:

ζ⃗KK, n =
(
0,

√
d + n − 2
n(d − 2)

)
, Z⃗KK, n =

(
0,

√
n

(d + n − 2)(d − 2)

)
,

ζ⃗osc = Z⃗osc =
(

1√
d + n − 2

,

√
n

(d + n − 2)(d − 2)

)
.

(3.1)

These vectors are plotted in figure 1(a). The tangent vectors of asymptotic geodesics in this
slice of the moduli space are radial vectors (i.e straight lines passing through the origin) [23].
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As explained in section 2, to obtain the exponential rate λ of a tower (or the species scale)
along a given geodesic, we just need to compute the projection of the associated ζ-vector
(resp. Z-vector) along such direction. The larger this projection is, the fastest the mass (or
the species scale) goes to zero asymptotically. The leading (i.e. the lightest) tower of states is
therefore the one with the largest projection of ζ⃗ over such direction; and the same applies to
the species scale, which will be the one with the largest projection of Z⃗.

If we move parallel to ζ⃗KK, n, both the Planck scale and the string scale decay at the
same rate, so we can simply take the species scale vector as Z⃗KK, n. Otherwise, for any other
intermediate direction, Λsp will be given by the string scale, as it always remains below the
Planck scale, so we should take instead Z⃗osc. On the other hand, the leading tower is always
the KK one, except if we move parallel to ζ⃗osc, where both towers present the same exponential
rate.4 It is clear from section 2 that ζ⃗KK, n · Z⃗KK, n = 1

d−2 and ζ⃗osc · Z⃗osc = 1
d−2 for each tower

independently, but it is less obvious that the pattern will continue working when considering
both towers simultaneously. We find here that even in the case in which the species scale is
the string scale and the leading tower corresponds to the KK tower, the pattern still holds:

ζ⃗KK, n · Z⃗osc =
1

d − 2 . (3.2)

This can be easily understood geometrically from figure 1(a) as follows. Since Z⃗osc is
perpendicular to the convex hull generated by ζ⃗KK, n and ζ⃗osc, it turns out that ζ⃗osc is the
projection of ζ⃗KK, n along the direction associated to Z⃗osc, so that the pattern holds in general.
Alternatively, the projection of Z⃗osc along the direction determined by ζ⃗KK, n coincides with
Z⃗KK, n since the radial component of Z⃗osc arises from changing the masses to lower dimensional
Planck units and it is therefore equal to the radial component of Z⃗KK, n as can be seen in (3.1).

Decompactification limit. The second scenario occurs when all the light towers below
the species scale are KK modes (possibly decompactifying to different number of dimensions),
and we do not find any additional tower of string modes before reaching the lightest higher
dimensional Planck mass. Hence, the species scale is a Planck scale in higher dimensions.
For concreteness, let us focus on a two-dimensional slice spanned by two KK towers decom-
pactifying to d + n and d + n′ dimensions, respectively, with associated volume moduli ρ̂

and ρ̂′. The ζ-vectors are given by [23]

ζ⃗KK, n =
(
0,

√
d + n − 2
n(d − 2)

)
,

ζ⃗KK, n′ =
(√

d + n + n′ − 2
n′(d + n − 2) ,

√
n

(d + n − 2)(d − 2)

)
.

(3.3)

Depending on the infinite distance trajectory that we explore, the species scale will correspond
to the Planck scale of decompactifying n, n′ or n + n′ extra dimensions. The associated

4Note that precisely in this case the limit qualifies as equi-dimensional, in the notation defined in [24].
Such limits probe gravitational theories in the same number of spacetime dimensions as the starting point of
the (infinite distance) trajectory. The fact that there is a KK tower decaying at the same rate than the string
tower along this direction is also expected from the Emergent String Conjecture [24].
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Z-vectors are [43]

Z⃗KK, n =
(
0,

√
n

(d + n − 2)(d − 2)

)
,

Z⃗KK, n′ =
(√

n′(d + n + n′ − 2)
(d + n′ − 2)2(d + n − 2) ,

n′

d − 2 + n′

√
n

(d + n − 2)(d − 2)

)
,

Z⃗KK, n+n′ =
(√

n′

(d + n − 2)(d + n + n′ − 2) ,

√
n

(d + n − 2)(d − 2)

)
.

(3.4)

All these vectors are represented in figure 1(b). The species scale corresponds to the lightest
Planck scale along any chosen infinite distance trajectory. Hence, it will always be given
by Z⃗KK, n+n′ in the entire asymptotic regime unless we move parallel to either ζ⃗KK, n or
ζ⃗KK, n′ , in which case it reduces to Z⃗KK, n or Z⃗KK, n′ , respectively. However, the leading tower
corresponds to decompactifying only n or n′ extra dimensions unless we move precisely parallel
to Z⃗KK, n+n′ . The latter case would physically correspond to an isotropic decompactification
of both n- and n′-dimensional internal cycles, with an effective KK tower of charge-to-mass
vector given by (cf. eq. (A.15))

ζ⃗KK, n+n′ =
(√

n′(d + n + n′ − 2)
(d + n − 2)(n + n′)2 ,

√
n(d + n + n′ − 2)2

(n + n′)2(d + n − 2)(d − 2)

)
. (3.5)

Again, the pattern is clearly satisfied whenever we move along the asymptotic trajectories
determined by any of the individual KK towers (due to (2.14)), but it also nicely holds for
intermediate directions within the asymptotic regime, since

ζ⃗KK, n · Z⃗KK, n+n′ = ζ⃗KK, n′ · Z⃗KK, n+n′ = 1
d − 2 . (3.6)

Notice that such relation may be easily understood from geometrical considerations as
follows. The species vector Z⃗KK, n+n′ appears to be always perpendicular to the convex hull
generated by ζ⃗KK, n and ζ⃗KK, n′ (see figure 1(b)), such that they both project to ζ⃗KK, n+n′

along the direction determined by the former. Alternatively, Z⃗KK, n+n′ projects to Z⃗KK, n

(analogously Z⃗KK, n′) along the direction determined by ζ⃗KK, n (respectively ζ⃗KK, n′), which
may be understood again as coming from a change of Planck units in both cases, given the
commutativity of the compactification process (see appendix A).

Summary. What can be learned from the two scenarios above? The species scale vector
Z⃗ always happens to be perpendicular to the convex hull of the light towers of states.
Conversely, the leading scalar charge-to-mass vector ζ⃗t is orthogonal to the convex hull
generated by the species vectors. This is a feature that will hold in general for M-theory
toroidal compactifications, as we show below. In fact, such constraints are restrictive enough
so as to ensure that, once we assume that the pattern (2.6) is verified by any pair of collinear
vectors ζ⃗ and Z⃗ (i.e. when both are associated to the same tower of states), then the pattern
extends automatically to any other asymptotic limit of the moduli space.5

5For instance, if ζ⃗t is orthogonal to the convex hull generated by Z⃗sp (the total specie scale) and Z⃗t (the one
obtained only from considering the leading tower), then satisfying ζ⃗t · Z⃗t = 1

d−2 guarantees that ζ⃗t · Z⃗sp = 1
d−2 ,

as the difference between the two species scale vectors is given by a vector which is orthogonal to ζ⃗t.
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Notice, however, that the same story does not apply immediately when the amount of
supersymmetry of our theory is reduced, since then the charge-to-mass and species vectors
can ‘slide’ (or jump) non-trivially depending on where we sit in moduli space, see section 4.
In any event, most of our efforts in the upcoming sections will be dedicated to show that,
even in such cases, the pattern is still verified at any infinite distance boundary, and it does so
in a way that can be easily understood from pictures similar to those shown in figure 1 above.

3.2 Maximal supergravity in 9d

Next, we will illustrate the above general scenarios in concrete examples, starting with
the unique 9d N = 2 supergravity theory arising from compactifying M-theory on a two-
dimensional torus. The ζ- and Z-vectors of the towers of states and the species scale for
this particular setup have been recently analyzed in [23] and [43] respectively. Here we will
build upon these results and simply check if the pattern (2.6) is verified, paying special
attention to the way in which this happens.

Consider M-theory compactified on a T2 with a metric parametrized as

gmn = eU

τ2

(
1 τ1
τ1 |τ |2

)
, (3.7)

where τ = τ1+iτ2 denotes the complex structure of the torus and U controls its overall volume
(in M-theory units). The scalar and gravitational sectors in the 9d Einstein frame read [23]

S9d ⊃ 1
2κ2

9

∫
d9x

√
−g

[
R− 9

14 (∂U)2 − ∂τ∂τ̄

2τ2
2

]
. (3.8)

This theory has a moduli space which is classically exact and parameterizes the manifold
Mmod = SL(2,Z)\SL(2,R)/U(1)×R, where we have taken into account the SL(2,Z) U-duality
symmetry associated to the full quantum theory [47, 48].

In the following, we will effectively forget about the axion τ1,6 since it plays no role in
our discussion [43], and we moreover define canonically normalized fields Û and τ̂ as follows

U = κ9

√
14
9 Û , τ2 = κ9 e

√
2 τ̂ . (3.9)

As discussed in [23], the relevant towers of states becoming light at the infinite distance
limits of this moduli space are 1

2 -BPS particles. For this particular example, the convex hull
determined by the (asymptotic) scalar charge-to-mass vectors of all light towers is spanned
by Kaluza-Klein modes with the following ζ-vectors:

ζ⃗KK, 1 =
( 3√

14
,
1√
2

)
, ζ⃗KK, 1′ =

( 3√
14

,− 1√
2

)
, (3.10)

as well as M2-branes wrapping the compactification manifold, with

ζ⃗M2 =
(
−
√

8
7 , 0

)
. (3.11)

6In other words, we restrict ourselves to explore geodesic paths that leave the axionic component of τ fixed
to a constant value, since any other geodesic reaching infinite distance within SL(2,R)/U(1) can be mapped
to the former via some modular transformation.
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We have adopted the notation ζ⃗ =
(
ζÛ , ζ τ̂

)
. Notice that they all satisfy the relation |ζ⃗|2 = 8/7,

in accordance with (2.13) above for d = 9 and n = 1.
On the other hand, their associated species scale vectors, Z⃗, are seen to be given by [43]

Z⃗KK, 1 =
(
3
√
14

112 ,

√
2

16

)
, Z⃗KK, 1′ =

(
3
√
14

112 ,−
√
2

16

)
,

Z⃗M2 =
(
− 1
2
√
14

, 0
)

,

(3.12)

corresponding to the appropriate 10d Planck mass of the decompactified (dual) theories. In
particular, since |Z⃗|2 = 1

(d−1)(d−2) = 1
56 , these saturate the lower bound proposed in [43]

for the decay parameter, λsp, of the species scale.
As explained in [43], a crucial ingredient when determining the set of all possible species

scales is the concept of effective tower [49]. Indeed, for intermediate directions between ζ⃗KK, 1
and ζ⃗KK, 1′ , despite one KK tower being (in general) parametrically lighter than the other, one
still needs to account for bound states thereof in order to properly compute the species scale
in that asymptotic regime. Upon doing so, one arrives at the following species scale vector [43]

Z⃗KK, 2 =
1
9
(
ζ⃗KK, 1 + ζ⃗KK, 1′

)
=
(√

14
21 , 0

)
, (3.13)

to which we can associate an effective (averaged) mass scale and charge-to-mass vector
as follows

ζ⃗KK, 2 =
1
2
(
ζ⃗KK, 1 + ζ⃗KK, 1′

)
=
( 3√

14
, 0
)

. (3.14)

The physical interpretation for (3.13) is clear. It simply corresponds to the 11d Planck scale,
signalling full decompactification of the internal torus. On the other hand, the charge-to-mass
vector (3.14) is a meaningful quantity only when one takes the decompactification limit in
an isotropic way, namely for an asymptotic vector T̂ = ∂Û . Still it may be useful to think
in terms of ‘averaged’ geometric quantities when computing the species scale vectors and
checking the pattern (2.6) explicitly, as we discuss later on in this section.

Apart from these, there is also another set of 1
2 -BPS states comprised by critical type

IIA strings arising from M2-branes wrapped on a non-trivial 1-cycle. These can be seen
to lead to the following charge-to-mass vectors

ζ⃗osc =
(
− 1
2
√
14

,
1

2
√
2

)
, ζ⃗osc’ =

(
− 1
2
√
14

,− 1
2
√
2

)
, (3.15)

which coincide with those of their associated species scale [46] and moreover satisfy |Z⃗osc|2 =
1

d−2 = 1
7 (cf. (2.15)).

In figure 2 we depict the convex hulls associated to the towers of states along with
their species scale vectors [43], which are constructed from the expressions (3.10)–(3.15).
Notice that there is a Z2 symmetry with respect to the τ̂ -axis, which may be thought of
as a discrete remnant of the U-duality group of the theory, more specifically its associated
Weyl group (see footnote 11). Therefore, it is enough to focus just on the upper-half plane
in order to check the pattern (2.6).
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Figure 2. Convex hulls spanned by the species scale (red) and mass scales of the leading towers (blue)
in nine-dimensional maximal supergravity. The 1-spheres of radii 1√

d−2 = 1√
7 and 1√

(d−1)(d−2)
= 1√

56
are plotted in dashed lines. Also plotted in distinct shades are the different duality frames of the
theory. Notice that both type IIA and type IIB string theory have two different duality frames, while
there is a single one for M-theory.

First, notice that for those directions in which both ζ⃗t and Z⃗sp are aligned — i.e. for T̂

parallel to the ζ⃗I associated to any leading tower mI — the condition ζ⃗t · Z⃗sp = 1
d−2 = 1

7
is satisfied. Moreover, this turns out to be sufficient for the pattern to hold also along
intermediate directions. The reason behind is a duality between both convex hull diagrams.
In fact, as one can see from figure 2, the vertices from one correspond to edges of the other
and viceversa, the latter being orthogonal to the former. Therefore, it follows that whenever
we take ζ⃗t (analogously Z⃗sp) to be given by any of the two vertices generating an edge of its
corresponding diagram, its inner product with the dual Z⃗sp (analogously ζ⃗t) orthogonal to
such edge reduces to that of the previous ‘parallel’ cases and thus satisfies the pattern (2.6).

3.3 Maximal supergravity in 8d

As our second example, we now take M-theory compactified on a T3, leading to 8d N = 2
supergravity, whose bosonic action reads as follows [50]

S8d = 1
2κ2

8

∫
d8x

√
−g

[
R− 1

4

(
gmm′

gnn′ + 1
6gmngm′n′

)
∂gmn∂gm′n′ − 1

2V2
3
(∂c)2

]
+ . . . ,

(3.16)
where gmn is the internal metric, V3 its overall volume in M-theory units and the scalar c

arises by reducing the 11d 3-form field along the 3-cycle. The dots in (3.16) above indicate
higher p-form fields also present in the gravity supermultiplet.

As is well-known, the Narain moduli space (see e.g., [51]) of such toroidal compactification
— which is again exact at the classical level — is enhanced thanks to the additional compact field,
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c(x), to a coset space of the form Mmod = SL(2,Z)\SL(2,R)/U(1)×SL(3,Z)\SL(3,R)/SO(3),
where the discrete piece corresponds to the U-duality group of the eight-dimensional theory [52].
Instead of choosing a parametrization which makes the U-duality group manifest, we take
here the same approach as in [43] and simply dimensionally reduce the 9d theory described
in (3.8) on a circle. Upon doing so one arrives at

S8d = 1
2κ2

8

∫
d8x

√
−g

[
R−

(
∂Û
)2

− (∂τ̂)2 − (∂ρ̂)2
]
+ . . . , (3.17)

with ρ̂ denoting the canonically normalized radion associated to the extra circle within T3

and the ellipsis indicate further compact scalar fields and higher p-forms in the theory.
Similarly to the previous 9d example, the convex hull spanned by the different towers

is generated (saturated) here by 1
2 -BPS particles (strings) [23].7 Let us start with the BPS

particles. The advantage of choosing the parametrization in (3.17) is that one can essentially
read off most of the scalar charge-to-mass vectors characterizing the infinite towers of states
from the previous 9d example, by simply dimensionally reducing those. Therefore, for the
KK towers one obtains

ζ⃗KK, 1 =
( 1√

2
,

1√
42

,
3√
14

)
, ζ⃗KK, 1′ =

(
− 1√

2
,

1√
42

,
3√
14

)
,

ζ⃗KK, 1′′ =
(
0,

√
7
6 , 0

)
,

(3.18)

where the last ζ-vector arises from the extra S1 and the notation is ζ⃗ =
(
ζ τ̂ , ζ ρ̂, ζÛ

)
. Anal-

ogously, one finds a triplet of towers comprised by M2-branes wrapping different 2-cycles
within T3, with the following charge-to-mass vectors

ζ⃗M, 1 =
( 1√

2
,− 5√

42
,− 1√

14

)
, ζ⃗M, 1′ =

(
− 1√

2
,− 5√

42
,− 1√

14

)
,

ζ⃗M, 1′′ =
(
0,

1√
42

,−
√

8
7

)
,

(3.19)

where the last one is inherited from the 9d setup, whilst the first two are new [43]. Notice
that these vectors already generate the convex hull of light towers, see figure 3(a). However,
there also exist additional towers of states associated to the oscillation modes of critical
(type IIA) strings, whose ζ-vectors read as

ζ⃗osc =
( 1
2
√
2

,
1√
42

,− 1
2
√
14

)
, ζ⃗osc′ =

(
− 1
2
√
2

,
1√
42

,− 1
2
√
14

)
,

ζ⃗osc′′ =
(
0,−

√
2
21 ,

1√
14

)
,

(3.20)

and which happen to lie at the extremal ball, thus saturating the sharpened Distance
Conjecture [23]. The first two are inherited from the 9d example above (cf. (3.15)), whilst the
third one arises from the M2-brane of 11d supergravity wrapped along the additional circle.

7A complete list of the relevant towers of 1
2 -BPS states in the present eight-dimensional setup can be found

e.g., in table 1 from ref. [43].
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On a next step, one can analogously compute the would-be species scale vectors within
each asymptotic direction of the 8d moduli space. This was done in [43], and we simply state
here the results highlighted there. First, for the triplet of type IIA critical strings one finds
Z-vectors which coincide with those of their associated charge-to-mass ratios, namely (3.20).
Additionally, one can extract a total of six species scale vectors from the n = 1 towers —
thus signaling decompactification of one extra dimension — arising either from Kaluza-Klein
modes or the M2-particles (see eqs. (3.18) and (3.19)) via the relation [43]8

Z⃗sp, t =
n

d − 2 + n
ζ⃗t , (3.21)

with n ∈ N being an effective density parameter [49] capturing the number of spacetime
dimensions that decompactify upon taking the asymptotic limit (see also (2.12)).

However, this turns out not being enough so as to fully generate the convex hull diagram
for the species scale vectors. Indeed, as discussed in [43], the role of generating/saturating
towers gets exchanged between the two hulls, and it is now crucial to take also into account the
combined effective towers. In particular, one can easily construct 1

2 -BPS particles from bound
states of the aforementioned n = 1 towers [50], resulting in the following n = 2 triplets [43]

Z⃗KK, 2 =
(
0,

1
4
√
42

,
3

4
√
14

)
, Z⃗KK, 2′ =

( 1
8
√
2

,
1√
42

,
3

8
√
14

)
,

Z⃗KK, 2′′ =
(
− 1
8
√
2

,
1√
42

,
3

8
√
14

)
,

(3.22)

for Kaluza-Klein bound states, where the notation follows that of (3.13). Analogously,
one finds

Z⃗M, 2 =
(
0,− 5

4
√
42

,− 1
4
√
14

)
, Z⃗M, 2′ =

( 1
8
√
2

,− 1
2
√
42

,− 5
8
√
14

)
,

Z⃗M, 2′′ =
(
− 1
8
√
2

,− 1
2
√
42

,− 5
8
√
14

)
,

(3.23)

for bound states (with n = 2 again) of M2-particles and also

Z⃗KK-M, 2 =
(
0,

1√
42

,− 1
2
√
14

)
, Z⃗KK-M, 2′ =

(
− 1
4
√
2

,− 1
2
√
42

,
1

4
√
14

)
,

Z⃗KK-M, 2′′ =
( 1
4
√
2

,− 1
2
√
42

,
1

4
√
14

)
,

(3.24)

arise from BPS bound states between wrapped M2-branes and KK replica [43]. These come
along with their corresponding ‘effective’ ζ-vectors, which are parallel to the Z ones and
may be defined as in (3.14) above. All these species scales correspond to the Planck scale
of the possible two-higher dimensional theories (i.e. 10d theories) that arise in the diverse
decompactification limits.

8Relation (3.21) arises from the usual dependence of the species scale on the characteristic mass of the
infinite tower of states, namely Λsp ∼ m

n
d−2+n
tower , with n denoting the density parameter of the tower [46, 49].
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(a) Towers {ζ⃗I}I . (b) Species scales {Z⃗J}J .

Figure 3. Convex hull conditions for the masses {ζ⃗I}I and species scales {Z⃗J}J of the leading
towers in eight-dimensional maximal supergravity, containing the ‘extremal balls’ of radii 1√

d−2 = 1√
6

and 1√
(d−1)(d−2)

= 1√
42 , respectively. The string towers are depicted in red , whilst KK towers

associated to decompactification of one, two and three dimensions appear in blue , green and
yellow , respectively. Note that the string vectors coincide in the two diagrams.

Additionally, there is an SL(2,Z)-doublet of n = 3 towers, signalling full decompactifi-
cation of the 3-torus back to 11d M-theory, whose species scale vectors read

Z⃗KK, 3 =
(
0,

1√
42

,
2

3
√
14

)
, Z⃗M, 3 =

(
0,− 1√

42
,− 2

3
√
14

)
. (3.25)

With this at hand, one can draw the corresponding species scale convex hull diagram,
which is depicted in figure 3(b). In order to check (2.6) one can do as in the 9d example
above and focus — thanks to the U-duality group of the theory — on a strictly smaller
polyhedron. Indeed, since the symmetry group of the convex polytope is S2 × S3, it is
enough for our purposes to take 1/12 of the full diagram, namely the one containing e.g.,
the set {ζ⃗KK, 1′′ , ζ⃗osc, ζ⃗KK-M, 2, ζ⃗KK, 2′ , ζ⃗KK, 3}. Figure 4 depicts the aforementioned vertices
and the fundamental domain they span, as well as the discrete symmetries associated to the
diagram. As can be easily verified, along these directions the product ζ⃗t · Z⃗sp = 1

d−2 = 1
6 is

verified since the species scale and the charge-to-mass vectors are aligned. As also happened
with our previous example, this is all we need to check in order to get convinced that the
pattern holds along every asymptotic (intermediate) direction as well, since from figure 3
it becomes clear that the vertices spanning one convex hull are orthogonal to the faces of
the other, and viceversa.
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Figure 4. Sketch of the fundamental domain F8 of the S3 × S2 =
〈
y, a : y2 = a3 = e, yay = a−1〉×〈

x : x2 = e
〉

symmetry group acting on the scalar charge-to-mass vectors associated to the relevant
towers in 8d maximal supergravity. The figure also shows the towers spanning the fundamental
domain as well as the individual actions of the symmetry group. An analogous fundamental domain
for the species scale polytope from figure 3(b) could be built, as both {ζ⃗I}I and {Z⃗J}J present the
same symmetries.

3.4 Maximal supergravity in d < 8

After the previous concrete examples, we will argue in what follows that the results discussed
there hold more generally in the context of maximal supergravity. The strategy will be to
isolate the key ingredients from the nine- and eight-dimensional setups and translate them
into the more general case in d spacetime dimensions. This is done in section 3.4.1, whilst
the computational details are relegated to section 3.4.2.

3.4.1 A sketch of the proof

The argument proceeds in a recursive manner, relying essentially on the duality properties of
the theory as well as the uniqueness of maximal supergravity for d ≤ 9 [52].

Let us start by noticing from the examples above that the charge-to-mass vectors
associated to towers with density parameter n lie always along a facet9 of the convex hull
polytope with dimension equal to n−1 (see figures 2 and 3(a)), whilst those vectors controlling
the species scale belong to a facet of codimension n (cf. figures 2 and 3(b)).10 This holds

9Actually, they are located at the point of the facet closest to the origin.
10The vectors associated to string towers, having density n → ∞, appear at facets of maximal (co-)dimension

for the charge-to-mass (resp. species) diagram.
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in lower spacetime dimensions as well, since the length of the vectors is fully determined
once d and n are specified (cf. (2.13)), and it is indeed a clear manifestation of the duality
between both convex hulls in the sense that the facets of one correspond to the vertices
of the other, and viceversa.

One also notices that the diagrams present some symmetry properties that reflect the
U-duality group of the quantum theory (see table 1 below). This, in turn, allows us to restrict
ourselves to some fundamental domain (i.e. a subset of the original convex hull) containing all
the relevant information for the diagram, whilst the remaining parts of the hull appear to be
mere copies of the former, obtained upon acting with the different elements of the symmetry
group. In fact, one may view such fundamental domain as the region whose boundaries
precisely arise as fixed submanifolds under some element(s) of the symmetry group, which
moreover coincides with the Weyl subgroup associated to the U-duality group (see figure 4).11

Therefore, what we need first to know is how to select a fundamental domain Fd, in
practice. For this, we note that the towers of states with n = 1 arrange themselves into a
single irreducible representation of the U-duality group for d < 9, as shown in the second
column of table 1. These include perturbative (i.e. KK, winding modes, etc.) as well as non-
perturbative states (wrapped branes, KK-monopoles, etc.), and for us it will be enough to
focus on just one of them, which we take to be of perturbative nature, namely a Kaluza-Klein
vector. Hence, we work inductively, starting from M-theory compactified on Tk down to
d+1 = 11−k dimensions, where we assume the pattern (2.6) to hold. Then, we dimensionally
reduce on an extra circle, leading to M-theory on Tk × S1 ≃ Tk+1, and we consider the ‘cone’
of asymptotic directions comprised by the large radius direction (of the additional S1) and
the KK replica of the vectors determining some fundamental domain, Fd+1, in the parent
(d+1)-dimensional theory. Upon doing so, one can easily check (see section 3.4.2 below) that
eq. (2.6) is verified along any asymptotic trajectory within Fd. Finally, since the pattern
has already been shown to hold for k = 1, 2, 3 (corresponding to maximal supergravity in
ten, nine and eight dimensions, respectively), one concludes that it extends to all lower
dimensional cases as well.

3.4.2 Relevant computations

The aim of this subsection is to provide some of the details that corroborate our claims
before regarding the analysis of the pattern (2.6) in d < 8 maximal supergravity. Let us
assume that we have already fixed a fundamental domain Fd, as outlined in section 3.4.1.
Such polytope is thus generated by the reference n = 1 tower, with charge-to-mass vector

11Consider some EFT with a n-dimensional moduli space Mφ parametrized by the scalars {φi}n
i=1. The

U-duality group G of said theory transforms said scalars in a way such that the different states of the EFT
are mapped to one another. However, if we are interested only in non-compact scalars (thus ignoring compact
axionic fields, since they play no role for our considerations, see [43]), some of the transformations of G might
affect only the compact scalars, which we left fixed. These transformations are the elements of a maximal torus
of G, TG ↪→ G, which is the maximal Abelian, connected and compact subgroup of G. As in general TG is not a
normal subgroup of G, in order to properly quotient G by TG, the normalizer NG(TG) = {g ∈ G : gTG = TGg}
is introduced, corresponding to the largest subgroup of G such that TG is a normal subgroup. Then the Weyl
group of G is defined as W(G) := NG(TG)/TG, and it will correspond with the symmetries of the non-compact
scalars (and thus of the different vectors under consideration). It is finite (there are only so many ways of
exchanging points) and a subgroup of GL(Rm), where m ≤ n is the number of unbounded moduli.
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d U-duality group Irrep. {ζ⃗I}I sym. group Order
10A 1 1 1 1
10B SL(2,Z) 2 Z2 ≃ S2 2

9 SL(2,Z) 2 ⊕ 1 Z2 ≃ S2 2
8 SL(2,Z)× SL(3,Z) (2, 3) S2 × S3 12
7 SL(5,Z) 10 S5 120
6 SO(5, 5,Z) 16 W (Spin(5, 5)) 1 920
5 E6(6)(Z) 27 W (E6) 51 840
4 E7(7)(Z) 56 W (E7) 2 903 040
3 E8(8)(Z) 248 W (E8) 719 953 920

Table 1. U-duality representations of the particle multiplets in M-theory on Tk [50] for 10 ≥ d ≥ 3.
Note that there are two possibilities for d = 10, corresponding to ten-dimensional type IIA and type
IIB supergravities. The second column shows the vector and charge representations for n = 1 BPS
towers, which for d < 9 arrange into a single irrep. Additionally, the symmetry group acting on the
ζ (equivalently Z)-vectors is displayed, which corresponds to the Weyl subgroup of the associated
U-duality group, as well as its finite order [53]. The latter controls the number of copies of Fd that
comprise the convex hull of ζ- or Z-vectors.

ζ⃗KK,1, together with the KK replica of those vectors determining the fundamental domain
of the theory in one dimension higher (see figure 4). In the following, we will denote the
latter as {ζ⃗KK, n+1}, with n ∈ {1, . . . , 10 − d,∞}. First, we notice that whenever we focus
on a given direction determined by some ζ⃗ within Fd, the pattern is automatically satisfied,
since both the species and charge-to-mass vectors are associated to one and the same tower
and thus parallel to each other (cf. (2.14)). The non-trivial task is to show that eq. (2.6) is
still satisfied along intermediate directions as well, where the vectors {ζ⃗t, Z⃗sp} are no longer
aligned. To do so, we first prove the following claim:

Claim 1. The leading tower of states within Fd always corresponds to ζ⃗KK, 1. Additional
towers mI can become light at the same rate along certain asymptotically geodesic trajectories,
characterized by some normalized tangent vector T̂ .

This can be easily shown upon computing the inner product between ζ⃗KK, 1 and any
other charge-to-mass vector belonging to the set {ζ⃗KK, n+1}. One finds

ζ⃗KK, 1 · ζ⃗KK, n+1 = ζ⃗KK,1 ·
[ 1

n + 1
(
ζ⃗KK, 1 + n ζ⃗KK, n

)]
= d + n − 1

(d − 2)(n + 1) = |ζ⃗KK, n+1|2 ,

(3.26)
where we have used eq. (A.15) in the second equality. The fact that it coincides with
|ζ⃗KK, n+1|2 implies, geometrically, that the segment of the hull determined by both vectors is
indeed orthogonal to ζ⃗KK, n+1 itself (see e.g., figure 1). Now, given any normalized tangent
vector T̂ , we can split it into parallel and perpendicular components with respect to the plane
spanned by ζ⃗KK, 1 and ζ⃗KK, n+1, such that T̂ = T̂ ∥ + T̂⊥, where T̂ ∥ = a ζ⃗KK, 1 + b ζ⃗KK, n+1,
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and with a, b ≥ 0. Therefore, we have

T̂ · (ζ⃗KK, 1 − ζ⃗KK, n+1) = T̂ ∥ · (ζ⃗KK, 1 − ζ⃗KK, n+1)
= a ζ⃗KK, 1 · (ζ⃗KK, 1 − ζ⃗KK, n+1) + b ζ⃗KK, n+1 · (ζ⃗KK, 1 − ζ⃗KK, n+1)
= a (|ζ⃗KK, 1|2 − |ζ⃗KK, n+1|2)︸ ︷︷ ︸

>0

≥ 0, (3.27)

so that the ζ⃗KK, 1 tower always becomes light faster than ζ⃗KK, n+1 except for a = 0, namely
when T̂ ∥ ∝ ζ⃗KK, n+1, in which case they do so at the same rate. This ends our proof of Claim 1
above. On the other hand, the species scale strongly depends on the chosen asymptotic
trajectory (see e.g., figure 3). Hence, in order to check the pattern (2.6), one needs to
demonstrate the following statement:

Claim 2. For any possible species scale vector spanning Fd, that we collectively denote
{Z⃗KK, n+1} with n ∈ {1, . . . , 10− d,∞}, we find:

ζ⃗KK, 1 · Z⃗KK, n+1 =
1

d − 2 , (3.28a)

ζ⃗KK, n′+1 · Z⃗KK, n+1 =
1

d − 2 . (3.28b)

In particular, the second equality holds provided the parent vectors satisfy the pattern in the
higher (d + 1)-dimensional theory.

Note that the first part of the claim above trivially follows from eqs. (3.21) and (3.26).
The second statement, however, requires a bit more work. Intuitively, it means that the con-
dition (2.6) is consistent (or preserved) under dimensional reduction. Thus, we take, without
loss of generality, some vector Z⃗KK, n+1 as the one dominating certain asymptotic region of
moduli space within the fundamental domain, and we consider the inner product (3.28b).
Here, ζ⃗KK, n′+1 is taken to be any other charge-to-mass vector within Fd such that it verifies
the pattern with respect to Z⃗KK, n+1 in the parent (d + 1)-dimensional theory. Recall that,
upon dimensionally reducing some vectors ζ⃗

(d+1)
KK, n′ and Z⃗ (d+1)

KK, n on a circle, one gets [43]

ζ⃗KK,n′ =
(

ζ⃗
(d+1)
KK,n′ ,

1√
(d−1)(d−2)

)
, Z⃗KK,n+1=

(
Z⃗ (d+1)

KK,n ,
1√

(d−1)(d−2)

)
, (3.29)

where the first components of both vectors are directly inherited from the ones of the theory
in d + 1 dimensions, whilst the last entry corresponds to the S1 radion direction (see also
appendix A). Hence, requiring ζ⃗KK, n′+1 to verify the pattern in the higher-dimensional theory
translates into the following statement

ζ⃗
(d+1)
KK, n′ · Z⃗ (d+1)

KK, n = 1
d − 1 , (3.30)

such that we finally obtain

ζ⃗KK, n′+1 · Z⃗KK, n+1 =
[ 1

n′ + 1
(
ζ⃗KK, 1 + n′ ζ⃗KK, n′

)]
· Z⃗KK, n+1

= 1
n′ + 1 ζ⃗KK, 1 · Z⃗KK, n+1 +

n′

n′ + 1

[
ζ⃗
(d+1)
KK, n′ · Z⃗ (d+1)

KK, n + 1
(d − 1)(d − 2)

]
= 1

d − 2 , (3.31)
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where in order to arrive at the last equality one needs to use eqs. (3.28a) and (3.30) above.
This completes the proof of Claim 2, which ensures that both convex hull diagrams, namely
that associated to the ζ-vectors and the species one, are completely dual to each other (with
respect to a sphere of radius 1√

d−2), as also happened for the 9d and 8d case. This proves that
the pattern (2.6) holds in complete generality in flat space compactifications with maximal
supergravity. For completeness, let us mention that this property holds as well between
vectors in- and outside the selected fundamental region (see e.g., figures 2 and 3). Notice that
this follows immediately from the analysis restricted to Fd just performed, since any vector
outside the fundamental domain can be reached from another one within the latter via the
action of some element g ∈ G of the finite symmetry group G of the diagram. However, since
G is a subgroup of the U-duality group of the theory (cf. table 1), and this itself is a subgroup
of the coset which parameterizes the moduli space (see e.g., [54]), the scalar product defined
with respect to the bi-invariant metric Gij is automatically preserved.

4 Examples in setups with 16 supercharges

As we lower the level of supersymmetry, Kaluza-Klein replica are not necessarily BPS anymore,
and the vectors generating the convex hull of the towers and the species scale can change
upon exploring different regions of the moduli space. Satisfying the pattern in those cases
becomes less trivial and provides strong evidence for it beyond maximal supergravity. In this
section, we will discuss certain slices of the moduli space of heterotic string theory on a circle,
for which all asymptotic corners (as well as how they fit together) are well-known [55]. In
this case, it is still possible to define a globally flat metric12 which will allow us to draw the
convex hull in a global fashion [26], and discuss how it changes as we move in moduli space.
For completeness, we will also briefly discuss the case of M-theory on K3, before turning in
the rest of the paper to more complicated lower-supersymmetric 4d setups.

4.1 Heterotic string theory in 9d

A typical example of a theory with 16 supercharges is that obtained by the compactification
of the heterotic string on S1. This results in an 18-dimensional moduli space Mhet = R×
SO(17, 1;Z)\SO(17, 1;R)/SO(17), parametrizing the 10d dilaton ϕ, radion ρ and the 16
Wilson lines. We can then study two-dimensional {ϕ, ρ} slices of Mhet with fixed Wilson
line moduli. In particular, we will be interested in two concrete slices of the moduli space
of rank 16 (for the gauge group), which can be obtained by compactifying the SO(32) and
E8 × E8 10d heterotic string theories on a circle, with all Wilson lines turned off. We expect
equivalent results for the disconnected components of the moduli space with lower rank [26, 55].
Depending on the values taken by the dilaton and radion vevs, the theory can be better
presented in terms of a different dual description, resulting in a finite chain of duality frames,
as shown in figure 5 and described in more detail in [26, 55]. Both slices present a self-dual line
at ρ = 1√

7ϕ (the dashed line in figure 5 below) splitting each diagram in two mirrored regions.

12When referring to a ‘flat’ frame in a certain moduli space we always ignore the compact (axionic) directions,
since taking them into account usually introduces a non-vanishing curvature, thus obstructing the definition of
a global flat chart.
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(a) SO(32). (b) E8 × E8.

Figure 5. Scalar charge-to-mass vectors for the towers (blue) and species scales (red) observed for
the SO(32) and E8 ×E8 slices of the heterotic on S1 moduli spaces, depending on whether the infinite
distance limits (along the non-dashed regions) are above or below the self-dual line (dashed), following
the convention for the canonically normalized moduli as in [26].

The most interesting duality frame is that corresponding to type I′ string theory, which
is an orientifolded version of type IIA on a circle, with two O8− planes at the endpoints of
the interval and 16 D8-branes, whose location determines the gauge group (16 of then stacked
on one orientifold for SO(32) and a symmetric pair of 8 D8-stacks for E8 × E8), with the
dilaton running between the O8− planes and the branes [56]. As a result, the large radius
limit of type I′ leads to decompactification to a running solution of massive type IIA in 10
dimensions (rather than a higher dimensional vacuum). This makes the scalar charge-to-mass
vector of the type I′ KK tower (which is non-BPS) to change non-trivially as we move in
moduli space. The main result of [26] shows that warping effects make this vector to slide
perpendicularly to the self-dual line as we move along a trajectory parallel to self-dual line
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and change the distance to the latter (see figure 6). As a function of the asymptotic direction,
though, it is simply seen as a jumping of the KK vector from one unwarped value to the
other as we cross the self-dual line. This jump occurs in opposite directions for the SO(32)
or E8 × E8 theories. This implies that, in each duality frame, the location of the ζ-vectors
of the towers is the same as in the above moduli spaces of 9d maximal supergravity (with
32 supercharges). This is clear upon comparing figure 5 with figure 2 of section 3.2. The
lower level of supersymmetry plays only an important role when determining how to ‘glue’
the different patches altogether, which occurs in a very non-trivial way.

Hence, as long as we do not move parallel to the self-dual line in the type I′ region, it
is then clear that the pattern (2.6) is satisfied, since the distribution of the towers and the
species scale vectors is locally the same as in maximal supergravity. Each region will be
characterized by a different realization of the species scale (either the 10d string scale or
the 11d M-theory Planck scale), such that the convex hulls of the towers and species scale
are dual to each other and the pattern is thus realized. The tower vectors were already
computed in [26], so we are simply computing the species vectors as well here in order to
represent everything together in figure 5 below.

It remains to be seen, though, whether the pattern will also hold if moving parallel to the
self-dual line in the type I′ region. As explained, this limit decompactifies to a running solution
in massive type IIA with a non-trivial spatial dependence of the dilaton. In particular, this
changes the exponential rate of the KK tower in comparison to the unwarped result (2.13),
as computed in [26]. For the E8 × E8 slice13 one has

mKK, I′

MPl; 9
∼ e

− 5
2
√

7
ϕC+ 3

2 ϕB (1 + 3e2ϕB )−1 =⇒ ζ⃗KK, I′ =
(1
2 − 2

1 + 3e2ϕB
,

5
2
√
7

)
(4.1)

which is written in a basis of flat coordinates {ϕB, ϕC}.14 Each of these coordinates measures,
respectively, the moduli space distance perpendicular and parallel to the self-dual line in the
type I′ frame. As already mentioned, this implies that the type I′ KK modes move orthogonal
to the self-dual line as a function of ϕB (see figure 6). At each side of the self-dual line (i.e.
in each of the type I′ frames) we seem to have a different tower of KK states, whose scalar
charge-to-mass ratio coincides when moving exactly along the interface. We expect that these
towers actually correspond to different sets of states that are mapped to each other upon
performing the duality. If that is the case, they should both contribute to Λsp, yielding a
lower value for the species scale (i.e. a larger value of the exponential rate) than what each
tower alone would yield. The type I′ string oscillator modes, though, are not expected to
contribute since the string perturbative limit is obstructed. Computing this species scale
from top-down string theory would be a project by itself, so we leave it for future work. Here,
we will simply determine what should be the value for the species scale along the self-dual
line such that the pattern holds even for these decompactifications to running solutions. We
hope that this can be useful to elucidate the fate of the pattern in these special cases.

Along the self-dual line, the scalar charge-to-mass vector of the KK towers is given
by ζ⃗eff =

(
0, 5

2
√
7

)
, with an associated species scale Z⃗eff that should also point towards

13The SO(32) is analogous but with slightly more cumbersome expressions, see section 3 in [26].
14This amounts to a clockwise π

2 + arctan
(

1√
7

)
turn from the {ϕ, ρ} coordinates shown in figure 5.
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Figure 6. Details of the E8 × E8 slice of Mhet, parameterized in terms of {ϕB , ϕC}. When moving
with T̂ = (0, 1), thus parallel to the self-dual line, the type I′ KK tower (and its dual) has a scalar
charge-to-mass vector ζ⃗KK, I′ whose expression depends on the distance ϕB of the trajectory to the
self-dual line (cf. eq. (4.1)), coalescing for ϕB → 0 to (0, 5

2
√

7 ). The fixed Z⃗eff =
(
0, 2

5
√

7

)
vector

satisfying the pattern is also depicted. Additional Z-vectors associated to the obstructed emergent
string towers as well as the heavier Planck masses are also presented. The SO(32) slice has an
analogous behavior, with ζ⃗KK, I′ located on the other side of the self-dual line, see [26].

this direction. For decompactification limits, the species scale can be computed [46, 49]
(see also (7.8)) in terms of an effective tower meff, n ∼ n1/peff meff, 0 with peff = ∑

i pi and
mi, n ∼ n1/pimi, 0. We do not expect peff = 1 since this would correspond to having a single
KK tower decompactifying one dimension, nor peff = 2 since it would rather indicate a
double decompactification. In fact, for the pattern to hold, we can check that the required
value for the density parameter is something in between, namely peff = 4

3 , which can be
obtained upon identifying

Λeff
MPl; 9

=
(

meff
MPl; 9

) peff
9−2+peff

= e
− 2

5
√

7
ϕC =⇒ Z⃗eff =

(
0,

2
5
√
7

)
. (4.2)

This value would imply ζ⃗eff · Z⃗eff = ζ⃗KK, I′ · Z⃗eff = ζ⃗KK, I′ (dual) · Z⃗eff = 1
7 , satisfying the pattern

for any ϕB ≥ 0. Along the self-dual line, the type I′ radion (in 10d Planck units) and string
coupling scale as RI′MPl;10 = g

−5/4
I′ ∼ e

5
√

7
16 ϕC . This implies that the species cut-off should

scale as Λsp
MPl; 10

∼ (RI′MPl; 10)−
32

175 ∼ g
8

35
I′ , although it is not possible for us to elucidate the

separate dependence on the radion and the dilaton. It would be interesting to check, from
string theory, whether this behaviour of the species scale is indeed realized and the structure
of the KK towers (taking into account the large warping associated to decompactifying to
a running solution) is such that effectively implies peff = 4

3 . Hence, whether the pattern is
fulfilled in this particular asymptotic direction remains open and is left for future investigation.
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4.2 M-theory in 7d

For completeness, let us consider M-theory compactified on a K3 surface, leading to a
supersymmetric setup in 7d with 16 supercharges as well. This example will resemble many
features that will be explained in more detail when discussing 4d theories arising from
Calabi-Yau compactifications. Furthermore, our analysis here nicely complements the work
performed in [57], where the emphasis was placed on the leading tower of states rather
than the species scale.

For simplicity, we will focus on attractive K3 manifolds, namely those K3 spaces where
the rank of the Picard group is maximal.15 For such manifolds, the complex structure is
completely fixed (see e.g., [59] for details on this), so that both the 7d lagrangian as well
as the mass of the different (non-)perturbative states depend only on the Kähler moduli
{ta}. The latter arise, as usual, as expansion parameters of the Kähler 2-form J = taωa,
where {ωa} constitutes a basis of H1,1(X3,Z).

All in all, the relevant piece of the 7d (bosonic) reads as follows (see e.g., [60])

S7d ⊃ 1
2κ2

7

∫
d7x

√
−g

[
R− 9

20 (∂ logVK3)2 − Gab

(
∂t̃a · ∂t̃b

)]
, (4.3)

where we have defined VK3 = 1
2ηabt

atb with ηab = ωa · ωb denoting the intersection form of
the K3 surface, and t̃a = ta/V1/2

K3 are rescaled moduli subject to the constraint 1
2ηabt̃

at̃b != 1.
The moduli space (which is classically exact [61]) can be seen to be isomorphic to M7d =
O(3, 19;Z)\O(3, 19;R)/O(19) × R+ [58], where the overall volume parameterizes the R+
factor with a metric of the form GVK3VK3 = 9

20V2
K3

. The coset piece admits a natural metric
as well, which is given by [57]

Gab =
∫

K3
ωa ∧ ⋆ωb =

tatb

VK3
− ηab = t̃at̃b − ηab , (4.4)

where the indices are lowered with the intersection form ηab.
Regarding the infinite distance boundaries of such moduli space, there are several of

them, according to which moduli are sent to infinity: the large volume point, the small ‘radius’
limit, a unique type of infinite distance degeneration at constant VK3 [57] and combinations
thereof. We discuss each of them in the following.

The large/small volume limits. Let us start with the large volume singularity VK3 → ∞,
which of course lies at infinite distance in the field space metric defined from the action (4.3)
above. It corresponds to the decompactification limit, where the K3 manifold grows large
and we come back effectively to 11d supergravity. Thus, the infinite tower of asymptotically
light states is given by the KK tower, whose mass is

mKK, K3
MPl; 7

= V−9/20
K3 =⇒ ζ⃗KK, K3 =

( 9
20

1
VK3

, 0, . . . , 0
)

, (4.5)

where we have used that the 7d and 11d Planck scales are related by M5
Pl; 7 = M5

Pl; 11VK3. The
associated species scale corresponds to the 11d Planck mass, such that upon taking the inner

15The Picard group is defined as Pic(K3) = H1,1(K3)∩H2(K3,Z), such that it corresponds to (dual) curve
classes which have some holomorphic representative [58]. For attractive K3s, rk(Pic(K3)) = 20.
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product between ζ⃗KK, K3 and Z⃗sp = 4
9 ζ⃗KK, K3 (cf. eq. (3.21)) we find that ζ⃗KK, K3 · Z⃗sp = 1

5 ,
in agreement with (2.6).

The small ‘radius’ limit, namely VK3 → 0, is of different physical nature. One can argue
that it corresponds to an emergent string limit [24], where an asymptotically tensionless
and weakly coupled heterotic string emerges at infinite distance. Indeed, it is possible to
construct an heterotic-like string by wrapping the M5-brane on the whole K3 surface [62, 63],
with a tension in 7d Planck units which reads as follows

TM5
M2

Pl; 7
= V3/5

K3 =⇒ ζ⃗osc, M5 =
(
− 3
10

1
VK3

, 0, . . . , 0
)

. (4.6)

Moreover, there are additional 1
2 -BPS states arising from wrapped M2-branes on certain

holomorphic curves within the K3, which moreover correspond to perturbative winding
modes of the dual heterotic string on T3.16 Their mass dependence can be deduced from
the DBI action, and yields [46]

m
(a)
M2

MPl; 7
= ta V−1/5

K3 = t̃a V3/10
K3 =⇒ ζ⃗

(a)
M2 =

(
− 3
10

1
VK3

, 0, . . . ,− 1
t̃a

, . . . , 0
)

, (4.7)

where the non-zero entries correspond to the overall volume component and the one associated
to the rescaled t̃a modulus (see discussion after eq. (4.3)). It is therefore clear that, upon
contracting ζ⃗t = {ζ⃗osc, NS5, ζ⃗

(a)
M2 } with Z⃗sp = ζ⃗osc, NS5, one obtains ζ⃗t · Z⃗sp = 1

5 , thus fulfilling
the pattern.

Infinite distance at fixed (overall) volume. Let us consider now infinite distance limits
with the overall volume kept fixed and constant. In fact, as demonstrated in [57] (see also
earlier related works in [29, 64]), for such a limit to exist it must be possible to select some
ω0 = ∑

a caωa ∈ H1,1(X3,Z) (with ca ≥ 0) such that17

J = t0ω0 + tiωi , with t0 = σ, ti = ai

σ
, σ → ∞ , (4.8)

where i = 1, . . . , 19 and the basis {ω0, ωi} verifies that ω0 · ω0 = 0 and ∑i ai ω0 · ωi = VK3 +
O(1/σ2). Geometrically, the very existence of such a limit enforces the attractive K3 to
admit some elliptic fibration over a P1-base, with the genus-one fibre C0 being Poincaré dual
to the Kähler cone generator ω0. Such holomorphic curve shrinks upon taking the limit (4.8),
whilst the base grows at the same rate so as to keep the overall VK3 fixed and finite.

16Note that since H2(K3,Z) defines a lattice of signature (3, 19) there are precisely 3 non-equivalent
holomorphic curves with non-negative self-intersection, and thus non-contractible. These should correspond to
the 3 winding modes sectors of the dual heterotic string on T3.

17The fact that the limit (4.8) leads to an infinite distance with respect to the metric (4.4) follows from the
asymptotic dependence of Gab:

∆ =
∫ ∞

1
dσ

√
Gab

dt̃a

dσ

dt̃b

dσ
∼
∫ ∞

1
d log

(
t̃0) → ∞ ,

where we have used that Gij = η0iη0j

(
t̃0)2 +O(σ0), G0j = η0jηi0t̃j t̃0 − η0i +O(1/σ2) and G00 = η0jηi0t̃i t̃j .
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Given the behavior of the different 2-cycles along the limit (4.8), there are potentially two
kinds of infinite towers of states. First, there are the supergravity KK modes associated to the
P1-base, whose volume grows asymptotically. The mass scale of such tower behaves as follows

mKK,P1

MPl; 7
= 1(

t̃0
)1/2 V9/20

K3
=⇒ ζ⃗KK,P1 =

( 9
20

1
VK3

,
1
2t̃0

, 0, . . . , 0
)

, (4.9)

so that it becomes (exponentially) light upon probing the t̃0 → ∞ limit. In addition, there
is a second infinite set of states becoming light even faster, which arise from M2-branes
wrapping the genus-one fibre. Their mass is controlled by the volume of the latter

mM2
MPl; 7

= VC0 V
−1/5
K3 = V3/10

K3
t̃0

=⇒ ζ⃗M2 =
(
− 3
10

1
VK3

,
1
t̃0

, 0, . . . , 0
)

, (4.10)

and they can be seen to correspond to the dual KK replica implementing the duality between
M-theory on K3 and F-theory on K3× S1 [57, 65]. However, in order to correctly interpret
what is the resolution of the singularity in QG, we need to study the behavior of the species
scale. One can thus associate two such scales, one for each tower, as follows (cf. (3.21))

ΛM2
MPl; 7

≃ (mM2)1/6 = V1/20
K3(

t̃0
)1/6 =⇒ Z⃗Pl, 8 =

(
− 1
20

1
VK3

,
1
6 t̃0

, 0, . . . , 0
)

, (4.11)

ΛPl, 9
MPl; 7

≃
(
mKK,P1

)2/7
= 1(

t̃0
)1/7 V9/70

K3
=⇒ Z⃗Pl, 9 =

( 9
70

1
VK3

,
1
7t̃0

, 0, . . . , 0
)

, (4.12)

which coincide with the 8d Planck scale18 (in the F-theory frame) and the 9d Planck scale,
respectively. We are not done yet though, since both sets of states can be combined together
forming bound states, namely the wrapped M2-branes may have non-trivial momentum along
the P1-base. Furthermore, such ‘mixed’ states contribute to the computation of a third
candidate for the species scale, whose Z-vector reads (see eq. (A.14))

Z⃗Pl, 10 =
1
8
(
ζ⃗M2 + 2ζ⃗KK,P1

)
=
( 3
40

1
VK3

,
1
4t̃0

, 0, . . . , 0
)

, (4.13)

thus signalling towards decompactification to 10d type IIB string theory. In figure 7 all these
vectors are plotted, both for the scalar charge-to-mass and species scale are shown, including
those relevant in the large/small K3 volume limit, as previously discussed.

With this, we are now ready to check what is the minimum Λsp dominating the asymptotic
physics along the limit (4.8). Indeed, it is easy to see either from the formulae above or
the diagram in figure 7, that this becomes the 10d Planck scale. Therefore, such limit may
be interpreted as some ‘nested’ decompactification, first from 7d M-theory to 8d F-theory
(as remarked in [57]), and then up to ten dimensions, effectively sending all supersymmetry
breaking defects (i.e. D7-branes and O7-planes) to infinity and thus restoring maximal (chiral)
supergravity in 10d. Hence, a quick computation reveals that the pattern ζ⃗M2 · Z⃗Pl, 10 = 1

5
is also verified in this limit (to leading order in 1/t̃0).

18This can be easily checked upon identifying R8 = (t̃0)5/6

V1/4
K3

, where R8 denotes the radius (in 8d Planck units)

of the F-theory circle, as well as the relation between the 8d and 7d Planck scales, namely M5
Pl; 7 = M5

Pl; 82πR8.
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Figure 7. Convex hulls for the lightest towers (blue) and species scale (red) in M-theory compactified
on an attractive K3 surface, using a flat frame {ˆ̃t0, V̂K3}, in which the equations of the different vectors
are ζ⃗osc, M5 = Z⃗osc, M5 =

(
− 1√

5 , 0
)

, ζ⃗M2 =
(
− 1√

5 , 1
)

, ζ⃗KK−eff, 3 =
(

2
3
√

5 , 2
3

)
, ζ⃗KK, P1 =

(
3

2
√

5 , 1
2

)
,

ζ⃗KK, K3 =
(

3
2
√

5 , 0
)

, Z⃗Pl, 8 =
(
− 1

6
√

5 , 1
6

)
, Z⃗Pl, 10 =

(
1

4
√

5 , 1
4

)
, Z⃗Pl, 9 =

(
3

7
√

5 , 1
7

)
and Z⃗Pl, 11 =(

2
3
√

5 , 0
)

. It is easy to see that both polytopes are dual to each other (with respect to the 1-sphere of
radius 1√

d−2 = 1√
5 ), and thus the pattern is satisfied. The different limiting theories, which can be

deduced by looking at the dominant species scale in each region of the moduli space, are also shown
for completeness.

Mixed limits. To conclude, let us briefly comment on the possibility of superimposing any
of the previous limits, thus sending both the overall K3 volume and the t̃0 Kähler modulus
to infinity at different rates, a priori. In fact, upon comparing the different species scale that
can arise (and even compete) at distinct corners of the moduli space, one can indeed separate
these asymptotic regions into different sectors, depending on which specific scale dominates
(see figure 7). In any event, one can still verify that the pattern is respected in all such cases,
due to the non-trivial gluing conditions between the different patches.

5 Examples in 4d N = 2 EFTs

We now turn to theories with 8 supercharges. In particular, we will focus on 4d N = 2
setups arising upon compactifying type II string theory on Calabi-Yau threefolds. The
singularity structure of the moduli space of these theories is very rich and has been thoroughly
studied in the past, providing for different types of infinite distance limits. We will first
introduce the basic notation in section 5.1 and then study different concrete examples in later
subsections, as well as presenting general arguments in favour of satisfying the pattern in full
generality within the vector multiplet moduli space. Section 5.6 analyzes the effect of (towers
of) instanton corrections on singularities located classically at infinite distance, which are
nevertheless excised and deflected within the true quantum hypermultiplet moduli space.
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5.1 Setting the stage: the vector multiplet moduli space

Let us start by reviewing the main ingredients that will be necessary in what follows so as
to check the pattern (2.6) in 4d N = 2 setups. Such theories arise upon compactifying e.g.,
type IIA string theory on a Calabi-Yau threefold, X3, and in the low energy regime they
may be described by the following (bosonic) action [66]

S4d = 1
2κ2

4

∫
R ⋆ 1− 1

2ReNABF A ∧ F B − 1
2 ImNABF A ∧ ⋆F B

− 1
κ2
4

∫
Gab̄ dza ∧ ⋆dz̄b + hpq dqp ∧ ⋆dqq ,

(5.1)

where F B = dAB, with B = 0, . . . , h1,1(X3), denote the field strengths associated to the
Abelian U(1) gauge bosons belonging to the vector multiplets as well as the graviphoton. On
the other hand, the complex scalars za = ba + ita, a = 1, . . . , h1,1, describe the (complexified)
Kähler sector of the theory and determine altogether the vector multiplet moduli space [67],
whereas the scalars in the various hypermultiplets (including e.g., the complex structure
moduli) are denoted collectively by qp.

Since we will only be interested in the computation of the relevant scalar charge-to-mass
vectors as well as the corresponding species scale, we will focus on the scalar-tensor sector of
the action (5.1) and effectively forget about the vector fields. In particular, we will need the
explicit expression for the moduli space metrics. The Kähler moduli {ta}h1,1

a=1 can be used
to expand the Kähler form J = taωa, where {ωa}h1,1

a=1 is a basis of integral 2-forms dual to
a basis of Mori cone generators in H2(X3,Z) [21]. With this choice, one finds the following
metric for the scalars within the vector multiplets [67, 68]:

Gab̄ = ∂a∂b̄Kks = ∂a∂b̄

(
− log 4

3K
)

, (5.2)

where K
6 = 1

6κabct
atbtc = 1

6
∫

X3
J ∧ J ∧ J = V(X3) denotes the volume of the threefold in

string units, Kks is the Kähler potential [69] and κabc are the triple intersection numbers
of the Calabi-Yau X3, given by

κabc =
∫

X3
ωa ∧ ωb ∧ ωc . (5.3)

The analysis of the hypermultiplet sector will be postponed until section 5.6. By Mirror
Symmetry (see e.g., [70]), this effective theory can be equivalently described as arising from
compactifying type IIB on the mirror Calabi-Yau threefold, such that the role of Kähler and
complex structure moduli get exchanged. The different types of infinite distance limits in the
vector multiplet sector can then be nicely classified using the theory of Mixed Hodge Structures
within the complex structure moduli space of type IIB [16, 71]. However, in the present work,
we will analyze each of these limits using the language of type IIA compactifications, since the
microscopic interpretation of the corresponding asymptotic limit (either decompactification
or emergent string limit [24]) becomes more apparent from this point of view.

Classification of infinite distance limits at large volume. From the perspective of
type IIA string theory, we need to particularize to the large volume patch, where one can
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Type [18] Type [24] Intersection numbers
IVd — rk(κ(n)) = rk(κ(n)

a ) = 1 and rk(κ(n)
ab ) = d

IIIc J-class A rk(κ(n)) = 0, rk(κ(n)
a ) = 1 and rk(κ(n)

ab ) = c + 2
IIb J-class B rk(κ(n)) = rk(κ(n)

a ) = 0 and rk(κ(n)
ab ) = b

Table 2. Infinite distance limits in the large volume regime within the vector multiplet moduli space
of type IIA compactified on a CY3. They can be classified in terms of the behavior of the triple
intersection numbers κabc via Mixed Hodge Theory [18], or using a purely geometrical analysis [24]. The
following notation has been introduced: κ

(n)
ab =

∑n
i=1 κiab, κ

(n)
a =

∑n
i,j=1 κija, κ(n) =

∑n
i,j,k=1 κijk

and rk(·) denotes the rank of the corresponding matrix.

safely ignore both α′ and worldsheet instanton contributions which further correct the form
of the metric displayed in (5.2). Still, the structure of possible infinite distance singularities
is very rich as we review in what follows. Following [16, 18, 71], we can parametrize infinite
distance limits within the Kähler cone, in terms of trajectories of the form

{ti} = t1, . . . , tn → ∞ , n ≤ h1,1(X3) , (5.4)

with bi approaching finite values. The several distinct types of infinite distance limits have
been thoroughly studied and classified by different means in [18, 24], and can be divided into
three classes shown in table 2 below, according to the behavior of the intersection numbers
κabc in terms of the asymptotic direction taken. More details about the notation in terms
of Roman numerals can be found in [16] whilst the notation in terms of J-class A/B can
be found in [24] (see also [72]). Geometrically, these three classes correspond to different
fibration structures: the unique limit in which the overall volume of X3 blows up uniformly,
thus corresponding to the large volume point; the ones in which the CY3 possesses an elliptic
fibration over some Kähler two-fold; and those in which the threefold develops either some
K3 or T4 fibration over a P1-base. We will consider in the upcoming subsections specific
examples of each representative class of limit followed by a general analysis of each singularity
type, providing all of them more evidence in favour of the pattern here described.

In table 3, we summarize the microscopic interpretation of the leading tower of states
becoming light at each type of infinite distance limit, as well as the physical realization of
the species scale for each case. Recall that, in this section, we consider infinite distance
limits lying purely within the vector multiplet moduli space, while all hypermultiplet scalars
(including the 4d dilaton) remain fixed. To achieve this, sometimes we will need to co-scale
properly certain ten-dimensional variables [24]. For instance, if we want to keep the 4d
dilaton, φ4 = ϕ − 1

2 logV , fixed and finite, one needs to rescale accordingly the 10d dilaton ϕ,
which will bring us to the strong coupling regime of type IIA as we will see below in more
detail. For other limits involving also the hypermultiplets, see section 5.6.

5.2 Type IV limits: M-theory circle decompactification

5.2.1 A simple example: the quintic

As our first example, we consider a one-modulus case and we explore the large volume point,
which is always present within the vector multiplet moduli space [18]. For concreteness,
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Type [18] Type [24] Fibration structure Dominant Tower Λsp
IVd — Unspecified D0 MPl; 5
IIIc J-class A Elliptic Fibration D0 and D2 on T2 MPl; 6
IIa J-class B K3 or T4 Fibration NS5 on K3/T4 √

TNS5

Table 3. Infinite distance limit classification according to refs. [18] and [24]. We also show the kind
of asymptotic fibration structure exhibited by the threefold as well as the dominant tower(s) of states
controlling the species scale for each case.

we will particularize to the quintic threefold studied in [73, 74], which may be defined as
a family of degree 5 hypersurfaces in P4. Such threefold presents 101 complex parameters
(appearing in the quintic polynomial) associated to complex structure deformations, as well
as a single (complexified) Kähler structure modulus that we denote by z = b + it. Within
the vector multiplet moduli space one finds three singularities: the large volume point at
z → i∞, the conifold locus, that is located at z ≃ 1.21 i, and the Landau-Ginzburg orbifold
point, which happens for z = 1

2 (1 + i cotπ/5) [75].
Close to the large volume point, the Kähler potential behaves as [74]

e−Kks = 256π6

9375 t3 +O
(
t0
)

, (5.5)

with t = Im z, such that the moduli space metric can be approximated by

Gzz̄ = 3
4

1
(Im z)2 +O

(
1/t5

)
. (5.6)

Next, we need to compute the scalar charge-to-mass vector associated to the leading infinite
tower of states, as well as the corresponding species scale. Regarding the former point,
there is indeed a plethora of perturbative (e.g., KK modes) and non-perturbative states
becoming light upon exploring the large volume singularity (see e.g., [18, 24, 76]). The
former can be easily seen to be subleading (contrary to what happens in the 4d N = 1
heterotic example from section 6.2), whilst the latter arise as 1

2 -BPS bound states of D0-
and D2-branes wrapping minimal 2-cycles of the CY3, whose mass is controlled by the
normalized N = 2 central charge19

mn2p

MPl; 4
=

√
8πeKks/2|ZIIA| =

√
π

V(X3)
|n0 + n2,aza| , (5.7)

where n0, n2,a ∈ Z correspond to D0- and D2-brane charges, respectively, and the subscript
a indicates the holomorphic 2-cycle wrapped by the 2-brane. For the quintic, given that
h1,1 = 1, the previous mass formula reduces to

mn2p

MPl; 4
∼ |n0 + n2z|

t3/2 . (5.8)

Any state with D2-brane charge (i.e. n2 ̸= 0) will scale as mD2 ∼ t−1/2MPl; 4, while for n2 = 0
we have instead mD0 ∼ t−3/2MPl; 4. This means, in particular, that the leading tower becomes

19We do not consider here magnetically charged states corresponding to wrapped D4- or D6-particle
states [77], since they do not become massless in the limit of interest (see e.g., [76]).
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that comprised by D0-branes alone, whilst there is another one (which is additive, in the
sense of [46, 49]) made out of bound states of D0- and D2-particles [18].20

Therefore, from eq. (5.8), we obtain

ζ⃗D0 = −∂t logmD0 = 3
2t

=⇒ |ζ⃗D0| =
√

3
2 , (5.9)

where we have used the field space metric (5.6) to compute the norm of the charge-to-mass
vector, namely |ζ⃗D0| = 2Gzz̄∂z logmD0 ∂z̄ logmD0. Note that this precisely matches that of a
KK decompactification of one extra dimension, cf. (2.13). This is of course no coincidence
since the D0-branes correspond to the KK tower of the M-theory circle, so that the large
volume limit induces a circle decompactification to a 5d N = 1 theory described in terms
of M-theory on the same threefold X3 (see section 5.2.2 below).

The species scale can then be computed as usual for a single KK tower [46], leading to

Λsp
MPl; 4

≃
(

mD0
MPl; 4

)1/3

∼ 1
V(X3)1/6 ∼ 1

t1/2 , (5.10)

which goes to zero upon exploring the t → ∞ limit, as expected. It moreover matches with
the 5d Planck scale, as we show later on. Hence, from eq. (5.10) one obtains

Z⃗sp = −∂t log Λsp = 1
2t

, (5.11)

such that upon contracting with (5.9) using the moduli space metric (5.6) we find

ζ⃗D0 · Z⃗sp = 1
2 , (5.12)

thus fulfilling the pattern in the present d = 4 setup.

5.2.2 General story

The above large volume singularity is always present within the vector multiplet moduli space
of any type IIA CY3 compactification, such that the results found for the quintic can be
easily extended to the more general case, as we argue in the following.

Recall from (5.1) that the relevant piece of the 4d lagrangian obtained from type IIA
compactified on a generic threefold is [66]

LIIA, 4d ⊃ 1
2R− 1

2Gab(t̃) ∂t̃a · ∂t̃b − 1
12 (∂ logV)2 − (∂φ4)2 , (5.13)

where we defined Gab = 2Gab̄ (cf. (5.2)) and we split the Kähler coordinates into unimodular
ones, t̃a = ta/V1/3 — which satisfy the constraint κabct̃

at̃bt̃c = 6 — and the overall volume
20In general, it becomes difficult to properly argue for the existence of an infinite tower of states which

become asympotically stable [16, 78]. This is why in the original work [16], the monodromy transformations
characterizing the infinite distance singularities were exploited, in order to argue at least for the existence
of the monodromy tower, which may or may not be the leading tower depending on the case. In certain
circumstances, however, one may instead use dualities to support the existence of the tower, as happens in the
present case, where the D0-tower corresponds to the KK replicas of the 5d fields along the M-theory circle, see
section 5.2.2.
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modulus V . Now, since we take a limit here where V → ∞ with the 4d dilaton fixed and finite,
the 10d dilaton needs to be co-scaled, such that we end up probing the strong gs regime, i.e.
ϕ → ∞, which can be better described by M-theory. Comparing then the lagrangian (5.13)
with the one obtained by dimensionally reducing M-theory on the same manifold times a
circle of radius R5 (in 5d Planck units), which reads [79]

LM-th, 4d ⊃ 1
2R− 1

2Gab(t̃) ∂t̃a · ∂t̃b − 3
4 (∂ logR5)2 −

1
4 (∂ logV5)2 , (5.14)

we arrive at the following moduli identifications (taking also into account quantum cor-
rections [80–82])

R3
5 = V(X3) , V5(X3) = e−2φ4 , (5.15)

where V5(X3) denotes the volume of the threefold measured in 11d Planck units.
With these identifications at hand it is now easy to see how the masses of the D0- and

D2-particles in 4d Planck units are translated into 5d quantities [46]

mD0
MPl; 4

=
√
8πeKks/2 =

√
π

V
= mKK, 5

MPl; 4
,

mD2
MPl; 4

=
√
8πeKks/2|ta| =

√
π t̃a

V1/6 = mM2
MPl; 4

,

(5.16)

where in the last expression we have considered a single D2-brane wrapping some 2-cycle once
and for simplicity we have set the corresponding axion vev ba to zero. Proceeding similarly
to what we did in the quintic example, and taking the limit V → ∞ (whilst keeping the t̃a

fixed and non-degenerate) we obtain the following charge-to-mass and species vectors

(ζD0)V = −∂V log(mD0) =
1
2V , (Zsp)V = −∂V log(Λsp) =

1
6V , (5.17)

where the remaining components of the vectors, namely those arising from log-derivatives with
respect to the t̃a fields, are vanishing. Note that the species scale, as computed from (5.10),
coincides asymptotically with the 5d Planck mass, which can be related to the 4d one
by M2

Pl; 52πR5 = M2
Pl; 4. Therefore, upon contracting them using the moduli space metric

in (5.13), i.e. GVV = 1
6V2 , we find that ζ⃗D0 · Z⃗sp = 1

2 is again fulfilled.
Interestingly, there is an alternative very simple way to show the realization of the pattern

in general for this type of limit. The leading tower of states is made of D0-branes, so that
we can write ζa

D0 = Gab

2
∂Kks
∂tb . Furthermore, since we decompactify a single extra dimension,

the species scale vector is given by Z⃗sp = 1
3 ζ⃗D0 (cf. eq. (3.21)). Therefore, we may have

alternatively computed the inner product as follows

ζ⃗D0 · Z⃗sp = 1
12

∂Kks
∂ta

Gab ∂Kks
∂tb

= 1
2 , (5.18)

where in order to arrive at the r.h.s., one needs to use the no-scale property of the vector-
multiplet metric (5.2), namely KaGabKb = 6.
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5.3 Type III limit: partial decompactification

5.3.1 Example: Type IIA on P(1,1,1,6,9)[18]

As a second example, we consider type IIA string theory compactified on the threefold X3 =
P(1,1,1,6,9) [18], which may be seen as an elliptic fibration over a P2-base, with h1,1 = 2 [83].
We denote the (real-valued) Kähler moduli by {t1, t2}, which at large volume control the
N = 2 Kähler potential

e−Kks = 4
3κabct

atbtc = 12(t1)3 + 12(t1)2t2 + 4t1(t2)2 + . . . , (5.19)

with κabc being the triple intersection numbers in an integral basis of H2(X3) and the ellipsis
denote further perturbative and non-perturbative α′-corrections. From this one may already
compute the (inverse) moduli space metric, whose entries read

G−1 =

 2(t1)2 + 3(t1)4

3t1t2+(t2)2 −3(t1)2(t1+t2)
t2

−3(t1)2(t1+t2)
t2 9(t1)2 + 9(t1)3

t2 + 3t1t2 + (t2)2

 . (5.20)

On the other hand, the infinite distance boundaries present in this example were analyzed
from the MHS point of view in [71], and three types of infinite distance limits were found
therein: (i) t1 → ∞ with t2 finite (a Type IV1 singularity), (ii) t2 → ∞ with t1 finite (a
Type III0 singularity) and (iii) t1, t2 → ∞ (a Type IV2 singularity). The asymptotic regime
in the latter case can be divided into two subregions (i.e., growth sectors) depending on
whether t1 ≫ t2 or t2 ≫ t1 as t1, t2 → ∞.

In what follows, we will study each of them in turn, to show that the pattern

ζ⃗t · Z⃗sp
∣∣∣
t(σ)

=
(
Gab∂a logmtower ∂b log Λsp

)∣∣∣
t(σ)

= 1
2 , (5.21)

indeed holds for any trajectory t(σ) within each region, upon replacing Λsp with the properly
identified species scale in each growth sector. This is summarized in figure 8(a), where the
leading towers of states and species scales are shown.

Notice that in this example, unlike the situation in simple toroidal compactifications
where the ζ-vectors remain fixed (see examples from sections 3 and 6), both the mass
formulae and the metric Gab vary non-trivially across the moduli space. For the latter,
and using (5.19), one finds

G|t1≫t2 =
( 3

2(t1)2
1

2(t1)2

1
2(t1)2

1
6(t1)2

)
+O

(
t2

(t1)3

)
, G|t2≫t1 =

( 1
2(t1)2

3
2(t2)2

3
2(t2)2

1
(t2)2

)
+O

(
t1

(t2)3

)
. (5.22)

Consider first limits with t1 ≫ t2. As one can see, in the asymptotic regime, t2 becomes
irrelevant and its growth rate does not affect the expression for the metric Gab. One can check
that indeed this happens as well for any mass scale or species cut-off along this limit. Therefore,
in such cases MVM becomes effectively one-dimensional, with any original dependence on
t2 effectively lost. However, this is not the case when t2 ≫ t1, where subleading t1 terms
enter in the expression of the metric, as well as towers and species cut-offs. More generally,
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(a) (b)

Figure 8. For type IIA string theory on P(1,1,1,6,9)[18], the infinite distance limits are classified by
their singularity type according to [18], as well as their leading tower and species scales, as depicted in
figure 8(a). Figure 8(b) shows the relevant (scalar) charge-to-mass vectors for towers (blue) and species
scales (red) in a flat frame {x̂, ŷ} (where {ŷ ≥

√
2x̂ ≥ 0} ≡ {t1 ≥ 0, t2 ≥ 0}), with ζ⃗D2 =

(
− 1√

2 , 1
)

,

ζ⃗D0 =
(

1√
2 , 1
)

, Z⃗Pl, 6 =
(
0, 1

2
)

and Z⃗Pl, 5 =
(

1
3
√

2 , 1
3

)
. As argued in the text, along the t1 ≳ t2 regime

(orange), where the leading tower of states is given by mD0 whilst the species scale is set by MPl; 5,
asymptotically the moduli space becomes effectively one-dimensional. The other two relevant scales,
namely mD2 and MPl; 6 also become parametrically light at the same rate as the 5d Planck scale for
these directions. The different duality frames are identified.

a simple computation reveals that the slice of the moduli space parametrized by {t1, t2} is
Riemann flat, such that global flat coordinates may be defined as follows{

x̂ = 1√
2
log t1 +O

(
t1
t2

)
, ŷ = log t2

(
1 +O

(
t1

t2

))}
, with ŷ >

√
2x̂ ≥ 0 , (5.23)

which can then be used to depict the different ζ- and Z-vectors, see figure 8(b) below. Finally,
the t1 ≳ t2 region is asymptotically mapped to the one-dimensional ‘boundary’, namely
to the line {ŷ =

√
2x̂}.21

Growth sector t1 ≫ t2 with t1, t2 → ∞. This includes the particular case of sending
t1 → ∞ with t2 finite (a Type IV1 singularity), since it shares the same leading behavior of the
mass of the towers as well as the species scale. The asymptotic behavior for the volume reads

V = 3
2(t

1)3
(
1 +O

(
t2/t1

))
. (5.24)

Following the discussion of the previous section, this limit corresponds again to decompacti-
fying to 5d M-theory, as expected from being a Type IV singularity together with the above

21Notice that the fact that the moduli space in flat coordinates ends precisely along the line aligned with the
vector Z⃗Pl, 5 prevents the Species Scale Distance Conjecture, namely the lower bound λsp ≥ 1√

(d−1)(d−2)
on

the decay rate for the species scale recently proposed in [43], from being immediately violated. This provides
further (strong) evidence for the latter, which was only shown to hold in maximal supergravity setups.
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behavior of the volume modulus. Thus, it is clear that the pattern will hold in this limit due
to the general argument around eq. (5.18), but let us show it explicitly here for illustrative
purposes. By repeating the same kind of computations as in the previous example we find

mD0
MPl; 4

=
√
8πeKks/2 ∼ 1

(t1)3/2 ,
mD2

MPl; 4
=

√
8πeKks/2t1 ∼ 1

(t1)1/2 , (5.25)

for the mass scale of the D0- and D2-particles, respectively. Strictly speaking, there are two
possibilities for obtaining four-dimensional BPS states from wrapped D2-branes, since there
exist two different non-trivial classes of holomorphic curves within P(1,1,1,6,9)[18]. The one
corresponding to the mass scale computed in (5.25) is associated to the ‘horizontal’ class [83],
namely the fibre of the elliptic fibration. For the other ‘vertical’ class, since the supersymmetric
cycle wrapped by the 2-brane is topologically equivalent to a rational — i.e. a P1 — curve
that is moreover contractible, there is only a finite number of associated Gopakumar-Vafa
(GV) invariants [80, 81] which are non-zero (see e.g., [83, 84]). This means, incidentally,
that such D2-particles do not give rise to an infinite tower of states becoming massless upon
exploring the t1 → ∞ limit, such that we can safely ignore them for our purposes here.

As discussed in the previous subsection, the species scale can be computed through
D0-brane state counting, arriving at the following result

Λsp
MPl; 4

≃
(

mD0
MPl; 4

)1/3

∼ 1
(t1)1/2 , (5.26)

which is nothing but the 5d Planck scale.
With this, we now have all the necessary information so as to check whether the

pattern (2.6) is satisfied. Thus, let us first compute the charge-to-mass vectors of the leading
set of states, namely the D0-brane tower, as well as the species vector obtained from eq. (5.26)
above. The former is given by

ζ⃗D0 =
( (

3t1 + t2
)2

6(t1)3 + 6(t1)2t2 + 2t1(t2)2 ,
3t1 + 2t2

6(t1)2 + 6t1t2 + 2(t2)2

)
, (5.27)

where the notation is ζ⃗ = (ζt1 , ζt2), and which at leading order becomes just ζ⃗D0 ≃
(

3
2t1 , 1

2t1

)
.

The latter, on the other hand, is simply proportional to the charge-to-mass vector associated
to the D0-branes, such that Z⃗sp = 1

3 ζ⃗D0. Hence, upon contracting both vectors using the
inverse moduli space metric (5.20), one confirms that indeed ζ⃗D0 · Z⃗sp = 1

d−2 = 1
2 is verified

exactly, namely even before performing the expansion in t2/t1.

Growth sector t2 ≫ t1 with t1, t2 → ∞. For this growth sector, the situation turns
out to be quite different. First, note that it includes the particular limit of sending t2 → ∞
with t1 finite (a Type III0 singularity [71]) and, as can be easily checked, the volume (5.19)
is dominated by the last term in the r.h.s.

V = 1
2 t1(t2)2

(
1 +O

(
t1/t2

))
, (5.28)

which implies the following asymptotic dependence for the inverse metric components (to
leading order in t2)

G−1 ≃
(

2(t1)2 −3(t1)2
−3(t1)2 (t2)2

)
. (5.29)
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The QG resolution of the singularity requires from a double decompactification to 6d F-theory
on the same elliptic threefold X3 [24, 46, 85]. This may be intuitively understood by looking
again at the asymptotic behavior of the mass scales of the infinite towers of light states22

mD0
MPl; 4

∼ 1√
t1t2

,
mD2

MPl; 4
∼

√
t1

t2
, (5.30)

which present both the same dependence, contrary to the previous case (cf. (5.25)). Addi-
tionally, one can form 1

2 -BPS bound states of D0- and D2-particles upon turning on some
(quantized) worldvolume flux F for the wrapped D2-brane [88]. As a consequence, and
following the algorithmic computation of the species scale proposed in [49], one arrives at
a cut-off of the form

Λsp
MPl; 4

≃ (ND0 ND2)1/2 ∼ 1√
t2

, (5.31)

where ND0, D2 counts the number of D-brane states of the specified kind falling below the
species scale. This moduli dependence of the species scale indeed matches with the result of
the 6d Planck scale (see discussion around (5.38) below). We can then compute the scalar
charge-to-mass vectors for the two towers of states, which to leading order in 1/t2, read as

ζ⃗D0 ≃
( 1
2t1

,
1
t2

)
, ζ⃗D2 ≃

(
− 1
2t1

,
1
t2

)
. (5.32)

Analogously, one finds for the species vector

Z⃗sp ≃
( 3
4t2

,
1
2t2

)
, (5.33)

such that upon taking the product with respect to the (inverse) moduli space metric (5.29),
the pattern (2.6) still holds for both towers. Notice that in order to arrive at this result it is
crucial to take into account that t1/t2 → 0 asymptotically along the limit of interest.

5.3.2 General story

The previous example contained two types of limits, one belonging to the category of
section 5.2 and a new one: a partial decompactification to 6d F-theory. Let us elaborate a
bit more on this second case, which corresponds to the regime where t2 grows faster than
t1. From (5.29), one can check that the length of the tower of bound states charge-to-mass
and species vectors behave as follows

|ζ⃗(D0, D2)| =
∣∣∣∣12(ζ⃗D0 + ζ⃗D2)

∣∣∣∣ = ∣∣∣∣( 3
2t2

,
1
t2

)∣∣∣∣ ≃ 1 , |Z⃗sp| ≃
1
2 , (5.34)

to leading order in the expansion parameter t1/t2. These indeed coincide with the typical
values for Kaluza-Klein vectors associated to a two-dimensional compact manifold, matching
with the microscopic interpretation of the singularity as a decompactification from 4d to 6d.

22For the D2-branes wrapping the elliptic fibre k ∈ Z \ {0} times one obtains [86, 87]

nk = χE(X3) = 2
(
h1,1(X3)− h2,1(X3)

)
,

thus behaving like a KK spectrum associated to a circle reduction from 5d to 4d.
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Our aim here will be to stress that this will be generically the case whenever we explore
a type T2 limit in the language of [24] (or a Type III singularity in the language of [16]).
Subsequently, this will allow us to show that the pattern (2.6) holds in general for such
kind of infinite distance limits.

Let us consider an infinite distance limit in which the curve associated to the fastest
growing modulus has the intersection numbers of a Type III singularity (see second row
in tables 2 and 3). It was shown in [24] that, geometrically, this corresponds to a limit in
which the Calabi-Yau threefold exhibits an elliptic fibration over a Kähler surface B2, and
the volume of the latter grows faster than the fiber (i.e. belongs to the type T2 class). After
resolving any Kodaira-Néron type singularity that may be present [89], we can then divide the
Kähler moduli into two sets: those parametrizing fibral curves, {ta

f}, and the ones inherited
from the base, {tα

b }. The limit at hand then corresponds to

ta
f = const. , tα

b = ξασ , with σ → ∞ , (5.35)

accompanied by a suitable co-scaling of the 10d dilaton — so as to keep fixed all moduli in
the hypermultiplet sector. Microscopically, the Quantum Gravity resolution of the singularity
requires from a double decompactification to F-theory on the same elliptic threefold X3,
as we review in the following.

On the one hand, at the level of the spectrum, one finds — at least in the simplest
instances — only two infinite sets of asymptotically light states: those comprised by D0-branes
and D2-branes wrapping the elliptic fibre class. Notice that, since the volume of the latter
2-cycle, which we denote by VT2 , does not diverge in the limit (5.35), the central charges
associated to both towers of states are controlled by the same quantity, namely the (square
root of the) overall threefold volume:

mD0
MPl; 4

=
√

π

V
,

mD2
MPl; 4

=
√

π

V
VT2 , (5.36)

and indeed they furnish the Kaluza-Klein replica along the torus of the 6d F-theory mass-
less fields.

From this set of (asymptotically light) towers, one can easily compute the species scale
dominating the infinite distance limit. In fact, upon using type IIA/F-theory duality [24], we
conclude that the species scale should be controlled parametrically by the six-dimensional
Planck mass, namely23

M2
Pl; 6 ≃

M2
Pl; 4

R
2/3
6 R5

=
M2

Pl; 4V
1/2
T2

V1/2 ∼ 1
σ1/2 , (5.37)

with R6 and R5 being the corresponding radii of the 6d-to-5d and 5d-to-4d circle compact-
ifications (measured in the 6d and 5d Planck units respectively). Indeed, one can check
that (cf. eq. (5.36)) (

MPl; 6
MPl; 4

)2

≃
(

mD0 mD2
M2

Pl; 4

) 1
2

∼
(

Λsp
MPl; 4

)2

, (5.38)

in agreement with the usual species counting computation [46, 49].
23The second equality in (5.37) follows from the moduli identifications R5 = V1/3 (cf. (5.15)) as well as

R
−4/3
6 = VT2

V1/3 [18].
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On the other hand, for the Kähler potential one finds the following leading asymptotic
behavior [24, 90]

Kks = − log
(

σ2

2
(
cata

f

)
ηαβξαξβ +O(σ)

)
, (5.39)

where ca are some positive coefficients24 determined by the particular fibration structure
of the threefold and ηαβ denote the intersection numbers of the two-fold base [18]. From
eq. (5.39) one can compute the moduli space metric, which reads as follows

Gαβ = 1
2

∂2Kks

∂tα
b ∂tβ

b

= 1
σ2

[
G(const.)

αβ +O(1/σ)
]

, Gαb =
1
2

∂2Kks
∂tα

b ∂tb
f

= 1
σ

[
G(const.)

αb +O(1/σ)
]

,

Gab =
1
2

∂2Kks
∂ta

f ∂tb
f

= G(const.)
ab +O(1/σ) , (5.40)

where all the constant matrices above have full rank except for G(const.)
ab , which has rank one.

Armed with all this, one can readily check upon using the no-scale property of the
(leading order) metric Gαβ, namely

∂Kks
∂tα

b

Gαβ ∂Kks

∂tβ
b

= 4 , (5.41)

that the product

ζ⃗D0, D2 · Z⃗sp =
(
GAB∂A logmtower ∂B log Λsp

) (5.35)= 1
2 , A, B = {a, β} , (5.42)

is indeed satisfied for any trajectory of the form specified in (5.35) above. To see this, it is
important to realize that any term involving derivatives with respect to the fibral moduli,
ta
f , provides ultimately a contribution to the scalar product ζ⃗t · Z⃗sp which is of O (1/σ) or

higher, such that it goes away upon taking the infinite distance limit. For this same reason,
the result also applies to more general limits in which the fiber volume is also sent to infinity,
but at a slower rate than that of the base.

5.4 Type II limits: emergent string limits

5.4.1 Type IIA on P(1,1,2,2,6)[12]

As a final example, we consider type IIA string theory compactified on the threefold X3 =
P(1,1,2,2,6) [12], which was originally introduced and studied in [91, 92]. Such two-parameter
CY3 can be seen as a K3 fibration over a P1-base [24] (see also [75]), whose Kähler moduli
{t1, t2} appear in the Kähler potential as follows25

e−Kks = 32
3 (t1)3 + 16(t1)2t2 + . . . , (5.43)

24The coefficients ca in eq. (5.39) determine the generic elliptic fibre class [CT2 ]. Hence, in terms of a
basis {Ca

f } of generators of the relative Mori cone M(X3/B2), the former becomes CT2 =
∑

a
caCa

f , where the
notation follows that of [90].

25Here t2 measures the classical volume of the P1-base, whilst t1 parameterizes the volume of a second P1

corresponding to a rational curve (of non-negative self-intersection) inside the K3-fibre [91].
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where the ellipsis denote further α′ as well as worldsheet instanton corrections which are
exponentially suppressed in the asymptotic limit. The (inverse) moduli space metric that
derives from such Kähler potential reads

G−1 =
(

(t1)2 −2
3(t1)2

−2
3(t1)2

4
3(t1)2 +

8
3 t1t2 + 2(t2)2

)
. (5.44)

Using the nomenclature of MHS, we have the following infinite distance limits (see e.g., [93, 94]):
(i) t1 → ∞ with t2 finite (a Type IV2 singularity), (ii) t2 → ∞ with t1 finite (a Type II1
singularity), and (iii) t1, t2 → ∞ (a Type IV2 singularity). The Type IV singularities will
again correspond to M-theory circle decompactifications, so the analysis of sections 5.2.2
and 5.3.1 carries over. In fact, notice that all t2-dependence essentially disappears when
taking the limit t1 ≫ t2 ≫ 1. As a consequence, the moduli space becomes effectively
one-dimensional within such regime, as also happened in the example from section 5.3.1
above. Moreover, the fact that the {t1, t2} slice of the moduli space is Riemann flat allows
us to define some global flat coordinates,{

x̂ = log t1 +O
(

t1
t2

)
, ŷ = 1√

2
log t2

(
1 +O

(
t1

t2

))}
, with ŷ >

1√
2

x̂ ≥ 0 , (5.45)

which we will use to depict the different relevant ζ- and Z-vectors in the present setup. Let
us also mention that the t1 ≳ t2 region is again mapped to the line {ŷ = 1√

2 x̂}. For clarity
reasons, however, we will use the {t1, t2} coordinates for our subsequent analysis.

On the other hand, things get more interesting upon probing the limit t2 → ∞ (either
with t1 fixed or growing at a smaller rate), since the QG resolution of the corresponding
Type II singularity is of a different type than the ones discussed so far. The purely geometric
analysis of [24] shows that it corresponds to an emergent string limit in which a critical
heterotic string becomes asymptotically tensionless at the infinite distance boundary. This
string can be seen to arise from an NS5-brane wrapping the K3-fibre [95], whose quantum
volume remains constant along the limit. It is clear then that the pattern (2.6) is going to be
satisfied in this case, since the species scale is equal to the string scale, whose exponential
rate should simply be 1√

d−2 if corresponding to the fundamental string propagating in d

dimensions. Nevertheless, let us check it explicitly by computing the relevant vectors in
this regime. We first calculate the leading contribution to the threefold volume in (5.43),
which scales asymptotically as follows

V = 2(t1)2 t2
(
1 +O

(
t1/t2

))
. (5.46)

Next we need to determine both the charge-to-mass vectors associated to the leading tower
of states and the appropriate species scale. There is indeed a plethora of potentially light
towers, both of perturbative and non-perturbative nature. First of all, one finds a critical
string — of heterotic nature — arising from wrapping an NS5-brane on the K3 surface,
whose tension behaves as

TNS5 = 2π

ℓ2sg2s
VK3 , (5.47)
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with ℓs = 2π
√

α′ the fundamental string length and VK3 the volume of the K3-fibre. Notice
that along the t2-limit that we consider here, the volume of the fibre either remains constant
or grows at a smaller rate, since VK3 ∝ (t1)2. Hence, upon properly co-scaling the 10d dilaton
so as to keep the 4d one fixed and finite (see discussion at the end of section 5.1) one arrives at

TNS5
M2

Pl; 4
= VK3

2V ∼ 1
t2

=⇒ ζ⃗osc, NS5 = Z⃗osc, NS5 ≃
( 1
3t2

,
1
2t2

)
, (5.48)

which holds at leading order in t1/t2. Apart from these, there are also additional infinite
towers of states which become asymptotically massless in the limit of interest. These can be
seen to correspond to Kaluza-Klein modes associated to the diverging P1-base, with mass

m2
KK,P1

M2
Pl; 4

= e2φ4

4πVP1
∼ 1

t2
, (5.49)

as well as non-perturbative states arising from D0- and D2-branes wrapping the rational
curve within the K3-fibre, whose masses scale as follows

mD0
MPl; 4

=
√

π

V1/2 ∼ 1
t1(t2)1/2 ,

mD2
MPl; 4

=
√

πt1

V1/2 ∼ 1
(t2)1/2 . (5.50)

The latter infinite set of D2-branes are mapped through type IIA/Heterotic duality [96] to
winding modes of the dual heterotic string on K̂3× T2 [97, 98]. Note that all these towers
decay at the same rate than the string along the infinite distance limit under consideration.

From the above mass formulae one may readily compute the associated charge-to-mass
vectors upon taking derivatives with respect to the non-compact Kähler fields,26 yielding
(to leading order):

ζ⃗KK,P1 =
(
0,

1
2t2

)
, ζ⃗D0 ≃

( 1
t1

,
1
2t2

)
, ζ⃗D2 ≃

( 1
3t2

,
1
2t2

)
. (5.51)

Therefore, taking into account that the species counting is dominated by the excitation modes
of the dual heterotic string, such that Z⃗sp = Z⃗osc, NS5, one can explicitly check that

ζ⃗t · Z⃗osc, NS5 = 1
2 , (5.52)

where t ∈ {KK, D0, D2, NS5} includes all the light leading towers, and we have made use
of the inverse metric shown in eq. (5.44). In fact, the above inner product holds exactly
(i.e. even before taking the infinite distance limit) for all charge-to-mass vectors except for
ζ⃗KK,P1 , in which case (2.6) is satisfied at leading order in t1/t2.

To summarize, consider some limit of the form t(σ) =
(
t1, t2

)
=
(
σe1

, σe2
)
, with the

vector e belonging to the first quadrant of S1. If e2 > e1, we get an emergent string limit
and the analysis above applies. If e1 ≥ e2, we rather decompactify to 5d M-theory and the

26Strictly speaking, the vector ζ⃗KK, P1 presents an additional non-trivial component due to the dependence of
the KK scale on the 4d dilaton in (5.49). Such component, despite not contributing to the inner product (5.52)
below, must be taken into account when computing the length of the charge-to-mass vector, thus leading to a
perfect matching with (2.13) for d = 4 and n = 2.
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(a) (b)

Figure 9. For type IIA string theory on P(1,1,2,2,6)[12], the infinite distance limits are classified by
their singularity type according to [18], as well as their leading tower (blue) and species scales (red),
as depicted in figure 9(a). Figure 9(b) shows the relevant (scalar) charge-to-mass and species vectors
in the flat frame {ŷ ≥ 1√

2 x̂ ≥ 0} given in (5.45), with the t1 ≳ t2 asymptotically corresponding to the
one-dimensional region {x̂ =

√
2ŷ}. For this direction the string tower falls as fast as the 5d Planck

mass, which sets the species scale. The vectors are given by ζ⃗osc = Z⃗osc =
(
0, 1√

2

)
, ζ⃗D0 =

(
1, 1√

2

)
and Z⃗Pl, 5 =

(
1
3 , 1

3
√

2

)
. The different duality frames are identified.

general argument of section 5.2.1 carries over so that the pattern also holds. In figure 9(a)
these limits, as well as the leading towers and species, are depicted, while in 9(b) the
associated scalar charge-to-mass vectors (which in this case are constant in flat coordinates)
are represented. Hence, the pattern

ζ⃗t · Z⃗sp
∣∣∣
t(σ)

=
(
Gab∂a logmtower ∂b log Λsp

)∣∣∣
t(σ)

= 1
2 , (5.53)

is verified for any asymptotic trajectory t(σ).
Finally, let us remark here that some of the towers of particles in the present setup,

such as the one associated to mKK,P1 , suffer from the sliding phenomenon first described
within the heterotic string theory context in ref. [26] (cf. section 4.1). Moreover, note that
the charge-to-mass and species vectors arrangement in figure 9(b) corresponds to a rotated
version of that shown in figure 1(a), thus making manifest that they both share the same
physical interpretation.

5.4.2 General story

Here we want to generalize our previous discussion so as to systematically check the pattern
for any Type II singularity (in the MHS nomenclature) located within the large volume
patch. The following analysis builds on the intuition gained from the previous P(1,1,2,2,6) [12]
example and it parallels that from section 5.3.2 above.

First, notice that this class of limits can be equivalently described in a purely geometrical
way as exhibiting some kind of asymptotic surface fibration [24], where the fibre is isomorphic
to either a K3 or a T4 two-fold (see table 3). This allows us to separate the Kähler moduli
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into t0, which measures the volume of the P1-base, and {tα
f }

h1,1−1
α=1 which are instead associated

to the K3/T4 fibre. Let us then consider the particular infinite distance limit described by

tα
f = const. , t0 = σ , with σ → ∞ , (5.54)

which indeed belongs to the K3/T4 class. Microscopically, such a limit is believed to
correspond to an emergent heterotic (or type II) string limit, where the critical string arises
from compactifying an NS5-brane on the generic K3 (respectively T4) fibre.27 Mirroring
our discussion in section 5.3.2, we both look at the relevant light spectrum and the moduli
space metric. Regarding the former, one finds a 1

2 -BPS string obtained by wrapping the
NS5-brane on the generic fibre (that is assumed to be fundamental), D0-branes as well as
D2-branes wrapped on 2-cycles within the fibre class, and a (double) KK tower associated
to the base of the fibration. Their mass/tension read as

TNS5
M2

Pl; 4
= VK3

2V ,
mD0

MPl; 4
=

√
π

V1/2 ,

m
(α)
D2

MPl; 4
=

√
πtα

f

V1/2 ,
mKK,P1

MPl; 4
= eφ4

√
4πVP1

, (5.55)

with V the overall threefold volume, VK3 = 1
2
∫

K3 J ∧ J that of the fibre and VP1 = t0

controls the volume of the P1-base.
On the other hand, for the Kähler potential one finds the following leading asymptotic

behavior [24]

Kks = − log
(
σ ηαβtα

f tβ
f +O(σ0)

)
, (5.56)

where ηαβ = κ0αβ denotes the intersection form associated to the K3/T4-fibre. From this
one can compute the moduli space metric, which can be expanded as a power series in 1/t0,
similarly to the case of partial decompactification in F-theory (cf. eq. (5.40)).

With this, we can finally prove that the pattern (2.6) holds for the present Type II
degenerations. Indeed, using the fact that (to leading order in 1/t0)

∂Kks
∂t0

G00∂Kks
∂t0

= 2 , (5.57)

which can be seen as a sort of no-scale property of the metric G00 = 1
2

∂2Kks
∂t0∂t0 , the product

ζ⃗t · Z⃗osc, NS5 =
(
GAB∂A logmtower ∂B log Λsp

) (5.54)= 1
2 , A, B = {a, β} , (5.58)

is indeed satisfied for all t = {KK, D0, D2, NS5}. We stress the fact that eq. (5.58) holds
to leading order in 1/t0, since it can be seen upon using the metric derived from (5.56)
that any term involving derivatives with respect to the fibral moduli, tα

f , contributes at
order O (1/σ) or higher. Once again, this is the reason why the result also applies to more
general limits in which the fiber volume is also sent to infinity, but at a slower rate than
that of (any curve in) the base.

27This is difficult to prove in general, since one would need to study the excitation spectrum of the world-
volume theory of the wrapped NS5-brane and match it (at all mass levels) with that of the fundamental dual
string, which is of course a very non-trivial task.
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5.5 Comments about the complex structure moduli space of type IIB

Let us briefly mention here how the previous analysis extends to the vector multiplet moduli
space of type IIB string theory compactified on the (mirror) threefold Y3. In principle, via
Mirror Symmetry, a similar story should hold also for the complex structure moduli space of
type IIB on Y3, where the charge-to-mass and species vectors must behave in the same fashion
as in its type IIA counterpart. In practice, however, the microscopic physics is oftentimes
lurked, preventing us from performing a clean geometrical analysis as in type IIA. The reason
for this is two-fold: first, it is difficult to argue for the existence of infinite towers of BPS
bound states, since not every BPS charge may be actually populated due to the possible
presence of walls of marginal stability (see footnote 20).28 Therefore, it is usually not at all
clear which is the lightest tower, whose ζ-vector we would need to compute. Related to this,
the fact that we cannot determine all towers of states becoming light for each limit means
that the species scale can be hard to calculate, in general.

Our aim here will be to comment on how some of these difficulties can be sidestepped,
using both techniques from the Mixed Hodge Structure literature (see e.g., [16, 71]) as well
as building on our previous type IIA analysis. Thus, regarding the leading tower of states, we
will assume that there is at least one tower given by D3-branes wrapping the fastest shrinking
3-cycle. This can be motivated from the examples of sections 5.3.1 and 5.4.1, where there was
always some D0 or D2-brane tower becoming light at the fastest rate (even in the emergent
string limits, cf. (5.50)). These states are all mapped through Mirror Symmetry to certain
D3-branes wrapping special Lagrangian 3-cycles. From this, one can deduce at least one
co-leading scalar charge-to-mass vector ζ⃗t, whose components read

(ζD3)i = −1
2

∂Kcs
∂Im zi

, (5.59)

where {zi} denote the complex structure moduli and Kcs is the associated Kähler potential
(see section 5.6 for details on this).

To compute the species scale, on the other hand, one needs to know not only how many
towers there are but also their microscopic degeneracy. However, we will avoid having to
deal with these subtleties by looking instead at certain moduli dependent functions that
correct the 4d N = 2 two-derivative lagrangian, which have been recently argued to capture
the (global) behavior of the species scale within the vector multiplet moduli space [38, 39]
(see also [40, 41, 99] for related works). Following these works, we will take the topological
genus-one partition function F1, which reads as

F1 =
1
2

(
3 + h2,1 − χ(Y3)

12

)
Kcs +

1
2 log detGij̄ + log |f |2 , (5.60)

to give a proxy for the number of species in the vector multiplet sector. Here, h2,1 is the
(complex) dimension of the moduli space, χ denotes the Euler characteristic of the threefold
Y3, Gij̄ is the metric on the complex structure sector derived from the Kähler potential Kcs
(cf. eq. (5.73)) and f(zi) is an holomorphic anomaly which can be generically fixed upon
comparing with the known asymptotic behavior of F1 [100, 101].

28Notice that the results of ref. [78] suggest that a tower of electric BPS states would always exist as long as
we also have the corresponding BPS extremal black hole solution for large charges.
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For concreteness, we particularize in what follows to the large complex structure (LCS)
regime, where a plethora of infinite distance degenerations may occur. Let us note in passing
that the argument works equally well for any other such singularity, not necessarily belonging
to the LCS patch. We will thus need the leading order behavior of F1, which is given by [101]

F1 =
2π

12

∫
X3

J ∧ c2 + . . . = 2π

12 c2, i Im zi + . . . , (5.61)

where X3 is the mirror threefold with associated Kähler 2-form J , c2 denotes its second
Chern class and the ellipsis indicate further subleading contributions when Im zi ≫ 1. From
this, one obtains [39]

(Zsp)i = −∂i log Λsp = 1
2∂i logF1 =

c2, i

2
∫

J ∧ c2
+O

(
log Im zi

Im zi

)
, (5.62)

where we have used that Λsp = MPl; 4 N−1/2, with N = F1. Therefore, what we want to
show here is that the product

ζ⃗t · Z⃗sp = −1
4Ki Gij c2, j∫

J ∧ c2
= −1

2Ki Kij c2, j∫
J ∧ c2

, (5.63)

gives 1
2 regardless of the kind of limit that we explore. Note that in the previous expression

we have substituted the metric element along the saxionic directions Gij in favour of Kij =
∂i∂jKcs.

In a nutshell, this follows from the homogeneous dependence of the quantities exp(Kcs)
and

∫
J ∧ c2 with respect to the complex structure moduli zi. Indeed, for Type II, III and

IV degenerations in the complex structure moduli space, Mixed Hodge Theory tells us that
the Kähler potential behaves (to leading order) as follows (see e.g., [71])

Kcs → Kcs − ω log σ , as Im za → σ Im za with σ → ∞ , (5.64)

with ω = 1, 2, 3 respectively, and where the set {za} ⊆ {zi} denotes those moduli which are
sent to infinity upon approaching the infinite distance singularity. From the above relation
one can prove a number of useful identities. In particular, one finds

Im za∂aKcs = −ω + . . . , Im za Im zb ∂a∂bKcs = ω + . . . , (5.65)

which can then be used to show that

KaKabKb = ω + . . . , (5.66a)
KabKb = −Im za + . . . , (5.66b)

where the corrections in all previous expressions vanish asymptotically. The first relation
is nothing but the familiar no-scale condition of the metric Gij , whilst upon plugging the
second one into eq. (5.63) we obtain

ζ⃗t · Z⃗sp = Im za c2, a

2
∫

J ∧ c2
= 1

2 , (5.67)

where one needs to use that Im za ∂a log (
∫

J ∧ c2) = 1 in order to arrive at the final result,
which again follows from the asymptotic homogeneity of the integrated second Chern class.
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5.6 The hypermultiplet moduli space

Up to now we have restricted ourselves to a purely classical analysis, where quantum
effects can be safely neglected. The purpose of this subsection is to study the fate of the
pattern (2.6) within heavily quantum corrected moduli spaces, thus providing strong evidence
for its robustness. We will still restrict ourselves to 4d N = 2 setups, now focusing on
the hypermultiplet sector, which locally decouples — at the two-derivative level — from
its vector multiplet counterpart [102]

M = MVM ×MHM . (5.68)

In type IIA CY3 compactifications, the first factor in (5.68) is described as a projective special
Kähler manifold of complex dimension h1,1(X3) [103] (cf. discussion around (5.2)), and the
second piece is a quaternionic-Kähler space parametrized by 4(h2,1(X3) + 1) real scalars [104].
The former includes the Kähler structure deformations of the compactification space X3,
whilst the latter contains the complex structure moduli, which are parametrized by complex
coordinates, zI =

(
1, zi

)
, arising from the periods of the holomorphic (3, 0)-form Ω as follows

zI = ZI

Z0 , with ZI =
∫

AI

Ω , FJ(zi) =
∫

BJ
Ω . (5.69)

The AI - and BJ -cycles introduced above define an integral symplectic basis of H3(X3),
such that

AI · BJ = −BJ · AI = δJ
I , (5.70)

where I, J = 0, . . . , h2,1(X3). Apart from these, the hypermultiplet sector includes the 4d
dilaton φ4, which controls the Planck-to-string mass ratio M2

Pl; 4/m2
s = 4πe−2φ4 , a compact

scalar field ϱ which is dual to the Neveu-Schwarz 2-form B2, and a total of 2h2,1+2 additional
axions arising from the periods of the Ramond-Ramond 3-form field

ζI =
∫

AI

C3 , ζ̃J =
∫

BJ
C3 . (5.71)

Classically, the sigma-model metric for this set of fields reads as follows [105, 106]

hpq dqpdqq = (dφ4)2 + Gij̄dzidzj̄ + e4φ4

4
(
dϱ −

(
ζ̃JdζJ − ζJdζ̃J

))2
− e2φ4

2 (ImB)−1 IJ
(
dζ̃I − BIKdζK

) (
dζ̃J − B̄JLdζL

)
, (5.72)

where Gij̄ is the metric on the space of complex structures [67]

Gij̄ = ∂zi∂z̄j Kcs , with Kcs = − log
[
i
∫

Ω ∧ Ω̄
]

, (5.73)

and BIJ (zi) denotes a complex matrix whose precise form will not be needed (see e.g., [77] for
more details on this). Quantum-mechanically, however, the above line element receives both
perturbative and non-perturbative corrections, the latter due to e.g., Euclidean D2-brane
instantons wrapping special Lagrangian (sLag) 3-cycles [107]. In general, such corrections
are difficult to obtain (see appendix B for details). Our discussion here will closely follow
the general analysis presented in [108, 109], where the effect of the aforementioned instanton
corrections on certain classical infinite distance singularities was studied.
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5.6.1 Classical infinite distance points

In the following, we will focus on trajectories within MHM which lie entirely along the
non-compact directions, namely we set the axion vevs to zero value. This allows us to
compute the relevant metric components, i.e.

ds2HM = 2(dφ4)2 + 2Gij̄dzidz̄j + (axions) , (5.74)

even after taking into account perturbative and non-perturbative corrections [108, 109] (see
appendix B.1). Here we will be interested in studying the realization of the pattern (2.6)
along a certain family of trajectories, which can be parametrized as follows29

Im zi ∼ σe1
, e−ϕ ∼ σe2

, σ → ∞ , (5.75)

with e1, e2 ≥ 0. Note that such paths correspond to geodesic trajectories with respect to
the classical hypermultiplet metric. We now consider different scenarios depending on the
precise values of e = (e1, e2).

Weak string coupling point. For the case in which we take e = (0, e2), the only
contribution to the classical moduli space distance ∆HM arises from the 4d dilaton piece.
The leading tower of states are the oscillation modes of the fundamental string, whose mass
behaves asymptotically as follows (we set e2 = 1 without loss of generality)(

ms

MPl; 4

)2

= e2φ4

4π
∼ 1

σ2 , (5.76)

thus leading to a charge-to-mass vector whose only non-zero entry corresponds to the 4d
dilaton field:

ζ⃗osc = (ζφ4 , . . .) = (−1, 0 , . . . , 0) . (5.77)

Notice that, since the volume of the CY threefold is kept fixed, the associated KK-scale
also behaves like (5.76) asymptotically, namely mKK, 6 = ms/V1/6 ∼ σ−1. Its charge-to-mass
vector, ζ⃗KK, 6, may be easily obtained and indeed coincides with that of the fundamental type
IIA string except for an extra non-trivial component along the overall volume direction30

ζ⃗KK, 6 = (ζφ4 , ζV , . . .) =
(
−1,

1
6V , 0 , . . . , 0

)
. (5.78)

On the other hand, the species scale coincides with the string scale, such that upon taking the
inner product between the previous vectors and Z⃗sp, one gets ζ⃗t · Z⃗osc = 1

2 , in agreement with
the pattern (2.6). To show this, one needs to use that Gφ4φ4 = 2 as well as the factorization of
the vector multiplet and hypermultiplet metrics, cf. (5.68). For completeness, let us mention
that even though the scaling of the 10d dilaton in (5.75) has been chosen so as to probe

29Recall that since we focus on trajectories lying entirely in the hypermultiplet moduli space, the overall
volume V of the CY3 is assumed to be fixed. Hence, the 10d and 4d dilaton agree up to this constant
volume factor.

30Note that upon computing the norm of the vector (5.78) using the metrics in eqs. (5.74) and (5.13) one
gets |ζ⃗KK| =

√
2
3 , in agreement with (2.13) for d = 4 and n = 6.
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the weak coupling behavior of the fundamental type IIA string, one could also in principle
consider trajectories with e2 ≤ 0, thus exploring the strong coupling regime. It turns out,
however, that both kind of limits are related by SL(2,Z) duality (see appendix B.2 for details),
such that everything said so far trivially extends to this dual scenario as well. In particular,
for such S-dual limit the dominant critical string becoming light corresponds to a D4-brane
wrapping the reference sLag 3-cycle of the CY manifold with T3 topology [110], which is
precisely mapped via Mirror Symmetry to a D1-string in the type IIB dual picture [44].

LCS point. Let us now turn to the other (more interesting) possibility, namely we consider
the case e = (e1, 0) in (5.75), thus exploring the LCS point at fixed dilaton vev. Note that
the string scale is now fixed in Planck units, such that it can no longer provide for the
leading tower of states. Moreover, the overall threefold volume is kept constant, but the fact
that we take a large complex structure limit means that the compact manifold develops a
highly anisotropic behavior, as can be confirmed by looking at the volume of supersymmetric
3-cycles, Γ = nIAI + nJBJ . The latter can be computed in string units as follows [24]

VΓ =
∫
Γ

√
g =

(
8V

i
∫
Ω ∧ Ω̄

)1/2

Im
∫
Γ

e−iθΩ , (5.79)

where θ determines the appropriate calibration 3-form. For the limit of interest, such volumes
are controlled by the period vector Π(zi) =

(
Z0, Zi,Fj ,F0

)T , as well as the would-be Kähler
potential (5.73), thus leading to the following schematic behavior

VΓ ∼
{
(zi)−3/2, (zi)−1/2, (zi)1/2, (zi)3/2

}
. (5.80)

Therefore, it becomes clear that the relevant set of asymptotically light states are linked to
the fastest shrinking/growing 3-cycles, namely the one associated to the reference period
(i.e. A0) and its symplectic dual (B0), respectively. These determine the KK scale, which
behaves as follows (we henceforth set e1 = 1 for simplicity)(

mKK, B0

MPl; 4

)2

= 1
V2/3

B0

(
ms

MPl; 4

)2

∼ 1
σ

, (5.81)

and the tension of the dual type IIA string arising from a D4-brane wrapping the reference
A0-cycle (see discussion after (5.78))(

TD4
M2

Pl; 4

)
= VA0

gs

(
ms

MPl; 4

)2

∼ 1
σ3/2 . (5.82)

Notice that since the KK tower (5.81) is parametrically heavier than the mass scale of the
emergent dual type IIA string, the limit thus explored is pathological, as defined in [24] (see
also [44, 109]), in the sense that upon approaching the singularity it seems that one can
in principle retrieve a fundamental string in less than ten spacetime dimensions. Despite
this abnormal behavior, the pattern (2.6) seems to be nevertheless satisfied, as one can
readily confirm:

ζ⃗D4 · Z⃗D4 = ∂ logmD4
∂Im zi

Gij ∂ log Λsp
∂Im zj

+ ∂ logmD4
∂φ4

Gφ4φ4 ∂ log Λsp
∂φ4

= 3
8 + 1

8 = 1
2 , (5.83)
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where we have defined Gij = 2Gij̄ and we made use of the no-scale property of Kcs close
to the LCS point, which reads KiK

ij̄Kj̄ = 3. Similarly, for the scalar product between the
lightest KK tower and the species scale one finds

ζ⃗KK, B0 · Z⃗D4 =
∂ logmKK, B0

∂Im zi
Gij ∂ log Λsp

∂Im zj
+

∂ logmKK, B0

∂φ4
Gφ4φ4 ∂ log Λsp

∂φ4

= 1
4 + 1

4 = 1
2 . (5.84)

At this point, one would be tempted to conclude that the pattern (2.6) also seems to hold
for the hypermultiplet sector in N = 2 theories. However, as already mentioned, such
moduli space receives strong quantum corrections, such that it is not clear at all whether the
conclusions drawn from the present classical analysis will survive after taking into account
perturbative and non-perturbative gs-corrections. In the following, we will argue (building on
earlier works in the topic [44, 108, 109]), that the effect of including such quantum corrections
is to correct the pathological behavior exhibited in eqs. (5.81) and (5.82), while ensuring
that the pattern is still fulfilled.

5.6.2 Instanton corrections

As explained in [108, 109], the reason why the previous classical analysis is incomplete hinges
on the presence of large quantum corrections which had been ignored so far. Such quantum
effects arise from Euclidean D2- as well as NS5-brane instantons, and when taken into account,
they may strongly modify the tree-level hypermultiplet metric displayed in eq. (5.72). In fact,
the classical LCS singularity above gets heavily corrected and is traded at the quantum level
for another infinite distance degeneration, now at weak 4d string coupling. However, a careful
analysis on this matters becomes rather intricate, requiring moreover from the introduction
of several new tools. Therefore, in order to not complicate unnecessarily the main discussion
in this section, we summarize here the upshot and the main intuition behind it, leaving the
details for appendix B (see in particular the discussion in section B.3).

The argument goes as follows. One can indeed exploit the SL(2,Z) symmetry that
the hypermultiplet moduli space enjoys (even at the quantum level) to translate any limit
of the form (5.75) into a dual one at weak string coupling and fixed complex structure
moduli. Hence, it gets sufficient to know how the weak coupling point is affected by the
aforementioned quantum corrections. Fortunately, we do not expect neither perturbative nor
non-perturbative effects to play any important role at weak coupling, since those should be
suppressed along the limit g4 = gsV−1/2 → 0. This can be confirmed upon looking at how the
moduli space metric deviates from the tree-level one. Indeed, there appear additional terms
which at leading order behave as follows [107, 111] (see appendices B.1 and B.3 for details)

δds2HM = δds2HM|1-loop + δds2HM|D-inst ∼ g24 +
∑

γ

Ωγ e−Sm, kI → 0 , (5.85)

where the sum runs over all (towers of) D2-brane instantons with action denoted by Sm, kI
∼ 1

g4
(cf. eq. (B.15)). Hence, it is enough to use the classical approximation (5.72) for all practical
purposes here, such that we conclude that the calculations performed after (5.76) remain
valid, and the pattern is still verified for all trajectories of the form (5.75).
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5.6.3 Intertwining the vector and hypermultiplet sectors

Finally, let us briefly consider the possibility of taking limits which imply moving both in the
vector and hypermultiplet moduli spaces. As a representative example, we analyze in what
follows the large volume limit at fixed 10d string dilaton, corresponding to decompactification
from 4d to 10d type IIA supergravity. In terms of the appropriate 4d variables, we send
V → ∞ and, consequently, φ4 = ϕ − 1

2 logV → −∞. This means, in particular, that the
string mass becomes light in 4d Planck units

ms = (4π)−1/2 MPl; 4 eφ4 = (4π)−1/2 MPl; 4 eϕ V−1/2 → 0 . (5.86)

Furthermore, for such a decompactification limit, the overall KK tower becomes asymptotically
massless at a faster rate,

mKK, 6 = ms V−1/6 = (4π)−1/2 MPl; 4 eφ4 V−1/6 = (4π)−1/2 MPl; 4 eϕ V−2/3 → 0 , (5.87)

so that it corresponds to the leading tower, since the D0/D2-brane towers are of course
slightly/much heavier than ms for the limit at hand. Regarding Λsp, we note that the
10-dimensional Planck mass scales asymptotically like the string scale,

MPl; 10 = (4π)1/8 ms e−ϕ/4 = (4π)−3/8 MPl; 4 e
3
4 φ4 V−1/8 = (4π)−3/8 MPl; 4 e

3
4 ϕ V−1/2 , (5.88)

so that we conclude that the species scale is set by the string scale. Therefore, sticking
to the {φ4,V} basis, one obtains

ζ⃗t = ζ⃗KK, 6 =
(
−1,

1
6V , 0 , . . . , 0

)
, Z⃗sp = Z⃗osc = (−1, 0 , . . . , 0) , (5.89)

for the charge-to-mass and species vectors, such that upon using the relevant metric compo-
nents Gφ4φ4 = 2 and GVV = 1

6V2 , it can be readily checked that indeed ζ⃗t · Z⃗sp = 1
d−2 = 1

2 ,
thus fulfilling the pattern.31

In general, one can take several combinations of limits involving moduli from both
sectors of the 4d N = 2 moduli space, resulting in different microscopic interpretations of the
singularities. Some of them will be subjected to strong quantum corrections, as previously
discussed, but nonetheless we expect the pattern (2.6) to be satisfied in all such cases, as
they will simply correspond to combinations of the building blocks already discussed.

6 Examples in 4d N = 1 EFTs

In this section we will check different examples of 4d N = 1 EFTs realized by compactifications
of different string theories. The instances here considered were already studied in [21] in
the context of EFT strings, but no mention to the species scale was made in most of the
cases. For these examples, we will first identify what are the leading towers and species
scales, and later on we show that ζ⃗t · Z⃗sp = 1

d−2 = 1
2 is fulfilled in all infinite distance limits.

While this is not a general proof that the observed pattern holds for any 4d N = 1 theory,
it serves as a powerful indicator for the case.

31This particular limit is analogous to the large volume limit of a toroidal decompactification. It is then
also verified that ζ⃗KK, 6 · Z⃗Pl, 10 = 1

2 with Z⃗Pl, 10 =
(
− 3

4 , 1
8V , 0 , . . . , 0

)
, as derived from (5.88).
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6.1 M-theory on G2-manifolds

We first consider a M-theory compactification on a 7-dimensional smooth G2-manifold
X [112, 113], with a corresponding associative 3-form Φ (for which the G2-holonomy condition
requires dΦ, d ⋆ Φ = 0) and volume in ℓ11 units

VX = 1
7

∫
X
Φ ∧ ⋆Φ . (6.1)

In the large volume regime, the N = 1 chiral coordinates can be written as tj = aj + isj ,
upon expanding the 11d and associative 3-forms as follows

t = a + is = [C3 + iΦ] = tj [Σj ] ∈ H3(X,C) , (6.2)

where [Σi] are the Poincaré duals to a basis of 4-cycles spanning the torsion-free part of
H4(X,Z). Up to irrelevant constants, the Kähler potential can be obtained from (6.1) as
K = −3 log VX , with Φ and ⋆Φ being functions only of the saxions [114–116]. The 11d
spacetime-metric has the form

ds2 = e2Ads24 + ℓ211ds2X , (6.3)

where ds2X is the dimensionless X line element compatible with the G2-structure, and the
Weyl rescaling factor so as to obtain the 4d Einstein frame metric is given by

e2A =
ℓ211M

2
Pl; 4

4πVX
. (6.4)

We will consider Joyce’s compact model (see [117–119] for more details on these manifolds),
where X is the resolution of T7/Γ, with the 7-torus parametrized by {ya ∼ ya + 1}7a=1. Here
Γ denotes a finite group preserving the associative three form

Φ = η123 + η145 + η167 + η246 − η257 − η347 − η356 , (6.5)

where ηabc = ηa ∧ ηb ∧ ηc and {ηa = Radya}7a=1 denoting the T7 7-bein, with the torus radii
{Ra}7a=1 given in M-theory units. For our particular example, we will take Γ = Z2 ×Z2 ×Z2,
whose generators {α, β, γ} act on the toroidal coordinates as follows:

α : (y1, . . . , y7) 7→ (y1, y2, y3,−y4,−y5,−y6,−y7) ,

β : (y1, . . . , y7) 7→ (y1,−y2,−y3, y4, y5,
1
2 − y6,−y7) , (6.6)

γ : (y1, . . . , y7) 7→ (−y1, y2,−y3, y4,
1
2 − y5, y6,

1
2 − y7) ,

which leave invariant the seven 3-forms ηabc from (6.5). The latter moreover span H3(X,Z),
so that they can be identified with seven 3-cycles {Ca ≃ T 3}7a=1, each of them parametrized
by (yaI , yaJ , yaK ), with the same indices as the dual 3-form ηaIaJ aK , precisely as

a 1 2 3 4 5 6 7
aI 1 1 1 2 2 3 3
aJ 2 4 6 4 5 4 5
aK 3 5 7 6 7 7 6

(6.7)
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Surviving after the singularities are resolved,32 we can introduce seven untwisted saxions

sa =
∫

Ca
Φ , a = 1, . . . , 7 , (6.8)

from where we find sa = RaI RaJ RaK . It is then straightforward to show that in the large
volume limit, the volume of the T7/(Z2 × Z2 × Z2) manifold is given by VX = R1 . . . R7 =
(s1 . . . s7)1/3 in 11d units, modulo subleading corrections. The KK scale associated to the
decompactification of any individual radius Ra is thus given by

m2
KK, Ra

=
M2

Pl; 11
R2

a

=
M2

Pl; 4
R2

aVX
=

M2
Pl; 4

saI saJ saK
, (6.9)

whilst the Kähler potential and metric for the saxion moduli space read

KV = − log(s1 . . . s7) + const. =⇒ GsIsJ = δIJ

2(sI)2 . (6.10)

As an illustration, let us check the limit s1 → ∞ while leaving the remaining saxions
fixed and finite. From eqs. (6.7) and (6.9) this is seen to correspond to decompactifying
R1, R2, R3 → ∞, resulting in three KK towers becoming light:

mKK, R1 = MPl;4√
s1s2s3

, mKK, R2 = MPl;4√
s1s4s5

, mKK, R3 = MPl;4√
s1s6s7

. (6.11)

As we are decompactifying three internal dimensions, the species scale will correspond to
the 7d Planck mass,

Λsp = MPl; 7 = (R4R5R6R7)1/5 MPl; 11 = (R4R5R6R7)1/5V
−1/2

X MPl; 4

=
(
(s1)3s2 . . . s7

)−1/10
MPl; 4 . (6.12)

From these, one can easily obtain the following charge-to-mass and species vectors (in a
flat basis)

ζ⃗KK, R1 =
( 1√

2
,
1√
2

,
1√
2

, 0, 0, 0, 0
)

, ζ⃗KK, R2 =
( 1√

2
, 0, 0,

1√
2

,
1√
2

, 0, 0
)

,

ζ⃗KK, R3 =
( 1√

2
, 0, 0, 0, 0,

1√
2

,
1√
2

)
, Z⃗sp =

( 3
5
√
2

,
1

5
√
2

,
1

5
√
2

,
1

5
√
2

,
1

5
√
2

,
1

5
√
2

,
1

5
√
2

)
,

which indeed result in ζ⃗KK, Ri · Z⃗sp = 1
d−2 = 1

2 being satisfied for i = 1, 2 , 3. In the following,
we will show that this is still the case for any other infinite distance limit that we may
consider. Note that, since the transformation between {Ri}7i=1 and {sI}7I=1 is bijective, it
is equivalent to work with one parametrization or the other. However, in order to better
identify the leading tower and species scale, we will henceforth sitck to the former.

Let us first analyze the species scale. Hence, consider the decompactification of n radii
{R̂i}n

i=1 ⊆ {Ri}7i=1 from 4 to d = 4 + n dimensions. In this limit, the species scale will be
32In the resolution process of the T7/Γ singularities, which are located at the disjoint union of twelve T3,

3× 12 = 36 extra 3-cycles {C̃α}36
α=1 are introduced, resulting in 36 additional twisted saxions, s̃α =

∫
C̃α Φ.

We will consider asymptotic limits in which these remain fixed, and thus are subleading for the computations
we are interested in.
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given by the d-dimensional Planck mass, which depends on vol 11−d, namely the volume of
the remaining compactified dimensions, i.e. vol 11−d = VX

R̂1...R̂n
. Thus,

Λsp ∼ MPl; 4+n ∼ MPl; 11 vol
1

d−2
11−d ∼ MPl; 4V

− n
2(n+2)

X

[
n∏

i=1
R̂i

]− 1
n+2

∼ MPl; 4

7∏
i=1

R
− 1

n+2(n
2 +Idec(i))

i , (6.13)

where Idec(i) = 1 if Ri is decompactified and 0 otherwise.
On the other hand, for the leading tower, given the decompactifying radii {R̂i}n

i=1 ⊆
{Ri}7i=1, it will correspond to the KK modes associated to vol t ∼ R̃i . . . R̃nmax , where
{R̃i}nmax

i=1 ⊆ {R̂i}n
i=1 are the radii decompactifying fastest. Notice that nmax ≤ n. Therefore,

we obtain

mt ∼
MPl; 11

vol 1/nmax
t

∼ MPl; 4

vol 1/nmax
t V

1/2
X

∼ MPl; 4

7∏
i=1

R
− 1

2−
1

nmax
Imax(i)

i , (6.14)

where Imax(i) = 1 if Ri ∈ {R̃i}nmax
i=1 and 0 otherwise.

We further have string oscillator towers resulting from M5-branes wrapped around 4-
cycles in the internal geometry. In the limit in which a single saxion is sent to infinity,
sa = RaI RaJ RaK → ∞, we have that the total volume scales as VX ∼ (sa)1/3 → ∞, whereas
the dual 4-cycle — with volume VX

2RaI
RaJ

RaK
(see [21] for more on the dual-saxion formulation)

— shrinks, so that M5-branes wrapped along the latter become tensionless strings from the
4d perspective. Their tension and tension scale as

TM5,a ∼ M2
Pl;11

VX

RaI RaJ RaK

∼
M2

Pl;4
RaI RaJ RaK

=⇒ ms,a ∼ MPl;4(RaI RaJ RaK )−1/2 . (6.15)

With this, we can finally evaluate the inner product

Z⃗sp · ζ⃗t = GRiRj ∂Ri log Λsp∂Rj logmt , (6.16)

where the main difficulty lies in the fact that the expression for the moduli space metric has
been given in terms of the saxions and not the radii (see eq. (6.10) above). To solve this, it is
easier to use an intermediate ‘logarithmic’ parametrization, namely we define Ri = exp(ρi)
and sI = exp(σI), which yields the following (inverse) metric

GRiRj = ∂Ri

∂sI

∂Rj

∂sJ
GsIsJ = 2RiRj

∂ρi

∂σI

∂ρj

∂σJ
δIJ (no sum over i, j) , (6.17)

where the diagonal nature of GsIsJ has been used so as to reach the r.h.s. Analogously, the
relation between σ⃗ and ρ⃗ can be extracted using e.g., eq. (6.9), from where we find

2ρi = σIi + σJi + σKi −
7∑

j=1
ρj =⇒ ρi =

1
2(σ

Ii + σJi + σKi)− 1
6

7∑
J=1

σJ , (6.18)
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or equivalently, using (6.7),

ρ⃗ = Mσ⃗ , with M = 1
6



2 2 2 −1 −1 −1 −1
2 −1 −1 2 2 −1 −1
2 −1 −1 −1 −1 2 2

−1 2 −1 2 −1 2 −1
−1 2 −1 −1 2 −1 2
−1 −1 2 2 −1 −1 2
−1 −1 2 −1 2 2 −1


. (6.19)

Notice that the matrix M is symmetric and invertible. With this, we finally obtain

GRiRj = 2RiRjMiIMjJδIJ =
(

δij − 1
9

)
RiRj (no sum over i, j) , (6.20)

which can be used to evaluate (6.16). We first consider limits in which the species scale is given
by a higher-dimensional Planck mass (so that the leading tower is not the string one). Taking
a limit in which we decompactify n directions, where nmax of which do so at the fastest rate:

Z⃗sp · ζ⃗t =
1

n + 2

7∑
i,j=1

(
δij − 1

9

)(1
2 + Imax(i)

nmax

)(
n

2 + Idec(j)
)

= 1
n + 2

7∑
i,j=1

(
n

4 δij + 1
2δijIdec(j) +

n

2nmax
δijImax(i) +

δij

nmax
Imax(i)Idec(j)

− n

36 − Idec(j)
18 − n

18nmax
Imax(i)−

Imax(i)Idec(j)
9nmax

)
= 1

2 , (6.21)

as we wanted to show. Note that from the above general expression it follows that the pattern
also holds for the scalar product of the ζ⃗t associated to the decompactification of n internal
dimensions and Z⃗sp given by MPl; 4+n, as well as the species scale with any of the subleading
towers, since {R̃i}nmax

i=1 ⊆ {R̂i}n
i=1. From (6.13) and (6.14) one can check that those towers

are always lighter than (and as a result its light states contribute to) the species scale, since

m{R̃i}nmax
i=1

Λsp
= exp

− 7∑
i=1


1

n+2 if Ri ̸∈ {R̃i}nmax
i=1 , {R̂i}n

i=1
0 if Ri ∈ {R̂i}n

i=1\{R̃i}nmax
i=1

n+1−nmax
nmax(n+2) if Ri ∈ {R̃i}nmax

i=1

 eiλ

≪ 1 , (6.22)

for any Ri ∼ exp{eiλ}, with λ → ∞ and ei ≥ 0, trajectory. This is not necessarily the
case, however, if {R̃i}nmax

i=1 ̸⊂ {R̂i}n
i=1.

Lastly, we consider the remaining case in which the species scale is asymptotically given
by the mass of the string oscillators. By simply computing that |ζ⃗s|2 = 1

2 , it is immediate that
the pattern holds when the leading tower is also tgiven by the string modes. If, on the other
hand, mt is set by the KK scale of decompactifying faster some {R̃i}nmax

i=1 ⊆ {RaI , RaJ , RaK}
radii (it is easy to check that if more radii are decompactified then the species scale is given
by a higher-dimensional Planck mass), we have instead

Z⃗sp · ζ⃗t =
7∑

i,j=1

(
δij − 1

9

)
δaI i + δaJ i + δaK i

2

(1
2 + Imax(j)

nmax

)

= Imax(aI) + Imax(aJ) + Imax(aK)
2nmax

= 1
2 , (6.23)

– 56 –



J
H
E
P
0
6
(
2
0
2
4
)
0
3
7

where we make use of {R̃i}nmax
i=1 ⊆ {RaI , RaJ , RaK}. Note that for different decompactified

radii (so that Λsp ̸= ms,a) the pattern does not hold and actually takes a smaller value.
Therefore, since decompactification/emergent string and large saxion limits are mapped

in a one-to-one fashion,33 all possible (large volume) infinite distance limits of M-theory
compactified on T7/(Z2 × Z2 × Z2) fulfill the pattern Z⃗sp · ζ⃗t = 1

d−2 = 1
2 . This is expected

by the general discussion of section 3, since further quotienting by an orbifold action should
not change the structure of infinite distance limits in the untwisted sector. However, it is
useful to work out an explicit example in full glory here, so that we can check whether the
pattern is also satisfied by the subleading towers. The conclusion is that, as long as the
towers survive the projection, this is not affected by the orbifolding, and for any practical use
only the volume scaling plays a role in the pattern. One would expect this to be also the
case when working with more general product manifolds X ′

n = (Xn1 × . . . ×XnN )/Γ, with Γ
some appropriate finite group, where the towers and the species scales can be associated with
partial decompactifications of intermediate sub-manifolds, as argued in appendix A.

6.2 Heterotic string theory on a CY3

As a second example, we consider heterotic string theory compactified on a Calabi-Yau
threefold, X. Following [21], we take X = P(1,1,1,6,9)[18], which we recall can be regarded
as an elliptic fibration over P2, so that b2(X3) = 2. The geometric classification of infinite
distance limits in the Kähler sector parallels that of section 5.3.1, but the microscopic
interpretation of the towers and the species scale will be quite different, since there are no
BPS particles in 4d N = 1. We focus here on infinite distance limits associated to the Kähler
moduli as well as the 4d dilaton. Thus, let us consider two holomorphic curves, CT2 and CP1 ,34

whose volume in string units is measured by the Kähler saxions s1, s2 ∈ R>0, respectively,
whilst the overall volume of X is given by (again in string units)

VX = κ(s, s, s) = 1
6κabcs

asbsc = 3
2(s

1)3 + 3
2(s

1)2s2 + 1
2s1(s2)2 . (6.24)

Here κabc denote the triple intersection numbers of the threefold X written in some basis
{ωa} of H2(X,Z). Furthermore, we include the universal saxion s0, which is defined as

s0 = e−2ϕVX , (6.25)

with ϕ the 10d dilaton. In the perturbative regime, the leading contribution to the Kähler
potential in the previous parametrization has the form

K = − log s0 − log VX + . . . , (6.26)

from where the moduli space metric can be derived as follows

Gsasb = 1
2

∂2K

∂sa∂sb
. (6.27)

33Note that since the matrix M in (6.19) is invertible, it defines a bijection between the variables {σJ} and
{ρj}. In addition, such a map can be seen to provide an automorphism of R7

≥0, such that the large saxion and
supergravity regimes are respected.

34These curves can be identified with the generic elliptic fiber and a P1 within the P2-base [83].
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Note that since VX is not an homogeneous function of the Kähler saxions, then Gsasb will
not be diagonal, although it will simplify when taking certain limits (see section 5.3.1 for
details on this point).

The 10d string frame metric obeys the following ansatz,

ds2 = e2Ads24 + ℓ2sds2X3 , (6.28)

where ds24 is the 4d Einstein frame metric and ℓs denotes the string length, such that

e2A =
ℓ2sM2

Pl; 4e
2ϕ

4πVX
=

ℓ2sM2
Pl; 4

4πs0
. (6.29)

Following [21], let us start by enumerating all possible towers of states that could become
light in some asymptotic corner. First of all, the fundamental string tension in 4d Planck
units reads as

TF1 =
2πe2A

ℓ2s
=

M2
Pl; 4
2s0

, (6.30)

implying the following moduli dependence for the string scale

ms ∼ MPl; 4 (s0)−1/2 . (6.31)

As for the KK scale, denoting by R∗ the largest decompactification ‘radius’ measured in
string units, we have

mKK∗ = 2πeA

R∗ℓs
∼ MPl; 4

(s0)1/2R∗
. (6.32)

These are associated to several even-dimensional cycles of the internal geometry, for which
an useful basis can be constructed as follows:

Va = 1
2

∫
X3

ωa ∧ J ∧ J = 1
2κabcs

bsc , Vab =
∫

X3
ωa ∧ ωb ∧ J = κabcs

c , (6.33)

which indeed measure the volume of the divisor dual to ωa as well as that of the intersection
curve between (the duals of) ωa and ωb, respectively.

Now, upon looking at the analytic expression of the threefold volume (6.24) in terms
of that of s1 ∼ vol (CT2) and s2 ∼ vol (CP1), we note that only two scales are allowed: if
s2 ≫ s1, then VX ∼ s1(s2)2 and the fastest growing cycle corresponds to the P2-base,35

namely R∗ = RP2 ∼ (V1)1/4 ∼ (s2)1/2; whilst any other limit results in full decompactification,
with R∗ = RX ∼ V

1/6
X . As a consequence, we only find the following two possibilities:

mKK, X ∼ MPl; 4 (s0)−1/2 V
−1/6

X , mKK,P2 ∼ MPl; 4 (s0)−1/2 (s2)−1/2 . (6.34)

Moreover, for limits in which s0 is held fixed whilst the overall volume diverges, we enter
into a strong coupling regime, since from (6.25) we find that e2ϕ = VX/s0 ∼ VX . For such

35Of course, the volume of the P1 curve, CP1 , inside the P2-base scales in the same way as the latter, namely
RP1 ∼ RP2 ∼ (s2)1/2. However, the overall decompactified volume corresponds to the 4-dimensional divisor
instead of just the complex curve CP1 .
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limits, new light degrees of freedom can appear. Take for example E8 × E8 heterotic string
theory, where the strong coupling limit is given by Hořava-Witten’s construction of M-theory
compactified on X3×S1/Z2 [120, 121]. In this case, there is a new KK scale associated to the
interval (which corresponds to the non-BPS D0-brane mass), whose mass scale is given by

mKK, M-th =
√
2πe2Ae−2ϕ

ℓs
∼ MPl; 4V

−1/2
X . (6.35)

Once the possible leading towers mt have been laid out, we can start considering the species
scale Λsp. Apart from the already computed string scale (6.31), the species cut-off can be
set by the higher dimensional Planck masses. Given ms ∼ R

1/2
10 MPl; 11, with R10 being the

length of the S1/Z2 interval, and using the fact that eϕ ≡ R
3/2
10 [120], we obtain

MPl; 11 ∼ MPl; 4R
−1/2
10 (s0)−1/2 ∼ MPl; 4(s0)−1/3V

−1/6
X . (6.36)

On the other hand, MPl; 10 ∼ e−ϕ/4ms, so that

MPl; 10 ∼ MPl; 4(s0)−3/8V
−1/8

X . (6.37)

As for MPl; d with 4 ≤ d ≤ 10, we need to be more careful. In general we will have

MPl; d ∼ MPl; 10 vol 10−d|
1

d−2
Pl = MPl; 4(s0)−3/8V

−1/8
X vol 10−d|

1
d−2
Pl , (6.38)

where vol 10−d is the volume of the remaining compactified dimensions, which we will need
in Planck units. While our volumes are expressed in string units, we notice that from (6.37)
ℓ|Pl = ℓ|string(s0)1/8V

−1/8
X . Hence, we finally arrive at

MPl; d = MPl; 4(s0)
4−d

2(d−2) V
− 1

d−2
X vol

1
d−2
10−d , (6.39)

where now vol 10−d is measured in string units, and which agree with the d = 4, 10 cases.
For our purposes, it will be enough to compute MPl; 8 = MPl; 4(s0)−1/3(s2)−1/3, since as
we commented before (see discussion around eq. (6.34)), there are no decompactification
limits to arbitrary dimensions, but only to d = 5, 8, 10 and 11 (M-theory). The first of
these, on the other hand, is obtained by decompactifying only the M-theory interval without
increasing the overall volume, so that the 5d Planck scale can be obtained through the same
argument as in (5.27), resulting in

MPl; 5 ∼ MPl; 4V
−1/6

X . (6.40)

Now, in order to test the pattern we will compute the decay rates of the different towers
and scales along some trajectory s(λ),

αI = −
∂λ logmI |s(λ)

∥ṡ(λ)∥ , (6.41)

and then calculate for those dominating (this is, with larger αI)

ζ⃗t · Z⃗sp
∣∣∣
s(λ)

=
(
Gsisj

∂si logmt ∂sj log Λsp
)∣∣∣

s(λ)
. (6.42)
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Region Limit mt Λsp

(I) s0 ≫ s1(s2)2; s2 ≳ s1 mKK,P2 ms

(II) s0 ≫ (s1)3; s1 ≳ s2 mKK, X ms

(III) s1(s2)2 ≫ s0 ≳ s1s2; s2 ≳ s1 ≫ 1 mKK,P2 MPl; 11

(IV) (s1)3 ≫ s0 ≳ (s1)2; s1 ≳ s2 mKK, X MPl; 11

(i) s0 ≫ s1, s2 ∼ 1 ms ms

(ii) s0 ∼ s1(s2)2, s1 ≪ s2 mKK,P2 MPl; 10

(iii) s0 ∼ (s1)4, s1 ≫ s2 mKK, X MPl; 10

(iv) (s2)2 ≳ s0 ≳ s2; s1 ∼ 1 mKK,P2 MPl; 8

(v) s2 ≳ s0 ≫ 1; s1 ∼ 1 mM-th MPl; 8

(vi) s0 ∼ 1 mM-th MPl; 5

(V) Otherwise mM-th MPl; 11

Table 4. Classification of the different asymptotic regions of the heterotic string theory on
P(1,1,1,6,9)[18] in terms of the saxion limit and leading tower mt and species scale Λsp. In up-
percase Roman numerals are identified those regions having the same dimensionality as the space
of infinite distance limits, while those measure-zero limit sets are numbered in lowercase. In the
interfaces (actually intersections) between different regions, the leading towers and species cut-offs
scale in the same way.

We can scan the space of possible asymptotic limits by considering trajectories of the form
s(λ) ∼ (eσ0λ, eσ1λ, eσ2λ), with e belonging to the first octant of S2, and indeed check that
the ζ⃗t · Z⃗sp = 1

2 pattern is fulfilled.36 In figure 10 the different asymptotic limits, classified
according to which scales mt and Λsp dominate, are depicted in terms of σ = (σ0, σ1, σ2).
These regions are also shown in table 4. In the interfaces between two or more regions,
the lightest towers and species scales from each of them scale in the same way, and indeed
the product ζ⃗t · Z⃗sp = 1

2 is fulfilled.
As it was also the case for toroidal compactifications (see section 3), the pattern holds

even stepwise, if we decompose the limit into several steps associated to the different towers
that we encounter before reaching the species scale. Consider for example the limit given
by s(λ) ∼ (e4σ, eσ, e2σ), which sits in the interior of region (III). Along that limit, mt =
mKK,P2 ≪ mKK, X ≪ mKK,M−th ≪ Λsp = MPl; 11 ≪ MPl; 10 ≪ MPl; 8 ∼ ms ≪ MPl; 5. Hence,
we first decompactify the P2 cycle, then the complete CY X and finally the M-theory interval,
until reaching the 11d theory. When computing the product, one then finds

ζ⃗KK,P2 · Z⃗Pl, 11 = ζ⃗KK,P2 · Z⃗Pl, 10 = ζ⃗KK,P2 · Z⃗Pl, 8 = ζ⃗KK,P2 · Z⃗s =
1
2 , (6.43)

whereas ζ⃗KK,P2 · Z⃗Pl, 5 = 1
6 .37 Hence, the pattern holds between the leading tower and any of

36In the cases for which si ∼ sj , one could wonder whether si = asj could give rise to different limits with
different finite a, but indeed they result in the same dominating towers and species scales.

37This is easy to understand by looking at table 4, as mKK,P2 is the leading tower in some of the regions in
which Λsp is given by MPl;8, MPl;10 and MPl;11, but never MPl;5. As a matter of fact, for the lower part of
region (vi), where s1 ≫ s2 ≫ s0 ∼ 1, mKK,P2 is heavier than Λsp = MPl;5.
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Figure 10. Classification of the different (s0, s1, s2)(λ) ∼ (eσ0λ, eσ1λ, eσ2λ) limits in terms of their
leading mt and Λsp, as given in table 4. In the interfaces between different regions their leading towers
and species cut-off scale in the same way, respectively. Recall that measure-zero regions are depicted
in lowercase.

the intermediate species scales obtained in each decompactification step until finally reaching
the 11d theory. Moreover,

ζ⃗KK,P2 · Z⃗Pl, 11 = ζ⃗KK, X · Z⃗Pl, 11 = ζ⃗KK, M-th · Z⃗Pl, 11 =
1
2 , (6.44)

while ζ⃗osc·Z⃗Pl, 11 = 1
3 , so that the pattern also holds between the final (true) species scale and all

the subleading towers that will play the role of the leading tower after each decompactification
step of the process. This is a generalization of the nested decompactifications described
in appendix A for product manifolds.

Notice that, unlike type IIA string theory on P(1,1,1,6,9)[18] (see section 5.3.1), in this
example there are no D2-branes that can become light yielding an effective decompactification
to 6d F-theory on our (elliptically-fibered) Calabi-Yau manifold. Because of this, the limits
with s0 constant always have mM−th as the leading tower, with MPl; 5 being the species scale.
This explains the difference between region (vi) in figure 10 (see also table 4) and figure 8.

For this example and those of sections 5.3.1, 5.4.1, 5.4.2 and 6.2, the internal manifolds are
different Calabi-Yau threefolds rather than toroidal compactifications (or quotients thereof).
While for the later case (or more generally when having product manifolds) there is a
diagonal/boxed internal metric and the different cycles can be decompactified independently
(see appendix A for more on this), in the case of Calabi-Yau threefolds one finds for the
volume some non-homogeneous expression VX = 1

6κabcs
asbsc in terms of the different Kähler

saxions and intersection numbers, such that a complicated moduli space metric arises. As
already described in some of the examples, for single-field asymptotic limits the internal
manifold can be seen as a fibration, with the volume and metric simplifying considerably,
as reviewed more generally in section 5.1. Interestingly, as already stressed, the pattern
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not only holds along these limits, but also for asymptotic directions interpolating between
them, along which different terms in the volume can compete, and thus they cannot be
disregarded. In this subsection, we have only shown the realization of the pattern in a 4d
N = 1 setup for one particular Calabi-Yau example, but we expect that the generalization
to any CY should work analogously as we did for 4d N = 2 in section 5. The geometrical
features characterizing the infinite distance limits are the same, and only the interpretation
and masses of the towers change, as explained above.

6.3 Type IIB/F-theory compactifications

The next framework where the pattern can be checked is F-theory compactified to four
dimensions. The compactification manifold X is Kähler, with the axio-dilaton τ = C0 + i e−ϕ

being non-constant and undergoing monodromies around the 7-branes. Because of this, it
is convenient to adopt a 10d Einstein-frame description from the type IIB point of view,
with a metric of the form

ds2 = e2Ads24 + ℓ2sds2X , with e2A =
ℓ2sM2

Pl; 4
4πVX

. (6.45)

For our purposes of analyzing the infinite distance limits, it will be enough to work in the
low-warping approximation [122, 123] for the 4d N = 1 EFT. Focusing in the Kähler sector,
its moduli {va}h4

a=1 can be used to expand the Einstein frame Kähler form J = va[Da], with
[Da] the Poincaré duals of a basis of divisors Da ∈ H4(X,Z) and va measures the volume of
the dual effective curves {Ca}. On the other hand, the Kähler sector can be parametrized
by the following EFT saxions

s = 1
2J ∧ J = sa[Ca] ∈ H4(X,R) =⇒ sa =

∫
Da

s = 1
2κabcvbvc , (6.46)

where κabc are the triple intersection numbers of X and [Ca] ∈ H4(X,R) the Poincaré duals
of the set of effective curves Ca ∈ H2(X,Z). After grouping the EFT saxions into (chiral)
complex fields ta = aa + isa, we can obtain the Kähler potential, as a function of the sa,
which reads (up to an irrelevant constant)

Kks = −2 log
∫

X
J ∧ J ∧ J = −2 log κ(v, v, v) . (6.47)

The volume of the manifold will be given by VX = 1
6κ(v, v, v) in 10d Planck units.

As an example, we consider X to be the n-twisted P1 fibration over P2 described by a
gauged linear sigma model [21].38 The compact volume and the Kähler potential are given by:

VX =
√
2

3n

[
(s2)3/2 − (s2 − ns1)3/2

]
> 0 , (6.48a)

38Following [122], the 2d sigma model is given by

U(1)i Qi
1 Qi

2 Qi
3 Qi

4 Qi
5 FI

U(1)1 1 1 1 −n 0 v1 > 0
U(1)2 0 0 0 1 1 v2 > 0

where Qi
j are the U(1)i charge of the fields {xj}5

j=1, and n takes positive integer values, so that

X =
{

x ∈ C5 : |x1|2 + |x2|2 + |x3|2 − n|x4|2 = v1, |x4|2 + |x5|2 = v2
}

/U(1)2 ,

where the volume of X will depend on the FI parameters v1 and v1. Given DI = X ∩ {xI = 0} the toric
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Kks = −2 log
[
(s2)3/2 − (s2 − ns1)3/2

]
+ const . (6.48b)

At this point we have everything we need to compute the leading towers and species scales.
As the 4d and 10d dilaton are the same and are decoupled from the Kähler sector, we will
restrict ourselves to limits purely along s1 and s2. Thus, the leading towers will correspond
to KK modes, whose masses are computed as follows

m2
KK, ∗ ∼

e2A

ℓ2sR2
∗
∼

M2
Pl; 4

VXR2
∗

. (6.49)

As usual, R∗ denotes here the scale (in string units) of the cycle decompactifying at the
fastest rate. By inspection of (6.48) (see also footnote 38), we conclude that the only
decompactification options are of the whole X or D1 (note that in this latter case we
decompactify for dimensions), since decompactifying D2 or E = D2 − nD1 at a pace equal
or faster than D1 results in full decompactification. Hence, we have the following two
possibilities for the leading tower:

mKK, X ∼ MPl; 4V
−2/3

X , mKK, D1 ∼ MPl; 4V
−1/2

X v
−1/2
1 . (6.50)

Analogously, taking into account that we can only decompactify to ten and eight dimensions
implies that the only possibilities for the species scale are39

MPl; 10 ∼ MPl; 4V
−1/2

X , MPl; 8 ∼ MPl; 4V
−1/3

X v
−1/3
1 , (6.51)

where all volumes are already measured in 10d Planck units. Similarly to what happened
for the heterotic string example in section 6.2, the volume of the compact manifold VX has
different terms that can dominate depending on the particular limit taken by the saxions (cf.
eq. (6.48a)), resulting in a non-diagonal moduli space metric. However, we can follow the
same approach as in section 6.2 above and classify the different asymptotic limits by their

divisors of X, we choose the following

D1 = D1 ≃ D2 ≃ D3 , E = D4 , D2 = D5 , with E = D2 − nD1 ,

with the cone of effective divisors given by CI = ⟨{D1, E}⟩Z. The intersection numbers are given by

I = κabcDaDbDc = (D1)2D2 + nD1(D2)2 + n2(D2)3 ,

and the dual effective curves, such that Ca · Db = δb
a, are C1 ≃ D1 · E ≃ D1 · (D2 − nD1) and C2 ≃ D1 · D1.

We can identify C2 with the P1 fibre and C1 with its pushforward to the base through the D4 = E section.
With this in mind we can expand the EFT saxions as

s = 1
2J ∧ J = s1[C1] + s2[C2] , with

{
s1 = v1v2 + 1

2 nv2
2

s2 = 1
2 (v1 + nv2)2 .

As CI is generated by D1 and E, we have that the saxionic cone is given by∆ = {s ∈ H4(X,R) : s1 > 0, s2 −
ns1 > 0}. Finally, we can invert (38) to obtain

v1 =
√

2(s2 − ns1), v2 = 1
n

(√
2s2 −

√
2(s2 − ns1)

)
,

which can be used to obtain the volume and Kähler potential.
39Notice that we are not considering here any emergent string limit, since we fix the 4d dilaton to a

constant value.
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leading tower(s) and species scale. Subsequently, using (6.42) we can compute ζ⃗t · Z⃗sp along
different infinite distance trajectories. This leads to the following three limits:

Limit mt Λsp

s2 ≳ (s1)2 mKK, D1 MPl; 8

(s1)2 ≫ s2 ≫ ns1 mKK, D1 MPl; 10

s2 ∼ ns1 mKK, X MPl; 10

In all the above limits the pattern ζ⃗t · Z⃗sp = 1
d−2 = 1

2 is fulfilled. As it was the case in
section 6.2, in the interfaces between the different asymptotic regions the ζ⃗t · Z⃗sp = 1

2 holds
regardless of the chosen vector. While the pattern is always verified when considering the
leading tower(s) and the species scale, when computing the product with the subleading
towers the result is case-dependent. For the (s1)2 ≫ s2 ≫ ns1 limit, Λsp = MPl; 10 ≫
mKK, X ≫ mKK, D1 = mt and Z⃗Pl, 10 · ζ⃗KK, D1 = Z⃗Pl, 10 · ζ⃗KK, X = 1

2 , while in the s2 ≫ (s1)2
limits Λsp = MPl; 8 ≳ mKK, X ≫ mKK, D1 = mt but Z⃗Pl, 8 · ζ⃗KK, X = 4

9 . This is not surprising,
as in the former case we are decompactifying to 10d, and the associated Z⃗Pl, 10 and ζ⃗KK, X

trivially fulfill the pattern, while for the latter case the decompactification is to 8d, and we
do not expect the KK tower decompactifying to ten dimensions to have the correct product
here (note that indeed this was not the case either for toroidal decompactifications).

One could wonder whether the ζ⃗t·Z⃗sp = 1
2 pattern holds only asymptotically or if it is exact

for finite distance points in moduli space (as it was the case for toroidal compactifications).
This seems to depend on the limit taken, as s2 ∼ ns1 limits are exact (irrespective of
the proportional factor between the saxions), while for example a trajectory of the form
(s1, s2) ∼ (λ, λ3) with n = 2 has ζ⃗t · Z⃗sp = ζ⃗KK, D1 · Z⃗Pl, 8 = 1

2 + 1
6λ−

√
2
5 + O

(
λ−2

√
2
5

)
(with corrections at all others being positive), so that along this limit ζ⃗t · Z⃗sp > 1

2 , only
being saturated for λ → ∞.

Notice that here, as well as in all previous examples, the corrections (if any) are non-
negative, which suggests that a possible generalization (if there exists one) of the pattern (1.1)
to the interior of the moduli space could be

∇⃗M

M
· ∇⃗Λsp

Λsp
≥ 1

d − 2 over all M, (6.52)

saturating the inequality asymptotically at the infinite distance limits. This is still well defined
in the entire asymptotic regime (and not only in the strict infinite distance limit), as there are
still light towers of states and we can identify M = mt. However, the notion of the lightest
tower is not well defined anymore in the interior of the moduli space, so the mass of the tower
should be replaced by some other quantity M that approaches M → mt asymptotically and
diverges if Λsp develops a maximum. We hope to come back to this question in the future.

6.4 Type IIA on a Calabi-Yau orientifold

For our last 4d N = 1 example, we will consider type IIA string theory compactified on
the projection of a Calabi-Yau threefold X under a O6 orientifold ι : X → X, [124–126].
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The moduli X will be encoded in a (string frame) Kähler form J and (3, 0)-form Ω with
normalization

i
8Ω ∧ Ω̄ = 1

6J ∧ J ∧ J , (6.53)

and satisfying the projection condition ι∗J = −J and ι∗Ω = Ω̄. We will have two sets of
chiral fields, ta = aa + isa and t̂α = âα + iŝα, respectively parametrizing B2 + iJ (in the
string frame) and C3 + ie−ϕReΩ as

B2 + iJ = (aa + isa)[D+
a ] , (6.54a)

C3 + ie−ϕReΩ = (âα + iŝα)[Σ−
α ] , (6.54b)

where ϕ is the 10d dimensional dilaton, and [D+
a ] and [Σ−

α ] form basis for the odd 2-form
and even 3-form cohomology classes H2

−(X,R) and H3
+(X,R).40 With this in mind we can

obtain the string frame volume of X and the Hitchin function

VX(s) = 1
6

∫
X

J ∧ J ∧ J = 1
6κabcs

asbsc , (6.55a)

H(ŝ) = i
8

∫
X

e−2ϕΩ ∧ Ω̄ , (6.55b)

which, in the perturbative regime where the backreaction of both the fluxes and sources are
neglected and the warping is approximately constant, can be related to each other as follows

e2ϕ = VX(s)
H(ŝ) , (6.56)

where we stick to the normalization in (6.53). This allows us to write the 10d string frame
metric with a conformal factor before ds24

e2A =
ℓ2sM2

Pl; 4
2πH(ŝ) =

ℓ2sM2
Pl; 4e

2ϕ

2πVX(s) , (6.57)

and a Kähler potential

K = − log VX − 2 logH(ŝ) . (6.58)

Once we have introduced the required mathematical framework, we consider the case stud-
ied [127], where X = (T2 × T2 × T2)/(Z2 × Z2) and the orientifold involution is taken to be
ι : (z1, z2, z3) 7→ (z̄1, z̄2, z̄3). Moreover, the complex-structure is fixed as τj = i R2j

R2j−i
, so that

Ω = R1R3R5 dz1 ∧ dz2 ∧ dz3

= (R1dy1 + iR2dy2) ∧ (R3dy3 + iR4dy4) ∧ (R5dy5 + iR6dy6) . (6.59)

40Notice that Poincaré duality relates even/odd cycles with odd/even cohomology classes, as orientifold
involution inverts orientation.
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This allows to, for certain basis [Σ−
α ],41 identify the following saxions:

ŝ0 = 1
4e−ϕR1R3R5 , ŝ1 = 1

4e−ϕR1R4R6 ,

ŝ2 = 1
4e−ϕR2R3R6 , ŝ3 = 1

4e−ϕR2R4R5 , (6.60)

such that

H(ŝ) = 8
√

ŝ0ŝ1ŝ2ŝ3 . (6.61)

On the other hand, the Kähler saxions sa measure the volume of the a-th 2-torus in string
frame, so that

s1 = R1R2 , s2 = R3R4 , s3 = R5R6 . (6.62)

We are now in conditions to obtain the possible leading towers [21], which can either be
emergent strings or KK modes:

ms ∼
eA

ℓs
∼ MPl; 4e

ϕV
−1/2

X , mKK, ∗ ∼
eA

ℓsR∗
∼ MPl; 4e

ϕV
−1/2

X R−1
∗ , (6.63)

where R∗ is the characteristic scale of the decompactified volume. As for the species scale,
we can either have the string scale, ms or the higher-dimensional Planck mass

MPl; d ∼ MPl; 4e
d−4
d−2 ϕV

−1/2
X vol

1
d−2
10−d , (6.64)

where vol 10−d denotes the remaining volume (in string units) after decompactifying to d

dimensions. To obtain this expression we have followed a procedure analogous to that of
section 6.2 in order to rewrite the volumes in the appropriate Planck units.

We are finally ready to show that the condition ζ⃗t · Z⃗sp = 1
2 holds in every limit. To do so

we will work in the {eϕ, R1, . . . , R6} basis, and proceed similarly as in section 6.1. Grouping
R⃗ = (R0 ≡ eϕ, R1, . . . , R6) and s⃗ = (s1, s2, s3, ŝ0, . . . , ŝ3), one can consider general limits of
the form Ri = eρi ∼ eρi(0)λ and sI = eσI ∼ eσI(0)λ for large λ. With this in mind, we can
use (6.60) and (6.62) to obtain the relation

ρ⃗ = Mσ⃗, with M = 1
4



2 2 2 −1 −1 −1 −1
2 0 0 1 1 −1 −1
2 0 0 −1 −1 1 1
0 2 0 1 −1 1 −1
0 2 0 −1 1 −1 1
0 0 2 1 −1 −1 1
0 0 2 −1 1 1 −1


. (6.65)

41While not of importance for our discussion, we include said basis for completeness:

[Σ−
0 ] = 4dy1∧dy3∧dy5 , [Σ−

1 ] = −4dy1∧dy4∧dy6 , [Σ−
2 ] = −4dy2∧dy3∧dy6 , [Σ−

0 ] = −4dy2∧dy4∧dy5 .
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It is easy to check that M is indeed invertible, and that it maps R7
≥0 to R≤0 × R6

≥0 in a
one-to-one way,42 so that we are able to take any possible limit in the {R0, R1, . . . , R6} basis.
Now, in the same way as in (6.17), we obtain

GRiRj = ∂Ri

∂sI

∂Rj

∂sJ
GsIsJ = 2RiRjδIJMiIMjJ =

(
δij +

1
2(δi0 + δj0)

)
RiRj , (6.66)

with no sum over i or j. On the other hand, using the same notation as in section 6.1, we have

log mKK, nmax

MPl; 4
= logR0 −

6∑
i=1

(1
2 + Imax(i)

nmax

)
logRi , (6.67a)

log ms
MPl; 4

= logR0 −
1
2

6∑
i=1

logRi , (6.67b)

log MPl; 4+n

MPl; 4
= n

n + 2

{
logR0 −

6∑
i=1

(1
2 + Idec(i)

n

)
logRi

}
. (6.67c)

Now, as it was the case in section 6.1, we find that ζ⃗KK, nmax · Z⃗Pl; 4+n = 1
d−2 = 1

2 iff
{R̃i}nmax

i=1 ⊆ {R̂i}n
i=1. In this sense, any time mt is a KK tower, the pattern is exactly (i.e.

not just asymptotically) verified, also for subleading towers with {R̃i}i ⊆ {R̂i}n
i=1, which

following an argument similar than (6.22) can be checked to be lighter than the species
scale. On the other hand, it is immediate from (6.67) that the string mass is given by the
formal limit ms = limn→∞ MPl; 4+n, with the Idec(i) dependence disappearing. Therefore,
ζ⃗KK, nmax · Z⃗s = 1

d−2 = 1
2 for any choice of {R̃i}nmax

i=1 (even in those limits for which the species
scale is not given by the string mass). Finally, one can also check that |ζ⃗s|2 = 1

2 , so that the
pattern also holds in emergent string limits. We thus conclude that any decompactification
or emergent string limit of this example fulfills the proposed pattern. This result should
also be easily generalized to any other (T2 × T2 × T2)/Γ compactification, with Γ ∈ SU(3),
see [128–130] for reviews. As argued in section 6.1 and appendix A, the mass and behavior of
the towers depend only on the scaling with the internal compact volume, which is expected
to be independent from quotienting by finite order groups.

7 On the quest for a bottom-up rationale

In the previous sections we have provided significant evidence for the relation (2.6) in string
theory compactifications. This pattern provides a very sharp relation between the growth of
the density of states and the rate at which they become light asymptotically (cf. (2.7)). The
more dense the tower is, the slower the mass goes to zero. The next natural open question is
whether this pattern is a lamppost effect of the string theory landscape or a general feature
of Quantum Gravity. In order to address this question, we would need to provide some
bottom-up explanation of the pattern, independent of string theory. Here, we will give the
first steps to find such an argument. Despite not being able to provide a purely bottom-up
rationale for the pattern, we will identify and motivate some sufficient conditions that allow
the pattern to hold; with the hope that this can be useful for future research.

In a nutshell, we argue that through the Emergence Proposal [2] one can rewrite the
product ζ⃗t · Z⃗sp = ∂ϕi logmt∂ϕi log Λsp as a linear combination of the ratios of logarithmic

42Notice that the weak coupling limit corresponds to ϕ = ρ0 → −∞.
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derivatives of the species scales and leading tower, independent of the explicit expression of
the moduli space metric. Then we argue that, upon requiring the exponential rate of the
towers and cut-offs to be well-defined over the space of infinite distance limits, ∞(M) (see
appendix C for details on its construction), we can divide said space into patches over which
ζ⃗t · Z⃗sp is constant. Then, assuming that every time several leading towers become light at
the same rate there exists an additional one formed by bound states of these, the transition
from one patch to the other is such that ζ⃗t · Z⃗sp takes the same value on both, and as a result,
over the whole space of infinite distance limits. Finally, for those cases in which there exists
at least either one emergent string limit within the moduli space of the theory or one overall
decompactification to a higher dimensional vacuum, the observed value is set to ζ⃗t · Z⃗sp = 1

d−2 .

7.1 The emergence proposal

A promising avenue to find a bottom-up rationale is by means of the Emergence Proposal [2, 3].
This proposal claims that all the IR dynamics (i.e. the kinetic terms of all fields in an EFT for
example) should emerge from integrating out the massive degrees of freedom [16, 131].43 The
proposal provides a bottom-up explanation for some Swampland conjectures, as some of these
constraints relating EFT data with new massive states simply arise as natural consequences
of RG flow renormalization. It implies, in particular, that the asymptotic kinetic terms of
the moduli emerge upon integrating out the towers of states becoming light (i.e. those towers
with a characteristic mass scale below the species scale [2, 134]). This reverses the logic of
the Distance Conjecture, as the infinite field distance itself emerges because of the existence
of a tower of states becoming massless to start with (see [16, 18, 133] for the original works
and [46, 85, 135–140] for multiple follow-ups).

In the following, we are going to investigate whether the Emergence Proposal can help to
provide a bottom-up rationale for our pattern. Consider an asymptotic trajectory resulting
in an infinite tower of states whose mass mt(ϕ) is parametrized by the vacuum expectation
value of some massless scalar ϕ. The one-loop corrections to the field metric G associated
to ϕ coming from integrating out a tower of states in d > 4 read [16, 46, 135]

Gϕϕ = c(ϕ)
∫ Λsp

0
ρ(µ)(∂ϕmt|µ)2µd−4dµ , (7.1)

where ρ(µ) is the density of states per unit mass and c(ϕ) is some numerical factor that may
depend on the spacetime dimension d and the nature of the tower. The species scale Λsp
associated to the tower is given in Planck units by

Λsp = (bN)−
1

d−2 , with N =
∫ Λsp

0
ρ(µ)dµ , (7.2)

where b is again some undetermined numerical constant. Note that the above relations imply
the following integral equation for Λsp:

Λsp =
(

b

∫ Λsp

0
ρ(µ)dµ

)− 1
d−2

, (7.3)

so that (7.2) is not an identity but only valid for the Λsp solution of (7.3).
43See [132, 133] for a different but related version of the Emergence Proposal based on unification of the

strong coupling scales.
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It is well-known [18, 46] that if we integrate out a tower of Kaluza-Klein-like or string-like
modes with characteristic mass up to the species scale we recover the logarithmic behavior
of the distance predicted by the Distance Conjecture:

Gϕϕ ∼ a(ϕ)(∂ϕ logmt)2 =⇒ ∆ϕ =
∫ ϕ2

ϕ1
dϕ
√

Gϕϕ ∼ −
√

a(ϕ) log
∣∣∣∣mt(ϕ2)
mt(ϕ1)

∣∣∣∣ , (7.4)

with a(ϕ) > 0 some numerical factor fixed upon integrating (7.1). If the Emergence proposal
holds, (a(ϕ))−1/2 should reproduce precisely the exponential decay rate of the mass of the
tower in terms of the distance, since the classical field metric should purely arise from quantum
corrections of integrating out the tower in a dual sense. However, to reliably compute a(ϕ), one
has to properly integrate out all relevant states in a frame where they look non-perturbative,
which is often out of scope (see though [140] for recent results). From (7.4) we obtain that

∂ϕ logmt = Gϕϕ∂ϕ logmt ∼
(
a(ϕ)∂ϕ logmt

)−1
. (7.5)

The above expression is still valid for multi-field trajectories depending on several moduli
{ϕi}i. Considering a diagonal metric44 for simplicity, one would have

ζ⃗t · Z⃗sp = ∂ϕi logmt∂ϕi log Λsp =
∑
ϕi

1
a(ϕi)

∂ϕi log Λsp

∂ϕi logmt
, (7.6)

where again we take ∂ϕi logmt ̸= 0, so that Gϕiϕi ̸= 0 along this trajectory (otherwise we
would just restrict to the components ϕi along which mt depends on). Therefore, if Λsp and
mt present the same dependence (i.e. polynomial, logarithmic, etc.) with each ϕj [46, 49],
then (7.6) results in ζ⃗t · Z⃗sp being a constant. To summarize, we can use the Emergence
proposal to argue for the exponential behavior of the tower mass and the species scale in terms
of the distance in moduli space, which therefore implies that the product (2.6) asymptotes to
a constant. This argument, by itself, does not seem to be constraining enough to determine
a universal value for the latter. Such constant seems to be a model-dependent result, and
this is why it is (a priori) surprising that we always obtain the same value for every infinite
distance limit in string compactifications.

7.2 Sufficient conditions to satisfy the pattern at every asymptotic limit

The above reasoning implies that by the Emergence Proposal ζ⃗t · Z⃗sp approaches a constant
asymptotic trajectory. Rather than finding a complete bottom-up explanation on why said
constant is indeed 1

d−2 for every infinite distance limit, we will settle for the weaker result of
showing that, upon some general enough sufficient conditions, ζ⃗t · Z⃗sp takes the same constant
value over each connected component of the set of infinite distance points. This, together
with the existence of a limit for which said value is 1

d−2 (such as an emergent string limit or
a homogeneous decompactification) would finally solve the problem. In order to do this, we

44A priori, Gϕiϕj being non-degenerate, one can diagonalize the metric upon an appropriate choice of moduli
(which amounts to a moduli space reparametrization) at every point in M. However, in practice, this usually
complicates the one-loop computations since the Feynman rules get more involved. We do not enter into this
and assume it works by the Emergence Proposal.
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must first understand how the scalar charge-to-mass ratios for the towers and species scale
behave as we change the asymptotic trajectories along the moduli space.

Therefore, consider a generic EFT endowed with a moduli space (M, G), and a set
of towers mI that are not necessarily defined over the whole moduli space. Following the
Emergent String Conjecture [24] and [46], associated to each tower we will have a density
parameter pI , such that

mI, n ∼ n1/pI mI, 0, ΛI ∼ MPl; d N
− 1

d−2
I ∼ N

1/pI

I mI, 0 , (7.7)

where ΛI is the species scale computed by taking into account only the states of the mI

tower. The pI → ∞ limit corresponds to the oscillator modes of an emergent string, while
having finite and positive pI will be rather interpreted as a KK tower (we will not impose
p to be an integer).

Consider now some infinite distance limit in which several towers of states may become
light at possibly different rates. This provides a set of scales or cut-offs ΛJ associated to
each tower independently. However, the final result for the actual Λsp must be computed
by taking into account all states at or below the cut-off, resulting in a scale Λsp which may
be lower than the individual ΛJ ones; unless we move along a direction in which a single
tower mI0 completely dominates the density of states, so that ΛI0 ≃ Λsp. This way, when
considering a limit along which several towers scale at the same rate (in other words, they
span some facet/edge/etc., in the exterior of the convex hull of the ζ-vectors, Hull({ζ⃗I}I)),
the following two possibilities can happen [46] (see figure 11 below):

• Multiplicative species: [49] The total number of species is given by the product of
the number of species for each tower N = ΠkNk, which occurs whenever we have light
states with ‘mixed charges’. In other words, a (sub-)lattice of the space of charges n⃗

is populated. This is the case for decompactification limits with KK-towers having
momentum components along several internal directions, or for the D0-D2 bound states
in section 5.3.1. In that case, as shown in [46, 49], the species scale can be equivalently
computed as follows

Λsp = MPl; d

(
MPl; d
meff

)− peff
d−2+peff

, (7.8)

in terms of an effective mass and density parameter,

meff = (mp1
1 . . . mpk

k )1/peff , peff =
k∑

i=1
pi , (7.9)

where the spectrum of each individual tower behaves as mi, n = n1/pi mi. The scalar
charge-to-mass vector ζ⃗eff of this effective tower is precisely located at the closest point
to the origin of the facet spanned by the towers, i.e. it is perpendicular to the latter.
This implies that the Z-vector of the species scale is also perpendicular to said facet,

Z⃗sp = 1
d − 2 + peff

k∑
i=1

(d − 2 + pi)Z⃗I =

= peff
d − 2 + peff

ζ⃗eff ⊥ Hull({ζ⃗1, . . . , ζ⃗k}) , (7.10)
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(a) (b)

Figure 11. Sketch of the two possibilities for the species scale Λsp behavior along limits for which
two (or more) leading towers can become light at the same rate, spanning a facet of Hull({ζ⃗I}I). For
simplicity, we just take two such towers, ζ⃗I and ζ⃗J . When there is an effective tower ζ⃗eff of bound
states with mixed charges, the associated multiplicative species (a) dominates over the individual Z⃗I

and Z⃗J , and is perpendicular to the facet spanned by the individual towers, Hull({ζ⃗I , ζ⃗J}). On the
contrary, if the effective towers are absent, the resulting additive species (b) Z⃗sp is associated to the
sum of the states given by each tower alone, being moreover perpendicular to Hull({Z⃗I , Z⃗J}) and only
providing the actual cut-off when both individual species fall at the same rate. Note that in this case
Z⃗sp is not expected to be perpendicular to Hull({ζ⃗I , ζ⃗J}), in general.

so it points precisely towards the direction along which the corresponding towers decay
at the same rate. In other words, it lies at the interface separating regions of moduli
space characterized by having different towers as the leading one. Note that if one of
the contributing towers corresponds to an emergent string, p = peff → ∞ and Z⃗eff is
simply given by the string scale vector.

• Additive species: in this scenario there exists no mixing between the different towers,
so that the number of species becoming light is the sum of the individual states
associated to each tower, N =∑

I NI . It then follows that

Z⃗ = 1
N

∑
I

NIZ⃗I = 1
N

∑
I

NI
pI

d − 2 + pI
ζ⃗I . (7.11)

If a single tower contributes dominantly to Λsp (i.e. N ∼ NI), it sets alone the species
scale as all other towers with N ≫ NI can be neglected. If, on the other hand, several
towers contribute with N1 ∼ . . . ∼ Nk ∼ N , it means that we are moving along a
direction where the corresponding individual species scales ΛI decay at the same rate,
so that T̂ · Z⃗ = T̂ · Z⃗1 = . . . = T̂ · Z⃗k, with T̂ being the tangent vector of the asymptotic
geodesic. This implies that Z⃗ ⊥ Hull({Z⃗1, . . . , Z⃗k}), which in general does not force
Z⃗ ⊥ Hull({ζ⃗1, . . . , ζ⃗k}) unless p1 = . . . = pk (when the two convex hulls are parallel to
each other).

With this in mind, we will argue for the following sufficient conditions that allow the
pattern (2.6) to hold universally.
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Condition 1. The exponential rates λI = −T̂ · ζ⃗I of the different towers mI are continuous
over the asymptotic regions where they are defined. Furthermore, the product ζ⃗t · Z⃗sp must be
well defined along any asymptotic direction.

Roughly speaking, this condition implies intuitively that the exponential rate of the
leading tower is purely determined by the asymptotic direction approching some infinite
distance point, regardless of the particular trajectory that we take as a representative of this
direction. Furthermore, it also implies that whenever a given tower of states stops being the
leading one, it is because there is a second tower that starts dominating instead, in such a
way that both have the same exponential mass decay rate along some particular direction.
This way, even if the identification of the leading tower changes, its exponential rate still
behaves in a continuous fashion on the space of infinite distance limits ∞(M).

To argue for this, we consider the different masses mI to be continuous along the regions
in M over which they are defined, and define the exponential rates λI as functions over the
subsets of ∞(M) of possible asymptotic geodesics within the mI domain of definition (see
appendix C for details). Thus, given an asymptotic direction with unit tangent vector T̂ ,
λI(T̂ ) = T̂ · ζ⃗I = −T̂ a∂a logmI . In order for λI to be well-defined and continuous, we need
to show that its value is independent of the asymptotic geodesic we take as representative
of a direction T̂ ∈ ∞(M). To do so, take two asymptotic geodesics γ and γ′ with the same
direction T̂ , separated by some distance ∆. Suppose that along each of them the mass mI

has an exponential rate λI and λ′
I . Fixing P ∈ γ and P ′ ∈ γ′ as well as two asymptotic

points Q ∈ γ and Q′ ∈ γ′, such that d(P, Q) = d(P ′, Q′) and d(Q, Q′) = ∆, we have that

mI(Q) ∼ m(P )e−λId(P,Q), mI(Q′) ∼ m(P ′)e−λ′
Id(P,Q) . (7.12)

As mI(P ) and mI(P ′) are fixed and independent of d(P, Q), we obtain mI(Q) ∼
mI(Q′) exp{(λ′

I − λI)d(P, Q)}, which if λI ̸= λ′
I results in parametrically different val-

ues taken by mI at points separated a fixed distance ∆. This is indeed problematic, since
it would result in

|ζ⃗I |2 = |ζ⃗ ∥
I |

2 + |ζ⃗⊥I |2 ∼ |∇⊥ logmI |2 ∼
[
(λ′

I − λI)
d(P, Q)

∆

]2
→ ∞ , (7.13)

as d(P, Q) → ∞, where ∥ and ⊥ are the perpendicular and parallel components with
respect to T̂ . If the scalar mass-to-charge ratio vectors of our towers are bounded not
only from below but also from above (see e.g. [23]), then one must have λI = λ′

I . Thus,
λI should be well-defined along any asymptotic direction along which it exists in the first
place, irrespective of the specific geodesic. The immediate consequence of this is that, since
λI = T̂ · ζ⃗I = T̂ · (ζ⃗ ∥

I + ζ⃗⊥I ) = T̂ · ζ⃗
∥
I , the only possible difference in ζ⃗I evaluated along

parallel asymptotic geodesics must be in the components perpendicular to T̂ . This actually
puts strong constraints on how the ζ⃗-vectors may change or slide as we move in moduli
space. It implies45 that the sliding of the ζ⃗I vectors only occurs along measure-zero subsets
of the space of infinite distance trajectories, as it will be further explored in [45]. This is

45Take some specific geodesic γ0 towards some definite infinite distance limit T̂ , and consider geodesics
parallel to it and separated a distance ∆ along some non-compact perpendicular direction N̂ . In the plane
spanned by these two, take the slightly different tangent vector T̂ ′ (i.e. T̂ · T̂ ′ = 1 − ϵ with ϵ ≪ 1). By
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indeed what happens in the 9d moduli spaces with sixteen supercharges (section 4.1) and
4d CY compactifications (sections 6.2 and 6.3) where the volume is not well approximated
asymptotically by a single monomial. Even if the masses of the towers have complicated
expressions in terms of the moduli, the sliding of the ζ⃗I vectors occurs as a function of the
impact parameter and not as a function of the asymptotic direction. Therefore, {ζ⃗I}I will
take fixed values in almost all (i.e. except for a measure-zero subset) the asymptotic regions
where they are defined, only ‘jumping’ when traversing those loci where the sliding occurs.

Analogously, a similar argument can be run for the species scale vectors Z⃗J , such that they
take a fixed asymptotic expression over their asymptotic domains except for perhaps measure-
zero loci over which sliding could occur, which is accompanied by a jumping in the asymptotic
Z⃗J expression. This way, the exponential rate functions αJ(T̂ ) = T̂ · Z⃗J = −T̂ a∂a log ΛJ

are also well-defined. Note that, as states from subleading towers may also contribute to
Λsp, even if well-defined, in principle we cannot expect the exponential rate of the species
scale to be continuous over ∞(M), as some of the towers setting the species might cease
to exist when exiting their domain. For example, a subleading string tower can be setting
the species scale, but if we move away from the asymptotic domain over which it is defined,
other (perhaps KK) towers will now set Λsp, with the subsequent change in the exponential
rate. This is indeed what happens in section 4.1 when moving parallel to the type I′ self-dual
line, along which the type I strings are obstructed.

Finally, in order to discuss the pattern, we also need that the product ζ⃗t ·Z⃗sp is well defined
along any asymptotic direction T̂ ∈ ∞(M). This is a stronger condition than requiring it for
each vector independently, and we have no particular motivation to justify it. But if it is not
satisfied, such that it can take different values depending on the trajectory representing T̂ ,
then it does not make sense to talk about the pattern along that direction anymore. In general,
the well-definition of the ζ⃗t · Z⃗sp product will be guaranteed by Condition 2 in the border
between regions along which different towers/species dominate, but this is not necessarily the
case when there is sliding if ζ⃗t and Z⃗sp change in an arbitrary different way (see appendix C.1).

Condition 2. For every infinite distance limit T̂ along which two or more towers decay at
the same rate, there must exist bound states involving all leading towers, such that the species
scale must be given by that corresponding to the case of multiplicative species in (7.8).

Asymptotic directions along which two ore more towers decay at the same rate correspond
precisely to the interfaces/intersections between the aforementioned domains of fixed vectors
ζ⃗I . As we cross these interfaces, the leading vector ζ⃗t jumps since the identification of the
tower that decays at the fastest rate changes. Hence, along the interface, we have two or
more leading towers sharing the same exponential rate λt = T̂ · ζ⃗1 = . . . = T̂ · ζ⃗k, where
we fix k to be the number of towers decaying at the same rate along said direction. These
towers span a lattice of charges (n1, . . . , nk), where ni is the tower level in (7.7) associated
to each tower. If a (sub-)lattice of these charges is populated by states that contribute to

continuity of λI , ζ⃗I will have the same expression for ∆ → ∞ and ϵ → 0, as in the slightly off direction the
∆ → ∞ limit is realized. In other words, sliding occurs along regions when mI is not homogeneous, with
its expression (and that of ζ⃗I) changing between points separated finite distances in moduli space. Moving
further from the directions in which the sliding occurs only realizes the ∆ → ∞ limit, doing so with ‘different
velocities’ in the moduli.
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the species scale, we realize the scenario of multiplicative species above and the species scale
is given by (7.8). As already explained, this species scale decays faster than the individual
ones associated to each tower alone, and it is moreover perpendicular to the hull spanned
by the leading towers of states Hull({ζ⃗1, . . . , ζ⃗k}). This implies that

ζ⃗1 · Z⃗sp = . . . = ζ⃗k · Z⃗sp = ζ⃗eff · Z⃗sp , (7.14)

so that the product of the species scale with any of the vectors spanning Hull({ζ⃗1, . . . , ζ⃗k})
is the same, and therefore the result remains constant as we cross the interfaces where the
identification of the leading tower changes. As a consequence, the different facets of the
convex hull of the species scale vectors indicate the regions in moduli space where a given
tower plays the role of the leading one.

Contrarily, if the towers do not form bound states and the total number of species is
simply given by the sum of the species of each tower (as in the scenario of additive species
above, (7.11)), then the product ζ⃗t · Z⃗sp would generically change upon crossing the interfaces.
Notice that, in such a case, we get independent towers of states becoming light at the same
rate along the interface, so we would naively46 recover two massless gravitons asymptotically,
which goes against Swampland expectations [141, 142].

We can further motivate the case of multiplicative species as follows. First, notice
that, whenever we can identify the tower levels nk with some sort of gauge charges, the
Completeness Hypothesis [143, 144] would require the existence of multiparticle states for
each possible value of the charges. Hence, requiring the existence of a (sub-)lattice/tower of
bound states resembles a strong version of the Completeness Hypothesis, where one demands
the existence of bound states or enough long-lived resonances (rather than just multiparticle
states) so that they can contribute to lower the species scale cut-off. In fact, whenever nk

correspond to gauge charges under massless U(1) gauge fields, Condition 2 reduces to the
(sub-)lattice or tower Weak Gravity Conjecture [145–148] (both versions would suffice to get
the behavior of multiplicative species).47 More generally, Condition 2 is a generalization of
the tower Weak Gravity Conjecture even to the case in which nk are not conserved gauge
charges as there is no associated massless U(1) gauge field (e.g., in certain limits of toroidal
orbifolds or Calabi-Yau compactifications). Even in those cases, by analogy, we expect that
Condition 2 can be formulated as a strong version of the Completeness Hypothesis that
constraints how close we can get to restore a global symmetry asymptotically.

Equivalently, we could have formulated Condition 2 as a condition on the leading tower
of states as we move along a direction along which the species scale of different domains decay
at the same rate. Along that direction, the species of the leading towers at each side behave
as additive species. Hence, for the pattern to hold, there must exist a new additional tower
of states that signals a different type of limit along the interface. For instance, this is what
happens at the interface of the different dual frames in the moduli space of M-theory on K3
in figure 7. At the interface between the region described by type 10d IIB and 11d M-theory,

46This is the naive expectation assuming that we indeed get two or more completely independent towers,
but more work would be required to determine the type of theory arising at infinite distance.

47We only require the existence of the (sub-)lattice for charges associated to the leading towers and not the
subleading ones, since our pattern (2.6) is only guaranteed to hold for the former. This fits nicely with recent
results of [90, 149] which show that the (sub-)lattice WGC is satisfied for gauge fields whose charge states
decay at the fastest rate asymptotically, but not for certain subleading ones.
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the leading tower is actually given by KK modes that signal a decompactification to 9d type
IIA. The consequence of this conditions is that the generators of the convex hull of the scalar
charge-to-mass ratio of the towers lie precisely at the interfaces where the identification of
the species scale changes and the theory is better described by a different dual frame. This
way, the different dual frames are determined by the facets of the convex hull of the towers.

Condition 3. For every connected component of ∞(M) there exists at least one direction
associated to an emergent string limit or the homogeneous decompactification of an internal
cycle to a higher dimensional vacuum.

This condition parallels the Emergent String Conjecture [24] but it is a weaker statement,
since it only demands the existence of at least one limit that has the interpretation of being
a string perturbative limit or a decompactification to a higher dimensional vacuum, such
that the species scale is simply given by the higher dimensional Planck scale. As explained in
section 2, in these specific cases where the species scale is purely set by the leading tower (more
so for the emergent string limit, where mt = Λsp = ms) we know ζ⃗t · Z⃗sp to take the value 1

d−2 .
With the above conditions in mind, we are now endowed with the tools to give an

explanation of the pattern (see appendix C.1 for more details on this derivation). First,
Condition 1 allows us to divide the space of asymptotic limits into different regions, such
that ζ⃗t · Z⃗sp remains constant in the interior of each region. The intersections of the regions
are given either because we have several co-leading towers or species decaying at the same
rate, or because they correspond to some sliding loci where the ζ⃗t or Z⃗sp vectors jump as
a function of the asymptotic direction (since they change continuously as a function of the
impact parameter) as described above. In the former case, by Condition 2 we will have that
the leading species is located perpendicular to the convex hull of the towers. Hence, the
only difference between the scalar charge-to-mass vectors of the towers scaling at the same
rate is in the components perpendicular to T̂ ∝ Z⃗sp (T̂ ∝ ζ⃗t), which implies that ζ⃗t · Z⃗sp
takes the same value at both sides, as well as at the intersection. The same is implied at
the sliding loci by Condition 1. Therefore, for every connected component of ∞(M), any
point can be reached from any other by crossing a finite number of intersections/sliding
loci, so that ζ⃗t · Z⃗sp takes the same value over all of said component of ∞(M). Now, in
order to fix its value, it is enough to know ζ⃗t · Z⃗sp for one limit. This is where Condition 3
enters into play, finally setting ζ⃗t · Z⃗sp = 1

d−2 .

7.3 Relation to emergent string conjecture

To conclude, we want to comment on the relation of the pattern (2.6) with the Emergent
String Conjecture (ESC) [24], since they are clearly linked and the informed reader might
be wondering to what extent one follows from the other. For the non-experts, let us
recall that the ESC implies that every infinite distance limit should either correspond to a
decompactification to higher dimensions or to a string perturbative limit where a critical
string becomes tensionless.

In section 7.2 we identified some sufficient conditions that allow the pattern to hold
universally in the moduli space, so that we can compare them now with the ESC. Condition 1
does not follow from the ESC, since it is rather a condition on the asymptotic structure of
the towers and how the tower and species vectors can change as we move in moduli space.
Condition 3 clearly follows from the ESC, although it is a weaker statement. The interesting
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link, though, is associated to Condition 2, which is the most important feature underlying the
pattern. A priori, it is not obvious whether the ESC implies Condition 2, or why the latter
requirement is stronger, as we explain in the following. Consider some decompactification limit
in which we have several Kaluza-Klein towers so that several directions open up asymptotically.
If all these towers are truly KK towers from the perspective of the same duality frame, then
it is guaranteed that we will populate the lattice of KK momenta and satisfy Condition 2.
This is because for very large momenta, one can use WKB approximation to compute the
eigenvalues of the laplacian of the internal space, and they should scale as mKK ∼ n1/peff m0
where peff is equal to the total number of decompactifying dimensions. Note that this has
precisely the structure of the effective tower (see (7.9)) in the multiplicative species scenario
discussed in section 7.2, so Condition 2 holds. However, the ESC a priori does not require
that the limits associated to each tower can be interpreted as decompactification limits from
the perspective of the same dual frame. For instance, consider the case in which we take a
limit along which a KK tower decay at the same rate than a tower of winding modes. In that
case, even if both towers signal a decompactification limit in some dual frame, they do not do
so within the same duality frame and therefore the total number of species is actually additive
(let us denote this as a case of non-compatible decompactification limits). Hence, if we only
had these two separate towers, we would not get a lattice of bound states and Condition 2
(and consequently the pattern) would not hold. However, in practice, whenever this scenario
occurs in string theory, we always get additionally a tower of string oscillator modes precisely
along the direction where the KK and winding modes decay at the same rate, so that we
realize an emergent string limit (rather than decompactifying two extra dimensions) and the
pattern again holds. This seems to be always the case even in more complicated string theory
examples where we are not simply considering circle decompactifications and we do not have
winding modes of a perturbative string. Instead, we may have towers of particles coming
from wrapped branes. But even in those instances, the rich network of string dualities always
allow us to identify some critical string (in some dual frame) becoming tensionless along
the interface between the different non-compatible decompactification limits. We want to
remark that this is indeed crucial for the pattern to hold, and from a bottom-up perspective,
it imposes a non-trivial constraint on how the different infinite distance limits glue together
in the moduli space (or more precisely in ∞(M)).

Therefore, if we interpret the ESC as the milder claim that the leading tower must be
either a KK tower in some dual frame, or an emergent string, then it does not immediately
imply Condition 2 and it is, therefore, a weaker condition that the pattern. The above
scenario of non-compatible decompactification limits would still be consistent with this mild
version of the ESC even if we did not have the string becoming tensionless at the interface,
since the leading tower would still be a KK tower (although the total number of species
would be additive). However, if we interpret or refine the ESC as the claim that there must
be either a single dual frame where all the leading towers can be seen as KK towers or we
get an emergent string yielding the leading tower, then it implies Condition 2. In this latter
case, the pattern would essentially follow from this stronger version of the ESC, mod some
subtleties related to the sliding of the ζ-vectors that are addressed in Condition 1. This would
be interesting, as the pattern would then hint a new avenue to try to provide a bottom-up
explanation for the ESC, which so far is only motivated by string theory examples. If we
were able to provide a bottom-up rationale for the pattern (possibly based on black hole
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physics or entropy arguments), then we could use it to argue for the ESC and show that a
consistent quantum gravity theory necessarily requires from the existence of perturbative
strings and extra dimensions.

8 Conclusions

In this paper (and its companion [22]), we point out an interesting pattern that it is satisfied in
all (up to now) known examples of infinite distance limits in the moduli space of string theory
compactifications, regardless of the level of supersymmetry or the type of compactification
manifold. This pattern is a sharp relation between the asymptotic value of the variation rate
(in moduli space) of the species scale cut-off and the mass of the leading tower of states, given
by (2.6). We check that it holds for multi-field geodesic trajectories where several moduli are
taken to infinity, and even if the species scale cut-off is not only determined by the leading
tower of states but captures information of other subleading towers.

At the very least, this pattern is a common thread underlying all known string theory
examples that have been explored so far, and it makes manifest a very constrained structure
behind the large casuistics of different types of infinite distance limits and how they can fit
together in the moduli space. We suspect, though, that the universality of the pattern is
rooted in a deeper underlying quantum gravity principle, rather than being just a lamppost
effect of known string constructions. Hence, the most important goal for the future is to
search for a purely bottom-up rationale that could explain the pattern independently of
string theory. Promising avenues include thinking of black holes or entropy bounds, since
the pattern relates the number of species (which itself provides the entropy of the smallest
semiclassical black hole) with the mass of the tower. Alternatively, we can also think of
the number of species as a measure of the density of states in an Einstein gravity theory,
so that the less dense the tower is, the fastest it can become light according to the pattern.
Another avenue would be to use S-matrix bootstrap techniques, since the species scale cut-off
can be understood as the scale at which a semiclassical Einstein gravity description breaks
down and higher derivative terms start dominating over the tree-level Einstein term. It
would be fantastic if one could argue for a relation between this scale and e.g., the scale
of the first massive spin-2 field of a KK tower.

Finding a bottom-up rationale for the pattern would have profound consequences for the
Swampland program, since it implies a more precise formulation of the Distance conjecture
that constrains the nature of the tower and imposes a sharp bound on how fast it becomes
light. If the pattern holds, then it automatically implies a lower bound on the exponential
rate of the tower given by λt ≥ 1√

d−2 , which supports the bound proposed by [23] and it is
closely related to the Emergent String Conjecture [24]. Furthermore, it provides a clear recipe
to determine the species scale cut-off upon knowledge of the leading tower of states along
different directions. It would also be interesting to explore how it extends to the interior of
the moduli space, where the notion of a leading tower of states is no longer well defined.

In this work, we also identified some sufficient conditions that the towers of states and
the asymptotic geometry of the moduli space must satisfy to allow for the pattern to hold.
Interestingly, the most important condition resembles a sort of (sub-)lattice WGC where the
role of the gauge charges is played by the levels of the tower. This condition also follows
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from a strong interpretation of the Emergent String Conjecture. Hence, many ideas in the
Swampland program get interconnected and can be re-derived from this simple equation
relating the variation of the species scale and the leading tower of states becoming light
asymptotically. We hope to come back to these ideas in the future.
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A Generalities on charge-to-mass and species vectors

In this appendix we present a derivation of the general formulae associated to the computation
of the relevant charge-to-mass and species vectors that arise upon compactifying a D-
dimensional gravitational theory on some closed manifold of real dimension n ∈ N. Later on,
we generalize the analysis to the case in which we consider the compact space to be of the
product form X ′

n = Xn1 × . . .×XnN , with ni denoting the dimensionality of the corresponding
submanifold. With such information we revisit the pattern (2.6), thus checking it explicitly
in the cases at hand. Therefore, the discussion here can be seen as complementary to the
material presented in sections 2 and 3.

Compactification on an n-dimensional cycle. Let us start by studying the kind of
charge-to-mass vectors that typically appear in string-motivated EFTs. In order to be as
general as possible, we consider a D-dimensional theory compactified down to d = D − n

spacetime dimensions. We denote Vn the overall volume modulus associated to the internal
compact manifold, Xn, measured in D-dimensional Planck units. Suppose that we focus on
a sector of the theory described by the following simple action [23]

SD ⊇
∫

dDx
√
−gD

[
1

2κ2
D

RD − 1
2
(
∂ϕ̂
)2]

, (A.1)
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where ϕ̂ is some generic canonically normalized modulus. Note that one may also think of ϕ̂

as parametrizing some fixed (asymptotically) geodesic trajectory in a multi-moduli setup.
Upon compactification on the n-fold Xn, one arrives at

Sd ⊇
∫

ddx
√
−gd

[
1

2κ2
d

(
Rd −

d + n − 2
n(d − 2) (∂ logVn)2

)
− 1

2
(
∂ϕ̂
)2]

, (A.2)

where we have retained only the scalar-tensor sector of the lower dimensional theory, ignoring
possible extra fields arising in the dimensional reduction process.48 One can then define
a canonically normalized volume modulus

ρ̂ = 1
κd

√
d + n − 2
n(d − 2) logVn , (A.3)

which indeed controls the overall Kaluza-Klein scale associated to the compact internal space

mKK, n ∼ MPl; d e
−κd

√
d+n−2
n(d−2) ρ̂

. (A.4)

As customary, this tower of states becomes exponentially light when taking the decompactifi-
cation limit ρ̂ → ∞. In terms of scalar charge-to-mass vectors one would then write

ζ⃗KK, n =
(
0,

√
d + n − 2
n(d − 2)

)
, (A.5)

where the first (last) entry corresponds to the normalized modulus ϕ̂ (ρ̂).
Let us also assume that the scalar ϕ̂(x) is non-compact, and that the higher dimensional

theory satisfies the Distance Conjecture [10]. Therefore, there should exist an infinite tower
of particles with mass behaving asymptotically as follows

mtower ∼ MPl;D e−κDλDϕ̂ , (A.6)

where λD is nothing but the D-dimensional scalar charge-to-mass ratio along the positive
ϕ̂-direction. If such tower of particles is inherited by the lower-dimensional theory, they
would present a mass which in Planck units depends on both ϕ̂ and the volume modulus
ρ̂ through the relation

mtower ∼ MPl; d exp
{
−κdλDϕ̂ − κd

√
n

(d + n − 2)(d − 2) ρ̂

}
, (A.7)

where the second term in the exponent arises just from the ratio MPl;D/MPl; d. Again, in
terms of scalar charge-to-mass vectors one obtains

ζ⃗t =
(

λD,

√
n

(d + n − 2)(d − 2)

)
. (A.8)

48To obtain (A.2) in such form one needs to perform a Weyl rescaling of the d-dimensional metric as follows
gµν → gµνV

− 2
d−2

n .

– 79 –



J
H
E
P
0
6
(
2
0
2
4
)
0
3
7

Note that if ϕ̂ denotes the D-dimensional dilaton in some string theory, then λD = 1√
D−2 =

1√
d+n−2 [23, 39], whilst if it corresponds to a volume modulus from a higher compactification

(i.e. from D′ = D + n′ to D spacetime dimensions), then λD =
√

D+n′−2
n′(D−2) =

√
d+n+n′−2
n′(d+n−2) .

Remarkably, this also encompasses the case in which one of the moduli corresponds to some
dilatonic field, since upon taking the limit n′ → ∞ the first entry of the scalar charge-to-mass
vector becomes 1√

D−2 [23, 49].
For the species scale, on the other hand, we will distinguish between two possibilities, as

predicted by the Emergent String Conjecture [24]. First of all, if the limit corresponds to an
emergent critical string, the QG cut-off will be given by the string scale (up to logarithmic
corrections) since the set of light states will be dominated by an exponentially large number
of string excitation modes. Because of this,

Λsp ∼ mstring ∼ MPl;D exp
{
−κD

1
D − 2 ϕ̂

}
. (A.9)

Hence Z⃗osc = ζ⃗osc, so that in this limit

ζ⃗t · Z⃗sp = |ζ⃗osc|2 =
1

d − 2 , (A.10)

thus fulfilling (2.6). Notice that (A.10) above is also verified when ζ⃗t = ζ⃗KK, n (see figure 1(a)),
since for an emergent string limit the KK tower falls at the same rate as the string mass [24].
Otherwise, one could retrieve a critical string in d < 10.

The second possibility would correspond to explore some decompactification limit, namely
when the tower from (A.6) is of Kaluza-Klein nature (in some duality frame). In such a case,
one would have three different species vectors: those which are parallel to the original ζ-vectors
and a new one arising as an effective combination thereof [43]. For the former, one can write

Z⃗KK, n′ = n′

d + n′ − 2 ζ⃗KK, n′ , Z⃗KK, n = n

d + n − 2 ζ⃗KK, n , (A.11)

where ζ⃗KK, n is given by (A.5) above and with

ζ⃗KK, n′ =
(√

d + n + n′ − 2
n′(d + n − 2) ,

√
n

(d + n − 2)(d − 2)

)
, (A.12)

thus satisfying |ζ⃗KK, n′ |2 = d+n′−2
n′(d−2) . Therefore, whenever we explore an asymptotic direction

parallel to one of these two, the species scale will be parametrically controlled by the Planck
scale of the (d + n′)-dimensional (resp. (d + n)) theory. As an example, upon taking the
limit ϕ̂, ρ̂ → ∞ along the ζ⃗KK, n′-direction one finds

Λsp ∼ MPl; d+n′ ∼ MPl; d

(
mKK, n′

MPl; d

) n′
d+n′−2

, (A.13)

with mKK, n′ denoting the mass scale of the corresponding KK-like tower. For intermediate
directions, however, the dominant species vector is that obtained by combining the previous
ones as follows [43]

Z⃗KK, n+n′ = 1
d + n + n′ − 2

(
n′ ζ⃗KK, n′ + n ζ⃗KK, n

)
, (A.14)
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which is indeed controlled by the Planck scale of the (d + n + n′)-dimensional parent theory,
see figure 1(b). With this we can now check if the pattern (2.6) is satisfied. Once again,
for the directions determined by any of the three species vectors one easily verifies that
ζ⃗t · Z⃗sp = 1

d−2 . In particular, when probing the Z⃗KK, n+n′ -direction what one effectively
does is decompactifying both cycles at the same rate, such that the total KK mass yields
a charge-to-mass vector of the form

ζ⃗KK, n+n′ = 1
n + n′

(
n′ ζ⃗KK, n′ + n ζ⃗KK, n

)
, (A.15)

which happens to lie at the point closest to the origin within the polytope generated by
ζ⃗KK, n′ and ζ⃗KK, n, see figure 1(b).

For intermediate cases, given that the species scale is determined by Z⃗KK, n+n′ together
with the fact that ζ⃗KK, n+n′ is orthogonal to the line joining the two ζ-vectors, one finds
that (2.6) still holds for any asymptotically light tower.

Generalization to ‘nested’ compactifications. The previous analysis can be easily
generalized to the case in which our D-dimensional theory is compactified down to d = D −n

on an n-dimensional manifold given by the Cartesian product Xn = Xn1 × . . . ×XnN , with
n =∑N

i=1 ni. This can be alternatively seen as a step-by-step (or ‘nested’) compactification

D = d +
N∑

i=1
ni → d +

N∑
i=2

ni → . . . → d + nN → d ,

where the order of the compactification chain is unimportant and only amounts to a certain
rotation of the associated scalar charge-to-mass vectors, hence not affecting neither their
length nor the angles subtended between them. With this in mind, one finds that the KK
tower obtained from the decompactifying any Xni ⊂ Xn is given by

ζj
KK, ni

=



0 if j < i√
d+
∑N

l=i
nl−2

ni

(
d+
∑N

l=i+1 nl−2
) if i = j

√
nj(

d+
∑N

l=j
nl−2

)(
d+
∑N

l=j+1 nl−2
) if j > i

(A.16)

Notice that this also encompasses the case in which one of the moduli corresponds to
some D-dimensional dilaton, upon setting n0 → ∞, so that the zero-th entry of the scalar
charge-to-mass vector becomes 1√

D−2 .
On the other hand, given a subset {ζ⃗KK, mj}M

j=1 ⊆ {ζ⃗KK, ni}N
i=1, one can show that

ζ⃗KK,
∑

j
mj

= 1∑M
j=1 mj

M∑
j=1

mj ζ⃗KK, mj , (A.17)

corresponds to the ‘effective’ KK tower associated to the joint decompactification of Xm1 ×
. . . × XmM , where the volume of each of the cycles grows at the same rate. Incidentally,
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it can be seen to coincide with the point of the polytope spanned by {ζ⃗KK, mj}M
j=1 located

closest to the origin.
Taking infinite distance limits, the easiest possibility would be an emergent string limit,

for which ζ⃗t · Z⃗sp = |ζ⃗osc|2 = 1
d−2 is trivially fulfilled. The other option would correspond to

explore a decompactification limit from d to d+∑M
j=1 mj dimensions, with {mj}M

j=1 ⊆ {ni}N
i=1,

where we allow the possibility of a dilaton-like direction by setting m0 ≡ ∞. In this case
the species scale will be parametrically given by the Planck scale of the (d +∑M

j=1 mj)-
dimensional theory,49 so

Λsp ∼ Mpl, d+
∑M

j=1 mj
∼ MPl; d exp

−κd

∑M
j=1 mj(

d +∑M
j=1 mj − 2

)
(d − 2)

ρ̂


∼ MPl; d

(mKK,
∑M

j=1 mj

MPl,d

) ∑M

j=1 mj

d+
∑M

j=1 mj−2
, (A.18)

where ρ̂ is the normalized modulus denoting the volume being decompactified. As a result

Z⃗sp =
∑M

j=1 mj

d +∑M
j=1 mj − 2

ζ⃗KK,
∑M

j=1 mj
= 1

d +∑M
j=1 mj − 2

M∑
j=1

mj ζ⃗KK, mj , (A.19)

where (A.17) is used. Now, for the leading tower, we have two possibilities. First of all, we
might be moving in the joint compactification direction, so ζ⃗t = ζ⃗KK,

∑M

j=1 mj
, and thus

ζ⃗t · Z⃗sp =
∑M

j=1 mj

d +∑M
j=1 mj − 2

|ζ⃗KK,
∑M

j=1 mj
|2 = 1

d − 2 . (A.20)

The other possibility is that we move in some other direction, where while still decompactifying
Xm1 × . . . ×XmM , not all cycles do so at the same speed. Then we will have a leading tower
ζ⃗t = ζ⃗KK,mi0

∈ {ζ⃗KK,mj}M
j=1, so that

ζ⃗t · Z⃗sp = 1
d +∑M

j=1 mj − 2

M∑
j=1

mj ζ⃗KK, mi0
· ζ⃗KK, mj

= 1
d +∑M

j=1 mj − 2

mi0 | ζ⃗KK, mi0
|2 +

∑
j ̸=i0

mj ζ⃗KK, mi0
· ζ⃗KK, mj


= 1

d +∑M
j=1 mj − 2

d +∑M
j=1 mj − 2
d − 2 = 1

d − 2 , (A.21)

where for the last sum in the second line we have used (A.16). The generalization of this,
for which several (but not all) of the cycles decompactify the fastest at the same pace is
straightforward, as ζ⃗t will be a convex combination of KK vectors (actually determined
by the closest point to the origin of the polytope generated by the latter). Indeed, this
follows from the fact that all possible ζ⃗t are located in the polytope spanned by the ζ⃗KK, mj

vectors corresponding to dimensions being decompactified, to which Z⃗sp is perpendicular,
by construction.

49If m0 ≡ ∞ then the species scale is again given by the string scale.
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B Details on the hypermultiplet metric

The material presented in this appendix is complementary to the discussion in section 5.6,
where the fate of the pattern within certain heavily quantum-corrected moduli spaces was
analyzed. Here we provide more details regarding the relevant non-perturbative corrections, as
well as their contribution to the exact hypermultiplet metric. Section B.1 briefly summarizes
the procedure employed in [150] to obtain the aforementioned line element, upon using
the twistorial formulation of quaternionic-Kähler spaces. Section B.2 reviews the duality
properties of the hypermultiplet moduli space arising from type II compactifications on
CY threefolds [151, 152], both at the classical and quantum levels. Finally, in section B.3
we use these considerations to argue how the pattern survives at the quantum level in a
highly non-trivial way.

B.1 The exact metric and the contact potential

The exact hypermultiplet metric for type IIA string theory compactified on a CY3 has been
recently computed exactly to all orders in gs incorporating the contributions of mutually local
D2-brane instantons in [150]. The strategy followed in that work was to exploit the twistorial
description of quaternionic-Kähler manifolds (see e.g., [153, 154]), combined with certain
symmetries which are also expected to be preserved at the quantum level. In the following we
will briefly review such computation in order to explicitly show the very non-trivial metric one
arrives at, which is strongly corrected both at the perturbative and non-perturbative level, thus
putting naively in danger any conclusion drawn from the tree-level metric displayed in (5.72).

The crucial ingredient to obtain the hypermultiplet metric is the so-called contact
potential χIIA, which is a real-valued function defined over a twistor space Z constructed as
a P1-bundle over the moduli space MHM. It moreover has a connection given by the SU(2)
part, p⃗ =

(
p+, p−, p3

)
, of the Levi-Civita connection on MHM, which in turn determines

the holomorphic contact structure associated to Z (see e.g., the review [155]). Therefore,
one may define a holomorphic 1-form as follows

X = −4iχIIADt , (B.1)

where t is a complex coordinate on P1 and Dt = dt + p+ − ip3t + p−t2. Now, in order
to obtain the metric on MHM one first computes the contact potential χIIA including all
D-instanton corrections, which reads [156]

χIIA = R2

2 e−Kcs + χE(X3)
96π

− iR
16π2

∑
γ

Ω(γ)
(
ZγJ (1,+)

γ + Z̄γJ (1,−)
γ

)
, (B.2)

where R = e−ϕVA0/2 is the mirror dual of the ten-dimensional IIB dilaton, Kcs is the complex
structure Kähler potential, and Zγ(z) = qIzI − pIFI denotes the central charge function
of a D2-instanton with (integral) charges γ =

(
qI , pI

)
. Their degeneracy is captured by

the Donaldson-Thomas invariants Ω(γ), which count (in a BPS indexed way) the relevant
instantons within the class [γ] ∈ H3(X3,Z) [157].50 We have also defined the twistorial

50The Donaldson-Thomas invariants Ω(γ) can be related, upon using Mirror Symmetry, to the genus-0
Gopakumar-Vafa invariants in the type IIB dual description [80, 81].
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integrals [150]

J (1,±)
γ = ±

∫
ℓγ

dt

t1±1 log
(
1− σγe−2πiΘγ(t)

)
, (B.3)

where ℓγ is a BPS ray on P1, σγ is a sign function that we will take to be +1 in the following,
and Θγ(t) are functions defined over the twistor space Z which, in the case of mutually
local instantons, are given by

Θγ(t) = qIζI − pI ζ̃I +R
(
t−1Zγ − tZ̄γ

)
. (B.4)

As a next step, one needs to determine the SU(2) connection p⃗ as functions on the base
MHM and the complex coordinate t ∈ P1, from which one extracts the triplet of quaternionic
2-forms ω⃗ as follows

ω⃗ = −2
(
dp⃗ + 1

2 p⃗ × p⃗

)
. (B.5)

The advantage of knowing ω⃗ is that these are defined by the almost complex structures J⃗

characterizing the quaternionic-Kähler manifold MHM as well as by its metric. Therefore,
upon specifying e.g., J3 by providing a basis of holomorphic 1-forms on MHM, one may
retrieve the metric via the relation g(X, Y ) = ω3(X, J3Y ), for all X, Y ∈ TMHM. Once all
this has been done, one arrives at the quantum-corrected line element (we henceforth set all
magnetic charges pI = 0, which can be achieved via some symplectic rotation) [150]:

ds2HM = 1
2 (χIIA)2

(
1− χIIA

R2U

)
(dχIIA)2 + 1

2 (χIIA)2
(
1− χIIA

R2U

) (dϱ − ζ̃JdζJ + ζJdζ̃J +H
)2

+ R2

2 (χIIA)2
∣∣∣zIYI

∣∣∣2 + 1
2χIIAU

∣∣∣∣∣YIM IJ v̄J − iR
2π

∑
γ

ΩγWγdZγ

∣∣∣∣∣
2

− 1
2χIIA M IJ

(
YI +

iR
2π

∑
γ

Ωγ qIJ (2,+)
γ

(
dZγ − U−1Zγ ∂e−Kcs

))

×

ȲJ − iR
2π

∑
γ′

Ωγ′ q′JJ
(2,−)
γ′

(
dZ̄γ′ − U−1Z̄γ′ ∂̄e−Kcs

)
+ R2 e−Kcs

2χIIA

(
Gij̄dzidzj̄ − 1

(2πU)2

∣∣∣∣∣∑
γ

ΩγWγZγ

∣∣∣∣∣
2

|∂Kcs|2

+ eKcs

2π

∑
γ

ΩγJ (2)
γ

∣∣∣dZγ − U−1Zγ ∂e−Kcs
∣∣∣2) , (B.6)

where YI is a (1,0)-form adapted to J3 which reads

YI = dζ̃I −FIKdζK − 1
8π2

∑
γ

ΩγqIdJ (1)
γ , (B.7)

whilst U denotes some real function that is defined as follows51

U = e−Kcs − 1
2π

∑
γ

Ωγ |Zγ |2 J (2)
γ + vIM IJ v̄J , (B.8)

51Note that the quantity U defined in (B.8) can be intuitively thought of as an instanton corrected version
of the complex structure Kähler potential.
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with the matrix M IJ being the inverse of MIJ = −2ImFIJ −
∑

γ ΩγJ (2)
γ qIqJ , and the

vector vI is given by

vI = 1
4π

∑
γ

ΩγqI

(
ZγJ (2,+)

γ + Z̄γJ (2,−)
γ

)
. (B.9)

We have also introduced the quantities Wγ = Z̄γJ (2)
γ − J (2,+)

γ vIM IJqJ and H, the latter
being a 1-form generalizing the Kähler connection on the complex structure moduli space
(see [150] for details); as well as the following twistorial integrals (cf. (B.3))

J (2,±)
γ = ±

∫
ℓγ

dt

t1±1
1

σγe−2πiΘγ(t) − 1
, J (2)

γ =
∫

ℓγ

dt

t

1
σγe−2πiΘγ(t) − 1

,

J (1)
γ =

∫
ℓγ

dt

t
log

(
1− σγe−2πiΘγ(t)

)
, (B.10)

which may be rewritten in terms of Bessel functions, thus capturing the exponentially
suppressed behavior — at large central charge — associated to D-instanton effects.

Several comments are in order. First, notice how cumbersome the quantum-corrected
metric becomes when compared with its classical analogue in (5.72). Particularly interesting
are the corrections to the metric components associated to the non-compact scalars, namely
the 4d dilaton and the complex structure moduli. Regarding the former, it is the contact
potential χIIA which may be taken to parametrize the quantum hypermultiplet moduli
space.52 As for the latter, we clearly see that the classical piece Gij̄dzidzj̄ receives strong
instanton corrections which can even overcome the tree-level contribution [108]. Moreover,
there also appear cross-terms of the form (dχIIAdzi + c.c.), which arise from the 1-form
dJ (1)

γ inside YI in (B.7) above. Hence, a direct evaluation of the pattern (2.6) at infinite
distance points within MHM in principle requires from the use of the full lime element (B.6),
which can become rather involved depending on the limit of interest. Therefore it is highly
non-trivial for the inner product ζ⃗t · Z⃗sp to verify (2.6) at any infinite distance boundary,
even if it does so already at the classical level.

B.1.1 The contact potential χIIA

Before moving on, let us have a closer look at the contact potential to get a grasp on its
physical meaning. This will also provide us with some useful formulae that will be used
several times in the following.

Therefore, we start from the twistorial expression for χIIA, as shown in eq. (B.2), which
may be written as follows [161]

χIIA = χIIA
class + χIIA

quant . (B.11)

The first term corresponds to the classical piece

χIIA
class =

R2

2 e−Kcs , (B.12)

52In fact, the real function χIIA can be physically identified with the quantum-exact four-dimensional dilaton
φ4 [158], and it plays a role similar to a would-be Kähler potential [159, 160].
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such that χIIA
class matches with e−2φ4 , as one can easily check upon using eqs. (5.73) and (5.79).

On the other hand, for the quantum corrected piece, χIIA
quant — in the case of mutually local

instantons arising from D2-branes53 wrapping sLag representatives of the 3-cycle classes [AI ]
— one finds [150, 152, 162] (see also the review [155])

χIIA
quant =

χE(X3)
96π

+ R
2π2

∑
γ

Ω(γ)
∞∑

m=1

|kIzI |
m

cos
(
2πmkIζI

)
K1

(
4πmR|kIzI |

)
, (B.13)

where the term proportional to the Euler characteristic of the threefold, χE(X3) =
2
(
h1,1(X3)− h2,1(X3)

)
, comes from a one-loop gs-correction, whilst the second piece arises

from the non-perturbative D2-brane instantons. To actually see how (B.13) arises from
eq. (B.2) above, one needs to substitute the definition of the quantities J (1,±)

γ (cf. eq. (B.3)),
then expand the logarithm around Θγ = 0 and finally rewrite the integrals in terms of the
modified Bessel function upon using the following identity∫ ∞

0

dy

y

(
ay + b

y

)
e−(ay+b/y)/2 = 4

√
abK1

(√
ab
)

. (B.14)

Notice that the contribution to (B.13) associated to the D2-instantons is controlled by
their BPS central charge, which coincides (up to order one factors) with the corresponding
4d action

Sm, kI
= 4πmR|kIzI |+ 2πimkIζI , (B.15)

where kI = (k0, k) denote the (quantized) instanton charges. The axionic vevs ζI measure
the oscillatory part of the corrections, whereas the non-compact scalars (zI ,R) determine
their ‘size’ through the modified Bessel function K1(y).

B.2 SL(2,Z) duality

Here we provide some details regarding the SL(2,Z) invariance that the type IIA hypermul-
tiplet metric inherits from its dual type IIB compactification via Mirror Symmetry. This
will moreover highlight the effect that the D2-brane instanton corrections have on certain
(classical) infinite distance singularities MIIA

HM in the LCS limit studied in section 5.6 (see
also section B.3 below).

B.2.1 The classical metric

Let us first exhibit the duality of the theory at the classical level. The tree-level metric was
shown in (5.72) above, and we repeat it here for the comfort of the reader:

hpq dqpdqq = (dφ4)2 + Gij̄dzidzj̄ + e4φ4

4
(
dϱ −

(
ζ̃JdζJ − ζJdζ̃J

))2
− e2φ4

2 (ImB)−1 IJ
(
dζ̃I − BIKdζK

) (
dζ̃J − B̄JLdζL

)
, (B.16)

where the different fields describing the hypermultiplet sector of type IIA on the threefold
X3 were discussed around (5.69). In order to uncover the SL(2,Z) invariance of the action

53This set of instantons is mapped by Mirror Symmetry to D(−1) and D1-instantons wrapping holomorphic
0- and 2-cycles within the CY threefold, respectively [152].
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at tree-level, it is useful to switch to the type IIB mirror description, where the symmetry
is manifest, and then map the duality transformations back to the original type IIA setup.
Regarding the first step, we will simply state here the relevant identifications, whilst referring
the reader interested in the details to the original references [74, 163]. These read [151]:

ζ0 = τ1 , ζi = ci − τ1b
i , zi = bi + iti , R = τ2

2 ,

ζ̃0 = c0 − 1
2ρjbj + 1

2κijkcibjbk − 1
6τ1 κijkbibjbk , ζ̃i = ρi − κijkcjbk + 1

2τ1 κijkbjbk ,

ϱ = 2b0 + τ1c
0 + ρj

(
cj − τ1b

j
)

, (B.17)

where τ = τ1 + iτ2 = C0 + i e−ϕIIB is the type IIB axio-dilaton, ϑi ≡ bi + iti denote the
(complexified) Kähler moduli of the mirror threefold Y3,

(
ci, ρi

)
arise as period integrals of

the RR and 2-form and 4-form fields (C2, C4) over integral bases of H2(Y3) and H4(Y3),
respectively; and finally

(
b0, c0

)
are scalar fields dual to the four-dimensional components of

the 2-forms C2 and B2. We stress that the complex structure moduli zi appearing in the
mirror map above should be taken as the ‘flat’ (inhomogeneous) coordinates associated to
the expansion of the prepotential around the LCS point [70]. Therefore, upon applying such
map to the line element displayed in (B.16) one obtains [105]:

hpqdqpdqq = (dφ4)2 + Gij̄dϑidϑ̄j + 1
24e2φ4K(dC0)2

+ 1
6e2φ4KGij̄

(
dci − C0dbi

) (
dcj − C0dbj

)
+ 3

8Ke2φ4Gij̄
(
dρi − κiklc

kdbl
)
(dρj − κjmncmdbn) (B.18)

+ 3
2Ke2φ4

(
dc0 − 1

2(ρidbi − bidρi)
)2

+ 1
2e4φ4

(
db0 + C0dc0 + cidρi +

1
2C0(ρidbi − bidρi)−

1
4κijkcicjdbk

)2
.

Now, as already mentioned, the 4d theory inherits from the 10d supergravity a continuous
SL(2,R) symmetry which is broken down to a discrete SL(2,Z) subgroup by non-perturbative
(i.e. instanton) effects. The action of any such element g ∈ SL(2,Z) on the type IIB
coordinates reads as [111, 151]

τ → aτ + b

cτ + d
, ti → |cτ + d|ti ,

(
ci

bi

)
→
(

a b

c d

)(
ci

bi

)
, (B.19)

where we have only displayed the transformations that are most relevant for our purposes
here.54 One can then easily check that these are already enough so as to prove the invariance
of the first two rows in (B.18) under SL(2,Z).

Finally, it is now straightforward to translate the S-duality transformations (B.19) into a
set of analogous ones in the type IIA mirror dual compactification upon using the mirror

54Notice that under (B.19), the 4d dilaton transforms non-trivially, namely e−2φ4 → e−2φ4
|cτ+d| .
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map (B.17). This leads to [151]

Ξ → aΞ + b

cΞ + d
, Im zi → |cΞ + d| Im zi ,(

ζi + ζ0 Re zi

Re zi

)
→
(

a b

c d

)(
ζi + ζ0 Re zi

Re zi

)
, (B.20)

where we have defined the complex field Ξ = ζ0 + 2iR. Note that this is again sufficient to
show the invariance of the metric components in (B.16) associated to the 4d dilaton, the
complex structure and the ζI coordinates.

B.2.2 Quantum corrections

One can go beyond the previous tree-level analysis and study SL(2,Z) duality once quantum
corrections have been taken into account. Following the discussion of section B.1, we will
only consider the effect of ‘electric’ D2-brane instantons, i.e. those wrapping the AI -cycles
introduced in (5.70).

Recall that the quantum hypermultiplet metric can be effectively encoded into the contact
(or tensor) potential, χIIA, which reads (see section B.1.1)

χIIA = R2

2
i
∫
Ω ∧ Ω̄
|Z0|2

+ χE(X3)
96π

+ R
2π2

∑
γ

Ω(γ)
∞∑

m=1

|kIzI |
m

cos
(
2πmkIζI

)
K1

(
4πmR|kIzI |

)
, (B.21)

where the first, second and third terms correspond to the classical, one-loop and D2-instanton
contributions, respectively. Now, instead of trying to show how the exact hypermultiplet
metric (B.6) still respects SL(2,Z) duality, we will concentrate on rewriting the above
expression in a way which manifestly reflects the symmetry. This will allow us to relate
certain non-perturbative corrections to classically-derived terms, thus providing more evidence
in favour of our argumentation in section B.3 below.

Let us start by extracting a common
√
R factor from each of the three terms in (B.21),

yielding

χIIA
√
R

= R3/2

2
i
∫
Ω ∧ Ω̄
|Z0|2

+ χE(X3)
96π

R−1/2

+ R1/2

2π2

∑
γ

Ω(γ)
∞∑

m=1

|kIzI |
m

cos
(
2πmkIζI

)
K1

(
4πmR|kIzI |

)
. (B.22)

Therefore, given that the contact potential transforms under SL(2,Z) precisely the same
way as

√
R does (see footnote 54), we can now concentrate on finding a modular invariant

expression for the r.h.s. of (B.22). To do so, we first expand the classical term around
the LCS, as follows

R3/2

2
i
∫
Ω ∧ Ω̄
|Z0|2

= 4R3/2
[ 1
3!κijkvivjvk + ζ(3)χE(X3)

4(2π)3

+ 1
2(2π)3

∑
k>0

nk Re
{

Li3
(
e2πikiz

i
)
+ 2πkiv

iLi2
(
e2πikiz

i
)} ]

,

(B.23)
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where ζ(x) denotes the Riemann zeta function, Lik(x) = ∑∞
j=1

xj

jk is the polylogarithm
function and we have defined vi ≡ Im zi in the above expression. The physical interpretation
of each term is clear: the first piece corresponds to the classical volume term of the mirror
dual type IIB compactification on Y3, whilst the second and third ones arise as perturbative
and non-perturbative α′-corrections that modify the former away from the large volume
point. The integers nk denote the genus-zero Gopakumar-Vafa invariants that ‘count’ the
multiplicity of holomorphic 2-cycles in a given class [kiγ

i] ∈ H+
2 (Y3,Z).

Next, we divide the instanton piece in (B.22) into two different terms, namely we separate
the contributions associated to D2-branes wrapped on the SYZ cycle from those wrapping the
remaining AI -cycles. The reason for doing so will become clear in the following. This leads to

χIIA
D2√
R

= R1/2χE(X3)
8π2

∑
k0,m ̸=0

∣∣∣∣k0m

∣∣∣∣ e2πimk0ζ0
K1 (4πR|mk0|)

+ R1/2

4π2

∑
k>0

nk
∑

m ̸=0,k0∈Z

|kIzI |
|m|

e2πimkIζI
K1

(
4πmR|kIzI |

)
, (B.24)

where we have substituted the Donaldson-Thomas invariants Ω(γ) by χE(X3)/2 and nk for
γ = (k0 ̸= 0, k = 0) and γ = (k0 ∈ Z, k > 0), respectively.

With this, we are finally ready to rewrite (B.22) in a manifestly modular invariant way.
Notice that the first term in eq. (B.23) is left unchanged under the set of transformations
in (B.20), reflecting the fact that the tree-level hypermultiplet metric at LCS/Large Volume is
modular invariant. Consider now the terms which are proportional to the Euler characteristic
of the threefold, χE(X3), which read

χIIA
χE√
R

= χE(X3)
2(2π)3

[
2R3/2ζ(3) + π2

6 R−1/2 + 4πR1/2 ∑
k0 ̸=0,m>0

∣∣∣∣k0m

∣∣∣∣ e2πimk0ζ0
K1 (4πR|mk0|)

]
.

(B.25)

Upon performing a Poisson resummation55 on the integer k0 in eq. (B.25) above, one
arrives at [152]

χIIA
χE√
R

= χE(X3)
2(2π)3

∑
m,n∈Z\{(0,0)}

R3/2

|mΞ + n|3
, (B.26)

which is indeed modular invariant. Note that in order to obtain such expression one needs
to substitute ζ(k) = ∑

n>0 n−k for k = 2, 3.
Finally, we group together those terms containing sums over Gopakumar-Vafa invariants,

such that, after performing again a Poisson resummation over the unconstrained integer
k0, one finds [152]

χIIA
GV√
R

= 1
(2π)3

∑
k ̸=0

nk
∑

m,n∈Z\{(0,0)}

R3/2

|mΞ + n|3
(
1 + 2π|mΞ + n|kiv

i
)

e−Sm,n , (B.27)

55The Poisson resummation identity reads as follows∑
n∈Z

F (x + na) = 1
a

∑
k∈Z

F̃
(2πk

a

)
e2πikx/a ,

with F̃ (ω) =
∫∞
−∞ dx F (x)e−iωx the Fourier transform of F (x).
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where Sm,n = 2πki
(
|mΞ + n|vi + im

(
ζi + ζ0Re zi

)
− inRe zi

)
. This last term can be seen to

be the mirror dual of the quantum corrections arising from Euclidean type IIB (p, q)-strings,
and it tells us that the exponentially suppressed terms within the complex structure Kähler
potential — close to the LCS point — are related by SL(2,Z) duality to certain D2-brane
instanton contributions. This fact will indeed play a key role later on in section B.3.

B.3 The evaluation of the pattern within MHM

In section 5.6.1 in the main text, we were interested in evaluating the pattern (2.6) for
certain trajectories lying entirely within the hypermultiplet moduli space MHM. Such infinite
distance paths were of the form

Im zi ∼ σe1
, e−φ4 ∼ σe2

, σ → ∞ , (B.28)

with e1, e2 ≥ 0, thus including both the weak coupling and large complex structure (LCS)
points. Classically, i.e. without taking into account D-instanton corrections, both kind of
limits were shown to fulfill the pattern. Quantum-mechanically, however, one expects large
instanton contributions to modify the computation, at least in some cases. The purpose
of this subsection is to put all the machinery previously described into work in order to
prove that eq. (2.6) still holds even after taking into account all relevant quantum effects,
as advertised in section 5.6.2. We analyze each of these limits in turn.

Weak coupling point. In this case, since the singularity that is being approached is at
weak string coupling, we do not expect neither perturbative nor non-perturbative effects
to become important, and the classical analysis from section 5.6.1 should be reliable. This
can be readily confirmed upon looking at the behavior of the sum in eq. (B.13), since for
R → ∞ and zI finite one finds

K1
(
4πmR|kIzI |

)
∼
√

1
8mR|kIzI |

e−4πmR|kIzI | , (B.29)

such that χIIA
quant = const. + O

(
e−R|kIzI |

)
≪ χIIA

class asymptotically. Similarly, the moduli
space metric deviates from the tree-level one by additional terms which at leading order
behave as follows (cf. (B.6))

δds2HM = δds2HM|1-loop + δds2HM|D-inst ∼
χE(X3)

χIIA +
∑

γ

Ωγ e−Sm, kI , (B.30)

and thus it is enough to use the classical approximation (B.16). Therefore, we conclude that
the calculations performed after (5.76) remain valid, and the pattern is still verified.

Let us also say a few words about the S-dual limit, since it will play a crucial role
in what follows. As we mention in the main text, the weak coupling singularity here
discussed translates into a physically equivalent one at both strong coupling and LCS, namely(
R′ ∼ σ−1, Im zi ′ ∼ σ

)
. Notice that R′ Im zj ′ → const., which means, in particular, that the

tree-level piece of χIIA dominates over the quantum corrections, i.e. the D2-brane instanton
contributions decouple.56 Hence, one can again safely use the classical metric (B.16) to

56This is not completely true, since the instanton sum can still lead to additional finite distance degenerations,
which are the S-dual versions of the conifold locus.
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compute the inner products between the relevant charge-to-mass and species vectors. These
are associated to the D4-string, with tension(

TD4
M2

Pl; 4

)
= 2R′

(χIIA)′
= 1

χIIA ∼ 1
σ2 , (B.31)

and the KK scale: (
mKK, B0

MPl; 4

)2

∼ 1
Im zi ′ (χIIA)′

∼ 1
Im zi χIIA ∼ 1

σ2 , (B.32)

where in order to arrive at the second equalities we have used the S-duality transformation
rules (see eq. (B.20)).

LCS point. A slightly different story holds for the second kind of limit, namely that
corresponding classically to large complex structure at fixed 4d dilaton

zj = iξjσ , φ4 = const. , σ → ∞ . (B.33)

This limit is indeed the mirror dual to the one explored in [108, 109]. In terms of the relevant
coordinates controlling the behavior of the contact potential, such trajectories are of the form
(zj(σ),R(σ)) ∼

(
iσ, σ−3/2

)
, which means that for small enough instanton charges kI , the

correction term controlled by the Bessel function in (B.13) will behave as

K1
(
4πmR|kIzI |

)
∼ 1

4πmR|kIzI |
. (B.34)

More precisely, the charges must be such that

4πmR|k0 + kiz
i| ≪ 1 , (B.35)

for the associated D2-instantons to contribute significantly to the tensor potential χIIA
quant.

As already noted in [108], this parallels the behavior of the exponentially light towers of
D3-brane bound states appearing in the mirror dual vector multiplet moduli space [16]. To
see what is the upshot of including such quantum corrections to the hypermultiplet metric
along the limit specified by (B.33) one can follow the same strategy as in [109], and exploit
the SL(2,Z) duality of the theory. This allows us to translate the aforementioned limit into
a simpler one where we can readily identify the relevant asymptotic physics. Indeed, after
performing the duality we end up exploring the following ‘classical’ limit

Im zj ′ ∼ σ−1/2 , R′ =
e−ϕ ′V ′

A0

2 ∼ σ3/2 , e2φ′
4 ∼ σ−3/2 , (B.36)

where one should think of zi ′ = 1
2πi log xi as flat complex structure variables defined close

to the LCS point (xi → 0), see below. Notice that this is nothing but the mirror dual
of the F1 limit studied in [109]. There, the relevant quantum corrections to the classical
type IIB hypermultiplet metric are induced by α′ and worldsheet instantons, whilst D-brane
contributions decouple. Importantly, here such ‘corrections’ are already captured by the
exact complex structure metric (5.73), thus simplifying the analysis enormously.

– 91 –



J
H
E
P
0
6
(
2
0
2
4
)
0
3
7

Therefore, recall that away from the LCS point, the periods of the holomorphic (3, 0)-form
Ω receive corrections from their flat values, namely [70, 151]

zj ′ = 1
2πi log xj +O(xi) , (B.37)

such that upon increasing xi towards one, the logarithmic approximation for zi ′ stops being
valid and the polynomial corrections clearly dominate. Hence, instead of reaching a point
where Im zi ′ → 0 asymptotically, what happens is that the complex structure variables
generically approach some constant O(1) value (see e.g., [75, 164, 165]). This does not
prevent, on the other hand, the R coordinate from keep flowing towards weak coupling, such
that a more accurate parametrization of the asymptotic trajectory would be the following:

Im zj ′ = const. , R′ ∼ σ3/2 , e2φ′
4 ∼ σ−3 . (B.38)

Notice that this belongs to the family of geodesics in (B.28) with e = (0, 3/2). Hence,
our previous analysis for the weak coupling singularity around (B.29) applies here and we
conclude that the pattern still holds.

From the original perspective, though, a direct evaluation of the scalar product (2.6)
seems to be rather involved, since the metric receives strong corrections that deviate from the
simple block diagonal form displayed in (B.16) above (cf. eq. (B.6)). However, let us stress
again that we do not need to do this, as we already know what is the S-dual limit of (B.38):
it corresponds to an infinite distance trajectory of the form

(
R ∼ σ−3/2, Im zi ∼ σ3/2

)
, thus

located at strong coupling and LCS (see discussion around (B.31)). Incidentally, this nicely
explains why the pattern was still verified along the classically obstructed limit (B.33), since
the products in eqs. (5.83) and (5.84) are formally identical to the ones that need to be
computed along the present quantum corrected trajectory.

C More on the mathematical structure of ∞(M)

In this appendix we will review the construction of the set of infinite distance limits ∞(M)
associated to some moduli space (M, G), as well as its topology and structure. This can be
then used to define functions over it, once we are given certain quantities defined on M.

Following [166], given a geodesically complete, simply connected n-manifold M with
non-positive curvature, two geodesics c and c′ defined on it are said to be positively (negatively)
asymptotic if there exists a constant acc′ ≥ 0 such that d(c(τ), c′(τ)) ≤ acc′ for any affine
parametrization τ ≥ 0 (≤ 0). It can be shown that being asymptotic is an equivalence relation
on the set of geodesics within M, and that given a geodesic c and a point p ∈ M, then there
exists exactly one geodesic c̃ such that [c]± = [c̃]± and c̃(0) = p. Now, for such a manifold
M, we will refer as points of infinity, ∞(M), to the different classes of positive and negative
asymptotic geodesics. We denote by ∞(M) the set of infinite points of M.

We can relax our previous definition by simply requiring that, given an arbitrary point
p0 ∈ M, there exists r0 > 0 such that the curvature is non-positive for all points p ∈ M with
d(p, p0) > r0, thus allowing for positive curvature in the ‘bulk’ of the moduli space. The simply
connectedness property of M is needed in order to avoid situations such as M = R×S1, where
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we can have geodesics cθ, cθ′ with different angles θ ̸= θ′ with respect to the ‘vertical’ direction
that intersect an infinite number of times while having d(cθ(τ), cθ′(τ)) = 2 sin

(
|θ−θ′|

2

)
τ → ∞

as τ → ∞. In some cases, such as when the moduli space is given by a homogeneous space,
as for example M = En(n)/Kn for M-theory compactified on a n = 11 − d torus, one can
quotient out the compact subspace and simply work with a submanifold of the complete
M where all the remaining moduli are non-compact. In other cases, close to the infinite
distance points a global shift symmetry on the axionic scalars is restored [18] such that all
relevant physical quantities (e.g., the metric G, etc.) loose all dependence on them, and thus
one can simply focus on the non-compact (saxionic) directions.

It can be then shown that ∞(M) ≃ Sn−1, with the usual topology inherited from Rn−1,
since all the positive (negative) asymptotic geodesics of the same class have the same unit
tangent vector T̂ = ċ(s)

∥ċ(s)∥ ∈ SdimM−1 as s → ∞ (−∞). In those cases where M is not
geodesically complete, such as the Kähler cone in some 4d N = 1 examples from section 6,
∞(M) is built through geodesics that can be defined over s ∈ [s0,∞) or (−∞, s0], with
∞(M) being homeomorphic to some subset of Sn−1. The space cp(M) = M∪∞(M) it is
known as compactification of M, inherits a natural topology from M. On the other hand,
when M is geodesically complete, one rather has cp(M) ≃ DdimM .

With this in mind, we can consider an EFT with a moduli space (M, G), and such that
the set of relevant scales for tower masses are continuous (with continuous derivative as well)
functions {mI : UI ⊆ M → R>0}I , with possibly UI ̸= M, as they might be defined only over
some subdomain UI of the moduli space. We can further define the subsets {U∞

I }I formed
by those infinite distance points that can be accessed via geodesics contained in UI . Note
that as long as one geodesic γ reaching infinity can be defined over UI , then [γ] ∈ U∞

I .
The topology inherited from M to ∞(M) is defined in terms of limits of successions

(i.e. a set C ⊆ ∞(M) is closed if every succession defined on it has a limit on C). As we
expect the boundaries of domains of definition UI of the different towers to be more or less
sharply defined (for example being self-dual lines of the theory), one could in principle move
to infinite distance limits in a trajectory parallel to such border, so in principle one could
expect sets {U∞

I }I to be closed even if {UI}I are not. In any case, as it discussed in section 7,
the sets used in the bottom-up argument for the pattern will be closed, as they are the
inverse image of closed sets by continuous operations.

Functions on ∞(M) can be constructed from functions in M that take the same limiting
constant value along any representative geodesics going to a given point in ∞(M). In this
sense, the exponential rates of the towers

λI : U∞
I ⊆ ∞(M) −→ R

T̂ 7−→ T̂ · ξ⃗I = −T̂ a∂a logmI ,
(C.1)

and the analogous {αJ : W∞
J ⊆ ∞(M) → R}J for each species scale {ΛJ : WJ ⊆ M → R>0}J

are examples of functions defined in (subsets of) ∞(M), once the well-definition requirement
of Condition 1 is taken into account.57 By construction, these functions are continuous,

57Notice that, as we expect the domain of definition {UI}I of the different species to be sharply defined, at
least in asymptotic regions of M, the associated {U∞

I }I (and as a result {W∞
J }J ) will be closed subsets of

∞(M), as one can in principle move towards infinite distance limits with geodesics parallel to the boundary
of UI .
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and continuous operations with them (such as addition, subtraction, or the maximum) will
be so too.

Note that, unlike the different towers, which in many cases only make sense to be defined
in the asymptotic region of moduli space where they become light, we expect the species scale
to be well defined all over the moduli space, Λsp : M → R>0, with Λsp ∼ max{ΛJ}J as we
approach the asymptotic regions. Something similar occurs with scalar potentials V : M → R,
where the de Sitter coefficient ∥∇V ∥

V : ∞(M) → R≥0 is expected to be a well-defined quantity,
see [167]. A natural question is whether continuous functions derived from V (ϕi) or Λsp can
be analogously defined over cp(M), as that way topology/continuity arguments might shed
some light on the existence of vacua in the bulk of moduli space, among other things.

On the other hand, it is not immediate that ζ⃗t · Z⃗sp is a well-defined function over ∞(M).
However, the different string theory constructions thotoughly checked along this paper seem
to suggest this is indeed the case, and as explained in section 7, it is one of the sufficient
conditions required for the ζ⃗t · Z⃗sp = 1

d−2 pattern to hold.

C.1 Derivation of the pattern from the sufficient conditions in section 7.2

Here we provide more details regarding the derivation of the pattern (2.6) upon assuming
the sufficient conditions declared in section 7.2. First of all, Condition 1 allows us to define
the functions

λ̃I(T̂ ) = max{T̂ · ζ⃗K}K − λI(T̂ ) , α̃J(T̂ ) = max{T̂ · Z⃗L}L − αJ(T̂ ) , (C.2)

(there is some abuse of notation here, but we can set λI(T̂ ), αJ(T̂ ) ≡ 0 for the limits over
which they are not defined) which yield 0 over such limits along which mI or ΛJ dominate.
It is easy to see that {λ̃I}I are continuous. By the nuances explained in section 7, {α̃J}J is
only piece-wise continuous, but this will be enough for our purposes.

As they are (piece-wise)continuous over the space of infinite distance limits, the sets
λ̃−1

I ({0}) and α̃−1
J ({0}) will be closed58 coverings of the latter, with a finer covering being

C = {λ̃−1
I ({0})}I ∩ α̃−1

J ({0})}I,J (note that indeed many of these will be empty sets). For
a given element in C, all its points, barring perhaps intersections with other λ̃−1

I ({0})}I ∩
α̃−1

J ({0}) or directions where sliding occurs, ζ⃗t · Z⃗sp will have a constant value (note again
here that all the masses have fixed asymptotic expressions, which results in Λsp and G to do
the same). As for the aforementioned regions where this might not be the case, we have:

• Intersection between covering elements: given two covering sets in C, along
their intersection we have several leading towers (or species) becoming light at the
same rate. As explained before, this happens when T̂ ⊥ Hull({ζ⃗1, . . . , ζ⃗k}) (equiv.
T̂ ⊥ Hull({Z⃗1, . . . , Z⃗k})). Hence, by Condition 2 we will have that the leading species
(resp. tower) is located perpendicular to the convex hull, being dominant at both sides
of the intersection. As the only difference between the scalar charge-to-mass vectors of
the towers (species) scaling at the same speed is in the components perpendicular to
T̂ ∝ Z⃗sp (T̂ ∝ ζ⃗t), this implies that ζ⃗t · Z⃗sp takes the same value at both sides, as well
as at the intersection.

58Note that, following footnote 57, the different domains over which one species might dominate will be
closed, so that the argument is still valid even if α̃J is only piece-wise continuous.
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• In the case in which there is sliding, things turn out to be trickier. The sliding of
both ζ⃗t and Z⃗sp can cause the product ζ⃗t · Z⃗sp to be not continuous or even ill-defined
over an asymptotic trajectory. To see this, we split into parallel and perpendicular
components to T̂ to find

(ζ⃗t · Z⃗sp)(∆) = ζ⃗
∥
t · Z⃗∥

sp + ζ⃗t(∆)⊥ · Z⃗⊥
sp(∆) , (C.3)

where ∆ symbolically parameterize the non-compact directions perpendicular to T̂ . If
ζ⃗t(∆)⊥ · Z⃗⊥

sp(∆) is not constant for all values of ∆, then the product is not well defined
over asymptotic directions where the sliding occurs. Then it is immediate that for this
to be the case ζ⃗t · Z⃗sp must be constant over the sliding region, and as a result the
product takes the same value at both sides of the sliding loci. However, by Condition 1,
we expect ζ⃗t · Z⃗sp to be a well-defined quantity at any point of the set of infinite distance
limits. Note that, in principle, there is no physical reason to demand this, but if this
was not the case it would make no sense to study the pattern along directions where
sliding happens.

In conclusion, we have that ζ⃗t · Z⃗sp is constant in the interior of different regions of the space
of asymptotic limits. Furthermore, in the limits between these regions (be them associated
to co-leading species or towers, or sliding loci), the product is the same as in the limiting
trajectories. This means that in each of the connected components of ∞(M), for which every
point can be reached from any other by crossing a finite number of intersections/sliding loci
(as the C covering is finite), the function ζ⃗t · Z⃗sp takes the same value. It is then enough to
know said product along some limit. Finally Condition 3 can be used, as in emergent string
limits or homogeneous decompactifications said value is known to be 1

d−2 (see appendix A),
thus resulting in ζ⃗t · Z⃗sp = 1

d−2 for every asymptotic limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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