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Abstract Quarks (except top quarks) and gluons produced
in collider experiments hadronize and fragment into sprays
of stable particles, called jets. Identification of quark flavor
is desired for collider experiments in high-energy physics,
relying on flavor tagging algorithms. In this study, using a
full simulation of the Circular Electron Positron Collider
(CEPC), we investigate the flavor tagging performance of two
different algorithms: ParticleNet, based on a Graph Neural
Network, and LCFIPlus, based on the Gradient Booted Deci-
sion Tree. Compared to LCFIPlus, ParticleNet significantly
enhances flavor tagging performance, resulting in a signifi-
cant improvement in benchmark measurement accuracy, i.e.,
a 36% improvement for σ(ZH) · Br(Z → νν̄, H → cc̄)
measurement and a 75% improvement for |Vcb| measurement
via W boson decay, respectively, when the CEPC operates as
a Higgs factory at the center-of-mass energy of 240 GeV and
collects an integrated luminosity of 5.6 ab−1. We compare the
performance of ParticleNet and LCFIPlus at different vertex
detector configurations, observing that the inner radius is the
most sensitive parameter, followed by material budget and
spatial resolution.

1 Introduction

A jet refers to a spray of stable particles formed through
the hadronization of an energetic quark or gluon. The
W /Z /Higgs bosons and the top quark, the four most massive
Standard Model (SM) particles, decay mainly into quarks
and hadronize to jets [1]. Figure 1 illustrates a reconstructed
e+e− → Z → cc̄ event with center-of-mass energy of
91.2 GeV. Efficient identification of the jet flavor could shed
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light on the properties of massive SM particles and is criti-
cal for experimental exploration at the high-energy frontier.
Flavor tagging is used to distinguish jets which hadronize
from quarks of different flavors or from gluons. To promote
the development of future electron-positron Higgs factories,
which is regarded as a high priority future collider [4], accu-
rate performance analysis and optimization of both detectors
and algorithms are essential. Jet flavor tagging and relevant
benchmark analyses serve as good objectives.

The Circular Electron Positron Collider (CEPC) [5] is a
large-scale collider facility that was proposed after the dis-
covery of the Higgs boson in 2012. It is designed to have a cir-
cumference of 100 km with two interaction points. It will be
able to operate at multiple center-of-mass energies, including
240 GeV as a Higgs factory, 160 GeV for a W+W− thresh-
old scan, and 91 GeV as a Z factory. It also can be upgraded
to 360 GeV for a t t̄ threshold scan. Table 1 summarizes its
baseline operating scheme and the corresponding boson yield
predictions [6]. One of the main scientific objectives of the
CEPC is the precise measurement of properties of the Higgs
boson. Additionally, trillions of Z → qq̄ events can provide
an excellent opportunity for studying flavor physics. In the
future, the CEPC can be upgraded to a proton-proton collider
to directly explore new physics at a center-of-mass energy of
about 100 TeV.

Jet flavor tagging performance depends on the design of
the experimental detector, particularly on the design of the
vertex detector, as well as the utilization of reconstruction
algorithms. In this study, we apply ParticleNet [7] to the
CEPC and assess its flavor tagging performance in the mea-
surement of σ(ZH)·Br(Z → νν̄, H → cc̄) and |Vcb| viaW
decay. Our results demonstrate that ParticleNet outperforms
the baseline jet flavor tagging algorithm, LCFIPlus [8], by
achieving a 36% and 75% improvement in the relative sta-
tistical accuracy of σ(ZH) · Br(Z → νν̄, H → cc̄) and
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Fig. 1 The display of a reconstructed e+e− → Z → cc̄ event gen-
erated using Whizard 1.95 [2] and Pythia 6 [3], with a center-of-mass
energy of 91.2 GeV. The event is simulated using CEPC baseline soft-
ware. Different particles are depicted with different colors: red for e±,
cyan for μ±, blue for π±, orange for photons, and magenta for neutral
hadrons

Table 1 The operation scheme of the CEPC, including the center-of-
mass energy, the instantaneous luminosity, the total integrated luminos-
ity, and the event yields [6]

Operation mode Z factory WW Higgs factory t t̄

√
s (GeV) 91.2 160 240 360

Run time (year) 2 1 10 5

Instantaneous luminosity 191.7 26.6 8.3 0.83

(1034cm−2s−1, per IP)

Integrated luminosity 100 6 20 1

(ab−1, 2 IPs)

Event yields 3×1012 1×108 4×106 5×105

|Vcb| measurement via W boson decay at the center-of-mass
energy of 240 GeV with integrated luminosity of 5.6 ab−1.
This improvement is likely attributed to the approach of view-
ing the jet as a particle cloud and the more effective uti-
lization of local neighborhood information of particles in
ParticleNet, as opposed to traditional multivariate methods
based on observables motivated by QCD theory [7]. We also
observe that both ParticleNet and LCFIPlus perform better
in the barrel region when compared to the endcap region. By
analyzing the dependence of flavor tagging performance on
vertex detector configurations, we observe that the most sen-
sitive vertex detector parameter is the inner radius, followed
by the material budget and spatial resolution. This result is
consistent with previous studies conducted using LCFIPlus.

This article is organized as follows. Section 2 introduces
the CEPC detector, software, and the samples used in this
analysis. Section 3 describes the jet flavor tagging algorithms
(LCFIPlus and ParticleNet) and the method used to evaluate
their performance. Section 4 quantifies the dependence of fla-
vor tagging performance on the vertex detector configuration

Fig. 2 The CEPC baseline detector. From the innermost subdetector
to outermost one, the detector is composed of a silicon pixel vertex
detector, a silicon inner tracker, a TPC, a silicon external tracker, an
ECAL, an HCAL, a solenoid magnet with a field strength of 3 Tesla,
and a return yoke embedded with a muon detector. Five pairs of silicon
tracking disks are installed in the forward regions to enlarge the tracking
acceptance [6]

and compares the performance of ParticleNet and LCFIPlus.
Finally, Sect. 5 provides a brief conclusion.

2 CEPC Detector, software, and samples

At present, the two interaction points of the CEPC are
designed with the same baseline detector [5], which is
designed according to the Particle Flow Algorithm (PFA)
principle [9] and emphasizes reconstructing visible final
state particles in the most-suited detector subsystems. The
structure of the CECP detector is shown in Fig. 2. From
the innermost subdetector to outermost one, the baseline
detector is composed of a silicon pixel vertex detector
[10], a silicon inner tracker, a Time Projection Cham-
ber (TPC) [11] surrounded by a silicon external tracker,
a silicon-tungsten sampling Electromagnetic Calorimeter
(ECAL) [12], a steel-glass Resistive Plate Chambers sam-
pling Hadronic Calorimeter (HCAL) [5], a 3 Tesla supercon-
ducting solenoid magnet, and a flux return yoke embedded
with a muon detector. For flavor tagging, the vertex detec-
tor is critical. At the CEPC, the vertex detector is designed
with six concentric cylindrical layers of square silicon pixel
sensors. The mechanical structure of the vertex detector con-
sists of ladders, with each ladder supporting sensors on both
sides. The detailed structure of the vertex detector is depicted
in Fig. 3, and its specific parameters are listed in Table 2.

A baseline reconstruction software chain has been devel-
oped to quantify the scientific merit and guide the detec-
tor optimization of CEPC, see Fig. 4. The data flow of the
CEPC baseline software starts from the event generators of
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Fig. 3 Schematic view of vertex detector. Two layers of silicon pixel
sensors are mounted on both sides of each of the three ladders to provide
six space points. The beam pipe is surrounded by the vertex detector
[13]

Table 2 The baseline design parameters of the CEPC vertex system
[13]

Radius (mm) Spatial resolution (µm) Material budget

Layer 1 16 2.8 0.15%/X0

Layer 2 18 6 0.15%/X0

Layer 3 37 4 0.15%/X0

Layer 4 39 4 0.15%/X0

Layer 5 58 4 0.15%/X0

Layer 6 60 4 0.15%/X0

Fig. 4 The information flow of the CEPC software chain [14]

Whizard 1.95 [2] and Pythia 6 [3]. The detector geometry
is implemented into MokkaPlus [15], a GEANT4-based full
simulation module. MokkaPlus calculates the energy deposi-
tion in the detector-sensitive volumes and creates simulated
hits. The digitized tracker hits are reconstructed into tracks
via Clupatra [16]. The Particle Flow algorithm, Arbor [17],
reads the reconstructed tracks and the calorimeter hits to build
reconstructed particles. High-level reconstruction algorithms
reconstruct composite physics objects such as converted pho-

tons, jets, tau leptons, and so on, and identify the flavor of
the jets.

We utilize hadronic events at Z -pole operation, includ-
ing 1 million Z → bb̄ events, 1 million Z → cc̄ events,
and 0.33 million each of Z → uū/dd̄/ss̄ events. For Par-
ticleNet, we divide the samples into three distinct sets: the
training set for training the model, the validation set used to
validate whether the model is overfitting or underfitting, and
the testing set used to give flavor tagging results. The ratios
of samples in these sets were set at 60%, 20%, and 20%,
respectively. For LCFIPlus, we use the full event sample as
the testing set, since the model is pre-trained with a sepa-
rate, statistically independent Z -pole sample produced using
the same software and identical simulation settings. Unless
explicitly stated, the results presented in this paper are based
on the aforementioned samples.

3 Flavor tagging algorithms and their performance

In this section, we introduce LCFIPlus and ParticleNet and
compare their performance based on the CEPC detector and
software. Both algorithms read the information of recon-
structed jet candidates and calculate the jet likeness to b,
c, and light categories.

The LCFIPlus package, a framework for jet analysis in lin-
ear collider studies, was originally developed for the Interna-
tional Linear Collider (ILC) [18], and has since been widely
used for studies with the Compact Linear e+e− Collider
(CLIC) [19], the Future Circular Collider e+e− (FCC-ee)
[20], and the CEPC. The LCFIPlus package consists of vertex
finding, jet clustering, vertex refinement, and flavor tagging.
To perform flavor tagging, the jets are classified into four
categories based on the number of reconstructed vertices and
isolated leptons in the jet. A set of variables is then extracted
for each category, which includes the number of tracks in each
vertex, the vertex mass, the distance between the secondary
vertex and the primary vertex, the vertex decay length, the
track transverse momentum, and more. Further details can
be found in [8]. In each category, two types of flavor tagging
algorithms are trained using the Gradient Boosted Decision
Tree (GBDT) method, one for the b-tagging algorithm and
the other for the c-tagging algorithm.

The ParticleNet approach, based on a Graph Neural Net-
work (GNN) [21], was first published in 2020 [7]. The archi-
tecture of ParticleNet is shown in the left panel of Fig. 5.
It consists of three EdgeConv [22] blocks, one channel-
wise global average pooling block, and two fully-connected
blocks followed by a softmax function [23] to output the
b/c/light-likeness for each jet. The core concept of Parti-
cleNet is the EdgeConv operation, which is realized by apply-
ing feature aggregation for each particle and its k nearest par-
ticles in the jet. The specific process of each EdgeConv block
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Fig. 5 The architecture of the ParticleNet (left) and the structure of the
EdgeConv block (right) [7]

is illustrated in the right panel of Fig. 5. It starts by finding the
k-nearest neighbors for each particle within the jet. The edge
between each particle and its k-nearest neighbors is deter-
mined using the input features of each particle. In the first
EdgeConv block, the spatial coordinates (�η, �φ) of the par-
ticles in the pseudorapidity-azimuth space are used to com-
pute the edge of each pair of particles, while the subsequent
EdgeConv blocks use the learned feature vectors as coordi-
nates. The input features for our task, listed in Table 3, include
the kinematic variables constructed with the 4-momentum of
each particle, the PID information, the charge, and the impact
parameters, where the distance between the interaction point
and the path of a track is defined as the impact parameter,
and where the distance along the beam is called z0 and per-
pendicular to the beam is called d0.

Both flavor tagging algorithms assign three values to each
jet: b-likeness, c-likeness, and light-likeness, with the con-
straint that their sum equals unity. The scatter plots in Fig. 6
show the distribution of b-likeness versus c-likeness for sam-
ples of e+e− → Z → bb̄/cc̄/light quarks with ParticleNet.
In these plots, b-jets tend to concentrate in the region of larger
b-likeness, c-jets in the region of larger c-likeness, and light-
jets in the region of smaller b/c-likeness. Compared to that of
ParticleNet, the bins that contain a larger number of counts
tend to be more dispersed in LCFIPlus, which returns an over-
all broader distribution. The phase space spanned by the b/c-
likeness is divided into three different regions corresponding
to identified b, c, and light quarks. We then obtain the ratios
of b-jets identified as b-jets, b-jets identified as c-jets, and so
on. These ratios can be represented with a migration matrix,

Table 3 The input variables used in ParticleNet for jet flavor tagging
at the CEPC

Variable Definition

� η Difference in pseudorapidity between the
particle and the jet axis

� φ Difference in azimuthal angle between the
particle and the jet axis

logPt Logarithm of the particle’s Pt

logE Logarithm of the particle’s energy

log Pt
Pt ( jet)

Logarithm of the particle’s Pt relative to
the jet Pt

log E
E( jet) Logarithm of the particle’s energy relative

to the jet energy

�R Angular separation between the particle
and the jet axis

d0 Transverse impact parameter of the track

d0err Uncertainty associated with the
measurement of the d0

z0 Longitudinal impact parameter of the
track

z0err Uncertainty associated with the
measurement of the z0

Charge Electric charge of the particle

isElectron Whether the particle is an electron

isMuon Whether the particle is a muon

isChargedKaon Whether the particle is a charged Kaon

isChargedPion Whether the particle is a charged Pion

isProton Whether the particle is a proton

isNeutralHadron Whether the particle is a neutral hadron

isPhoton Whether the particle is a photon

as shown in Fig. 7. The working point (phase space sepa-
ration) can be optimized according to the specific analysis
requirements. For general cases, we adopt the method using
two orthogonal lines passing through the point (0.5, 0.5), as
depicted by the two red lines in Fig. 6.

4 Performance analyses

The performance of jet flavor tagging can be characterized by
the migration matrix, and this is reflected in the anticipated
accuracy of benchmark measurements. The design of the ver-
tex detector also plays an important role in the performance
of jet flavor tagging.

4.1 Performance comparison and impact on benchmarks of
σ(ZH) · Br(Z → νν̄, H → cc̄) and |Vcb|

Figure 7 displays the migration matrices obtained using
LCFIPlus and ParticleNet, respectively. Compared to the
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Fig. 6 The distribution of b/c-likeness for samples of e+e− → Z → bb̄/cc̄/light quarks with ParticleNet approach. The parallel lines divide the
space spanned by the b/c-likeness into three regions

performance of LCFIPlus, ParticleNet achieves a significant
improvement in b/c-tagging efficiency, with an enhancement
of 15% for b jets and 32% for c jets. The trace of the migra-
tion matrix, abbreviated as Trmig , is 3.0 for perfect jet flavor
tagging performance, and it increases from 2.30 to 2.64 when
switching from LCFIPlus to ParticleNet.

In the top panel of Fig. 8, we present the correlation
between jet flavor tagging performance, described by Trmig ,
and jet polar angle, which is defined as the angle with respect
to the beam line and represented by the angle θjet. The bound-
ary between the barrel region and the endcap region is marked
with two vertical orange dashed lines. Both LCFIPlus and

ParticleNet exhibit better performance in the barrel region
compared to the endcap region, due to the relatively lower
resolution of transverse momentum (Pt ) and impact parame-
ters (d0 and z0) in the endcap region. The value of ParticleNet
performance divided by LCFIPlus performance can be used
to describe the performance improvement of ParticleNet rel-
ative to LCFIPlus. The bottom panel of Fig. 8 shows the cor-
relation between those ratio values and the jet polar angle.
Compared to LCFIPlus, ParticleNet improves the trace of
the migration matrix by more than 10% in the barrel region
and more than 30% in the endcap regions, using the given
selection criteria.
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Fig. 7 The migration matrix of flavor tagging performance of Parti-
cleNet (top) and LCFIPlus (bottom) at the CEPC

The performance of both flavor tagging algorithms can
also be compared in benchmark analyses. The first anal-
ysis we consider is the signal strength measurement of
σ(ZH) · Br(Z → νν̄, H → cc̄). When CEPC operates
as a Higgs factory at the center-of-mass energy of 240 GeV
and collects an integrated luminosity of 5.6 ab−1, the top
panel of Fig. 9, which uses the same analysis method as in
Ref. [24], showcases the correlation between the trace of the
migration matrix and the accuracy of the signal strength of
σ(ZH) · Br(Z → νν̄, H → cc̄). Using LCFIPlus, the trace
is 2.30, corresponding to an accuracy of 0.057, indicated by
the green star. ParticleNet enhances the trace to 2.64, align-

Fig. 8 The top panel shows the correlation between jet flavor tagging
performance, quantified using the trace of the flavor tagging perfor-
mance matrix, and the jet polar angle. The bottom panel illustrates the
performance improvement of ParticleNet relative to LCFIPlus at differ-
ent jet polar angles. Two vertical lines mark the boundary between the
barrel and endcap regions

ing with an accuracy of 0.042, represented by the orange
star.

The second analysis we consider is the signal strength
measurement of |Vcb|, the magnitude of Vcb. Accurate mea-
surement of |Vcb| plays a pivotal role in the study of weak
interactions within the SM [25]. When CEPC operates as a
Higgs factory at the center-of-mass energy of 240 GeV and
collects an integrated luminosity of 5.6 ab−1, ParticleNet can
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Fig. 9 The dependence of relative statistical uncertainties for measure-
ment of σ(ZH) · Br(Z → νν̄, H → cc̄) [24] (top) and |Vcb| [26] (bot-
tom) on flavor tagging performance, which is represented with the trace
of flavor tagging performance matrix. The larger green/orange marker
corresponds to the result obtained by LCFIPlus/ParticleNet. When the
vertex detector parameters, including the inner radius, material budget,
and spatial resolution, are changed by a factor of 0.5/2 from the baseline
design (the geometry used in this simulation), the Trmig value changes
accordingly. It shifts from 2.64 to 2.75/2.53 for ParticleNet and from
2.30 to 2.10/2.50 for LCFIPlus, as indicated by the four vertical lines

significantly improve the accuracy of signal strength by 75%
in the measurement of |Vcb| through W+W− → μνqq̄ , as
depicted in the bottom panel of Fig. 9 [26].

4.2 Comparison of vertex detector optimization

Jet flavor tagging performance depends on the detector
design, especially that of the vertex detector. In this study,
the vertex detector is characterized by three parameters: the
material budget, the spatial resolution, and the inner radius.
The CEPC vertex detector is designed with three concentric
cylinders of double-sided layers, with parameters listed in
Table 2.

In a previous study [13] using the LCFIPlus flavor tag-
ging algorithm, the correlation between c-jet tagging effi-
ciency multiplied by purity (ε · p) and the considered vertex
detector parameters – the inner radius, the material budget,
and the spatial resolution– was quantified for the CEPC. Fur-
thermore, a study of Higgs→ bb̄/cc̄/gg at the CEPC [24]
revealed a correlation between Trmig and the c-jet tagging
ε · p. By combining these correlations – citing them from
two previous studies rather than deriving them based on the
samples used in this analysis – we obtain the correlation
between Trmig and relevant vertex detector parameters, as
shown in the top panel of Fig. 10. This correlation is formu-
lated in expression 1, where R0

radius/R
0
resolution/R0

material rep-
resent the default design of the CEPC vertex detector and
Rradius/Rresolution/Rmaterial represent the modified design. The
coefficients of each term log2

R0

R , extracted from fitting to
each kind of colored point with a straight line, indicate the
importance of the corresponding detector parameter on the
flavor tagging performance. The results obtained from LCFI-
Plus demonstrate that the flavor tagging performance is most
sensitive to the inner radius, followed by the material budget,
and lastly the spatial resolution.

Trmig = 2.30 + 0.06 · log2
R0
material

Rmaterial

+ 0.04 · log2
R0

resolution

Rresolution
+ 0.10 · log2

R0
radius

Rradius

(1)

Trmig = 2.64 + 0.03 · log2
R0

material

Rmaterial

+ 0.02 · log2
R0

resolution

Rresolution
+ 0.06 · log2

R0
radius

Rradius

(2)

The same analysis was conducted using ParticleNet. The
Z -pole samples are fully simulated based on different ver-
tex detector configurations and fed to ParticleNet to train.
The distribution of Trmig at different vertex detector config-
urations is illustrated in the bottom panel of Fig. 10. The
correlation between Trmig and three vertex detector param-
eters – the inner radius, the material budget, and the spatial
resolution – is expressed by Eq. (1). Compared to LCFIPlus,
ParticleNet exhibits a larger Trmig value (2.64 vs. 2.30), and
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Fig. 10 The correlation between the trace of a migration matrix and
relative scanned parameters for LCFIPlus (top) and ParticleNet (bot-
tom). It is important to note that the data for the top panel are cited from
previous studies [13,24]

its coefficients are roughly 50% of those of LCFIPlus. In other
words, the ParticleNet demonstrates a lower dependence on
the geometric parameters. However, both methods have the
same order of impact for three different geometric parame-
ters: both identify the inner radius as the most sensitive to
flavor tagging performance and spatial resolution as the least
sensitive.

The influence of geometric modifications on benchmark
analyses is assessed in Fig. 9 in Sect. 4.1. Consider two
scenarios: one optimal with challenging technology and the
other conservative with easily realized technology, where
the values of three vertex detector parameters – the inner
radius, the material budget, and the spatial resolution – are
0.5/2 times those of the baseline design. This adjustment
leads to changes in Trmig from 2.64 to 2.75/2.53 for Par-
ticleNet and from 2.30 to 2.10/2.50 for LCFIPlus, as indi-
cated by the vertical lines in Fig. 9. The accuracy of the
measurement of σ(ZH) · Br(Z → νν̄, H → cc̄) and |Vcb|
under these different scenarios using ParticleNet and LCFI-
Plus is presented in Table 4. Compared to LCFIPlus, Par-
ticleNet significantly improves the accuracy of benchmark
measurements. In the baseline scenario, the improvement
is 36% and 75% for σ(ZH) · Br(Z → νν̄, H → cc̄)
and Vcb measurement, respectively. While at the conserva-
tive scenario, the improvement can be enhanced to 58% for
σ(ZH) · Br(Z → νν̄, H → cc̄) and nearly 3 times for Vcb.

The values presented in Table 4 are contingent on the
performance of flavor tagging, which, in turn, is influenced
by various factors such as detector characteristics (including
acceptance and stability), hadronic fragmentation modes, jet
clustering algorithms, deep learning model architecture, and
training settings (e.g., epoch size, batch size, learning rate,
etc.). These factors introduce uncertainties in flavor tagging
performance, subsequently impacting the values in the table.
In certain analyses, jets with similar values of b-likeness, c-
likeness, and light-likeness are often excluded to attain high-
purity samples, thereby enhancing benchmark measurement
performance. A comprehensive understanding and model-
ing of jet flavor tagging performance at the CEPC requires
dedicated efforts. While we anticipate that experimental sys-
tematic uncertainties can be well-controlled with substantial
statistics from di-jet events at the CEPC Z -pole operation,
this study primarily aims to showcase the potential and drive
innovation and development in deep learning within high-
energy physics. Detailed exploration of these uncertainties
is beyond the scope of this study.

The enhanced flavor tagging performance of ParticleNet
contributes in two aspects [7]. Firstly, it adeptly treats the
jet as a particle cloud, respecting the inherent property of
permutation symmetry within jets. Secondly, the ParticleNet
architecture leverages EdgeConv operations extensively—a
convolution-like operation. The initial layers exploit local
neighborhood information, while the deeper layers discern
more global structures, akin to Convolutional Neural Net-
works. The success of ParticleNet has attracted attention from
several future facilities to apply it in their studies [27] and
achieve improved performance.
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Table 4 The accuracy of ννHcc̄ and Vcb measurement is assessed
under three scenarios: conservative, baseline, and optimal. In the con-
servative and optimal scenarios, three vertex detector parameters are

adjusted to 2 and 0.5 times their values in the baseline design. The

value of LCFIPlus
ParticleNet reflects the impact of the flavor tagging algorithm

on benchmark measurements

Conservative Baseline Optimal

ννHcc̄ LCFIPlus 0.071 0.057 0.047

ParticleNet 0.045 0.042 0.038
LCFIPlus

ParticleNet 1.58 1.36 1.26

|Vcb| LCFIPlus 0.0241 0.0133 0.0091

ParticleNet 0.0086 0.0076 0.0067
LCFIPlus

ParticleNet 2.80 1.75 1.36

5 Conclusion

Flavor tagging, a methodology employed to discern the ori-
gins of jets, holds immense significance in the realm of exper-
imental exploration at the High Energy Frontier. Jets origi-
nating from different quarks or gluons have key differences,
represented in the multiplicity of different species of parti-
cles, the secondary vertices, the opening angle of jets, etc.
The flavor tagging performance depends on both the flavor
tagging algorithm and detector design. To pursue excellent
discovery power and innovative design of the detector, inten-
sive research into the design of the key detector technolo-
gies, especially that for vertex detectors, must be performed.
Meanwhile, the development of innovative algorithms injects
new momentum into this field.

In this paper, we analyze the performance of ParticleNet
and LCFIPlus based on the preliminary CEPC baseline detec-
tor design. ParticleNet based on GNN has been intensively
used at CMS [28–30] and for studies of a future FCC-ee
[31]. LCFIPlus is a GBDT-based algorithm that has served as
the baseline flavor tagging algorithm for CEPC and multiple
future electron-positron Higgs factories. Using fully simu-
lated hadronic events at a center-of-mass energy of 91.2 GeV
at the CEPC baseline detector, we quantify the performance
of both algorithms. We use a 3-dimensional migration matrix
to describe the flavor tagging performance (representing the
identification efficiency and misidentification rate), and the
trace of the migration matrix is used as the key parameter to
characterize flavor tagging.

Using the CEPC baseline detector geometry and general
heavy-flavor jet selection criteria, we observe that ParticleNet
offers improved performance over LCFIPlus. At the inclu-
sive hadronic Z -pole sample, the trace of ParticleNet is larger
than LCFIPlus by more than 14%. Consequently, the relative
statistical accuracy of σ(ZH) · Br(Z → νν̄, H → cc̄) and
|Vcb| measurement via W boson decay is improved by 36%
and 75%, respectively, when CEPC operates as a Higgs fac-
tory at the center-of-mass energy of 240 GeV and collects
an integrated luminosity of 5.6 ab−1. Reference [32] addi-
tionally shows that ParticleNet can improve the statistical

uncertainty of RC measurement by 60% at the CEPC. The
flavor tagging performance of both ParticleNet and LCFI-
Plus, which is described by Trmig , depends on the polar angle
at which the jet is produced. Both algorithms exhibit better
performance in the barrel and smoothly degrade in the for-
ward region. We also apply ParticleNet to different vertex
detector geometries and observe that the flavor tagging per-
formance is most sensitive to the inner radius, followed by
the material budget and the spatial resolution. The result is
consistent with that conducted by LCFIPlus. Benchmark per-
formance in two scenarios, conservative and optimal, where
the values of three vertex detector parameters – the inner
radius, the material budget, and the spatial resolution – are
2 and 0.5 times those of the baseline design, reveals that
ParticleNet can significantly enhance physics performance
in the conservative scenario while showing less significant
improvement with the optimal detector design.
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