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Starting with on-shell amplitudes compatible with the scattering of Kerr black holes, we produce
the gravitational waveform and memory effect including spin at their leading post-Minkowskian
orders to all orders in the spins of both scattering objects. For the memory effect, we present
results at next-to-leading order as well, finding a closed form for all spin orders when the spins are
anti-aligned and equal in magnitude. Considering instead generically oriented spins, we produce the
next-to-leading-order memory to sixth order in spin. Compton-amplitude contact terms up to sixth
order in spin are included throughout our analysis.

I. INTRODUCTION

The need for precision gravitational waveforms, which
are crucial for detection and data analysis at LIGO,
Virgo, Kagra, and associated experiments, has recently
stimulated renewed effort in developing novel analytic
techniques for calculating gravitational-wave observables
relevant for binary encounters of compact objects. In
particular, scattering amplitudes provide compact, on-
shell, and gauge invariant expressions that encode the dy-
namics of binary scatterings and their gravitational-wave
emissions [1–8]; see refs. [9, 10] for recent reviews. Orga-
nized in an expansion in the gravitational coupling, i.e.,
Newton’s constant G, amplitudes are naturally suited
for calculations in the weak-field, or post-Minkowskian
(PM), regime. Progress on the PM expansion has also
come from worldline methods [11–16] and their close
cousin the Worldline Quantum Field Theory (WQFT)
[17–22].
An important point concerns the inclusion of physi-

cal effects that go beyond the point-particle description
of the scattering objects, notably those due to their tidal
deformations [23–30] and to their spins [22, 31–59], which
can be introduced in the amplitude context by means of
an effective-field-theory approach. A crucial conceptual
issue consists in uniquely fixing the Wilson coefficients
that are appropriate for describing a spinning black hole

∗ rafael.aoude@ed.ac.uk
† kays.haddad@physics.uu.se
‡ c.heissenberg@qmul.ac.uk
§ andreas.helset@cern.ch

[48, 51, 57, 58, 60–64], and recent progress in this direc-
tion has been achieved by comparing amplitude calcu-
lations to fixed-background scattering described by the
Teukolsky equation [61, 63].

Several works have already endeavoured to produce
state-of-the-art gravitational waveforms using scattering-
amplitude or scattering-amplitude-inspired techniques.
In the former category, the Kosower-Maybee-O’Connell
(KMOC) formalism [2, 65] was recently employed in
refs. [66–70] to connect the one-loop five-point amplitude
with one graviton emission to the subleading PM wave-
form (see ref. [71] for a comparison with post-Newtonian
results). Also making use of the KMOC formalism,
ref. [72] produced the leading-order waveform for Kerr
scattering up to fourth order in the spins of each black
hole.

An alternative approach to the generation of wave-
forms is WQFT [17–19], which was shown in ref. [8] to be
equivalent to the extraction of observables through the
KMOC formalism. The applicability of this method to
the generation of waveforms was demonstrated in ref. [18]
through the derivation of the waveform without spin.
Ref. [19] was then the first to include spin in the leading-
order waveform, considering effects up to quadratic order
in the spins of both black holes.

Yet another equivalent setup for extracting the leading
order waveform employs the eikonal operator [73, 74], in
which graviton exchanges combine with coherent gravi-
ton emissions that build up gravitational waves (see
ref. [75] for a review).

In this paper, we incorporate state-of-the-art knowl-
edge about the amplitudes’ description of Kerr black
holes into the leading-PM gravitational waveform pro-
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duced during a two-body encounter. This observable
is related by Fourier transform [19, 65, 76] to (the fac-
torizable portion of) the tree-level five-point amplitude
describing the emission of a graviton from the scatter-
ing of two massive, spinning particles [65, 72, 77, 78].
We construct this amplitude recursively from the all-
spin Kerr three-point amplitude [32–34, 79] and all-spin
Kerr-compatible Compton amplitudes [51, 80] (see also
ref. [64]). Our Compton amplitude includes the contact
terms up to sixth order in spin which are needed to match
the black-hole-perturbation-theory (BHPT) description
of (super-extremal) Kerr [63]. Above sixth order in spin,
the spinning objects described here deviate from Kerr
only by contact terms in the Compton amplitude. To ac-
commodate for this discrepancy, we write the five-point
amplitude and the waveform in a manner that automati-
cally allows for the inclusion of higher-spin contact terms.

The waveform descending from the amplitude is pre-
sented to all spin orders in terms of two classes of
arbitrary-tensor-rank integrals into impact-parameter
space. We explain the systematic evaluation of these
integrals, and generate explicit results completing the
waveform up to fifth order in spin in the ancillary files.
Describing the emitted graviton through spinor-helicity
variables, we observe remarkable compactifications of the
waveform stemming from the amplitude. Illustrating this
is a novel form of the leading-order waveform without
spin; see also refs. [18, 72, 81].

The low-frequency behavior of the spectral waveform,
which translates to the one at early/late times via Fourier
transform, is governed by soft theorems [82–85], which
provide crucial non-perturbative cross-checks for PM cal-
culations. Here, we leverage the universality of the lead-
ing soft theorem [86, 87]—or memory effect in the time
domain [88, 89]—which entirely fixes the leading soft be-
havior of the waveform sourced by the scattering objects
in terms of their initial and final momenta, to calculate
the memory to leading- and next-to-leading-PM orders.
At leading order we evaluate the memory to all spin or-
ders and for generic orientations. Making use of the all-
spin 2PM amplitude derived in ref. [58], we produce the
next-to-leading-PM memory for all spins when the spins
are anti-aligned and equal in magnitude, and to sixth
order for general configurations.

The paper is organized as follows. In section II, we
construct the part of the all-spin five-point amplitude
relevant to the waveform computation in section III. The
gravitational soft-theorem is applied to the extraction of
the memory effect up to next-to-leading-PM order in sec-
tion IV. We conclude in Section V.

Note added: On the day of submission of this pa-
per, ref. [90] appeared, which combines the integra-
tion method of ref. [72] with the Compton amplitude of
ref. [64] to incorporate spin in the leading-order wave-
form. The Compton amplitude employed in ref. [90] ex-
hibits spin-shift symmetry at fifth order in spin, which
is in tension with the available BHPT data for super-
extremal Kerr; see refs. [51, 52, 63] and appendix A.
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p′2 →

FIG. 1. The cuts of the five-point amplitude relevant for the
extraction of leading-order radiative observables. All shown
momenta are taken on shell.

II. CONSTRUCTING THE

GRAVITON-EMISSION AMPLITUDE

Classical radiative observables at leading order are re-
lated to the tree-level five-point amplitude with a gravi-
ton emitted from the scattering of two massive (spinning)
particles. More specifically, the relevant portion of the
amplitude has non-vanishing residues when an internal
graviton is taken on shell; see fig. 1. Physically, the fact
that only this portion of the amplitude is needed reflects
the assumption that throughout the classical scattering
the massive bodies are well separated. As is evident from
that figure, extracting the observables of interest thus re-
quires the three-point and Compton amplitudes consis-
tent with Kerr black holes.
The identification of classical spin effects in scattering

amplitudes has been treated in numerous works [33–36,
40, 42, 44, 47, 55, 80, 91–93]. We will not review this
material here, and will simply write spinning amplitudes
directly in terms of the classical spin vector Sµ of an
object of mass m through the ring radius, aµ = Sµ/m.
This satisfies the covariant spin-supplementary condition
p · a = 0, where pµ is the classical momentum of the
spinning object.
The three-point amplitude describing a Kerr black hole

of momentum pµ, mass m, and ring radius aµ emitting a
helicity-h graviton with momentum qµ is [32–34, 79]

M3(−p, qh) = −κ [p · εh(q)]2 exp (hq · a) , (1)

where κ is related to Newton’s constant G through
κ =

√
32πG. The graviton polarization is εµνh (q) =

εµh(q)ε
ν
h(q).

1 Negative momentum arguments indicate in-
coming momenta.
A convenient writing of the Compton amplitude for the

absorption of a graviton of momentum q and emission of
a (negative-helicity) graviton of momentum k is

M4(−p, k−,−qh) (2)

=
κ2

4

4
∑

n=0

y4−n
h (wh · a)n M (n)

4 (−p, k−,−qh),

1 We expect our results to be larger than those of refs. [18, 19] by a
factor of 2, due to differing conventions for graviton polarization
tensors.
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where yh ≡ 2p · wh and

wµ
+ :=

1

2
〈k|σµ|q], wµ

− :=
1

2m
〈k|pσ̄µ|q〉. (3)

The form factors accompanying different powers of wh ·a
are

M
(n)
4 (−p, k−,−qh) = e(−hq−k)·aF

(n)
4 (−p, k−,−qh)

+ C
(n)
4 (−p, k−,−qh). (4)

The F
(n)
4 carry all the physical residues of the Compton

amplitudes and the C
(n)
4 contain all information about

contact deformations. Our interest in leading-PM radia-
tive observables for Kerr black holes requires that the

F
(n)
4 are such that eq. (2) factorizes to eq. (1) on physi-

cal residues [51], and that the C
(n)
4 contain contact terms

whose coefficients depend only on the mass (and not on
G) [80]. We have left the dependence of the form fac-
tors on the ring radius implicit and relegate their ex-
plicit expressions to the appendices; see eqs. (A2) to (A5)
and (A12) to (A17).
The five-point amplitude is constructed from these

lower-point amplitudes by demanding that it factorizes
correctly on the physical graviton poles; see fig. 1. The
momenta obey the momentum-conservation constraints

pi − p′i = qi, q1 + q2 = k. (5)

We abbreviate the cut part of the five-point amplitude as
Mcut

5 (k−) ≡ Mcut
5 (−p1,−p2, p

′
1, p

′
2, k

−). Putting every-
thing together, the cut part of the five-point amplitude
relevant to Kerr observables at leading PM order is

Mcut
5 (k−) = − κ3

8q22
q2µq2ν (6)

×
∑

h=±

4
∑

n=0

rh,µν(1),n

2n
e−hq2·a2M

(n)
4 (−p1, k

−,−qh2 ) + (1 ↔ 2),

valid to all spin orders. The helicity weight of the emit-

ted graviton is carried by the rh,µν(i),n (recall that h here

is the helicity of the cut graviton, not the emitted one),
which are defined in eq. (A1). This abbreviation of the
amplitude is useful for making explicit the powers of qµ2
while hiding what is not needed to perform the wave-

form integration. However, we highlight that the rh,µν(i),n

are O(|kµ|2) and O(ani ). The former of these will affect
the integration to the time domain from frequency space.
At this point, let us make a remark on notation.

Throughout the remainder of the paper, we will use the
subscripts in parentheses (1) or (2) to denote quantities
relevant to the amplitude on the q22 or q21 pole, respec-
tively. An object indexed in this way has only the labels
in parentheses swapped under the relabelling (1 ↔ 2), so

that, for example, rh,µν(1),1 → rh,µν(2),1, while pµ1 → pµ2 . Gener-

ally,

X1
(1↔2)↔ X2,

Y(1),L
(1↔2)↔ Y(2),L = Y(1),L

∣

∣

Z(1),J↔Z(2),J ,X1↔X2
,

(7)

where L and J are arbitrary (multi-)indices which remain
unchanged under the relabelling. The second relabelling
is applied recursively at every level of an expression.
The five-point amplitude for the other graviton helicity

is related to eq. (6) through

Mcut
5 (k+) =

[

Mcut
5 (−k−)

]∗

qi→−qi
, (8)

where the asterisk represents complex conjugation. The
effect of conjugation is simply swapping the angle and
square massless spinors.
By construction, the cut part of the five-point ampli-

tude in eq. (6) gives the correct factorization when an
exchanged graviton goes on shell. This is achieved by
writing the amplitude in a form with spurious poles using
the identity 1

q21q
2
2
= − 1

2(k·q1)q21
− 1

2(k·q2)q22
[77], which en-

sures that the physical graviton poles are not overlapping
and the cut part of the amplitude can be constructed by
gluing the lower-point amplitudes. However, it does not
guarantee that the spurious poles cancel after the gluing.
In fact, the freedom of rewriting the lower-point ampli-
tudes using on-shell conditions and momentum conserva-
tion allows for various representations of the cut part of
the amplitude which differ by terms that vanish when in-
ternal gravitons are cut. In particular, the difference be-
tween eq. (6) and the complete five-point amplitude with
no unphysical poles has no pole when internal gravitons
go on shell. Luckily, these complications are irrelevant
for extracting the waveform from the amplitude because
terms with a spurious pole and no physical graviton pole
do not contribute. This is a consequence of the classical
limit, and manifests as the tracelessness of the integrals
in the next section; see appendix B.

III. ALL-SPIN WAVEFORM AT LEADING-PM

ORDER

With the cut part of the five-point amplitude in hand,
we move now to the extraction of observables. The wave-
form in the time domain is given by the expectation value
of the metric perturbation [10, 65–69]:

gµν(x) − ηµν = κ〈hµν(x)〉

=

∫ ∞

−∞

d̂ω e−iωu fµν(ω, x̂)

|x| .
(9)

Here, ω is the frequency of the emitted gravitational
wave, xµ = (x0,x) is the position of the observer lo-
cated a large distance from the scattering event, and
u = x0 − |x| is the retarded time. The spatial unit vec-
tor in the direction of the observer is x̂ = x/|x|. The
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spectral waveform fµν(ω, x̂) is written at leading order
in terms of the tree-level five-point amplitude as

fµν(ω, x̂) =
κ

4π

∑

h

ε(h)∗µ ε(h)∗ν

∫

q1,q2

µ(k)Mcut
5 (kh)

∣

∣

∣

∣

k=ωρ

,

(10)

where ρµ = (1, x̂),
∫

q1,q2
=
∫

d̂Dq1d̂
Dq2, and

µ(k) =
1

4
δ̂(p1 · q1)δ̂(p2 · q2)ei(q1·b1+q2·b2)δ̂D(q1 + q2 − k) .

Factors of 2π have been absorbed into the notation as
δ̂(x) ≡ 2πδ(x) and d̂x ≡ dx/(2π) [2], and we work in
four dimensions, D = 4.
The sum over helicities in eq. (10) can be dropped by

projecting onto a graviton of a fixed helicity. We can
do so without losing any information about the wave-
form since the projection onto a graviton of the opposite
helicity will be given by complex conjugation of our re-
sult. In the following, we write ε−µ ε

−
ν 〈hµν(x)〉 = h(x) =

h+(x) + ih×(x), where the subscripts refer to the “plus”
and “cross” polarizations of the gravitational wave.
Inserting eq. (6) into eq. (9), we proceed to integrate

following ref. [19]. Specifically, on the part of the cut
amplitude capturing the q22 residue, it is advantageous to

use the delta functions to integrate over d̂4q1 and d̂ω first;
on the other part of the amplitude, one instead integrates

over d̂4q2 before performing the d̂ω integral. Indeed, this
procedure remains simple for the infinite-spin amplitude
in eq. (6). Splitting the waveform into a part without
and with Compton-amplitude contact terms,

κh(x) = − πG2

|x|m1m2
[hf(x) + hc(x)] , (11)

and writing pµi = miv
µ
i and γ = v1 · v2,2 the former is

hf (x) =
1

(p1 · ρ)2
(12)

×
∫

q2

δ̂(v2 · q2)
q2µ1q2µ2

q22(q2 · ρ)(v1 · q2)
[

eiq2·b(1),− r̃−,µ1µ2

(1),0

+eiq2·b(1),+
∞
∑

s=0

q2µ3 . . . q2µs+2

1

s!
Lµ1...µs+2

(1),s

]

+ (1 ↔ 2).

In a similar vein to ref. [19], we have defined

u±
(1),1 =

ρ · [(x − ia1)− b1]

v1 · ρ
, (13)

u±
(1),2 =

ρ · [(x − ia1)− b2 ∓ i(a1 + a2)]

v2 · ρ
, (14)

2 In previous works using Heavy Particle Effective Theory (HPET)
[24, 27, 40, 42, 49, 51, 58, 60, 80, 94], the symbol ω = v1 · v2 was
used as an homage to the literature on Heavy Quark Effective
Theory [95–98]. In this paper, ω is reserved for the frequency of
the gravitational wave, so we revert to the notation here.

bµ(1),± = bµ2 − bµ1 + u±
(1),2v

µ
2 − u±

(1),1v
µ
1 ± i(aµ1 + a

µ
2 ).

(15)

These variables expose a Newman-Janis-like shift of the
position coordinates by the spin vector [99]. Unlike the
Newman-Janis shift, however, the amplitude contains
spin dependence which does not readily admit this in-

terpretation, such as in the r̃h,µν(i),n and Lµ1...µs+2

(i),s . Nev-

ertheless, the presence of this shift is computationally
convenient, as it implies that the highest tensor rank
needed to obtain the O(an1

1 a
n2
2 ) part of the waveform is

max(n1, n2)+ 2 instead of n1+n2+2. The tensors r̃h,µν(i),n

are functions only of ρµ defined through rh,µν(i),n = ω2r̃h,µν(i),n .

Finally, Lµ1...µs+2

(i),s is given in eq. (A11). This tensor is a

complicated polynomial of degree s in the spin of particle
i, which, importantly, contains no dependence on the fi-
nal variable of integration, and can therefore be removed
from the integral. Then, defining

Iµ1...µn

(1) (b) ≡
∫

q2

δ̂(v2 · q2)
qµ1

2 . . . qµn

2 eiq2·b

q22(q2 · ρ)(v1 · q2)
, (16)

the part of the waveform free from Compton-amplitude
contact terms is

hf (x) =
1

(p1 · ρ)2
[

r̃−,µ1µ2

(1),0 I(1),µ1µ2
(b(1),−)

+

∞
∑

s=0

1

s!
Lµ1...µs+2

(1),s I(1),µ1...µs+2
(b(1),+)

]

+ (1 ↔ 2). (17)

We are left now with the evaluation of the arbitrary-rank
integral in eq. (16). The variables defined in eqs. (13)
to (15) produce ρ · b(i),± = 0, which means that the inte-
grals appearing in eq. (17) are identical in structure to the
ones in ref. [19], justifying the use of the rank-2 integral
evaluated there. Higher-rank integrals can be generated
by differentiation, keeping in mind that the result must
remain orthogonal to vµ2 :

Iµνσ1...σn

(1) (b(1),±) =

(

n
∏

i=1

−i∂

∂b(1),±,σi

)

Iµν
(1)(b(1),±), (18)

for b
σ
(1),± ≡ (δστ − vσ2 v2τ ) b

τ
(1),±. More details can be

found in appendix B.
As an illustration of eq. (17), consider the spinless part

of the waveform. When setting the spin to 0, bµ(i),+|ai=0 =

bµ(i),−|ai=0 and bµ(1),±|ai=0 = −bµ(2),±|ai=0 ≡ bµ0 . Then,

since the rank-2 integral is even (see eq. (B4)), the wave-
form is

hf (x)|ai=0 =
2
∑

i=1

r̃−,µν
(i),0 + r̃+,µν

(i),0

(pi · ρ)2
I(i),µν(b0), (19)

in agreement with refs. [18, 19, 72, 81]. Much like for scat-
tering amplitudes, the incorporation of spinor-helicity
variables greatly compactifies the form of the wave-
form, eliminating gauge redundancies associated with the
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polarization of the emitted graviton; cf. the compact
eq. (32) of ref. [72], which expresses this same result using
polarization tensors.
The extraction of the contributions to the waveform

originating from the Compton-amplitude contact terms
is slightly different from above because of the simpler pole
structure which enters the Fourier transforms. Explicitly,
the contact-term contribution to the waveform is

hc(x) =
32m1v

µ1

1 vµ2

1 vµ3

1

(v1 · ρ)3
[

C
(5,1),µ4µ5

4 (a1)J(1),µ1...µ5
(b(1))

+J(1),µ1...µ6
(b(1))

3
∑

i=1

C
(6,i),µ4µ5µ6

4 (a1)

]

+ (1 ↔ 2),

(20)

where we’ve used C
(n)
4 (−p1, k

−,−q−2 ) = 0 and repack-

aged the remaining contact terms in the C
(i,j)
4 . The ex-

plicit forms for these can be found in eqs. (A20) to (A23).

Organized like this, the C
(i,j)
4 (a1) are all free of the vari-

able of integration, so we have removed them from the
integrals

J µ1...µn

(1) (b(1)) =

∫

q2

δ̂(v2 · q2)
eiq2·b(1)

q22
qµ1

2 . . . qµn

2 . (21)

The impact parameter in this context is bµ(1) =

bµ(1),+|a1→0. This integral for n = 1 has also been eval-

uated in ref. [19], with higher-rank integrals being gen-
erated by differentiating with respect to b

µ
(1). See ap-

pendix B for more details.
Two final remarks about hc(x) are in order. First,

note that all dependence on a
µ
2 in eq. (20) (aµ1 in the

relabelled part) is encapsulated in the impact param-
eter. Consequently, eq. (20) encodes the contributions
from the O(a5,6) coefficients to all spin orders. Second,
the inclusion of higher-spin contact terms is nearly auto-
matic: contact terms at O(as) enter the square brackets
of eq. (20) through

v1µ1J(1),µ2...µs+1
(b(1))C

(s),µ4...µs+1

4 (a1). (22)

All that must be specified are the contact terms one

wishes to include in the C
(s)
4 .

With that, we have produced the leading-order Kerr-
compatible waveform to all spin orders, including BHPT-
matching contact terms up to sixth order in spin. The
waveform expanded up to fifth order in spin is provided
in the ancillary files. Our results agree with ref. [19] up
to second order in the spin, and with ref. [72] up to fourth
order in the spin.
Further checks of our results come from the expansion

of the waveform in large |u| (frequency space, small ω).
In the next section we will consider the memory effect
and its connection to the leading classical soft theorem.
The subleading classical soft theorem predicts instead
the 1/|u| (frequency space, logω) tail term [84], which is
spin-independent to this order in G; we have verified its

agreement with the spinless part of the waveform given
in eq. (19). To this order in G, the next order in the
soft expansion features a 1/u2 (frequency space, ω logω)
term whose expression was predicted in ref. [100] and
contains both spin-independent and linear-in-spin con-
tributions.3 We have verified that our waveform agrees
with that prediction—the spinless and linear-in-spin con-
tributions to the waveform exactly match the 1/u2 soft
term given in ref. [100], while higher-spin contributions
decay faster than 1/u2 for large |u|.

IV. GRAVITATIONAL MEMORY EFFECT

Rather than requiring the full five-point amplitude,
or even its cut part used above, the gravitational mem-
ory effect is related to the limit of the five-point ampli-
tude as the emitted graviton is soft [89]. Combining this
with existing high-spin, two-to-two amplitudes compati-
ble with Kerr scattering up to 2PM order puts the next-
to-leading-order (NLO) memory effect including high
spin orders within reach [36, 58] (see also refs. [50, 52, 57]
for high-but-finite-spin scattering amplitudes at 2PM or-
der). In this section we present the gravitational memory
effect at leading order to all spin orders and for generic
spin orientations, before computing the next-to-leading-
order memory effect to all spin orders for anti-aligned
spins and to sixth order for generic orientations.

A. Leading order

At leading order in Newton’s constant, the memory
effect is expressed simply in terms of the soft limit of the
tree-level two-to-two amplitude as [67, 89]

∆(h∞
+ + ih∞

× )
∣

∣

LO
= − iκ

32π|x| (23)

×
∫

d̂4q δ̂(p1 · q)δ̂(p2 · q)eiq·bεµ−εν−S(ρ, q)µνMt(q).

Here, Sµν(ρ, q) = ωSµν(k, q) is the soft factor multiplied
by the frequency of the soft graviton, and Mt(q) is the
t-channel graviton-exchange amplitude. Orienting the
transfer momentum such that q = p1 − p′1 = p′2 − p2,
these take the forms [36, 87]

Sµν(k, q) =

2
∑

i=1

pµi p
ν
i

pi · k
−

2
∑

i=1

p′µi p′νi
p′i · k

, (24)

Mt(q) = −κ2m2
1m

2
2

4q2

∑

±

(

γ ±
√

γ2 − 1
)2

(25)

× exp

[

± iǫµναβv
µ
1 v

ν
2 q

α

√

γ2 − 1

(

a
β
1 + a

β
2

)

]

.

3 We thank Biswajit Sahoo for bringing this to our attention.
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The soft factor admits an ~ expansion when scaling k, q ∼
~, which we can write as

Sµν(k, q) = S(0)
µν;ρ(k)q

ρ + S(1)
µν;ρτ (k)q

ρqτ +O(~2), (26)

with S(i)
µν;ρ1...ρi+1(k) ∼ ~

−1. The classically-relevant por-
tion of eq. (23) only needs the leading term in eq. (26).

The fact that the spin dependence of the amplitude
in eq. (25) is contained entirely in an exponential means
that the evaluation of the gravitational memory effect for
all spins at leading order is nearly identical to the scalar
case [53]. Defining

bµ± ≡ bµ ±
ǫµναβv

ν
1v

α
2

(

a
β
1 + a

β
2

)

√

γ2 − 1
, (27)

the memory effect is

∆(h∞
+ + ih∞

× )
∣

∣

LO
=

iκ3m2
1m

2
2

128π|x|
∑

±

(

γ ±
√

γ2 − 1
)2

× εµ−ε
ν
−S(0)

µν;τ (ρ)

∫

d̂4q δ̂(p1 · q)δ̂(p2 · q)
eiq·b±

q2
qτ . (28)

From this expression, it is immediate to explain an ob-
servation made in ref. [19] up to quadratic order in spin
and to see that it extends to all spin orders: for the anti-
aligned-spin setup, aµ1 = −a

µ
2 , the leading-order memory

effect for two scattering Kerr black holes is equivalent to
that for Schwarzschild black holes. This is because the
shifted impact parameters are identical to the unshifted
impact parameter in this configuration.

We recognize in eq. (28) the expression for the leading-
order classical impulse, Qµ

1,1PM = p′µ1 − pµ1 , experienced

by particle 1 in the scattering [2]:

Qτ
1,1PM = − i

4

∫

d̂4qδ̂(p1 · q)δ̂(p2 · q)qτeib·qMt(q) (29)

=
κ2m1m2

32π
√

γ2 − 1

∑

±

(

γ ±
√

γ2 − 1
)2 bτ±

b2±
.

In terms of the impulse, the leading-order, all-spin mem-
ory effect is

∆(h∞
+ + ih∞

× )
∣

∣

LO
=

κεµ−ε
ν
−

8π|x| S
(0)
µν;τ (ρ)Qτ

1,1PM, (30)

with generic spin orientations. Eq. (30) thus agrees with
the leading-PM expansion of the leading classical soft
theorem [84, 85, 101, 102], which fixes the memory effect
in the time domain, equivalently the 1/ω terms in fre-
quency domain, in terms of the initial and final momenta
of the scattering. We have also checked that the spinless
contribution is in agreement with ref. [67]. Specializing to
the aligned-spin case and expanding to quadratic order in
spin, we find agreement with the result in ref. [19], taking
into account the factor of 2 mentioned in footnote 1.

B. Next-to-leading order

To subleading PM order, following ref. [70], we modify
the integrand of eq. (23) to contain the classical part of
the 2PM instead of the tree-level amplitude and include a
two-massive-particle cut contribution that arises from the
KMOC formalism.4 Additional classical cuts involving
intermediate on-shell massless and massive particle lines
are subleading in the soft limit [66–69]. The next-to-
leading-order memory effect is thus given by

∆(h∞
+ + ih∞

× )
∣

∣

NLO
= − iκ

32π|x|

∫

d̂4q δ̂

(

p1 · q −
q2

2

)

δ̂

(

p2 · q +
q2

2

)

eiq·bεµ−ε
ν
−

×
{

S(ρ, q)µνM2PM +
i

8

∫

d̂4ℓ δ̂

(

p1 · ℓ−
ℓ2

2

)

δ̂

(

p2 · ℓ+
ℓ2

2

)

[S(ρ, q − ℓ)µν − S(ρ, ℓ)µν ]M†
t(q − ℓ)Mt(ℓ)

}

. (31)

The first term in curly brackets is the 2PM analog of
eq. (23), and will be related to the portion of 2PM im-
pulse transverse to the incoming momenta, Qµ

1,2PM, while
the second term is the cut contribution. One must ac-
count for the full delta functions [2, 70, 75], and not only
their linearized versions, because the cut contribution is
superficially superclassical, so it must be expanded to
subleading order in ~ to extract classical information.

4 We thank Zvi Bern for discussions on this point.

Scrutinizing the cut contribution in more detail, we

must be careful to correctly interpret M†
t(q) when spin

is involved. Importantly, in contrast to the spinless case,

M†
t(q) 6= [Mt(q)]

∗
. Rather, for the S-matrix defined by

S = 1 + iT ,5

δ̂D(p)M†(q) = 〈p′1, p′2|T †|p1, p2〉 (32)

5 The overall momentum-conserving delta function has the abbre-
viated argument p = p1 + p2 − p′1 − p′2.
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= (〈p1, p2|T |p′1, p′2〉)
∗
= δ̂D(p) [M(−q)]

∗
,

where we can safely make the final identification in the
classical limit, in whichO(~) modifications of the massive
momenta do not affect the scattering amplitude [49, 51].
Specializing to tree-level two-to-two scattering, eq. (25),
we find

M†
t(q) = Mt(q). (33)

This conclusion is consistent with unitarity of the S-
matrix, a consequence of which is that the T -matrix
is Hermitian for the leading-order two-to-two scattering
process.
Now, as the first quantum corrections to Mt are sup-

pressed by two powers of ~, the expansion of the cut
contribution to next-to-leading order in ~ is controlled
by the expansion of the product of the delta functions
and soft factors. A consequence of eq. (33) is that the
super-classical part of this expansion vanishes at the level
of the integrand, meaning eq. (31) is classical at leading
order in ~. Evaluating the remaining classical part of
the cut contribution, the NLO memory effect expressed
in terms of the 1PM and 2PM (transverse) impulses on
particle 1 is

∆(h∞
+ + ih∞

× )
∣

∣

NLO
=

κεµ−ε
ν
−

8π|x|
{

S(0)
µν;τ (ρ)Qτ

1,2PM (34)

−Qα
1,1PMQβ

1,1PM

[

S(0)
µν;τ (ρ)

(

v̌τ1
2m1

− v̌τ2
2m2

)

ηαβ

+S(1)
−µν;αβ(ρ)

]}

,

where

v̌µ1 =
γvµ2 − vµ1
γ2 − 1

, v̌µ2 =
γvµ1 − vµ2
γ2 − 1

. (35)

This is in precise agreement with the gravitational mem-
ory (see, e.g., refs. [85, 101, 102]) expanded to next-to-
leading PM order, when the initial and final momenta
are related by the classical impulse

Qµ = p′µ1 − pµ1 = −(p′µ2 − pµ2 ) (36)

= Qµ
1,1PM +Qµ

1,2PM −
(

v̌µ1
2m1

− v̌µ2
2m2

)

Q2
1,1PM.

Without the cut contribution in eq. (31), eq. (34) would
be missing the contributions quadratic in Qµ

1,1PM. Note
that, up the PM order considered here, we were able to
focus on the so-called linear memory, whose expression
is captured by the soft factor (24) and in which only the
massive-particle momenta p1,2 and p′1,2 appear. Non-

linear memory, which is produced by radiation itself, will
only appear in the subsubleading waveform [101, 103].

As we have evaluated the 1PM impulse above, the last
ingredient for writing the NLO memory effect explicitly
is the evaluation of the 2PM transverse impulse. We
will do so for generic and anti-aligned spin orientations,
beginning with the latter.
In the anti-aligned-spin setup, where aaa ≡ a1 = −a2,

the complexity of the all-spin amplitude is dramatically
reduced, granting it a remarkably compact form to all
spin orders. The amplitude in this configuration is6

M2PM,aa =
κ4m2

1m
2
2

512
√

−q2

(

Meven
2PM,aa +Modd

2PM,aa

)

, (37)

where the even- and odd-in-spin parts, are

Meven
2PM,aa = (m1 +m2)

[

Ceven,(5)
2PM,aa + Ceven,(6)

2PM,aa (38)

+15(γ2 − 1) 2F3

(

−1

4
,
1

4
;
1

2
,
3

2
, 2;Qaa

)

− 1

2
Qaa + 12

]

,

Modd
2PM,aa = i(m1 −m2)γ

[

Codd,(5)
2PM,aa + Codd,(6)

2PM,aa (39)

+5Eaa 2F3

(

1

4
,
3

4
;
3

2
, 2,

5

2
;Qaa

)

+
2

γ2 − 1
Eaa
]

.

We have abbreviated contributions from Compton-

amplitude contact terms as Ceven/odd,(5,6)
2PM,aa for readabil-

ity; see the ancillary Mathematica package NLOMemory.m
for their explicit expressions. When vi · aj = 0, which
is the case for aligned and anti-aligned spins, all contri-
butions to the 2PM amplitude from non-analytic-in-spin
contact terms—that is, those proportional to |a| in the
Compton amplitude—vanish, as previously observed in
refs. [57, 63].

The spin dependence in eq. (37) is encoded in the vari-
ables Qaa = (q · aaa)2 − q2a2aa and Eaa = ǫµνρσq

µvν1v
ρ
2a

σ
aa.

The amplitude thus does not reduce to the Schwarzschild-
scattering amplitude in this configuration, unlike the
1PM amplitude. The NLO memory effect will there-
fore distinguish the scattering of two Schwarzschild black
holes from two Kerr black holes with anti-aligned spins.
This statement is true independently of contact-term
contributions, as contact terms enter from the hexade-
capole while the memory effect is sensitive to lower
spin multipoles. Notably, however, the dependence on
odd spin orders vanishes if we additionally take the two
masses to be equal.

In this configuration the anti-aligned spins are collinear
with the orbital angular momentum, which implies b ·
aaa = 0 and consequently allows us to find a com-
pact closed form for the anti-aligned-spin transverse
impulse at 2PM to all spin orders. Defining Eµ

aa ≡
ǫµναβv1νv2αaaa,β, we find

6 The results in this section are based on the 2PM amplitude of
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Qτ
1,2PM,aa = − κ4m1m2

4096π|b|3
√

γ2 − 1
(40)

×
{

3bτ (m1 +m2)

[

4− z2 − 5(γ2 − 1)

2
√
π

∞
∑

n=0

Γ(2n− 1/2)

(n+ 1)

(2z)2n

(2n)!
+ C̃even,(5)

NLO,aa + C̃even,(6)
NLO,aa

]

+ 2(m1 −m2)γEaa,σ
[

1

γ2 − 1

(

3
bσbτ

|b|2 + ηστ
)

+
15√
π

∞
∑

n=0

Γ(2n+ 1/2)

(2n+ 3)!

(

(2n+ 3)
bσbτ

|b|2 + ηστ
)

(2z)2n

+
(

C̃odd,(5)
NLO,aa

)στ

+
(

C̃odd,(6)
NLO,aa

)στ]}

,

where z ≡ |aaa|/|b|, |x| ≡
√
−x2. The infinite sums can

be performed to give radicals and hypergeometric func-
tions, but we find this expression to be more compact.
The portions involving Compton-amplitude contact co-
efficients can be found in the ancillary file NLOMemory.m.
The anti-aligned-spin configuration is an interesting

one as the simplifications it brings with it render the
infinite-spin 2PM amplitude much more manageable.
Phenomenologically, however, it is a rather restrictive
setup. For this reason, we additionally consider the NLO
memory effect for generically oriented spins. We restrict
our attention up to sixth order in spin in this most gen-
eral configuration. Analogously to eq. (37), we write the
amplitude up to sixth order in spin as

M2PM|
a
n≤6 =

κ4m2
1m

2
2

512
√

−q2

(

Meven
2PM +Modd

2PM

)
∣

∣

a
n≤6 , (41)

while the 2PM transverse impulse on particle 1 becomes

Qτ
1,2PM

∣

∣

a
n≤6 = −

κ4m1m2

(

q
even,τ
1,2PM + q

odd,τ
1,2PM

)∣

∣

∣

a
n≤6

4096π|b|3
√

γ2 − 1
.

(42)

In this configuration we relegate all further analytical de-
tails of the amplitude and the impulse to the ancillary file
NLOMemory.m. The amplitude in eq. (41) and transverse
2PM impulse in eq. (42) are in agreement with ref. [57]
for the BHPT coefficient values in appendix A.

V. CONCLUSION

In this paper, we have employed on-shell amplitudes
and spinor-helicity variables to access all-spin-order con-
tributions to the leading-order waveform and the gravita-
tional memory effect up to next-to-leading order. In par-
ticular, gluing the Kerr-compatible, all-spin gravitational

ref. [58] with d
(n)
j

= (−1)j2n−2j
(

n−4−j

j

)

−16δn4. This maps the

Compton amplitude used there to construct the 2PM amplitude
to the one incorporated in the waveform computation above, up
to the contact terms in appendix A. We add the latter separately.

Compton amplitude derived in ref. [51] (but in the form
written in ref. [60]) with the all-spin Kerr three-point
amplitude [31–34, 79] gives the portion of the single-
graviton-emission, five-point amplitude containing long-
distance information to all spin orders.

The KMOC formalism [2, 65] provides a means for
relating this portion of the five-point amplitude to the
leading-order gravitational waveform, producing an ex-
pression for the waveform, which is valid to all spin or-
ders. As written, eq. (17) describes the interaction of
Kerr black holes up to fourth order in the spins of ei-
ther black hole. Above fourth order in spin, contribu-
tions from Compton-amplitude contact terms are needed
to properly describe Kerr scattering dynamics. Indeed,
our analysis included these corrections up to sixth order
in spin in eq. (20), where information from BHPT exists
to fix the coefficient values pertinent to (super-extremal)
Kerr [63]. Together, eqs. (17) and (20) sum as in eq. (11)
to describe the leading-order Kerr waveform—at least in
the super-extremal limit—up to sixth order in the spins
of the black holes. We have written the cut portion of the
five-point amplitude in eq. (6) in a way that immediately
accommodates higher-spin contact terms, and eq. (20) is
not difficult to extend to include such contributions.

The gravitational memory effect can be extracted from
the limit of the five-point amplitude needed for the wave-
form as the emitted graviton goes soft. Then, through
soft theorems [87], including also the cut contribution to
the waveform kernel of ref. [70], it becomes easily related
to the impulse derived from the amplitude through the
KMOC formalism [2]. Using the all-spin 1PM Kerr [36]
and 2PM Kerr-compatible [58] amplitudes, we thus de-
rived the leading-order memory effect to all spin orders
at leading order and to sixth order in spin at next-to-
leading order for generic spin orientations. Specializing
to anti-aligned spins yielded dramatic simplifications of
the 2PM amplitude, enabling us to extract the next-to-
leading-order memory effect to all spin orders in this con-
figuration.

On the note of contact terms, those needed in
eqs. (A13) to (A17) to match the BHPT solution in
ref. [63] all break the spin-shift symmetry highlighted
in refs. [51, 52, 60]. This observation is suggestive
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of a relation between the Compton amplitude in the
form of ref. [60] with all contact coefficients set to zero
and the super-extremal-Kerr Compton amplitude which
maps onto the BHPT description. Let us denote the for-
mer by MHPET

4 and decompose the latter as

MBHPT
4 = Mfact.

4 + Csym.
4 + Casym.

4 . (43)

Here, Mfact.
4 contains all physical residues of the Comp-

ton amplitude, Csym.
4 represents contact terms preserv-

ing the spin-shift symmetry, and Casym.
4 contains contact

terms breaking this symmetry.7 We reiterate that the
latter two are not generic functions of contact terms, but
rather the specific contact terms arising from the BHPT
computation. The separation between Mfact.

4 and Csym.
4

is not unique, but their sum is fixed. What we have ob-
served up to O(a7)8 and might conjecture to hold to all
spin orders is that

Mfact.
4 + Csym.

4 = MHPET
4 , (44)

thus yielding predictions for the values of an infinite fam-
ily of the contact terms needed to match the BHPT de-
scription of super-extremal Kerr. Whether this regroup-
ing of contact terms results in a discernible structure in
Casym.
4 which can be extended to higher spins is left to

future investigation.
Along similar lines, the extremely compact form of

eq. (37) suggests that the anti-aligned spin configura-
tion may be a useful departure point in the search for
contact-term-dependent structure of the amplitude pro-
posed in ref. [58]. In fact, we have observed that choosing
the shift-symmetric contact terms conjectured by eq. (44)
to describe Kerr black holes—that is, the contact terms
specified in footnote 6—compactifies eq. (38) relative to

the choice d
(n)
j = 0; in the latter case, the spin depen-

dence is described by two hypergeometric functions as
opposed to one.
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Appendix A: Form factors and helicity vectors

The tensors rh,µν(i),n which carry the helicity weights of

the five-point amplitude in eq. (6) are

r+,µν
(1),0 = 〈k|p1p2γµp1|k〉〈k|p1p2γνp1|k〉, (A1a)

r+,µν
(1),1 = 〈k|p1p2γµp1|k〉〈k|p1p2γν

a1|k〉, (A1b)

r+,µν
(1),2 = 〈k|p1p2γµ

a1|k〉〈k|p1p2γν
a1|k〉, (A1c)

r+,µν
(1),3 = 〈k|p1p2γµ

a1|k〉〈k|a1p2γν
a1|k〉, (A1d)

r+,µν
(1),4 = 〈k|a1p2γµ

a1|k〉〈k|a1p2γν
a1|k〉, (A1e)

and

r−,µν
(1),0 = m4

1〈k|p2γµ|k〉〈k|p2γν |k〉, (A1f)

r−,µν
(1),1 = m2

1〈k|p2γµ|k〉〈k|a1p1p2γν|k〉, (A1g)

r−,µν
(1),2 = 〈k|a1p1p2γµ|k〉〈k|a1p1p2γν |k〉, (A1h)

r−,µν
(1),3 =

1

m2
1

〈k|a1p1p2γµ|k〉〈k|a1p1p2γνp1a1|k〉, (A1i)

r−,µν
(1),4 =

1

m4
1

〈k|a1p1p2γµp1a1|k〉〈k|a1p1p2γνp1a1|k〉.
(A1j)

The rh,µν(2),n are obtained from these using eq. (7). When

a positive-helicity graviton is emitted from the binary

scattering, the amplitude will depend on r̄−h,µν
(i),n in place

of rh,µν(i),n , which have square spinors rather than the angle

spinors above. These tensors are already inert under the
waveform integration over the qi; we can render them
inert under the integration over ω as well by noting that

rh,µν(i),n = ω2r̃h,µν(i),n , where the tensors on the right-hand

side are written with spinors for ρ instead of k. The
same holds for the tensors with square instead of angle
brackets.
The F

(n)
4 form factors are

F
(0)
4 (−p, kh,−qh) =

1

8(q · k)(p · k)(p · q) , (A2)

F
(n≥1)
4 (−p, kh,−qh) = 0, (A3)
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and, fixing the helicity of the graviton with momentum
q,

F
(n≤2)
4 (−p, k−,−q+) =

[2p · (q + k)]n

8n!(q · k)(p · k)(p · q) , (A4)

F
(n≥3)
4 (−p, k−,−q+) (A5)

=
[2p · (q + k)]n

8(q · k)(p · k)(p · q)

[

1

n!
+ (−s2)

4−n
∞
∑

s=5

1

s!
Ls−8+n

]

,

where

Lm =

⌊m/2⌋
∑

j=0

(

m+ 1

2j + 1

)

s
m−2j
1

(

s
2
1 − s2

)j
, (A6)

and

s1 = (k + q) · a , (A7)

s2 = 4(k · a)(q · a)− (2q · k)a2 . (A8)

The form factors for F
(n)
4 (−p, k+,−q−) are obtained

from eqs. (A4) and (A5) by replacing {kµ, qµ} →
{−kµ,−qµ}.
As the extraction of the waveform involves integrals

over momenta represented here by qµ, it is useful to

rewrite F
(n≥3)
4 (−p, k−,−q+) as an expansion in qµ,

which entails expanding Lm as such. This actually be-

comes easier after integrating over one of the d̂4qi and

d̂ω using a delta function as described in section III. For
example, let us consider the Lm contributing to the q22
pole, which we write as L(1),m. After integrating over

d̂4q1 and d̂ω, this becomes

L(1),m

∣

∣

ω=
v1·q2
v1·ρ

= q2µ1 . . . q2µm
Lµ1...µm

(1),m , (A9)

where

Lµ1...µm

(1),m ≡
⌊m/2⌋
∑

j=0

(

m+ 1

2j + 1

)m−2j
∏

i=1

[

ρ · a1
v1 · ρ

vµi

1 + a
µi

1

]

(A10)

×
(m−1)/2
∏

k=m−2j+1
2

[(

ρ · a1
v1 · ρ

vµ2k

1 − a
µ2k

1

)(

ρ · a1
v1 · ρ

v
µ2k+1

1 − a
µ2k+1

1

)

+ 2vµ2k

1 ρµ2k+1
a
2
1

v1 · ρ

]

,

which subsequently enters the waveform through

Lµ1...µs+2

(1),s =

{

ms
1r̃

+,µ1µ2

(1),s (2vµ3

1 ) . . . (2v
µs+2

1 ), s ≤ 4,

(2vµ3

1 ) . . . (2vµ6

1 )
[

m4
1r̃

+,µ1µ2

(1),4 L
µ7...µs+2

(1),s−4 −m3
1r̃

+,µ1µ2

(1),3

(

2 ρ·a1

v1·ρ
a
µ7

1 − ρµ7 a
2
1

v1·ρ

)

L
µ8...µs+2

(1),s−5

]

, s > 4.
(A11)

The tensors Lµ1...µm

(2),m and Lµ1...µs+2

(2),s can be obtained from

these by swapping the labels 1 ↔ 2. Note that L(i),0 = 1.

Instead of computing with the full set of contact terms
compatible with Kerr scattering at the PM order con-

sidered, we will focus only on those entering up to sixth
order in spin. Moreover we will fix to zero all contact
term coefficients that are not needed to match the super-
extremal analytic continuation of the BHPT solution in
ref. [63]. This means we consider

C
(n)
4 (−p, k−,−q−) = 0, (A12)

C
(0)
4 (−p, k−,−q+) =

(tpq − tpk)

m3
|a|a4

[

f
(5)
0,0,0 + f

(6)
0,0,1[(−q − k) · a]

]

(A13)

+ a
(6)
1,0,0

sqk
m2

a
6 + a

(6)
1,1,0

(tpq − tpk)
2

m4
a
6 − 2

(

a
(6)
0,0,0 − a

(6)
0,0,2

)

(q · a)(k · a) a
4

m2
,

C
(1)
4 (−p, k−,−q+) =

(tpq − tpk)

m2
a
4
[

b
(5)
0,0,0 + b

(6)
0,0,1[(−q − k) · a]

]

(A14)

+ g
(6)
1,0,0

sqk
m

|a|a4 + g
(6)
1,1,0

(tpq − tpk)
2

m3
|a|a4 − 2

(

g
(6)
0,0,0 − g

(6)
0,0,2

) 1

m
|a|a2(q · a)(k · a),

C
(2)
4 (−p, k−,−q+) =

(tpq − tpk)

m
|a|a2

[

p
(5)
0,0 + p

(6)
0,1[(−q − k) · a]

]

+ c
(6)
1,0 skqa

4 − 2
(

c
(6)
0,0 − c

(6)
0,2

)

(q · a)(k · a)a2, (A15)
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C
(3)
4 (−p, k−,−q+) = (tpq − tpk)a

2
[

d
(5)
0,0 + d

(6)
0,1[(−q − k) · a]

]

+ q
(6)
1,0 msqk|a|a2, (A16)

C
(4)
4 (−p, k−,−q+) = m(tpq − tpk)|a|

[

r
(5)
0,0 + r

(6)
0,1[(−q − k) · a]

]

+ e
(6)
1,0m

2skqa
2. (A17)

We have defined sqk ≡ (k − q)2, tpq ≡ (p + q)2 − m2,
and tpk ≡ (p − k)2 −m2. The coefficients used here are
those from ref. [58], and their values matching the super-
extremal solution to the Teukolsky equation at fifth order
in spin, according to ref. [63], are

b
(5)
0,0,0 = − 1

24 , d
(5)
0,0 = 1

3 ,

f
(5)
0,0,0 = − 1

240 , p
(5)
0,0 = 1

6 , (A18)

r
(5)
0,0 = − 1

3 .

At sixth order in spin, the coefficient values in eq. (6)
matching ref. [63] are

a
(6)
1,0,0 = − 1

16 , a
(6)
1,1,0 = − 1

576 ,

a
(6)
0,0,0 − a

(6)
0,0,2 =

1
8 , b

(6)
0,0,1 = − 11

72 ,

c
(6)
0,0 − c

(6)
0,2 = − 1

6 , c
(6)
1,0 = − 1

6 ,

d
(6)
0,1 = 7

18 , e
(6)
1,0 = 1

3 , (A19)

f
(6)
0,0,1 = − 1

360 , g
(6)
1,0,0 =

1
9 ,

g
(6)
0,0,0 − g

(6)
0,0,2 = − 2

9 , g
(6)
1,1,0 =

1
60 ,

p
(6)
0,1 = 1

3 , q
(6)
1,0 = 4

9 , r
(6)
0,1 = − 2

9 .

It is immediate to augment eq. (6) with more Compton-

amplitude contact terms since the C
(n)
4 are inert under

the gluing of the three-point and Compton amplitudes in
fig. 1.
The contact terms repackaged in preparation for the

waveform integration are encoded in the form factors

C
(j,k)
4 (ai) introduced in eq. (20). Written explicitly, these

are

C
(5,1),µν
4 (ai) =

r̃+,µν
(i),0

m3
i

f
(5)
0,0,0|ai|a4i +

r̃+,µν
(i),1

2m2
i

b
(5)
0,0,0a

4
i +

r̃+,µν
(i),2

4mi
p
(5)
0,0|ai|a2i +

r̃+,µν
(i),3

8
d
(5)
0,0a

2
i +mi

r̃+,µν
(i),4

16
r
(5)
0,0|ai|, (A20)

C
(6,1),µνα
4 (ai) = 4pαi

(

r̃+,µν
(i),0

m4
i

a
(6)
1,1,0a

6
i +

r̃+,µν
(i),1

2m3
i

g
(6)
1,1,0|ai|a4i

)

, (A21)

C
(6,2),µνα
4 (ai) = −

(

a
α
i +

pαi ρ · ai
pi · ρ

)

(A22)

×
(

r̃+,µν
(i),0

m3
i

f
(6)
0,0,1|ai|a4i +

r̃+,µν
(i),1

2m2
i

b
(6)
0,0,1a

4
i +

r̃+,µν
(i),2

4mi
p
(6)
0,1|ai|a2i +

r̃+,µν
(i),3

8
d
(6)
0,1a

2
i +mi

r̃+,µν
(i),4

16
r
(6)
0,1|ai|

)

,

C
(6,3),µνα
4 (ai) =

ρβ
4p1 · ρ

[

−2
r̃+,µν
(i),0

m2
i

a
4
i

(

a
(6)
0,0,0 − a

(6)
0,0,2

)

a
α
i a

β
i − 2

r̃+,µν
(i),1

2mi
|ai|a2i

(

g
(6)
0,0,0 − g

(6)
0,0,2

)

a
α
i a

β
i (A23)

−2
r̃+,µν
(i),2

4
a
2
i

[

c
(6)
0,1η

αβ
a
2
i +

(

c
(6)
0,0 − c

(6)
0,2

)

a
α
i a

β
i

]

− 2mi

r̃+,µν
(i),3

8
q
(6)
1,0η

αβ |ai|a2i − 2m2
i

r̃+,µν
(i),4

16
e
(6)
1,0η

αβ
a
2
i

]

.

Appendix B: Integrals

There are two classes of integrals that we must com-
pute to convert from momentum to impact-parameter
space: one for the evaluation of the waveform and one
for the memory effect. These are

Iµ1...µn
w [{x, b1, b2}; f(q)] =

∫

d̂ωd̂4qd̂4q′ δ̂(v1 · q)δ̂(v2 · q′)

× δ̂(4)(k − q − q′)e−iωρ·xei(q·b1+q′·b2)qµ1 . . . qµnf(q),
(B1)

Iµ1...µn
m [b; f(q)] =

∫

d̂4q δ̂(v1 · q)δ̂(v2 · q)

× eiq·bqµ1 . . . qµnf(q), (B2)

respectively. For amplitudes involving arbitrary spin
powers, these integrals generally must be evaluated for
arbitrary rank. Instead of evaluating each rank individ-
ually, higher-rank integrals can be generated from lower
ranks by differentiation.
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1. Waveform integration

Extracting the waveform in an explicit form requires
that we evaluate the integrals in eq. (16):

Iµ1···µn

(1) (b(1),±)

v1 · ρ
= (B3)

Iµ1···µn
w

[

{x− ia1, b1, b2 ± i(a1 + a2)};
1

q22(q2 · ρ)(v1 · q2)

]

.

The lowest-rank integral we need is [19]

Iµν
(1)(b) =

Kµν
(1)(v1 ·K(1) · ρ)− 2(v1 ·K(1))

(µ(ρ ·K(1))
ν)

4π(γ2 − 1)(ρ · v2)2|b|2|b|(1)|b|22d
,

(B4)

where

Kµν
(1) = Πµν

3d,(1)|b|2(1) + b
µ
(1)b

ν
(1),

Πµν
3d,(1) = ηµν − vµ2 v

ν
2 , Πµν

2d = ηµν − vµ1 v̌
ν
1 − vµ2 v̌

ν
2 ,

b
µ
(1) = Πµν

3d,(1)bν, |b|2(1) = −bµbνΠ
µν
3d,(1), (B5)

|b|22d = −bµbνΠ
µν
2d , |b|2 = −bµb

µ.

An important feature of the integral in eq. (B4) is that it
is traceless, ηµνIµν

(i) = 0. This means that contributions

from parts of the amplitude with spurious poles but no
physical graviton poles don’t contribute to the waveform.
Said otherwise, this justifies our use of the cut amplitude
in section II (which has unphysical poles in qi · k) for
the extraction of the waveform rather than the whole
amplitude.
All higher-rank integrals can be obtained from eq. (B4)

by differentiating with respect to b, with the constraint
that the result should remain orthogonal to v2; that is
to say that we differentiate with respect to b

µ
(1). For the

most part, this is straightforward, using

∂bµ(1)
∂b(1),ρ

= Πµρ
3d,(1),

∂

∂b(1),ρ
(Πµν

2d bν) = Πµρ
2d .

(B6)

The derivative of |b|2 is more involved. We must write
bµ in terms of bµ(1), considering that ρ · b = v2 · b(1) = 0:

bµ = b
µ
(1) −

ρ · b(1)
ρ · v2

vµ2 . (B7)

Then, the quantity which must be differentiated is

|b|2 = −b
2
(1) −

(ρ · b(1))2
(v2 · ρ)2

. (B8)

Its derivative is

∂

∂b(1),µ
|b|2 = −2bµ(1) − 2

ρ · b(1)
(ρ · v2)2

Πµν
3d,(1)ρν . (B9)

This result is orthogonal to both ρµ and vµ2 , and holds
with or without spin dependence.
Accounting for the Compton-amplitude contact terms

further requires that we evaluate the integrals in eq. (21):

J µ1...µn

(1) (b(1))

v1 · ρ
= Iµ1...µn

w [{x, b1, b2 + ia2}; 1/q22]. (B10)

Computing with the method in appendix C of ref. [65],
the rank-0 integral is

J(1)(b(1)) = − 1

4π|b(1)|
, (B11)

where b
µ
(1) = b(1)νΠ

µν
3d,(1). Differentiating,

J µ
(1)(b(1)) =

−i∂

∂b(1),µ
J(1)(b(1)) =

i

4π

b
µ
(1)

|b(1)|3
. (B12)

We have corroborated this expression through explicit
computation as for the rank-0 case, thus verifying the va-
lidity of this derivative operation even in the presence of
spin. Equation (B12) is in agreement with ref. [19], only
the result here encodes effects at all spin orders. Gen-
erating higher ranks is straightforward with the integral
written in this form, keeping in mind that

∂bµ(1)

∂b(1),ν
= Πµν

3d,(1), (B13)

such that the result remains orthogonal to vµ2 .

2. Memory-effect integration

For the leading-order memory effect, the only integral
we need is [2]

Iµm[b; 1/q2] = − i

2π
√

γ2 − 1

bµ

b2
, (B14)

where |x| ≡
√
−x2. In terms of this, the all-spin leading-

order memory effect is obtained by a redefinition of the
impact parameter.
At next-to-leading order, all integrals we need can be

obtained by differentiating the base integral [27]

Im[b; 1/|q|] = 1

2π
√

γ2 − 1

1

|b| . (B15)

In terms of this, the rank-n integral is

Iµ1...µn
m = −i∂µn

b Iµ1...µn−1
m . (B16)

When employing this relation, it is crucial to keep in
mind that

∂bµ

∂bν
= Πµν

2d , (B17)
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such that the result of the differentiation remains in the
2-plane containing bµ. We needed an arbitrary number
of such derivatives to present all-order-in-spin results for
the anti-aligned configuration. This task was simplified
in two ways. First, the complexity of the derivatives is
reduced by considering instead Im[q2n/|q|], which enter
in the calculation for 0 ≤ n ≤ 3. Then, taking advantage
of the fact that vi · aaa = b · aaa = 0, we were able to find
a closed form for the projection of the rank-2k Fourier
transform into the hyperplane orthogonal to a

µi
aaa

νi
aa for

1 ≤ i ≤ k. Specifically,

k
∏

i=1

(aaa,µi
aaa,νi − ηµiνiaaa · aaa) Iµµ1ν1...µkνk

m [b; q2n/|q|]

= −i
4n(1/2)n

(1)n

(−4)k(3/2)k+n(1)k+n

2π
√

γ2 − 1

a
2k
aab

µ

|b|2k+2n+3
, (B18)

k
∏

i=1

(aaa,µi
aaa,νi − ηµiνiaaa · aaa) Iµνµ1ν1...µkνk

m [b; q2n/|q|]

= −4n(1/2)n
(1)n

(−4)k(3/2)k+n(1)k+n

2π
√

γ2 − 1

a
2k−2
aa

|b|2k+2n+3

×
[

a
2
aaΠ

µν + (2k + 2n+ 3)a2aa
bµbν

|b|2 +
k

n+ 1
a
µ
aaa

ν
aa

]

.

(B19)

These integrals are sufficient for completely determin-
ing the next-to-leading-order memory effect in the anti-
aligned configuration to all spin orders, including in the
presence of higher-spin-order Compton-amplitude con-
tact terms than those considered here.
For the case of more generally oriented spins, we evalu-

ated the next-to-leading-order memory effect up to sixth
order in spin. This necessitated up to six derivatives of
eqs. (B18) and (B19) with k = 0.
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[16] C. Dlapa, G. Kälin, Z. Liu, J. Neef, and
R. A. Porto, Phys. Rev. Lett. 130, 101401 (2023),
arXiv:2210.05541 [hep-th].

[17] G. Mogull, J. Plefka, and J. Steinhoff,
JHEP 02, 048 (2021), arXiv:2010.02865 [hep-th].

[18] G. U. Jakobsen, G. Mogull, J. Plefka, and
J. Steinhoff, Phys. Rev. Lett. 126, 201103 (2021),
arXiv:2101.12688 [gr-qc].

[19] G. U. Jakobsen, G. Mogull, J. Plefka, and
J. Steinhoff, Phys. Rev. Lett. 128, 011101 (2022),
arXiv:2106.10256 [hep-th].

[20] G. U. Jakobsen and G. Mogull,
Phys. Rev. Lett. 128, 141102 (2022),
arXiv:2201.07778 [hep-th].

[21] G. U. Jakobsen, G. Mogull, J. Plefka, B. Sauer, and
Y. Xu, (2023), arXiv:2306.01714 [hep-th].

[22] G. U. Jakobsen, G. Mogull, J. Plefka, and B. Sauer,
(2023), arXiv:2308.11514 [hep-th].

[23] C. Cheung and M. P. Solon,
Phys. Rev. Lett. 125, 191601 (2020),
arXiv:2006.06665 [hep-th].

[24] K. Haddad and A. Helset, JHEP 12, 024 (2020),
arXiv:2008.04920 [hep-th].

[25] Z. Bern, J. Parra-Martinez, R. Roiban,
E. Sawyer, and C.-H. Shen, JHEP 05, 188 (2021),
arXiv:2010.08559 [hep-th].

[26] C. Cheung, N. Shah, and M. P.
Solon, Phys. Rev. D 103, 024030 (2021),
arXiv:2010.08568 [hep-th].

[27] R. Aoude, K. Haddad, and A. Helset,
JHEP 03, 097 (2021), arXiv:2012.05256 [hep-th].

[28] M. Accettulli Huber, A. Brandhuber, S. De Angelis,
and G. Travaglini, Phys. Rev. D 103, 045015 (2021),
arXiv:2012.06548 [hep-th].

[29] S. Mougiakakos, M. M. Riva, and

http://dx.doi.org/10.1103/PhysRevLett.121.171601
http://arxiv.org/abs/1806.04920
http://dx.doi.org/10.1007/JHEP02(2019)137
http://arxiv.org/abs/1811.10950
http://dx.doi.org/ 10.1103/PhysRevLett.122.201603
http://arxiv.org/abs/1901.04424
http://dx.doi.org/ 10.1007/JHEP10(2019)206
http://arxiv.org/abs/1908.01493
http://dx.doi.org/ 10.1103/PhysRevLett.126.171601
http://arxiv.org/abs/2101.07254
http://dx.doi.org/ 10.1103/PhysRevLett.128.161103
http://arxiv.org/abs/2112.10750
http://dx.doi.org/ 10.22323/1.416.0051
http://arxiv.org/abs/2306.11454
http://arxiv.org/abs/2204.05194
http://dx.doi.org/10.1088/1751-8121/ac8846
http://arxiv.org/abs/2203.13025
http://dx.doi.org/10.1007/JHEP11(2020)106
http://arxiv.org/abs/2006.01184
http://dx.doi.org/10.1103/PhysRevLett.125.261103
http://arxiv.org/abs/2007.04977
http://dx.doi.org/10.1007/JHEP06(2021)012
http://arxiv.org/abs/2102.10059
http://dx.doi.org/ 10.1016/j.physletb.2022.137203
http://arxiv.org/abs/2106.08276
http://dx.doi.org/10.1007/JHEP01(2023)140
http://arxiv.org/abs/2207.00580
http://dx.doi.org/ 10.1103/PhysRevLett.130.101401
http://arxiv.org/abs/2210.05541
http://dx.doi.org/10.1007/JHEP02(2021)048
http://arxiv.org/abs/2010.02865
http://dx.doi.org/ 10.1103/PhysRevLett.126.201103
http://arxiv.org/abs/2101.12688
http://dx.doi.org/ 10.1103/PhysRevLett.128.011101
http://arxiv.org/abs/2106.10256
http://dx.doi.org/10.1103/PhysRevLett.128.141102
http://arxiv.org/abs/2201.07778
http://arxiv.org/abs/2306.01714
http://arxiv.org/abs/2308.11514
http://dx.doi.org/10.1103/PhysRevLett.125.191601
http://arxiv.org/abs/2006.06665
http://dx.doi.org/10.1007/JHEP12(2020)024
http://arxiv.org/abs/2008.04920
http://dx.doi.org/10.1007/JHEP05(2021)188
http://arxiv.org/abs/2010.08559
http://dx.doi.org/10.1103/PhysRevD.103.024030
http://arxiv.org/abs/2010.08568
http://dx.doi.org/10.1007/JHEP03(2021)097
http://arxiv.org/abs/2012.05256
http://dx.doi.org/10.1103/PhysRevD.103.045015
http://arxiv.org/abs/2012.06548


14

F. Vernizzi, Phys. Rev. Lett. 129, 121101 (2022),
arXiv:2204.06556 [hep-th].

[30] C. Heissenberg, Phys. Rev. Lett. 131, 011603 (2023),
arXiv:2210.15689 [hep-th].

[31] N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang,
JHEP 11, 070 (2021), arXiv:1709.04891 [hep-th].

[32] J. Vines, Class. Quant. Grav. 35, 084002 (2018),
arXiv:1709.06016 [gr-qc].

[33] A. Guevara, A. Ochirov, and J. Vines,
JHEP 09, 056 (2019), arXiv:1812.06895 [hep-th].

[34] M.-Z. Chung, Y.-T. Huang, J.-W. Kim, and S. Lee,
JHEP 04, 156 (2019), arXiv:1812.08752 [hep-th].

[35] B. Maybee, D. O’Connell, and J. Vines,
JHEP 12, 156 (2019), arXiv:1906.09260 [hep-th].

[36] A. Guevara, A. Ochirov, and
J. Vines, Phys. Rev. D 100, 104024 (2019),
arXiv:1906.10071 [hep-th].

[37] N. Arkani-Hamed, Y.-t. Huang, and D. O’Connell,
JHEP 01, 046 (2020), arXiv:1906.10100 [hep-th].

[38] H. Johansson and A. Ochirov, JHEP 09, 040 (2019),
arXiv:1906.12292 [hep-th].

[39] M.-Z. Chung, Y.-T. Huang, and J.-W. Kim,
JHEP 09, 074 (2020), arXiv:1908.08463 [hep-th].

[40] P. H. Damgaard, K. Haddad, and A. Helset,
JHEP 11, 070 (2019), arXiv:1908.10308 [hep-ph].

[41] Y. F. Bautista and A. Guevara, JHEP 11, 184 (2021),
arXiv:1908.11349 [hep-th].

[42] R. Aoude, K. Haddad, and A. Helset,
JHEP 05, 051 (2020), arXiv:2001.09164 [hep-th].

[43] M.-Z. Chung, Y.-t. Huang, J.-W. Kim, and S. Lee,
JHEP 05, 105 (2020), arXiv:2003.06600 [hep-th].

[44] Z. Bern, A. Luna, R. Roiban, C.-H. Shen,
and M. Zeng, Phys. Rev. D 104, 065014 (2021),
arXiv:2005.03071 [hep-th].

[45] A. Guevara, B. Maybee, A. Ochirov,
D. O’connell, and J. Vines, JHEP 03, 201 (2021),
arXiv:2012.11570 [hep-th].

[46] D. Kosmopoulos and A. Luna, JHEP 07, 037 (2021),
arXiv:2102.10137 [hep-th].

[47] R. Aoude and A. Ochirov, JHEP 10, 008 (2021),
arXiv:2108.01649 [hep-th].

[48] M. Chiodaroli, H. Johansson, and P. Pichini,
JHEP 02, 156 (2022), arXiv:2107.14779 [hep-th].

[49] K. Haddad, Phys. Rev. D 105, 026004 (2022),
arXiv:2109.04427 [hep-th].

[50] W.-M. Chen, M.-Z. Chung, Y.-t. Huang, and J.-W.
Kim, JHEP 08, 148 (2022), arXiv:2111.13639 [hep-th].

[51] R. Aoude, K. Haddad, and A. Helset,
JHEP 07, 072 (2022), arXiv:2203.06197 [hep-th].

[52] Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban, and
F. Teng, (2022), arXiv:2203.06202 [hep-th].

[53] F. Alessio and P. Di Vecchia,
Phys. Lett. B 832, 137258 (2022),
arXiv:2203.13272 [hep-th].

[54] F. Febres Cordero, M. Kraus, G. Lin, M. S. Ruf,
and M. Zeng, Phys. Rev. Lett. 130, 021601 (2023),
arXiv:2205.07357 [hep-th].

[55] L. Cangemi and P. Pichini, JHEP 06, 167 (2023),
arXiv:2207.03947 [hep-th].

[56] F. Alessio, (2023), arXiv:2303.12784 [hep-th].
[57] Y. F. Bautista, (2023), arXiv:2304.04287 [hep-th].
[58] R. Aoude, K. Haddad, and

A. Helset, Phys. Rev. D 108, 024050 (2023),
arXiv:2304.13740 [hep-th].

[59] C. Heissenberg, (2023), arXiv:2308.11470 [hep-th].
[60] R. Aoude, K. Haddad, and A. Helset,

Phys. Rev. Lett. 129, 141102 (2022),
arXiv:2205.02809 [hep-th].

[61] Y. F. Bautista, A. Guevara, C. Kavanagh, and J. Vines,
(2021), arXiv:2107.10179 [hep-th].

[62] L. Cangemi, M. Chiodaroli, H. Johansson, A. Ochi-
rov, P. Pichini, and E. Skvortsov, (2022),
arXiv:2212.06120 [hep-th].

[63] Y. F. Bautista, A. Guevara, C. Kavanagh, and J. Vi-
nese, (2022), arXiv:2212.07965 [hep-th].

[64] N. E. J. Bjerrum-Bohr, G. Chen, and M. Skowronek,
(2023), arXiv:2309.11249 [hep-th].

[65] A. Cristofoli, R. Gonzo, D. A. Kosower, and
D. O’Connell, Phys. Rev. D 106, 056007 (2022),
arXiv:2107.10193 [hep-th].

[66] A. Brandhuber, G. R. Brown, G. Chen, S. De An-
gelis, J. Gowdy, and G. Travaglini, (2023),
arXiv:2303.06111 [hep-th].

[67] A. Herderschee, R. Roiban, and F. Teng, (2023),
arXiv:2303.06112 [hep-th].

[68] A. Elkhidir, D. O’Connell, M. Sergola, and I. A.
Vazquez-Holm, (2023), arXiv:2303.06211 [hep-th].

[69] A. Georgoudis, C. Heissenberg, and I. Vazquez-Holm,
(2023), arXiv:2303.07006 [hep-th].

[70] S. Caron-Huot, M. Giroux, H. S. Hannesdottir, and
S. Mizera, (2023), arXiv:2308.02125 [hep-th].

[71] D. Bini, T. Damour, and A. Geralico, (2023),
arXiv:2309.14925 [gr-qc].

[72] S. De Angelis, R. Gonzo, and P. P. Novichkov, (2023),
arXiv:2309.17429 [hep-th].

[73] A. Cristofoli, R. Gonzo, N. Moynihan, D. O’Connell,
A. Ross, M. Sergola, and C. D. White, (2021),
arXiv:2112.07556 [hep-th].

[74] P. Di Vecchia, C. Heissenberg, R. Russo, and
G. Veneziano, Phys. Lett. B 843, 138049 (2023),
arXiv:2210.12118 [hep-th].

[75] P. Di Vecchia, C. Heissenberg, R. Russo, and
G. Veneziano, (2023), arXiv:2306.16488 [hep-th].

[76] S. Mougiakakos, M. M. Riva, and
F. Vernizzi, Phys. Rev. D 104, 024041 (2021),
arXiv:2102.08339 [gr-qc].

[77] Y. F. Bautista and A. Guevara, (2019),
arXiv:1903.12419 [hep-th].

[78] Y. F. Bautista and N. Siemonsen, JHEP 01, 006 (2022),
arXiv:2110.12537 [hep-th].

[79] M. Levi and J. Steinhoff, JHEP 09, 219 (2015),
arXiv:1501.04956 [gr-qc].

[80] K. Haddad, JHEP 05, 177 (2023),
arXiv:2303.02624 [hep-th].

[81] S. J. Kovacs and K. S. Thorne,
Astrophys. J. 224, 62 (1978).

[82] B. Sahoo and A. Sen, JHEP 02, 086 (2019),
arXiv:1808.03288 [hep-th].

[83] A. Laddha and A. Sen,
Phys. Rev. D 101, 084011 (2020),
arXiv:1906.08288 [gr-qc].

[84] A. P. Saha, B. Sahoo, and A. Sen,
JHEP 06, 153 (2020), arXiv:1912.06413 [hep-th].

[85] B. Sahoo and A. Sen, JHEP 01, 077 (2022),
arXiv:2105.08739 [hep-th].

[86] S. Weinberg, Phys. Lett. 9, 357 (1964).
[87] S. Weinberg, Phys. Rev. 140, B516 (1965).
[88] Y. B. Zel’dovich and A. G. Polnarev, Sov. Astron. 18,

http://dx.doi.org/10.1103/PhysRevLett.129.121101
http://arxiv.org/abs/2204.06556
http://dx.doi.org/10.1103/PhysRevLett.131.011603
http://arxiv.org/abs/2210.15689
http://dx.doi.org/10.1007/JHEP11(2021)070
http://arxiv.org/abs/1709.04891
http://dx.doi.org/10.1088/1361-6382/aaa3a8
http://arxiv.org/abs/1709.06016
http://dx.doi.org/10.1007/JHEP09(2019)056
http://arxiv.org/abs/1812.06895
http://dx.doi.org/ 10.1007/JHEP04(2019)156
http://arxiv.org/abs/1812.08752
http://dx.doi.org/10.1007/JHEP12(2019)156
http://arxiv.org/abs/1906.09260
http://dx.doi.org/10.1103/PhysRevD.100.104024
http://arxiv.org/abs/1906.10071
http://dx.doi.org/10.1007/JHEP01(2020)046
http://arxiv.org/abs/1906.10100
http://dx.doi.org/10.1007/JHEP09(2019)040
http://arxiv.org/abs/1906.12292
http://dx.doi.org/10.1007/JHEP09(2020)074
http://arxiv.org/abs/1908.08463
http://dx.doi.org/10.1007/JHEP11(2019)070
http://arxiv.org/abs/1908.10308
http://dx.doi.org/10.1007/JHEP11(2021)184
http://arxiv.org/abs/1908.11349
http://dx.doi.org/10.1007/JHEP05(2020)051
http://arxiv.org/abs/2001.09164
http://dx.doi.org/ 10.1007/JHEP05(2020)105
http://arxiv.org/abs/2003.06600
http://dx.doi.org/ 10.1103/PhysRevD.104.065014
http://arxiv.org/abs/2005.03071
http://dx.doi.org/ 10.1007/JHEP03(2021)201
http://arxiv.org/abs/2012.11570
http://dx.doi.org/10.1007/JHEP07(2021)037
http://arxiv.org/abs/2102.10137
http://dx.doi.org/10.1007/JHEP10(2021)008
http://arxiv.org/abs/2108.01649
http://dx.doi.org/10.1007/JHEP02(2022)156
http://arxiv.org/abs/2107.14779
http://dx.doi.org/10.1103/PhysRevD.105.026004
http://arxiv.org/abs/2109.04427
http://dx.doi.org/10.1007/JHEP08(2022)148
http://arxiv.org/abs/2111.13639
http://dx.doi.org/10.1007/JHEP07(2022)072
http://arxiv.org/abs/2203.06197
http://arxiv.org/abs/2203.06202
http://dx.doi.org/10.1016/j.physletb.2022.137258
http://arxiv.org/abs/2203.13272
http://dx.doi.org/ 10.1103/PhysRevLett.130.021601
http://arxiv.org/abs/2205.07357
http://dx.doi.org/10.1007/JHEP06(2023)167
http://arxiv.org/abs/2207.03947
http://arxiv.org/abs/2303.12784
http://arxiv.org/abs/2304.04287
http://dx.doi.org/10.1103/PhysRevD.108.024050
http://arxiv.org/abs/2304.13740
http://arxiv.org/abs/2308.11470
http://dx.doi.org/10.1103/PhysRevLett.129.141102
http://arxiv.org/abs/2205.02809
http://arxiv.org/abs/2107.10179
http://arxiv.org/abs/2212.06120
http://arxiv.org/abs/2212.07965
http://arxiv.org/abs/2309.11249
http://dx.doi.org/10.1103/PhysRevD.106.056007
http://arxiv.org/abs/2107.10193
http://arxiv.org/abs/2303.06111
http://arxiv.org/abs/2303.06112
http://arxiv.org/abs/2303.06211
http://arxiv.org/abs/2303.07006
http://arxiv.org/abs/2308.02125
http://arxiv.org/abs/2309.14925
http://arxiv.org/abs/2309.17429
http://arxiv.org/abs/2112.07556
http://dx.doi.org/10.1016/j.physletb.2023.138049
http://arxiv.org/abs/2210.12118
http://arxiv.org/abs/2306.16488
http://dx.doi.org/10.1103/PhysRevD.104.024041
http://arxiv.org/abs/2102.08339
http://arxiv.org/abs/1903.12419
http://dx.doi.org/10.1007/JHEP01(2022)006
http://arxiv.org/abs/2110.12537
http://dx.doi.org/10.1007/JHEP09(2015)219
http://arxiv.org/abs/1501.04956
http://dx.doi.org/10.1007/JHEP05(2023)177
http://arxiv.org/abs/2303.02624
http://dx.doi.org/10.1086/156350
http://dx.doi.org/10.1007/JHEP02(2019)086
http://arxiv.org/abs/1808.03288
http://dx.doi.org/10.1103/PhysRevD.101.084011
http://arxiv.org/abs/1906.08288
http://dx.doi.org/ 10.1007/JHEP06(2020)153
http://arxiv.org/abs/1912.06413
http://dx.doi.org/10.1007/JHEP01(2022)077
http://arxiv.org/abs/2105.08739
http://dx.doi.org/10.1016/0031-9163(64)90396-8
http://dx.doi.org/10.1103/PhysRev.140.B516


15

17 (1974).
[89] A. Strominger and A. Zhiboedov, JHEP 01, 086 (2016),

arXiv:1411.5745 [hep-th].
[90] A. Brandhuber, G. Brown, G. Chen, J. Gowdy, and

G. Travaglini, (2023), arXiv:2310.04405 [hep-th].
[91] B. R. Holstein and A. Ross, (2008),

arXiv:0802.0716 [hep-ph].
[92] V. Vaidya, Phys. Rev. D 91, 024017 (2015),

arXiv:1410.5348 [hep-th].
[93] A. Guevara, JHEP 04, 033 (2019),

arXiv:1706.02314 [hep-th].
[94] K. Haddad and A. Helset,

Phys. Rev. Lett. 125, 181603 (2020),
arXiv:2005.13897 [hep-th].

[95] H. Georgi, Phys. Lett. B 240, 447 (1990).
[96] N. Isgur and M. B. Wise,

Phys. Lett. B 232, 113 (1989).
[97] N. Isgur and M. B. Wise,

Phys. Lett. B 237, 527 (1990).
[98] A. V. Manohar and M. B. Wise, Heavy quark physics,

Vol. 10 (2000).
[99] E. T. Newman and A. I. Janis,

J. Math. Phys. 6, 915 (1965).
[100] D. Ghosh and B. Sahoo,

Phys. Rev. D 105, 025024 (2022),
arXiv:2106.10741 [hep-th].

[101] P. Di Vecchia, C. Heissenberg, and R. Russo,
JHEP 08, 172 (2022), arXiv:2203.11915 [hep-th].

[102] P. Di Vecchia, C. Heissenberg, R. Russo,
and G. Veneziano, JHEP 07, 039 (2022),
arXiv:2204.02378 [hep-th].

[103] T. Damour, Phys. Rev. D 102, 124008 (2020),
arXiv:2010.01641 [gr-qc].

http://dx.doi.org/10.1007/JHEP01(2016)086
http://arxiv.org/abs/1411.5745
http://arxiv.org/abs/2310.04405
http://arxiv.org/abs/0802.0716
http://dx.doi.org/10.1103/PhysRevD.91.024017
http://arxiv.org/abs/1410.5348
http://dx.doi.org/10.1007/JHEP04(2019)033
http://arxiv.org/abs/1706.02314
http://dx.doi.org/10.1103/PhysRevLett.125.181603
http://arxiv.org/abs/2005.13897
http://dx.doi.org/10.1016/0370-2693(90)91128-X
http://dx.doi.org/10.1016/0370-2693(89)90566-2
http://dx.doi.org/10.1016/0370-2693(90)91219-2
http://dx.doi.org/10.1063/1.1704350
http://dx.doi.org/10.1103/PhysRevD.105.025024
http://arxiv.org/abs/2106.10741
http://dx.doi.org/10.1007/JHEP08(2022)172
http://arxiv.org/abs/2203.11915
http://dx.doi.org/10.1007/JHEP07(2022)039
http://arxiv.org/abs/2204.02378
http://dx.doi.org/10.1103/PhysRevD.102.124008
http://arxiv.org/abs/2010.01641

