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Finite Element Models for Magnetic Shields Made
of Stacked Superconducting Tape Annuli

Julien Dular, Sébastien Brialmont, Philippe Vanderbemden, Christophe Geuzaine, and Benoît Vanderheyden

Abstract—Stacks of high-temperature superconducting tape
annuli can be used as magnetic shields operating efficiently
for both axial and transverse fields. However, due to their
layered geometry and hybrid electrical and magnetic properties,
implementing models of such structures is not straightforward.
In this work, we propose two different modelling approaches
with the finite element method: layered and homogenized. We
compare their accuracy and numerical efficiency for three
different formulations (h-ϕ, h-ϕ-b, and a-j), in both axial (2D-
axisymmetric) and transverse (3D) configurations. We show that
both approaches lead to comparable performance in the axial
case, but that the homogenized model is considerably harder to
use in the transverse case.

Index Terms—Finite element analysis, high-temperature super-
conductors, homogenization techniques, magnetic shielding.

I. INTRODUCTION

COMPARED to conventional magnetic shields made of
ferromagnetic materials only, superconducting shields

are not limited by a saturation magnetization and can therefore
operate at much higher flux densities [1], [2]. Shielding
devices may involve low-temperature supeconductors [3], [4]
or high-temperature superconductors (HTS). For HTS, bulk
materials [5], [6], [7] or coated conductors can be used, such
as eye-shaped loops [8], [9] or stacks of tapes [10].

We focus on the last category: stacks of HTS tapes. We
consider a shield that consists of a stack of a large number of
YBCO tape annuli with a large bore (26 mm), as illustrated in
Fig. 1. More specifically, we study the finite element modelling
of its magnetic response at 77 K.

In previous work [2], we demonstrated experimentally the
excellent shielding ability of such stacks and modelled the
corresponding magnetic shielding properties using an h-ϕ-
formulation with an homogenized model. The goal of the
present work is to make a thorough comparison of the nu-
merical performance of alternative modelling approaches.

Conducting this numerical study is relevant for at least two
reasons. First, the layered structure of the stack of tapes makes
the geometry of the problem very intricate. It is however not
obvious whether such a detailed description of the geometry
is necessary for extracting reliable predictions on the shielding
properties of the system. For this reason, we propose and
compare the predictions of two distinct models: a layered
(detailed) model, and an homogenized model [11].

Second, as a significant volume fraction of each tape con-
sists in a ferromagnetic (FM) substrate, the whole structure
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is a HTS-FM hybrid, having field-dependent resistivity and
permeability. Choosing an efficient numerical method for these
hybrid structures is not trivial as different approaches may
result in completely different numerical behaviors [12].

The paper is structured as follows. After defining the
shielding problem in Section II, we describe the layered and
homogenized models in Sections III and IV, respectively. We
then assess the accuracy and efficiency of both models when
solved with three different finite element formulations: the
h-ϕ, h-ϕ-b, and a-j-formulations [13], [14]: in Section V,
we consider the shielding with respect to an axial field,
which can be modelled as a 2D-axisymmetric problem, and
in Section VI, we analyze a transverse field configuration,
which requires a 3D model. The objective of the analysis is to
provide recommendations for obtaining accurate and efficient
numerical resolutions.

Models are solved with GetDP [15], geometry and mesh
generation is performed with Gmsh [16] and codes are based
on the Life-HTS toolkit1. All are open-source projects.

II. PROBLEM DEFINITION

We consider a magnetic shield made up of a stack of N =
182 YBCO tape annuli, extracted from a 46 mm-wide coated
conductor [2]. The superconducting tape is based on a rolling
assisted biaxially textured substrate (RABiTS) [17], made of
Ni-5at.%W. The volume fraction of the ferromagnetic (FM)
substrate in the tape, and hence also in the whole stack, is
f = 0.92. Annuli have an inner radius Rin = 13 mm and
an outer radius Rout = 22.5 mm. The sample height is H =
14.9 mm. The fabrication process is described in [18].
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Fig. 1: Magnetic shield made up of N = 182 stacked tape annuli.
(Left) Sample used for experimental measurements described in [2].
(Right) Illustration of the axial and transverse configurations.
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A. Shielding Factor

We study the magnetic response of the shield to a uniform
applied field bs in two configurations: axial and transverse,
as represented in Fig. 1. In the axial configuration, the field
bs is parallel to the symmetry axis of the stack of tapes, i.e.,
in the z-direction. In the transverse configuration, the field
is perpendicular to the cylinder axis, e.g., in the x-direction.
To quantify the shielding properties of the stack of tapes, we
define the shielding factor SF as follows:

SF =
∥bs∥
∥bin∥

, (1)

where bin is the magnetic flux density measured (or computed)
at the center of the stack. The shielding factor SF will be
our main indicator during the numerical analysis. It is a local
indicator, thus it is very sensitive to the solution quality.

Shielding factors in different situations were measured ex-
perimentally in our previous work [2]. Here, we consider two
cases, both at 77 K: (i) axial configuration, with a field ramped
from 0 to 670 mT at a rate of 5 mT/s, and (ii) transverse
configuration, with a field ramped from 0 to 60 mT at a rate
of 0.75 mT/s.

B. Material Parameters

The first magnetization curve of the FM substrate was
measured at 77 K [19]. We use the smooth fitting curves
represented in Fig. 2 to describe the magnetic constitutive
law of the FM substrate, which occupies a volume fraction
f = 0.92 of the stack of tapes. For the complementary volume
fraction, 1 − f , containing the HTS layer as well as buffer
layers, we assume that µ = µ0.
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Fig. 2: First magnetization curve (left) and relative permeability
(right) of the FM substrate at 77 K. Below 0.2 T, interpolation of
experimental data [19]; above 0.2 T, smooth extrapolation of them.

Only the superconducting layer is modelled as a conducting
material. We neglect the conductivity of the FM substrate
and other layers, and we assume that the HTS fills a volume
fraction 1 − f of the whole stack. We describe the electrical
resistivity of the HTS layer by a power law with n = 20 and
a field-dependent critical current density jc(b) that follows
Kim’s law [20]:

ρ(j; b) =
ec

jc(b)

(
∥j∥
jc(b)

)n−1

, jc(b) =
jc0

1 + ∥b∥/b0
, (2)

with jc0 = 7 × 109 A/m2 and b0 = 0.1 T. For simplicity,
we assume that jc(b) only depends on the norm ∥b∥ of the
magnetic flux density. In reality, tapes are more sensitive to

fields perpendicular to their surface than to parallel fields [21],
[22], but we neglect this anisotropic field-dependence here.

III. LAYERED MODEL

For the first model, we describe the magnetic shield with
a limited number of tapes Ns < N , with fictitious thickness
ws = H/Ns, in order to keep the total height H of the stack
unchanged. As a first step in the numerical analysis, we will
assess the influence of Ns on the obtained shielding factors to
verify the validity of this approach.

We assume that each fictitious tape consists of the super-
position of a FM layer of thickness fws and an HTS layer of
thickness (1− f)ws.

In the axial configuration, the problem is axisymmetric and
can be described by a 2D model, as represented in Fig. 3(a).
In the transverse configuration, a 3D model is necessary. By
symmetry, only a quarter of the domain can be modelled, as
illustrated in Fig. 3(b).

O bs

bs

(a) Axial configuration. (b) Transverse configuration.

O

z

Fig. 3: Geometry of the layered model. Yellow regions represent the
HTS layers and blue regions represent the FM layers.

The external field is imposed via an essential boundary
condition on a circular or spherical external surface, placed
at a distance R = 100 mm from the center O. Symmetry con-
ditions are imposed on symmetry surfaces. A global condition
on either the current or the voltage is associated with each
tape. In the axial configuration, screening currents are free
to appear, so the voltage is fixed to zero. In the transverse
configuration, by symmetry, both the current and the voltage
are equal to zero in each tape.

IV. HOMOGENIZED MODEL

For the second method, we replace the layered structure
by an homogenized material with anisotropic properties [11],
[23], [24]. The homogenized material has both supercon-
ducting and ferromagnetic properties, and the problem is
written in terms of local averaged fields h, b, e, and j, or
macroscale fields [25], assuming that each finite element in the
homogenized model covers a sufficiently high number of tapes.
The problem geometry is illustrated in Fig. 4 (note that a plane
symmetry with respect to z = 0 can be introduced). Boundary
conditions are identical to those in the layered model, but
global conditions only involve one conducting domain.

A. Mesoscale Fields

The homogenized problem is solved in terms of the
macroscale fields h (or b) and j. However, the field-dependent
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(a) Axial configuration. (b) Transverse configuration.
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Fig. 4: Geometry of the homogenized model. The green region
represents the hybrid HTS-FM material with anisotropic properties.

permeability in the FM substrate and the power law in the HTS
layer are functions of the local fields, or mesoscale fields.

The macroscale field h is defined as the volume average
h = fhF + (1 − f)hS, where hF and hS are the local fields
in the FM and HTS materials, respectively. By continuity of
h×n and b ·n, with n the normal of the interface, we have

hF
x = hS

x, hF
y = hS

y, µ(hF)hF
z = µ0h

S
z, (3)

in terms of the components of hF and hS in the Cartesian
coordinate system represented in Fig. 1. Consequently, the
relation between the components of hF and those of h readshF

x

hF
y

hF
z

 =

 hx

hy

µ0hz/
(
fµ0 + (1− f)µ(hF)

)
 . (4)

Because of the nonlinearity of µ(hF), expressing hF in terms
of h therefore requires to solve an implicit equation for hF

z

at each point where the permeability value is needed. We
solve this equation using a quasi-Newton method in which
the Jacobian is approximated by a finite difference.

Following similar steps as for the magnetic field, we can
express the relation between the Cartesian components of
the macroscale magnetic flux density, b, and those of the
mesoscale field in the FM, bF, as follows:bF

x

bF
y

bF
z

 =

ν0bx/
(
fν0 + (1− f)ν(bF)

)
ν0by/

(
fν0 + (1− f)ν(bF)

)
bz

 . (5)

This also involves an implicit equation for the x and y-
components of bF, that we also handle with a quasi-Newton
method.

For the current density, because the FM substrate is assumed
non-conducting, the relation between the macroscale current
density j and the mesoscale current density jS in the HTS
layer is simply given by jS = j/(1− f).

B. Anisotropic Permeability and Reluctivity
The homogenized material is anisotropic and its magnetic

permeability (e.g. used in the h-ϕ-formulation) takes the form
of a diagonal tensor, defined as follows [11]:

µ̃(hF) =

µ̄(hF) 0 0

0 µ̄(hF) 0

0 0 ¯̄µ(hF)


with

{
µ̄(hF) = fµ(hF) + (1− f)µ0,

¯̄µ(hF) =
(
f/µ(hF) + (1− f)/µ0

)−1
,

(6)

where hF is computed from h using Eq. (4).
Conversely, for formulations that involve the magnetic

flux density as a primal unknown, e.g., the h-ϕ-b and a-
j-formulations, the magnetic reluctivity takes the form of a
diagonal tensor as well, defined as follows:

ν̃(bF) =

ν̄(bF) 0 0

0 ν̄(bF) 0

0 0 ¯̄ν(bF)


with

{
ν̄(bF) =

(
f/ν(bF) + (1− f)/ν0

)−1
,

¯̄ν(bF) = fν(bF) + (1− f)ν0,
(7)

where bF is computed from b using Eq. (5).

C. Anisotropic Resistivity

The current density can only flow in the (x, y)-plane. In
the axial configuration, the current density is azimuthal by
construction. The isotropic power law can be used as is.

In the transverse configuration, to prevent current from flow-
ing in the z-direction, we introduce a relatively large resistivity
ρ∞ in that direction [24]. In practice, ρ∞ = 0.01 Ωm gives
satisfying results here. In the Cartesian coordinate system
represented in Fig. 1, the resulting resistivity takes the form
of a diagonal tensor, defined as follows:

ρ̃(jS; bS) =
1

1− f

ρ(jS; bS) 0 0

0 ρ(jS; bS) 0
0 0 ρ∞

 , (8)

where the power law resistivity depends on the local current
density jS and magnetic flux density bS in the HTS layer, that
have to be expressed in terms of the macroscale fields j and
b, respectively.

V. MODEL COMPARISON IN AXIAL FIELD (2D-AXI)

In this section, we consider the 2D-axisymmetric model
for the axial configuration. We compare the numerical results
and performance of the layered and homogenized models
with three different formulations: the h-ϕ, h-ϕ-b, and a-j-
formulations. Technical details about these formulations can
be found in [14].

The h-ϕ-formulation is a standard formulation for problems
with HTS and the other two are mixed formulations designed
for treating simple HTS-FM hybrid geometries in an efficient
manner [12]. We investigate here whether they are relevant
choices for the more involved stacked-tape geometry.

Note that other methods such as the homogeneous t-a-
formulation [26] or thin-shell h-ϕ-formulation [27] are rel-
evant possibilities to consider in further works.

The characteristic mesh size is chosen to scale linearly
with a number α that defines the level of refinement. Coarse,
medium, and fine levels are defined by α = 4, 2 and 1,
respectively. The coarse meshes associated with α = 4 for
both models are illustrated in Figs. 3(a) and 4(a).

We model the response from 0 to 670 mT at a constant
rate of 5 mT/s with steps of 16.75 mT. In case of non-
convergence, the steps are reduced using an adaptive time-
stepping procedure [14].
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A. Discretization of the Layered Model
To assess the influence of Ns on the SF values in the

layered model, we perform a series of simulations with an
increasing number of tapes, as shown in Fig. 5. In addition to
the asymmetric geometry of Fig. 3, we consider a symmetric
variation where the tapes are stacked upside-down for z < 0,
so that we have a plane symmetry with respect to z. We first
consider a fine mesh (α = 1) and the h-ϕ-formulation.
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Ns = 8 - sym. Ns = 8 - asym.
Ns = 16 - sym. Ns = 16 - asym.
Ns = 32 - sym. Ns = 32 - asym.
Ns = 64 - sym. Ns = 64 - asym.

Fig. 5: Influence of Ns in the layered model in the axial configuration.
Results from the h-ϕ-formulation and α = 1. The dashed gray curve
corresponds to the experimental measurements.

Figure 5 shows that the results are strongly affected by Ns,
especially at low field amplitudes and with the asymmetric
model. A sufficient number Ns is necessary to obtain reliable
SF predictions.

Results are also sensitive to the symmetry of the model.
In the asymmetric case, magnetic flux lines are channelled
into the FM layer at the bottom of the stack, whereas in the
symmetric case the HTS layer repels them away from the
cylinder. This influences the field at the center of the stack
and explains why SF values are lower in the asymmetric case.

The mesh size should be chosen carefully at low fields.
Indeed, for low fields, the screening currents only circulate
over a thin region at the outer edges of the HTS tapes,
as shown in the upper-left part of Fig. 7. For an accurate
evaluation of the SF in that regime, the associated penetrated
region should be meshed with enough elements. With α = 1,
we computed that the relative difference on the SF values
between the three formulations is less than 10% at the lowest
considered field (16.75 mT) for Ns = 64.

B. Comparison with the Homogenized Model
As with the layered model, the mesh size in the homoge-

nized model has to be chosen in accordance with the desired
accuracy at low fields. With α = 1, the relative difference
on SF computed by the different formulations at 16.75 mT is
21%, and drops below 10% for higher values of the applied
field. The agreement between the homogenized and layered
models is illustrated in Figs. 6 and 7 for α = 1. Note that both
are also in fair agreement with the experimental measurements.

C. Comparison of the Numerical Efficiencies
For a given discretization level, both models give results of

comparable accuracy with the three formulations. However,
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Homogenized model
Layered model - Ns = 64 - symmetric
Layered model - Ns = 64 - asymmetric
Experimental measurements

Fig. 6: Shielding factors from the h-ϕ-formulation on the layered and
homogenized models in the axial configuration. Fine mesh (α = 1).

‖bs‖ = 50 mT ‖bs‖ = 350 mT ‖bs‖ = 540 mT

−jθ or −jS
θ (A/m2)0 4× 109

Fig. 7: Azimuthal current density obtained by the two models in
the axial configuration for three values of the applied field. (Up)
Layered model with Ns = 64 and the h-ϕ-formulation. The HTS
layer have been thickened for clarity purposes. (Down) Homogenized
model with the h-ϕ-b-formulation.

they are not equivalent in terms of computational cost. The
computational time (CPU time) is mainly determined by two
indicators: the number of degrees of freedom (DOFs) and
the total number of iterations. Key performance figures are
summarized in Table I.

TABLE I: Performance of the models in the axial case (2D-axi).
Model Formul. # DOFs # iterations (# t.s.) Total time

Ns = 16
h-ϕ 44 516 1 538 (57) 51 m
h-ϕ-b 78 298 1 100 (42) 49 m
a-j 45 622 1 233 (40) 38 m

Ns = 32
h-ϕ 51 261 1 599 (64) 1 h 05 m
h-ϕ-b 85 237 1 431 (57) 1 h 12 m
a-j 53 679 1 361 (43) 51 m

Ns = 64

h-ϕ 55 925 2 536 (112) 1 h 51 m
h-ϕ-b 92 290 2 491 (106) 2 h 22 m
a-j (α = 1) 60 967 Not converged /
a-j (α = 0.5) 192 916 2 419 (54) 6 h 59 m

Homog.
h-ϕ 49 068 2 522 (95) 1 h 42 m
h-ϕ-b 62 807 1 828 (124) 2 h 09 m
a-j 44 498 1 176 (40) 48 m

Performance of the different approaches and formulations, on a fine mesh
resolution with α = 1, except for the a-j-formulation with Ns = 64, for
which α = 0.5. The layered model is symmetric and the homogenized model
accounts for the z-plane symmetry. Simulation up to ∥bs∥ = 670 mT in the
axial configuration, with a minimum of 40 time steps. The actual number of
time steps (t.s.) resulting from the adaptive time-stepping procedure is given
within parenthesis in the table. The CPU times are for a single AMD EPYC
Rome CPU at 2.9 GHz.

Among the different formulations, the a-j-formulation
demonstrates the highest overall efficiency in terms of CPU
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time, but it suffers from solving difficulties with the default
linear solver in MUMPS [28] for high values of Ns if the
mesh is not sufficiently fine. These difficulties already appear
for Ns = 16 for α = 2, and were also observed in earlier
works in other situations involving global variables [14].

None of the two models, layered or homogenized, sig-
nificantly outperforms the other in the axial configuration.
The computational cost associated with the implicit equa-
tion resolution in the homogenized model only accounts for
approximately 6% of the total cost of the simulation, and
does not disqualify the approach. Both approaches are equally
valid. Most importantly, the mesh discretization should be fine
enough for the desired accuracy at low fields.

VI. MODEL COMPARISON IN TRANSVERSE FIELD (3D)

For the transverse configuration, we consider a mesh whose
characteristic size scales linearly a multiplier α as in the 2D
model. The coarse meshes associated with α = 4 for both
models are represented in Figs. 3(b) and 4(b) (the outside of
the stack is not represented for clarity).

Note that aligning the elements with the principal directions
of anisotropy and using prismatic elements was found to
significantly help the resolution for the homogenized model.

We model the magnetic response of the system from 0 to
60 mT, with steps of 1.5 mT, and use an adaptive time-stepping
procedure in the case of non-convergence.

A. Discretization of the Layered Model

As shown in Fig. 8, in the transverse case, the SF values
are much less sensitive to Ns than in the axial case. Similarly,
the symmetry of the stack hardly affects the solution. In the
following, we choose the symmetric model and Ns = 16.
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Fig. 8: Influence of Ns in the layered model in the transverse
configuration, for a fine mesh (α = 1) and the h-ϕ-formulation.
Asymmetric and symmetric geometries are considered. The dashed
gray curve corresponds to the experimental measurements.

The SF values obtained with the three formulations for
different discretization levels are given in Fig. 9. The solutions
approach each other with mesh refinement, but non-negligible
changes are still observed between the medium and fine
meshes. As shown in Table II, the associated simulations
already exceed 7 hours of CPU time, which illustrates how
challenging this problem is in 3D.
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h-φ(-b) - coarse
h-φ(-b) - medium
h-φ(-b) - fine
a-j - coarse
a-j - medium
a-j - fine

Fig. 9: Shielding factors computed by three formulations on the
layered model (Ns = 16) in the transverse configuration, for three
discretization levels (α = 4, 2, and 1). Curves for the h-ϕ and h-ϕ-b-
formulations are visually indistinguishable. The case α = 1 for the a-
j-formulation was stopped at 7.5 mT after 30 hours of CPU time. The
dashed gray curve corresponds to the experimental measurements.

B. Comparison with the Homogenized Model

The homogenized model produces solutions of similar qual-
ity compared to the layered model, as shown in Figs. 10 and
11. Solutions may differ locally, e.g., on the top of the stack
of tapes for the relative permeability, but the overall field
distributions and SF values are in good agreement.
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‖bs‖ (mT)
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h-φ - coarse
h-φ - medium
h-φ-b - coarse
h-φ-b - medium
a-j - coarse
a-j - medium

Fig. 10: Shielding factors from the h-ϕ, h-ϕ-b, and a-j-formulations
on the homogenized model in the transverse configuration, for differ-
ent discretization levels. The dotted curves are given for comparison
with the layered model (h-ϕ fine and a-j medium). The dashed gray
curve corresponds to the experimental measurements.

C. Comparison of the Numerical Efficiencies

In contrast to the case of the axial configuration, signifi-
cant differences in numerical efficiency are observed in the
transverse case. Performance figures are gathered in Table II.

With the layered model, the h-ϕ-b-formulation converges
in a smaller number of iterations than the h-ϕ-formulation.
This is directly related to the fact that the reluctivity can
be more efficiently handled than the permeability by iterative
methods [29]. However, the number of DOFs involved with
the h-ϕ-b-formulation is much higher, so that the CPU time
associated with the h-ϕ-b-formulation becomes higher for the
fine mesh resolution.
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Layered

Homogenized Homogenized

(a) ‖bs‖ = 12 mT. (b) ‖bs‖ = 24 mT.

µr (-) 365
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Fig. 11: Relative permeability obtained by the two models in the
transverse configuration and the h-ϕ-formulation, with the medium
mesh resolution (α = 2) for two values of applied field. The solution
in the plane x = y is indicated by the gray arrows. (Up) Layered
model, Ns = 16. (Down) Homogenized model, the permeability is
the scalar value µr(h

F).

TABLE II: Performance of the models in the transverse case (3D).
Model Formul. # DOFs # it. (# t.s.) Total time

Layered
Coarse

h-ϕ 3 579 413 (40) 3 m 46
h-ϕ-b 10 419 165 (40) 1 m 37
a-j 18 224 172 (40) 3 m 50

Layered
Medium

h-ϕ 23 511 471 (40) 35 m 50
h-ϕ-b 84 015 222 (40) 34 m 40
a-j 120 716 765 (43) 3 h 49 m

Layered
Fine

h-ϕ 151 676 524 (40) 7 h 23 m
h-ϕ-b 631 204 278 (40) 13 h 46 m
a-j 823 073 120 (6) >30 h (7.5 mT)

Homog.
Coarse

h-ϕ 3 406 560 (40) 4 m 57
h-ϕ-b 6 118 295 (40) 4 m 17
a-j 11 960 196 (40) 3 m 36

Homog.
Medium

h-ϕ 28 636 3 383 (38) > 6 h (33 mT)
h-ϕ-b 53 260 4 822 (252) >48 h (36 mT)
a-j 84 938 307 (40) 3 h 31 m

Performance of the different approaches and formulations. Simulation up to
∥bs∥ = 60 mT in the transverse configuration, with a minimum of 40 time
steps. The layered model is symmetric with Ns = 16 and the homogenized
model accounts for the z-plane symmetry. The actual number of time steps
(t.s.) resulting from the adaptive time-stepping procedure is given within
parenthesis in the fourth column of the table. Gray values are associated with
simulations that did not end properly: either because of exceedingly slow
convergence (a-j and h-ϕ-b), or because of iteration cycles (h-ϕ); the field
values within parenthesis in the last column indicates where the simulation
was stopped. The CPU times are for a AMD EPYC Rome CPU at 2.9 GHz.

For the layered model, the performance of the a-j-
formulation deteriorates with mesh refinement, and does not
compete with the other two for similar solution quality. The
number of DOFs is higher than for the other formulations in
this 3D problem, and the number of iterations significantly
increases with finer meshes.

For the homogenized model, mixed formulations perform
better than the h-ϕ-formulation at the coarse discretization
level, thanks to a significant gain in the number of iterations.

At the medium discretization level, the a-j-formulation is
the only formulation that converges with only 40 time steps.
The h-ϕ-formulation enters iteration cycles at an applied field
of 33 mT, even with a hybrid Picard-Newton-Raphson iterative
technique [14]. The adaptive time-stepping procedure does not
help to avoid these cycles in this case and convergence fails.

For the h-ϕ-b-formulation at medium level, the simulation

does not end within 48 hours of CPU time, whereas for
the layered model at a comparable discretization level, the
complete simulation is achieved in less than an hour. Contrary
to the situation with the h-ϕ-formulation, no iteration cycle is
observed, but very small time steps are necessary to avoid
divergence of the Newton-Raphson iterations. We can explain
these solving difficulties by the combination of two factors:
anisotropic materials properties, and strongly nonlinear consti-
tutive laws in a hybrid magnetic-conducting region. This seems
to disqualify the h-ϕ-b-formulation in 3D for this geometry.

For the fine discretization level on the homogenized model
(not represented in the table), the h-ϕ and h-ϕ-b-formulations
face the same difficulties as in the medium level, and the a-
j-formulation becomes exceedingly slow, as is the case in the
layered model at the fine level.

The performance figures in Table II lead to the conclusion
that the layered model should be preferred to the homog-
enized model in the 3D case. The computational cost of
the latter model rapidly increases with mesh refinement and
convergence difficulties are encountered with the h-ϕ and h-
ϕ-b-formulations, whereas in the layered model, these two
formulations lead to robust resolutions. At fine discretization
levels, we recommend the h-ϕ-formulation together with the
layered model.

VII. CONCLUSION

We compared the numerical performance of different mod-
elling approaches for computing the shielding effectiveness of
a stack of HTS tape annuli. Conclusions for the axial (2D-axi)
and the transverse (3D) configurations are not identical. In the
axial case, the layered and homogenized models demonstrate
comparable performance. Among the tested formulations, the
a-j-formulation is the most efficient, although one may expect
solving difficulties with it, depending on the linear solver.

In the transverse case, the homogenized model is notice-
ably slower than the layered model: the h-ϕ-formulation
faces iteration cycles that are not easy to avoid, the h-ϕ-
b-formulation requires very small time steps to converge,
and the a-j-formulation is extremely expensive with mesh
refinement. On the contrary, the layered model allows for
robust and efficient resolutions, with the h-ϕ-b-formulation for
coarse discretization levels, and with the h-ϕ-formulation for
finer ones. The a-j-formulation does not compete with these
formulations in 3D.
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