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Abstract Quarks, except top quark, and gluon would

hadronize and fragment into a spray of stable parti-

cles, called jet. Identification of quark flavor is essential

for collider experiments in high-energy physics, rely-

ing on flavor tagging algorithms. In this study, using a

full simulation of the Circular Electron Positron Col-

lider (CEPC), we investigated the flavor tagging per-

formance of two different algorithms: ParticleNet, based

on Graph Neural Network, and LCFIPlus, based on the

Gradient Booted Decision Tree. Compared to LCFI-

Plus, ParticleNet significantly enhances flavor tagging

performance, resulting in a significant improvement in

benchmark measurement accuracy, i.e., a 36% improve-

ment for σ(ZH) · Br(Z → νν̄,H → cc̄) measurement

and a 75% improvement for |Vcb| measurement via W

boson decay, respectively, when CEPC operates as a

Higgs factory at the center-of-mass energy of 240 GeV

and integrated luminosity of 5.6 ab−1. We compared

the performance of ParticleNet and LCFIPlus at differ-

ent vertex detector configurations, observing that the

inner radius is the most sensitive parameter, followed

by material budget and spatial resolution.

Keywords CEPC · Jet Flavor Tagging · ParticleNet

1 Introduction

A jet refers to a spray of stable particles formed through

the hadronization of an energetic quark or gluon. The

W/Z/Higgs boson and the top quark, the four most

massive Standard Model (SM) particles, decay mainly

into quarks and hadronize to jets. Figure 1 illustrates

a reconstructed e+e− → Z → cc̄ event with center-of-

mass energy of 91.2 GeV. Efficient identification of the

ae-mail: manqi.ruan@ihep.ac.cn, czhouphy@pku.edu.cn

Fig. 1 The display of a reconstructed e+e− → Z → cc̄ event
with center-of-mass energy of 91.2 GeV. Different particles
are depicted with different colors: red for e±, cyan for µ±,
blue for π±, orange for photons, and magenta for neutral
hadrons.

jet flavor could shed light on the properties of those

massive particles and is critical for experimental ex-

ploration at the high-energy frontier. Flavor tagging is

used to distinguish jets hadronized from different quark

flavors or gluon. To promote the development of future

electron-positron Higgs factories, which is regarded as

the highest priority for the next collider [1], accurate

performance analysis and optimization of both detec-

tors and algorithms are essential. Jet flavor tagging and

relevant benchmark analyses serve as good objectives.

The Circular Electron Positron Collider (CEPC) [2]

is a large-scale collider facility proposed after the dis-

covery of the Higgs boson in 2012. It is designed with

a circumference of 100 km with two interaction points.

It can operate at multiple center-of-mass energies, in-

cluding 240 GeV as a Higgs factory, 160 GeV for the

W+W− threshold scan, and 91 GeV as a Z factory. It

also can be upgraded to 360 GeV for the tt̄ threshold

scan. Table 1 summarizes its baseline operating scheme
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Table 1 The operation scheme of the CEPC, including the center-of-mass energy, the instantaneous luminosity, the total
integrated luminosity, and the event yields [3].

Operation mode Z factory WW Higgs factory tt̄
√
s (GeV) 91.2 160 240 360

Run time (year) 2 1 10 5
Instantaneous luminosity

191.7 26.6 8.3 0.83
(1034cm−2s−1, per IP)
Integrated luminosity

100 6 20 1
(ab−1, 2 IPs)
Event yields 3× 1012 1× 108 4× 106 5 × 105

and the corresponding boson yields [3]. In the future, it

can be upgraded to a proton-proton collider to directly

explore new physics at a center-of-mass energy of about

100 TeV. The main scientific objective of the CEPC is

the precise measurement of the Higgs properties, espe-

cially its coupling properties. Additionally, trillions of

Z → qq̄ events can provide an excellent opportunity for

studying flavor physics.

Jet flavor tagging performance depends on detector

design, particularly the design of the vertex detector,

as well as the utilization of reconstruction algorithms.

In this study, we apply ParticleNet [4] to the CEPC

and assess its flavor tagging performance in the mea-

surement of σ(ZH) · Br(Z → νν̄,H → cc̄) and |Vcb|
via W decay. Our results demonstrate that ParticleNet

outperforms the baseline jet flavor tagging algorithm,

LCFIPlus [5], by achieving a 36% and 75% improve-

ment in the relative statistical accuracy of σ(ZH) ·
Br(Z → νν̄,H → cc̄) and |Vcb| measurement via W bo-

son decay at the center-of-mass energy of 240 GeV and

integrated luminosity of 5.6 ab−1. We also observe that

both ParticleNet and LCFIPlus perform better in the

barrel region when compared to the endcap region. By

analyzing the dependence of flavor tagging performance

on vertex detector configurations, we observe that the

most sensitive vertex detector parameter is the inner

radius, followed by the material budget and spatial res-

olution. This result is consistent with previous studies

conducted using LCFIPlus.

This article is organized as follows. Section 2 intro-

duces the CEPC detector, software, and the samples

used in this analysis. Section 3 describes the jet flavor

tagging algorithms (LCFIPlus and ParticleNet) and the

method used to evaluate their performance. Section 4

quantifies the dependence of flavor tagging performance

on vertex detector configuration and compares the per-

formance of ParticleNet and LCFIPlus. Finally, Sec-

tion 5 provides a brief conclusion.

Fig. 2 The CEPC baseline detector. From inner to outer,
the detector is composed of a silicon pixel vertex detector,
a silicon inner tracker, a TPC, a silicon external tracker, an
ECAL, an HCAL, a solenoid of 3 Tesla, and a return yoke
embedded with a muon detector. Five pairs of silicon track-
ing disks are installed in the forward regions to enlarge the
tracking acceptance. [3]

2 CEPC Detector, software, and samples

At present, two interaction points of CEPC are de-

signed with the same baseline detector, which is de-

signed according to the Particle Flow Algorithm (PFA)

principle and emphasizes reconstructing visible final state

particles in the most-suited detector subsystems. The

structure of the CECP detector is shown in Fig. 2. From

inner to outer, the baseline detector is composed of a

silicon pixel vertex detector, a silicon inner tracker, a

Time Projection Chamber (TPC) surrounded by a sili-

con external tracker, a silicon-tungsten sampling Elec-

tromagnetic Calorimeter (ECAL), a steel-glass Resis-

tive Plate Chambers sampling Hadronic Calorimeter

(HCAL), a 3 Tesla superconducting solenoid, and a flux

return yoke embedded with a muon detector. For flavor

tagging, the vertex detector is critical. At the CEPC,

the vertex detector is designed with six concentric cylin-

drical layers of square silicon pixel sensors. The mechan-

ical structure of the vertex detector consists of ladders,

with each ladder supporting sensors on both sides. The
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Fig. 3 Schematic view of vertex detector. Two layers of sil-
icon pixel sensors are mounted on both sides of each of the
three ladders to provide six space points. The beam pipe is
surrounded by the vertex detector. [6]

Table 2 The baseline design parameters of the CEPC vertex
system. [6]

radius spatial resolution material budget
(mm) (µm)

Layer 1 16 2.8 0.15%/X0

Layer 2 18 6 0.15%/X0

Layer 3 37 4 0.15%/X0

Layer 4 39 4 0.15%/X0

Layer 5 58 4 0.15%/X0

Layer 6 60 4 0.15%/X0

Fig. 4 The information flow of the CEPC software chain. [7]

detailed structure of the vertex detector is depicted in

Fig. 3, and its specific parameters are listed in Table 2.

A baseline reconstruction software chain has been

developed to quantify the scientific merit and guide the

detector optimization of CEPC, see Fig. 4. The data

flow of the CEPC baseline software starts from the

event generators of Whizard [8] and Pythia [9]. The de-

tector geometry is implemented into MokkaPlus [10], a

GEANT4-based full simulation module. MokkaPlus cal-

culates the energy deposition in the detector-sensitive

volumes and creates simulated hits. For each sub-detector,

the digitization module converts the simulated hits into

digitized hits by convolution of the corresponding sub-

detector responses. The reconstruction modules include

the tracking, the Particle Flow, and the high-level re-

construction algorithms. The digitized tracker hits are

reconstructed into tracks via the tracking algorithms [11].

The Particle Flow algorithm, Arbor [12], reads the re-

constructed tracks and the calorimeter hits to build

reconstructed particles. High-level reconstruction algo-

rithms reconstruct composite physics objects such as

converted photons, jets, taus, and so on, and identify

the flavor of the jets.

In this paper, we utilized hadronic events at Z-pole

operation, including 1 million Z → bb̄ events, 1 mil-

lion Z → cc̄ events, and 0.33 million each of Z →
uū/dd̄/ss̄ events. For ParticleNet, we divided the sam-

ples into three distinct sets: the training set for training

the model, the validation set used to validate whether

the model is overfitting or underfitting, and the test-

ing set used to give flavor tagging results. The ratios of

samples in these sets were set at 60%, 20%, and 20%,

respectively. For LCFIPlus, we use all samples to do

the test since we have already trained the model.

3 Flavor tagging algorithms and their

performance

In this section, we introduce LCFIPlus and ParticleNet

and compare their performance based on the CEPC de-

tector and software. Both algorithms read the informa-

tion of reconstructed jet candidates and calculate the

jet likeness to b, c, and light categories.

The LCFIPlus package, a framework for jet anal-

ysis in linear collider studies, was originally developed

by the International Linear Collider (ILC) [13], and has

since been widely used at the Compact Linear e+e−

Collider (CLIC) [14], the Future Circular Collider e+e−

(FCC-ee) [15], and CEPC. The LCFIPlus package con-

sists of vertex finding, jet clustering, vertex refinement,

and flavor tagging. To perform flavor tagging, the jets

are classified into four categories based on the number

of reconstructed vertices and isolated leptons in the jet.

A set of variables is then extracted for each category,

which includes the number of tracks in each vertex, the

vertex mass, the distance between the secondary ver-

tex and the primary vertex, the vertex decay length,

the track transverse momentum, and more. Further de-

tails can be found in [5]. In each category, two types

of flavor tagging algorithms are trained using the Gra-

dient Boosted Decision Tree (GBDT) method, one for

the b-tagging algorithm and the other for the c-tagging

algorithm.

The ParticleNet based on Graph Neural Network

(GNN) [17] was published at the beginning of 2019.

The architecture of ParticleNet is shown in the left

plot of Fig. 5. It consists of three EdgeConv blocks, one
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Table 3 The input variables used in ParticleNet for jet flavor tagging at the CEPC.

Variable Definition

∆η difference in pseudorapidity between the particle and the jet axis
∆ϕ difference in azimuthal angle between the particle and the jet axis

logPt logarithm of the particle’s Pt

logE logarithm of the particle’s energy

log Pt

Pt(jet)
logarithm of the particle’s Pt relative to the jet Pt

log E
E(jet)

logarithm of the particle’s energy relative to the jet energy

∆R angular separation between the particle and the jet axis (
√

(∆η)2 + (∆ϕ)2)
d0 transverse impact parameter of the track

d0err uncertainty associated with the measurement of the d0
z0 longitudinal impact parameter of the track

z0err uncertainty associated with the measurement of the z0
charge electric charge of the particle

isElectron whether the particle is an electron
isMuon whether the particle is a muon

isChargedKaon whether the particle is a charged Kaon
isChargedPion whether the particle is a charged Pion

isProton whether the particle is a proton
isNeutralHadron whether the particle is a neutral hadron

isPhoton whether the particle is a photon

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

Fig. 5 The architecture of the ParticleNet (left) and the
structure of the EdgeConv block (right). [4]

channel-wise global average pooling block, and two fully

connected blocks followed by a softmax function to out-

put the b/c/light-likeness for each jet. The core concept

of ParticleNet is the EdgeConv operation, which is re-

alized by applying feature aggregation for each particle

and its k nearest particles in the jet. The specific process

of each EdgeConv block is illustrated in the right plot

of Fig. 5. It starts by finding the k-nearest neighbors for

each particle within the jet. The edge between each par-

ticle and its k-nearest neighbors is determined using the

input features of each particle. In the first EdgeConv

block, the spatial coordinates (∆η,∆ϕ) of the particles

in the pseudorapidity-azimuth space are used to com-

pute the edge of each pair of particles, while the subse-

quent EdgeConv blocks use the learned feature vectors

as coordinates. The input features for our task, listed

in Table 3, include the kinematic variables constructed

with the 4-momentum of each particle, the PID infor-

mation, the charge, and impact parameters. The dis-

tance between the interaction point and the path of a

track is defined as the impact parameter, where the dis-

tance along the beam is called z0 and perpendicular to

the beam is called d0.

Both flavor tagging algorithms assign three values to

each jet: b-likeness, c-likeness, and light-likeness, with

the constraint that their sum equals unity. The scatter

plots in Fig. 6 show the distribution of b-likeness ver-

sus c-likeness for samples of Z → bb̄/cc̄/light quarks

with ParticleNet. In these plots, b-jets tend to con-

centrate in the region of larger b-likeness, c-jets in the

region of larger c-likeness, and light-jets in the region

of smaller b/c-likeness. The phase space spanned by

the b/c-likeness is divided into three different regions

corresponding to identified b, c, and light quarks. We

then obtain the ratios of b-jets identified as b-jets, b-

jets identified as c-jets, and so on. These ratios can be

represented with a migration matrix, as shown in Fig. 7.

The working point (phase space separation) can be op-

timized according to the specific analysis requirements.

For general cases, we adopt the method using two or-

thogonal lines passing through the point (0.5, 0.5), as

depicted by the two red lines in figure 6.
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Fig. 6 The distribution of b/c-likeness for samples of Z → bb̄/cc̄/light quarks. The parallel lines divide the space spanned by
the b/c-likeness into three regions.

4 Performance analyses

The performance of ParticleNet and LCFIPlus is eval-

uated by the following three criteria. The first one is

the migration matrix since the perfect flavor tagging

performance corresponds to the identity matrix. The

second one is the physics performance, the better fla-

vor tagging algorithm would induce better physics re-

sults. The last one is the vertex detector optimization

since it is relevant to the resolution of transverse mo-

mentum and impact parameters, and further quantifies

the reconstructed performance of the detector.

4.1 Performance comparison and impact on

benchmarks of σ(ZH) ·Br(Z → νν̄,H → cc̄) and |Vcb|

Figure 7 displays the migration matrices obtained us-

ing LCFIPlus and ParticleNet, respectively. Comparing

the performance of LCFIPlus, ParticleNet achieves a

significant improvement in b/c-tagging efficiency, with

an enhancement of 15% for b jets and 32% for c jets.

The trace of the matrix abbreviated as Trmig is 3.0 for

perfect jet flavor tagging performance and it increases

from 2.30 to 2.64 with the utilization of ParticleNet.

Both LCFIPlus and ParticleNet face a more challeng-

ing task in c-tagging, as its properties lie between those

of b and light jets.

In the top plot of Fig. 8, we present the correlation

between jet flavor tagging performance, described by

Trmig, and jet polar angle, which is defined as the angle

with respect to the beam line and represented by the
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Fig. 7 The migration matrix of flavor tagging performance
of ParticleNet (top) and LCFIPlus (bottom) at the CEPC.

angle θjet. Both LCFIPlus and ParticleNet exhibit bet-

ter performance in the barrel region compared to the

endcap region, due to the relatively lower resolution

of transverse momentum (Pt) and impact parameters

(d0 and z0) in the endcap region. The value of Parti-

cleNet performance divided by LCFIPlus performance

can be used to describe the performance improvement

of ParticleNet relative to LCFIPlus. The bottom plot of

Fig. 8 shows the correlation between those values and

the jet polar angle. Compared to LCFIPlus, ParticleNet

can improve the trace of the migration matrix by more

than 10% in the barrel region and more than 30% in

the endcap regions.

The performance of both flavor tagging algorithms

is compared in benchmark analyses. The first analy-

sis we look into is the signal strength measurement of

σ(ZH) · Br(Z → νν̄,H → cc̄). In the paper [18], the
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Fig. 8 The top plot shows the correlation between jet fla-
vor tagging performance, quantified using the trace of the
flavor tagging performance matrix, and the jet polar angle.
The bottom plot illustrates the performance improvement of
ParticleNet relative to LCFIPlus at different jet polar angles.
Two vertical lines mark the boundary between the barrel and
endcap regions.

authors demonstrate a correlation between the trace

of the migration matrix and the accuracy of the sig-

nal strength of σ(ZH) · Br(Z → νν̄,H → cc̄) when

CEPC operates as a Higgs factory at the center-of-

mass energy of 240 GeV and integrated luminosity of

5.6 ab−1, as depicted in the top plot of Fig. 9. Using

LCFIPlus, the trace is 2.30, corresponding to an accu-

racy of 0.057, indicated by the green star. ParticleNet

enhances the trace to 2.64, aligning with an accuracy

of 0.042, represented by the orange star. The second

analysis is the signal strength measurement of |Vcb|,
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Fig. 9 The dependence of relative statistical uncertainties
for measurement of σ(ZH) · Br(Z → νν̄,H → cc̄) (top) and
|Vcb| (bottom) on flavor tagging performance, which is rep-
resented with the trace of flavor tagging performance ma-
trix. The larger green/orange marker corresponds to the re-
sult obtained by LCFIPlus/ParticleNet. When the vertex de-
tector parameters, including the inner radius, material bud-
get, and spatial resolution, are changed by a factor of 0.5/2
from the baseline design (the geometry used in this simu-
lation), the Trmig value changes accordingly. It shifts from
2.64 to 2.75/2.53 for ParticleNet and from 2.30 to 2.10/2.50
for LCFIPlus, as indicated by the four vertical lines.

the magnitude of Vcb, which is one of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements and gov-

erns the transition between charm and bottom quarks.

Accurate measurement of |Vcb| plays a pivotal role in

the study of weak interactions within the SM. When

CEPC operates as a Higgs factory at the center-of-

mass energy of 240 GeV and integrated luminosity of

5.6 ab−1, the authors demonstrate that ParticleNet can

significantly improve the accuracy of signal strength by

75% in the measurement of |Vcb| through W+W− →
µνqq̄ [19], as depicted in the bottom plot of Fig. 9.

4.2 Comparison on vertex detector optimization

Jet flavor tagging performance depends on the detec-

tor design, especially the vertex detector. The vertex

detector is mainly characterized by three parameters:

material budget, spatial resolution, and inner radius.

The CEPC vertex detector is designed with three con-

centric cylinders of double-sided layers, and the param-

eters are listed in Table 2.

In a previous study [6] using the LCFIPlus flavor

tagging algorithm, the correlation between c-jet tag-

ging efficiency multiplied by purity (ϵ · p) and relevant

vertex detector parameters was quantified. The mea-

surement of Higgs→ bb̄/cc̄/gg at the CEPC revealed a

correlation between Trmig and the c-jet tagging ϵ · p.
By combining these correlations, the relationship be-

tween Trmig and relevant vertex detector parameters

can be obtained, shown as the top plot of Fig. 10.

This correlation is formulated in expression 1, where

R0
radius/R

0
resolution/R

0
material represent the default design

of CEPC vertex detector and Rradius/Rresolution/Rmaterial

represent the new design. The coefficients fitted from

the correlations indicate the importance of the corre-

sponding detector parameter on the flavor tagging per-

formance. The results obtained from LCFIPlus demon-

strate that the flavor tagging performance is more sen-

sitive to the inner radius, followed by the material bud-

get, and lastly the spatial resolution.

Trmig = 2.30 + 0.06 · log2
R0

material

Rmaterial

+ 0.04 · log2
R0

resolution

Rresolution
+ 0.10 · log2

R0
radius

Rradius

(1)

Trmig = 2.64 + 0.03 · log2
R0

material

Rmaterial

+ 0.02 · log2
R0

resolution

Rresolution
+ 0.06 · log2

R0
radius

Rradius

(2)
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Fig. 10 The correlation between the trace of a migration
matrix and relative scanned parameters for LCFIPlus (top)
and ParticleNet (bottom).

The same analysis was conducted using ParticleNet.

The Z-pole samples are fully simulated based on dif-

ferent vertex detector configurations and fed to Parti-

cleNet to train. The results are illustrated in the bottom

plot of Fig. 10 and equation 2. Compared to LCFI-

Plus, ParticleNet exhibits a larger Trmig value (2.64

v.s. 2.30), and its coefficients are roughly 50% of those

of LCFIPlus. In other words, the ParticleNet has a

lower dependence on the geometric parameters. How-

ever, both methods have the same order of impact for

three different geometric parameters: both identify the

inner radius as the most sensitive to flavor tagging per-

formance and spatial resolution as the least sensitive.

Table 4 The accuracy of ννHcc̄ and Vcb measurement is
assessed under three scenarios: conservative, baseline, and op-
timal. In the conservative and optimal scenarios, three vertex
detector parameters are adjusted to 2 and 0.5 times their
values in the baseline design. The value of LCFIPlus

ParticleNet
reflects

the impact of the flavor tagging algorithm on benchmark mea-
surements.

conservative baseline optimal

ννHcc̄
LCFIPlus 0.071 0.057 0.047
ParticleNet 0.045 0.042 0.038
LCFIPlus

ParticleNet
1.58 1.36 1.26

|Vcb|
LCFIPlus 0.0241 0.0133 0.0091
ParticleNet 0.0086 0.0076 0.0067
LCFIPlus

ParticleNet
2.80 1.75 1.36

The influence of geometric modifications on bench-

mark analyses can be assessed by referring to Fig. 10

in subsection 4.1. Consider two scenarios: one optimal

and the other conservative, where the values of three
vertex detector parameters is 0.5/2 times compared to

the baseline design. This adjustment leads to changes in

Trmig from 2.64 to 2.75/2.53 for ParticleNet and from

2.30 to 2.10/2.50 for LCFIPlus, as indicated by the ver-

tical lines in Fig. 9. The accuracy of σ(ZH) · Br(Z →
νν̄,H → cc̄) and |Vcb| measurement under different sce-

narios using ParticleNet and LCFIPlus is presented in

Table 4. Compared to LCFIPlus, ParticleNet signifi-

cantly improves the accuracy of benchmark measure-

ments. In the baseline scenario, the improvement is 36%

and 75% for σ(ZH) · Br(Z → νν̄,H → cc̄) and Vcb

measurement, respectively. While at the conservative

scenario, the improvement can be enhanced to 58% for

σ(ZH) · Br(Z → νν̄,H → cc̄) and nearly 3 times for

Vcb.

5 Conclusion

Flavor tagging, a methodology employed to discern the

origins of jets, holds immense significance in the realm

of experimental exploration at the High Energy Fron-

tier. Jets originating from different quarks or gluons

have key differences, represented in the multiplicity of

different species of particles, the secondary vertices, the

opening angle of jets, etc. The flavor tagging perfor-

mance depends on both the flavor tagging algorithm

and detector design. To pursue excellent discovery power

and innovative design of the detector, intensive research

and design towards the key detector technologies, es-

pecially towards the vertex detectors are performed.

Meanwhile, the development of innovative algorithms

injects new momentum into this field.

In this paper, we analyze the performance of Parti-

cleNet and LCFIPlus. The ParticleNet based on GNN
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has been intensively used at CMS [20,21,22] and FCC-

ee [23]. The LCFIPlus is a GBDT-based algorithm that

has served as the baseline flavor tagging algorithm for

CEPC and multiple future electron-positron Higgs fac-

tories. Using fully simulated hadronic events at a center-

of-mass energy of 91.2 GeV at the CEPC baseline de-

tector, we quantify the performance of both algorithms.

We use a 3-dimensional migration matrix to describe

the flavor tagging performance (representing the iden-

tification efficiency and misidentification rate), and the

trace of the migration matrix is used as the key param-

eter to characterize flavor tagging.

At the CEPC baseline detector geometry, we ob-

serve that ParticleNet is significantly superior to LCFI-

Plus. At the inclusive hadronic Z pole sample, the trace

of ParticleNet is larger than LCFIPlus by more than

14%. Consequently, the relative statistical accuracy of

σ(ZH) · Br(Z → νν̄,H → cc̄) and |Vcb| measurement

via W boson decay is improved by 36% and 75%, re-

spectively, when CEPC operates as a Higgs factory at

the center-of-mass energy of 240 GeV and integrated

luminosity of 5.6 ab−1. Another paper [24] shows that

ParticleNet can improve the statistical uncertainty of

RC measurement by 60% at the CEPC. The flavor

tagging performance, which is described by Trmig, of

both ParticleNet and LCFIPlus depends on the polar

angle. Both algorithms exhibit better performance in

the barrel and smoothly degrade in the forward region.

We also apply ParticleNet to different vertex detector

geometries and observe that the flavor tagging perfor-

mance is most sensitive to the inner radius, followed

by the material budget and the spatial resolution. The

result is consistent with that conducted by LCFIPlus.

Benchmark performance in two scenarios, conservative

and optimal, where the values of three vertex detector

parameters are 2 and 0.5 times compared to the base-

line design, reveals that ParticleNet can significantly

enhance physics performance in the conservative sce-

nario while showing less significant improvement with

the aggressive detector design.
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