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Abstract

The formation of primordial black holes in the early universe may happen through the collapse of large

curvature perturbations generated during a non-attractor phase of inflation or through a curvaton-

like dynamics after inflation. The fact that such small-scale curvature perturbation is typically non-

Gaussian leads to the renormalization of composite operators built up from the smoothed density

contrast and entering in the calculation of the primordial black abundance. Such renormalization

causes the phenomenon of operator mixing and the appearance of an infinite tower of local, non-local

and higher-derivative operators as well as to a sizable shift in the threshold for primordial black hole

formation. This hints that the calculation of the primordial black hole abundance is more involved

than what generally assumed.
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1 Introduction

The physics of Primordial Black Holes (PBHs) [1–4] has recently attracted much attention thanks to

the plethora of gravitational wave detections from the mergers of BH binaries [5–8]. Maybe even more

interesting, some of the LIGO/Virgo/KAGRA events might be in fact originating from the mergers

of PBHs [9–16]. Future gravitational wave experiments might help in shedding light on the possible

existence of PBHs [17–21].

In this paper we will start from the rather standard point of view that PBHs are born in the

radiation-dominated era by the collapse of large overdensities generated on small scales during a

non-attractor phase of inflation or through a curvaton-like dynamics after inflation [1].

Calculating the abundance of PBHs as precisely as possible is a crucial step in assessing if

PBHs may account for a substantial fraction of the dark matter of the universe or if they satisfy the

different observational constraints. Such computation is rendered difficult as PBHs are rare events

and therefore the formation probability is sensitive to small changes in the various ingredients, such

as the critical threshold of collapse [22, 23], the non-Gaussian nature of the fluctuations [24, 25], the

choice of the window function to define smoothed observables [26], to mention a few. Furthermore

it has been recently pointed out that non-linear corrections entering in the calculation of the PBHs

abundance from the non-linear radiation transfer function and the determination of the true physical

horizon crossing corrects the overdensity (on comoving orthogonal slices) by introducing many non-

linear terms, even of non-local type [27]. This makes the calculation of the formation probability

highly nontrivial.

In this paper we point out that the standard way of calculating the PBH abundance, which we

will revise in the next section, overlooks a technical, but simple point. In the standard calculation

one defines a smoothed density contrast δm(rm, x⃗pk), which depends on the position x⃗pk of the peak

of the profile of the overdensity and on the distance rm from it where the compaction function has its

maximum. This field turns out to be the sum of a field δ(rm, x⃗pk), but also its square δ2(rm, x⃗pk). The

latter is a composite operator, i.e., evaluated at the same point of space (and time), and receives loop

contributions from all scales. This happens because δ(rm, x⃗pk) is proportional to the gradient of the

small-scale curvature perturbation and the latter is typically non-Gaussian (see e.g., [28]). In other

words the curvature perturbation has cubic and quartic interactions, leading to the renormalization

of the composite operator δ2(rm, x⃗pk) and therefore of δm(rm, x⃗pk).

The renormalization procedure leads to the well-known phenomenon of operator mixing: the

renormalized operator δ2(rm, x⃗pk) receives corrections from all possible operators compatible with

the symmetries of the problem. We will show that indeed one-loop corrections assume the form of

an infinite tower of operators, even non-local in δ(rm, x⃗pk) and of the higher-derivative type. It is

the interacting nature of the comoving curvature perturbation which gives rise to the phenomenon of
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operator mixing, which leads to a shift in the correlators and the threshold for PBH formation, as

well as a modification of the formation probability.

The paper is organized as follows. In section 2 we set the stage and describe briefly the standard

way of calculating the PBH abundance. In section 3 we remind the reader why PBH formation models

are characterized by a non-Gaussian curvature perturbation. In section 4 we introduce the concept of

renormalization of the PBHs and the Feynman rules we will adopt to calculate the operator mixing

at one-loop, which we do in sections 5 and 6. Section 7 contains our conclusions, while we devote the

appendices A and B to the technical details.

2 A brief summary of the standard PBH abundance calculation

The goal of this section is to set the stage and briefly recap what is the standard procedure to calculate

the PBH abundance in the literature, see for instance Refs. [25, 29].

As we already wrote, our focus will be the PBH formation from the collapse of large overdensities

which are generated during inflation and re-enter the Hubble radius in the radiation-dominated era.

The key starting object is the curvature perturbation ζ appearing in the metric in the comoving

uniform-energy density gauge

ds2 = −dt2 + a2(t)e2ζ(x⃗)dx⃗2. (2.1)

Here a(t) is the scale factor in terms of the cosmic time. Applying the gradient expansion on super-

hoizon scales [30], one can relate the non-linear density contrast δcom(x⃗, t) on comoving orthogonal

slicings and the time independent curvature perturbation ζ(x⃗) [31]

δcom(x⃗, t) = −8

9

1

a2H2
e−5ζ(x⃗)/2∇2eζ(x⃗)/2, (2.2)

where H is the Hubble rate. Cosmological perturbations may gravitationally collapse to form a PBH

depending upon the amplitude measured at the peak of the compaction function, defined to be the

mass excess compared to the background value in a given radius [22, 31, 32]. On superhorizon scales

and assuming spherical symmetry, it reads

C(r) = −2

3
r∂rζ(r) [2 + r∂rζ(r)] . (2.3)

The compaction function has a maximum at the comoving length scale rm such that

∂rζ(r) + rm∂2
r ζ(r)

∣∣
r=rm

= 0, (2.4)

and one can define a smoothed perturbation amplitude as the volume average of the energy density

contrast within the scale rm at the Hubble radius crossing time tH [22]

δm =
3(

rmeζ(rm)
)3 ∫ rm

0

dr δcom(r, tH)
(
reζ(r)

)2
∂r

(
reζ(r)

)
, (2.5)
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where a top-hat window function needs to be used for a proper treatment of the threshold [26].

The quantity δm is crucial in determining the abundance of PBHs. If computed at the Hubble

radius crossing time tH , that is

ϵ(tH) =
rH

rmeζ(rm)
=

1

rmeζ(rm) aH
= 1, (2.6)

it becomes

δm = δl −
3

8
δ2l , δl = −4

3
rm ∂rζ(r)|r=rm

. (2.7)

The PBH abundance is subsequently calculated integrating the probability distribution function of

the smoothed density contrast from a threshold value δc on

β =

∫
δc

dδm

(
MPBH

MH

)
P (δm), (2.8)

as a function of the PBH mass MPBH and the mass MH enclosed in the Hubble volume. One can

then use the conservation of probability to write [25, 28, 29, 33–35]

P (δl)dδl = P (δm)dδm, (2.9)

with threshold given by [25]

δl,c =
4

3

(
1−

√
1− 3

2
δc

)
, (2.10)

where δc is the threshold routinely computed by running numerical simulations [22].

For Gaussian curvature perturbations, the probability of the linear density contrast is Gaussian

and is exponentially sensitive to the threshold δl,c and the variance σ2
l

P (δl) =
1√
2πσl

e−δ2l /2σ
2
l ,

σ2
l =

∫
dk

k
Pδl(k), (2.11)

where Pδl is the dimensionless power spectrum of the density contrast δl.

3 The non-Gaussianity of the curvature perturbation

The probability (2.11) is valid only if the smoothed density contrast δl is linear (hence the l subscript).

Given the relation

δl(rm) = −4

3
rm ∂rζ(r)|r=rm

, (3.1)

one concludes that δl is indeed linear only if the curvature perturbation is linear. However, in all mod-

els in which a large fluctuation in the curvature perturbation is generated, the curvature perturbation

is typically non-Gaussian (see, for instance, Ref. [28])1. Non-Gaussianity among the modes interested

1We remark that the non-Gaussianity we are discussing here is induced at small scales and therefore is not the
non-Gaussianity of the curvature perturbation on CMB scales [36], which are much larger than those interested in the
PBH formation. On CMB scales the non-Gaussianity is severely constrained by CMB data [37].
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in the growth of the curvature perturbation is generated either by their self-interaction during the

ultra slow-roll phase [38] or after Hubble radius exit when the curvature perturbation is sourced by a

curvaton-like field [39, 40].

Even though in general the exact relation between ζ and its corresponding Gaussian component

ζg can be worked out model by model, we will adopt a cubic expansion to be model independent,

ζ = ζg +
3

5
fNLζ

2
g +

9

25
gNLζ

3
g , (3.2)

which is a good approximation if (3/5)fNLζg and (9/25)gNLζ
2
g ∼< 1. For instance, in models with

a sharp transition between the ultra slow-roll phase and the subsequent slow-roll phase one has

fNL ≃ 5/2 and gNL ≃ 25/6 (see, for instance, Ref. [38]) and therefore the expansion is motivated

as long as ζg ∼< 0.7. The expansion is also justified if we perform a perturbative loop expansion and

think the non-Gaussianity as leading to three-, four-point vertices, and so on.

The non-Gaussianity of the curvature perturbation is crucial in changing the PBH abundance.

Indeed, around peaks of the power spectrum of the curvature perturbation, a positive fNL increases

the abundance of the PBHs, while a negative fNL has the opposite effect, thus helping to interpret

the recent pulsar timing array observation of a stochastic gravitational wave background [41–49] by

using the scalar-induced gravitational waves sourced along with PBH formation [50–58].

The importance of the non-Gaussianity in the curvature perturbation will become clear in the

following section, where we will go back to the smoothed density contrast δm and deal with the fact

that it is a composite operator.

4 Renormalization in the PBHs

We start again from the expression (2.7) of the smoothed density contrast

δm(rm, x⃗pk) =
3

4πr3m

∫
d3x δcom(x⃗, tH) θ(rm − |x⃗− x⃗pk|) = δ(rm, x⃗pk)−

3

8
δ2(rm, x⃗pk), (4.1)

where this time we removed the subscript l to account for the fact that δl is not a Gaussian field,

since the curvature perturbation is not. Furthermore we have highlighted the fact that δm depends

on the peak position x⃗pk and from the distance rm from the peak.

The key point is that δm(rm, x⃗pk) contains the composite operator δ2(rm, x⃗pk) which receives

contributions from all scales, not only from the infrared ones. This is because two small-scale modes

may combine in the loops to form a long mode. Such contributions may be therefore not small at all,

even on large scales. One should also recall at this stage that, even in the presence of the window

function cutting-off ultraviolet momenta, variances are typically dominated by integrating momenta

corresponding to length scales well beneath the horizon [27].
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Figure 1. Schematic view of operations the leading to the composite operator renormalization.

One needs to renormalize the composite operator δ2(rm, x⃗pk) at the point x⃗pk in such a way

that all potentially large contributions can be systematically removed by adding local counterterms

(canceling as well the dependence on an unphysical cut-off scale, if needed)

[
δ2(rm, x⃗pk)

]
≡ δ2(rm, x⃗pk) +

∑
O

cOO(rm, x⃗pk), (4.2)

where the square brackets indicate the renormalized operator. This means that the renormalized

composite operator will mix with possibly all the other operators O(rm, x⃗pk) which are allowed by the

symmetries of the problem. It will also have an impact on the PBH abundance, being it so sensitive

to minute changes in the threshold and/or in the variances.

The goal of the subsequent sections is to perform the systematic renormalization of the smoothed

density contrast.

4.1 Feynman rules

Our starting point is the expression

δ(rm, x⃗pk) = −4

3
r∂rζ(rm, x⃗pk) = −4

9

∫
d3k

(2π)3
eik⃗·x⃗pkk2r2mW3(krm)ζk⃗, (4.3)

whose Fourier transform reads

δk⃗(rm) = −4

9
k2r2mW3(krm)ζk⃗. (4.4)

Here W3(krm) is the Fourier transform of the top-hat window function in real space with radius rm

W3(x) = 3
sinx− x cosx

x3
= 23/2Γ(5/2)

J3/2(x)

x3/2
, (4.5)

being Jν(x) the Bessel function of the first kind. To simplify the notation we have absorbed the time-

dependent radiation transfer function in the curvature perturbation ζk⃗ (and in its power spectrum).

All power spectra will be intended to be calculated at horizon crossing.

The renormalization of the composite operator δ2(rm, x⃗pk) will proceed through the following

Feynman rules:
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• draw every N -point connected graph and conserve momentum in each vertex;

• to each (n + 1) point vertex, with a solid line (in-going momentum) and n dashed lines, it

corresponds the following vertex

q

q1

q2

qn

= (−1)n−1n!Fn
(qrm)2W3(qrm)(

4
9

)n−1∏n
i=1(qirm)2W3(qirm)

, (4.6)

where in the numerator there is the factor (4/9)(qrm)2W3(qrm) for the solid line and at the

denominator a product of all the factors (4/9)(qirm)2W3(qirm) for each dashed lines;

• the propagator, represented with a dashed line, corresponds to

q
= Pδ(q) =

16

81
r4mq4 W 2

3 (qrm)Pζg (q); (4.7)

• integrate for every loop ∫
q⃗

=

∫
d3q

(2π)3
; (4.8)

• multiply a Dirac delta with all the external momenta, for the global momentum conservation

(2π)3δ(3)

(
N∑
i=1

k⃗i

)
; (4.9)

Here Fn is a function that depends on the number of legs in the vertex, for example from Eq. (3.2)

F1 = 1, F2 =
3

5
fNL, F3 =

9

25
gNL. (4.10)

Notice that for the n = 1 vertex we have

q1q
=

(qrm)2W3(qrm)

(q1rm)2W3(q1rm)
= 1, (4.11)

which is just a consequence of momentum conservation.

5 Renormalization at one-loop: linear operator mixing

By indicating the composite operator with the following vertex

δ2 = (5.1)

its expectation value is obtained from the Feynman diagram
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= (2π)3δ(3)(k⃗)

∫
q⃗

Pδ(q), (5.2)

which gives

⟨
(
δ2
)
k⃗
⟩′ =

∫
q⃗

Pδ(q) =
16

81
r4m

∫
q⃗

q4 W 2
3 (qrm)Pζg (q) = σ2

δ(rm). (5.3)

Here and in the following primes indicate that we remove the factors of (2π)3 times the Dirac delta

for the momentum conservation. This vacuum expectation value is removed by adding a constant

counterterm

[
δ2(rm, x⃗pk)

]
= δ2(rm, x⃗pk)− σ2

δ(rm). (5.4)

Subtracting this tadpole contribution ensures that the vacuum expectation value of δm vanishes at the

loop level. Furthermore, in the following calculations this constant counterterm will only contribute

to disconnected graphs.

The one-loop contribution to ⟨(δ2)k⃗1
δk⃗2

⟩ is, diagramatically2

⟨(δ2)k⃗1
δk⃗2

⟩′ = 2× , (5.5)

which gives

⟨(δ2)k⃗1
δk⃗2

⟩′ = −12

5
fNL

∫
q⃗

(|⃗k1 − q⃗|rm)2W3(|⃗k1 − q⃗|rm)
4
9 (k2rm)2W3(k2rm)(qrm)2W3(qrm)

Pδ(k2)Pδ(q)

= −12

5
· 4
9
· 16
81

fNL

∫
q⃗

r6mq2 |⃗k1 − q⃗|2k22 W3

(
|⃗k1 − q⃗|rm

)
W3(k2rm)W3(qrm)Pζg (q)Pζg (k2).

(5.6)

We now use Eq. (A.10) to perform the angular integral and obtain

2We will ignore from now on diagrams such as

which does not have power spectra of external momenta and lead to contact terms, with no new operators.
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⟨(δ2)k⃗1
δk⃗2

⟩′ = I
(1)
one−leg + I

(2)
one−leg,

I
(1)
one−leg = − 256

1215
fNL

∫
q⃗

r6mq2(q2 + k22)k
2
2 W 2

3 (k2rm)W 2
3 (qrm)Pζg (q)Pζg (k2)

I
(2)
one−leg = − 256

1215
fNL

∫
q⃗

r6mq2k22 W 2
3 (k2rm)W 2

3 (qrm)

(
q2

3

d lnW3(k2rm)

d ln k2rm
+

k22
3

d lnW3(qrm)

d ln qrm

)
· Pζg (q)Pζg (k2) .

(5.7)

The first integral gives

I
(1)
one−leg =

12

5
fNL

(
σ2
δ(rm)⟨ζgk⃗1

(rm)δk⃗2
(rm)⟩′ + 4

9
σ2
∇ζg(rm)⟨δk⃗1

(rm)δk⃗2
(rm)⟩′

)
, (5.8)

where

ζg(rm, x⃗pk) =

∫
d3k

(2π)3
eik⃗·x⃗pkζgk⃗(rm) =

∫
d3k

(2π)3
eik⃗·x⃗pkW3(krm)ζgk⃗ (5.9)

and

σ2
∇ζg(rm) =

∫
q⃗

r2mq2W 2
3 (qrm)Pζg (q). (5.10)

The second integral gives

I
(2)
one−leg =

12

5
fNL

[
1

3
σ2
δ(rm)

d

d ln rm
⟨ζgk⃗1

(rm)δk⃗2
(rm)⟩′ + 4

9
·

(
1

6

dσ2
∇ζg(rm)

d ln rm
− 1

3
σ2
∇ζg(rm)

)
⟨δk⃗1

δk⃗2
⟩′
]
.

(5.11)

Therefore, the renormalized operator at the level of linear mixing becomes (see Appendix B)

[
δ2(rm, x⃗pk)

]
linear

= δ2(rm, x⃗pk)− σ2
δ(rm) −

12

5
fNL · 4

9

(
2

3
σ2
∇ζg(rm) +

1

6

dσ2
∇ζg(rm)

d ln rm

)
δ(rm, x⃗pk)

+
12

5
fNL · 5

3
· σ2

δ(rm)ζ(rm, x⃗pk),

= + (5.12)

where we have added the corresponding Feynman diagram for the counterterm. We see that already

at this level there appears a non-local operator in the density smoothed contrast field δ(rm, x⃗pk) once

the following identity
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ζg(rm, x⃗pk) =
9

4r2m∇2
xpk

δ(rm, x⃗pk) (5.13)

is adopted.

6 Renormalization at one-loop: quadratic operator mixing

The one-loop contribution to ⟨[δ2]k⃗1
δk⃗2

δk⃗3
⟩ is diagramatically

⟨[δ2]k⃗1
δk⃗2

δk⃗3
⟩′ = + 2× + (6.1)

Let us start with the first diagram, which gives

I
(1)
two−legs =

36

25
f2
NLPδ(k2)Pδ(k3)

(
9

4

)2 ∫
q⃗

Pδ(q)
(|⃗k3 + q⃗|rm)2W3(|⃗k3 + q⃗|rm)

(qrm)2W3(qrm)(k3rm)2W3(k3rm)

· (|⃗k2 − q⃗|rm)2 W3(|⃗k2 − q⃗|rm)

(qrm)2W3(qrm)(k2rm)2W3(k2rm)
. (6.2)

Expanding the power spectra we get

I
(1)
two−legs =

36

25
f2
NL

(
16

81

)2

(k2rm)2W3(k2rm)Pζg (k2)(k3rm)2W3(k3rm)Pζg (k3)

·
∫
q⃗

Pζg (q) (|⃗k3 + q⃗|rm)2 W3(|⃗k3 + q⃗|rm)(|⃗k2 − q⃗|rm)2 W3(|⃗k2 − q⃗|rm). (6.3)

The calculation is rather involved and we do not report it here in full length, the interested reader

can find all the details in the Appendix A.2. The procedure once again is to disentangle the sum of

the vectors in the window functions using the addition theorem of the Bessel functions. The integral

(6.3) is then written as

I
(1)
two−legs =

36

25
f2
NL

(
4

9

)4

(k2rm)2W3(k2rm)Pζg (k2)(k3rm)2W3(k3rm)Pζg (k3)

· r4m

∫
q⃗

Pζg (q)
[
k22k

2
3I

00(cos θ23) + 2qk3k
2
2I

01(cos θ23) + 2qk2k
2
3I

10(cos θ23)

+ q2(k22 + k23)I
00(cos θ23) + 4q2k2k3I

11(cos θ23) + 2q3k3I
01(cos θ23)

+ 2q3k2I
10(cos θ23) + q4I00(cos θ23)

]
,

(6.4)

where cos θ23 = k⃗2 · k⃗3/k2k3,

10



Iij(cos θ23) =

∞∑
k=0

∞∑
s=0

NksI
ij
ks(cos θ23), (6.5)

Nks =
4

9

(
3

2
+ k

)(
3

2
+ s

)[
(rmq)k

(
1

(rmq)

d

d(rmq)

)k

W3(rmq)

] [
(rmq)s

(
1

(rmq)

d

d(rmq)

)s

W3(rmq)

]

·

[
(rmk2)

k

(
1

(rmk2)

d

d(rmk2)

)k

W3(rmk2)

] [
(rmk3)

s

(
1

(rmk3)

d

d(rmk3)

)s

W3(rmk3)

]
, (6.6)

and

I00ks =

(
1 + (−1)k+s

2

)
d

d cos θ23
Pmin(k,s)+1(cos θ23)

I10ks =

(
1− (−1)k+s

2

)[
Θ(k − s)

d

d cos θ23
Pk+1(cos θ23) + Θ(s− k) cos θ23

d

d cos θ23
Ps+1(cos θ23)

]
,

I01ks =

(
1− (−1)k+s

2

)[
Θ(s− k)

d

d cos θ23
Pk+1(cos θ23) + Θ(k − s) cos θ23

d

d cos θ23
Ps+1(cos θ23)

]
,

I11ks = I01k+1,s − (k + 2)

{(
1 + (−1)k+s

2

)
Θ(s− k − 1)Pk+1(cos θ23) +

s+ 1

2s+ 3
δskPs+1(cos θ23)

}
.

(6.7)

This will contribute to an infinite tower of operators to subtract. The second diagram in Eq. (6.1)

gives

I
(2)
two−legs = gNL

108

25

(
9

4

)2

Pδ(k3)Pδ(k2)

∫
q⃗

Pδ(q)
(|⃗k1 − q⃗|rm)2 W3(|⃗k1 − q⃗|rm)

(qrm)2W3(qrm)(k2rm)2W3(k2rm)(k3rm)2W3(k3rm)

= gNL
108

25

(
16

81

)2

(k2rm)2W3(k2rm)Pζg (k2)(k3rm)2W3(k3rm)Pζg (k3)

·
∫
q⃗

(qrm)2W3(qrm)Pζg (q) (|⃗k1 − q⃗|rm)2 W3(|⃗k1 − q⃗|rm). (6.8)

Using again Eq. (A.10), we can perform the angular integration, leading to

I
(2)
two−legs = gNL

108

25

(
16

81

)2

(k2rm)2W3(k2rm)Pζg (k2)(k3rm)2W3(k3rm)Pζg (k3)

·
∫
q⃗

(qrm)2W 2
3 (qrm)Pζg (q) W3(k1rm)

[
(qrm)2 + (k1rm)2 +

(qrm)2

3

d lnW3(k1rm)

d ln k1rm

+
(k1rm)2

3

d lnW3(qrm)

d ln qrm

]
. (6.9)

If we define the composite operator

ζ2(rm, x⃗pk) =

∫
d3k

(2π)3
eik⃗·x⃗pkW3(krm)(ζ2g )k⃗, (6.10)

the operators to be added at this stage are
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− 9

25
·16
81

·6 gNL

(
2

3
σ2
∇ζg(rm) +

1

6

dσ2
∇ζg(rm)

d ln rm

)
r2m∇2

xpk
ζ2(rm, x⃗pk)−

9

25
·6 gNL σ2

δ(rm)

(
1 +

1

3

d

d ln rm

)
ζ2(rm, x⃗pk).

(6.11)

Finally, from the third diagram in Eq. (6.1) the operators to add are trivially

3

5
fNL·

4

9

[
−12

5
fNL · 4

9

(
2

3
σ2
∇ζg(rm) +

1

6

dσ2
∇ζg(rm)

d ln rm

)
r2m∇2

xpk
ζ2(rm, x⃗pk) +

12

5
fNL · 5

3
· σ2

δ(rm)ζ
2(rm, x⃗pk)

]
.

(6.12)

Summing up all the contributions from I
(2)
two−legs and I

(3)
two−legs, and writing only the first terms for

I
(1)
two−legs, we obtain at the level of quadratic mixing

[
δ2(rm, x⃗pk)

]
quadratic

= δ2(rm, x⃗pk)−
18

25
f2
NLσ

2
ζg(rm)δ

2(rm, x⃗pk)

+
16

25
f2
NLσ

2
∇ζ(rm)ζ(rm, x⃗pk)δ(rm, x⃗pk)

+
256

675
f2
NLσ

2
∇ζ(rm)∇xi

pk
ζ(rm, x⃗pk)∇xi

pkζ(rm, x⃗pk)

−
(
32

75
f2
NL +

64

225
gNL

)(
2

3
σ2
∇ζg(rm) +

1

6

dσ2
∇ζg(rm)

d ln rm

)
r2m∇2

xpk
ζ2(rm, x⃗pk)

−
[
54

25
gNL σ2

δ(rm)

(
1 +

1

3

d

d ln rm

)
− 26

75
f2
NL σ2

δ(rm)

]
ζ2(rm, x⃗pk)

+ · · · . (6.13)

Eqs. (5.12) and (6.13) are the main results of this paper. In the last expression, we have indicated

by the dots the infinite series of operators with higher-derivatives applied either to the operators or

to the window functions.

To evaluate the impact of the renormalization and operator mixing, one has to recall that,

calling k⋆ the typical momentum at which PBHs form, one has typically (at the linear level) k⋆rm ≃

O(3) [22, 59]. For instance, for a monochromatic curvature spectrum peaked at k⋆, one has k⋆rm ≃ 2.7.

For a broad spectrum k⋆ coincides with the maximum momentum scale, as the PBH mass function

peaks at that scale [60], and k⋆rm ≃ 3.5. One would therefore expect that the higher-derivative terms

are suppressed by powers of 1/k⋆rm, but having an infinite amount of terms one cannot exclude a

priori that the infinite sum of operators give a sizable contribution. We will show some numerical

insights in the next subsection.

6.1 The impact of renormalization

We consider the case of a peaked power spectrum in the curvature perturbation

k3

2π2
Pζg (k) = Aζk⋆δ(k − k⋆), (6.14)
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Figure 2. Left panel: Coefficients Nks as a function of k, fixing s = 0. The red dashed line report a scaling
Nk0 ∝ 1/(k∗rm)3k. Right panel: Values of I3 as a function of the maximum index included in the sum (6.5).

where the amplitude Aζ ≃ 1.8 · 10−2 is fixed by setting a PBH abundance β ≃ 10−10, neglecting com-

posite operator renormalization. With this assumption, the integrand in Eq. (6.3) greatly simplifies

as all momenta are fixed to k⋆. To study the convergence of the result as a function of the sum in

k and s, we have plotted Nks in Fig. 2 as a function of index k (and analogous scaling is obtained

varying s).

The strong hierarchy observed between the different orders in the sum (6.5) results in a rapidly

converging series. We can further investigate this by computing the angular integration

I3 = 4

∫
dθ23

[
I00(cos θ23) + I01(cos θ23) + I10(cos θ23) + I11(cos θ23)

]
, (6.15)

obtained from (6.5) in the limit of narrow power spectrum. We show the result as a function of the

maximum index included in the series in Fig. 2. We see that already at order kmax = smax = O(3) the

series converges towards the asymptotic value within sufficient accuracy.

Correction to the density variance. The effect of the renormalization of the composite

operator can be quantified as follows. We first consider its impact on the variance of the field. With

a narrow power spectrum, the Gaussian component of the curvature perturbation is characterised by

a mean peak profile ζg(r) = ζpk sin(k∗r)/(k∗r). We fix the amplitude of the curvature perturbation

in such a way that it corresponds to a realisation of density contrast with the expectation value

δl ≈ σδ(rm). We find

[
δ2(rm, x⃗pk)

]
= 0.022 + 0.015

(
fNL

5/2

)
+ 0.019

(
fNL

5/2

)2

− 0.0016

(
gNL

25/6

)
, (6.16)

which should be compared with the bare quantity δ2(rm) ≈ σ2
δ(rm) = 0.022. This propagates on the

smoothed density contrast, which can be estimated as

δm(rm, x⃗pk) = 0.14 + 0.00091

(
fNL

5/2

)
− 0.0070

(
fNL

5/2

)2

+ 0.00075

(
gNL

25/6

)
. (6.17)

Correction to the threshold. In order to evaluate the correction to the PBH threshold for

collapse, one should estimate the renormalization of the composite operators assuming the fields

13



amplitude reach the threshold δc. We fix the amplitude of the Gaussian curvature perturbation ζg

assuming it leads to a collapsing overdensity with threshold amplitude δm = δc, where for a narrow

spectrum we take δc = 0.59 [23]. This corresponds to δl = 0.88 and ζpk = 0.68. In this case, we find[
δ2(rm, x⃗pk)

]
= 0.78 + 0.091

(
fNL

5/2

)
+ 0.66

(
fNL

5/2

)2

− 0.031

(
gNL

25/6

)
, (6.18)

while its bare value is δ2(rm) ≈ 0.78. In terms of smoothed density contrast, the renormalisation of

the quadratic operators gives

δm(rm, x⃗pk) = 0.59 + 0.20

(
fNL

5/2

)
− 0.25

(
fNL

5/2

)2

+ 0.020

(
gNL

25/6

)
. (6.19)

7 Comments and conclusions

We have shown that in the renormalization of the quadratic power of the smoothed density contrast,

a composite operator entering in the calculation of the PBH abundance, leads to the well-known

phenomenon of operator mixing due to the non-Gaussian nature of the curvature perturbation. The

mixing gives to an infinite tower of operators due to the necessary operation of smoothing out with

the top-hat window function in real space. There are some comments we can offer at this stage:

1. The calculation of the PBH abundance is not as straightforward as standardly assumed. Not

only non-linear corrections entering in the calculation of the PBH from the non-linear radiation

transfer function and the determination of the true physical horizon crossing are important and

lead to large uncertainties in the final result [27], but also the renormalization procedure leads

to an infinite tower of operators, making the calculation of the formation probability of the

PBH a difficult task. Our findings indicate a large impact on the threshold for PBH formation,

depending on the sign of the non-Gaussianity parameters. Since in ultra-slow inflation the sign

of the parameter fNL is always positive [61], our results indicate that the threshold might in

fact decrease due to quadratic corrections O(f2
NL), thus increasing the PBH abundance and

reversing the O(fNL) impact.

2. The one-loop operator mixing leads to an infinite tower of operators, made of quadratic powers

of the density contrast δ and higher-derivatives thereof. Furthermore, the mixing occurs as well

with non-local operators if considered from the point of view of the smoothed density contrast

(or local if expressed in terms of the original curvature perturbation). Maybe one can intuitively

understand why an infinite tower of operators is needed by the following argument. Around

the peak of the curvature perturbation, one can perform a rotation of the coordinate axes to be

aligned with the principal axes of length λi (i = 1, 2, 3) of the constant-curvature perturbation

ellipsoid and Taylor expanding up to second-order gives [62]

ζ(r) ≃ ζpk −
1

2

3∑
i=1

λi

(
xi − xpk

i

)2
, (7.1)
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and

δ(rm, x⃗pk) = −4

3
rmζ ′(rm) ≃ 8

3
[ζpk − ζ(rm)] . (7.2)

This shows that already at the linear level, the statistics of the smoothed density contrast calcu-

lated in a volume of radius rm demands knowing all correlations of the curvature perturbation

in two different spatial points [34] and therefore all its gradients.

3. In an idealized scenario, one might envisage to calculate the PBH abundance by involving only

superhorizon physics to avoid the complications arising at horizon crossing, and thus relying on

the fact that the comoving number of peaks which eventually will collapse into PBHs at horizon

crossing remains constant on superhorizon scales. The renormalization procedure however must

be applied as well on superhorizon scales as composite operators probe short scales and the

latter may combine in the loops to generate long modes. Therefore, even on superhorizon scales

calculating the PBH formation probability might be more involved than naively thought.

4. The probability of forming a PBH should not depend on any smoothing procedure, and therefore

should be independent of any window function we decide to force into the calculation of the

PBH abundance. The renormalization procedure is exactly performed to leave no sign of such

arbitrary choice. Being the non-linear density contrast δcom(x⃗, t) on comoving orthogonal slicings

(2.2) a composite operator in terms of the time independent curvature perturbation ζ(x⃗), one

concludes that its renormalization should be performed in order to lead to a result independent

of the choice of the smoothing procedure.

We intend to elaborate about these points in future work.
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A Integrals involving the Gegenbauer polynomials

A.1 Integral of one window function

The window function W3(|⃗k − q⃗|rm), defined as

W3(x) = 23/2Γ(5/2)
J3/2(x)

x3/2
, (A.1)

can be treated in the following way. First we use the property

Jν(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|ν

= 2νΓ(ν)

∞∑
k=0

(ν + k)
Jν+k(l1)

lν1

Jν+k(l2)

lν2
Cν

k (cos θ), (A.2)

where Cν
k (cos θ) are the Gegenbauer polynomials and θ is the angle between the vectors l⃗1 and l⃗2. In

general ∫ π

0

dθ Cν
k (cos θ) sin

2ν θ = 0, ∀ k ̸= 0. (A.3)

Therefore,∫
dΩ

4π

J1/2(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|1/2

= 21/2Γ(1/2)
1

2

J1/2(l1)

l
1/2
1

J1/2(l2)

l
1/2
2

∫
dΩ

4π
C

1/2
0 (cos θ) +

+ 21/2Γ(1/2)

∞∑
k=1

(1/2 + k)
J1/2+k(l1)

l
1/2
1

J1/2+k(l2)

l
1/2
2

∫
dΩ

4π
C

1/2
k (cos θ). (A.4)

Only the first term in the sum is not zero, leading to the simple relation∫
dΩ

4π

J1/2(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|1/2

= 21/2Γ(1/2)
1

2

J1/2(l1)

l
1/2
1

J1/2(l2)

l
1/2
2

. (A.5)

Now we can use the general relations

l
d

dl

JD/2−1(l)

lD/2−1
= −

JD/2(l)

lD/2−2
, (A.6)

JD/2−1(l)

lD/2−1
= l

d

dl

JD/2(l)

lD/2
+D

JD/2(l)

lD/2
, (A.7)

to transform the equation above from J1/2 to J3/2, using the relation

l1∂l1
J1/2(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|1/2

= −(l21 + l⃗1 · l⃗2)
J3/2(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|3/2

. (A.8)

We take the derivative with respect to l1 of Eq. (A.5), leading to

∫
dΩ

4π
W3(|⃗l1 − l⃗2|)

(
1− l⃗1 · l⃗2

l21

)
= W3(l1)W3(l2) +W3(l1)

l2
3

d

dl2
W3(l2). (A.9)

Multiplying both sides with l21 and summing the same relation exchanging l1 with l2, we get∫
dΩ

4π
W3(|⃗l1 − l⃗2|)

(
l21 + l22 − 2⃗l1 · l⃗2

)
=

∫
dΩ

4π
W3(|⃗l1 − l⃗2|)|⃗l1 − l⃗2|2 =

= W3(l1)W3(l2)(l
2
1 + l22) +W3(l1)

l21l2
3

d

dl2
W3(l2) +W3(l2)

l22l1
3

d

dl1
W3(l1) =

= W3(l1)W3(l2)

(
l21 + l22 +

l21l2
3W3(l2)

d

dl2
W3(l2) +

l22l1
3W3(l1)

d

dl1
W3(l1)

)
. (A.10)
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A.2 Integral with two window functions

For the composite operator with two external legs, we have to evaluate the following momentum

integral

I =

∫
l⃗1

|⃗l1 + l⃗2|2W3(|⃗l1 + l⃗2|)|⃗l1 + l⃗3|2W3(|⃗l1 + l⃗3|)

=

∫
l⃗1

(l21 + l22 + 2l1l2 cos θ12)W3(|⃗l1 + l⃗2|)(l21 + l23 + 2l1l3 cos θ13)W3(|⃗l1 + l⃗3|)

=

∫
l⃗1

(
A00 +A10 cos θ12 +A01 cos θ13 +A11 cos θ12 cos θ13

)
W3(|⃗l1 + l⃗2|)W3(|⃗l1 + l⃗3|)

= 23Γ2(5/2)

∫
l⃗1

(
A00 +A10 cos θ12 +A01 cos θ13 +A11 cos θ12 cos θ13

)J3/2(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|3/2

J3/2(|⃗l1 + l⃗3|)
|⃗l1 + l⃗3|3/2

,

(A.11)

where

A00 = l41 + l21(l
2
2 + l23) + l22l

2
3, A10 = 2l1l2(l

2
1 + l23),

A01 = 2l1l3(l
2
1 + l22), A11 = 4l21l2l3. (A.12)

We have parametrized the vectors l⃗i as

l⃗2 = l2 (0, 0, 1),

l⃗3 = l3 (0,
√

1− y2, y),

l⃗1 = l1 (cosβ
√
1− x2, sinβ

√
1− x2, x), (A.13)

so that

cos θ12 = x, cos θ13 = xy +
√
1− y2

√
1− x2 sinβ. (A.14)

Using the addition theorem

Jν(|⃗l1 + l⃗2|)
|⃗l1 + l⃗2|ν

Jν(|⃗l1 + l⃗3|)
|⃗l1 + l⃗3|ν

= (2νΓ(ν))2
∞∑
k=0

∞∑
s=0

Jν+k(l1)

lν1

Jν+k(l2)

lν2

Jν+s(l1)

lν1

Jν+s(l3)

lν3

· (ν + k)(ν + s)Cν
k (cos θ12)C

ν
s (cos θ13), (A.15)

we can express the integral (A.11) as

I =

∫
l⃗1

(
A00 +A10 cos θ12 +A01 cos θ13 +A11 cos θ12 cos θ13

) ∞∑
k=0

∞∑
s=0

9π2

(
3

2
+ k

)
·
(
3

2
+ s

)
J3/2+k(l1)

l
3/2
1

J3/2+k(l2)

l
3/2
2

J3/2+s(l1)

l
3/2
1

J3/2+s(l3)

l
3/2
3

C
3/2
k (cos θ12)C

3/2
s (cos θ13). (A.16)

Therefore, the integral (A.11) can be written as

I =

1∑
i,j=0

∫
l2dl

2π2
AijI

ij , (A.17)
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where

Iij =

∞∑
k=0

∞∑
s=0

NksI
ij
ks(y), (A.18)

Nks = 9π2

(
3

2
+ k

)(
3

2
+ s

)
J3/2+k(l1)

l
3/2
1

J3/2+k(l2)

l
3/2
2

J3/2+s(l1)

l
3/2
1

J3/2+s(l3)

l
3/2
3

=
4

9

(
3

2
+ k

)(
3

2
+ s

)[
lk1

(
1

l1

d

dl1

)k

W3(l1)

] [
ls1

(
1

l1

d

dl1

)s

W3(l1)

]

×

[
lk2

(
1

l2

d

dl2

)k

W3(l2)

] [
ls3

(
1

l3

d

dl3

)s

W3(l3)

]
, (A.19)

and

Iijks(y = cos θ23) =

∫
dΩ

4π
(cos θ12)

i(cos θ13)
jC

3/2
k (cos θ12)C

3/2
s (cos θ13). (A.20)

Therefore, in order to calculate Eq. (A.11), we need to calculate the four integrals

I00ks(y), I10ks(y), I01ks(y), and I11ks(y), (A.21)

which we will do in the following. Inserting the angles (A.14) and using the fact that

∫ 2π

0

dβ

2π
C

3/2
k

(
xy +

√
1− y2

√
1− x2 sinβ

)
=



k∑
n=even

(2n+ 1)Pn(x)Pn(y) if k = even,

k∑
n=odd

(2n+ 1)Pn(x)Pn(y) if k = odd,

(A.22)

and

C
3/2
k (x) =

d

dx
Pk+1(x)

= (2k + 1)Pk(x) +
(
2(k − 2) + 1

)
Pk−2(x) +

(
2(k − 4) + 1

)
Pk−4(x) + · · · , (A.23)

the integration over the angles gives

I00ks =

∫
dΩ

4π
C

3/2
k (x)C3/2

s

(
xy +

√
1− y2

√
1− x2 sinβ

)
=

=



d

dy
Pmin(k,s)+1(y) if (k, s) ∈ 2N,

d

dy
Pmin(k,s)+1(y) if (k, s) ∈ 2N+ 1,

0 otherwise,

, (A.24)

or

I00ks =

(
1 + (−1)k+s

2

)
d

dy
Pmin(k,s)+1(y). (A.25)
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The next integral to evaluate is

I10ks(y) =

∫
dΩ

4π
xC

3/2
k (x)C3/2

s (cos θ13). (A.26)

To proceed, we need the recursive relation of Legendre polynomials

x
dPk+1(x)

dx
=

dPk+2(x)

dx
− (k + 2)Pk+1(x), (A.27)

which can be written as

xC
3/2
k (x) = C

3/2
k+1 − (k + 2)Pk+1(x). (A.28)

Then, using Eq. (A.22), we can easily see that

∫ 2π

0

dΩ

4π
Pk+1(x)C

3/2
s (cos θ13) =


Θ(s− k − 1)Pk+1(y) if (k, s) ∈ 2N,

Θ(s− k − 1)Pk+1(y) if (k, s) ∈ 2N+ 1,

0 otherwise,

(A.29)

where Θ(n) = 0 for n < 0 and Θ(n) = 1 for n ≥ 0. Therefore, using Eqs. (A.28) and (A.29), we find

that

I10ks =

(
1− (−1)k+s

2

)[
Θ(k − s)

d

dy
Pk+1(y) + Θ(s− k)y

d

dy
Ps+1(y)

]
(A.30)

To calculate I01 we need the relation∫ 2π

0

dβ

2π
cos θ13C

3/2
k (cos θ13) =

=


2(k + 1)Pk+1(x)Pk+1(y) +

k∑
n=odd

2(2n+ 1)Pn(x)Pn(y) if k = even,

2(k + 1)Pk+1(x)Pk+1(y) +

k∑
n=even

2(2n+ 1)Pn(x)Pn(y) if k = odd,

(A.31)

Then, by using Eq. (A.23), we find that the integral

I01ks =

∫
dΩ

4π
C

3/2
k (x) cos θ13C

3/2
s (cos θ13) (A.32)

turns out to be

I01ks =

(
1− (−1)k+s

2

)[
Θ(s− k)

d

dy
Pk+1(y) + Θ(k − s)y

d

dy
Ps+1(y)

]
. (A.33)

The final integral I11ks can be calculated using Eq. (A.28). The result is

I11ks = I01k+1,s − (k + 2)

{(
1 + (−1)k+s

2

)
Θ(s− k − 1)Pk+1(y) +

s+ 1

2s+ 3
δskPs+1(y)

}
. (A.34)
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B Non-local operators

To derive the expression (5.12), we start Eq. (4.3) which can be rewritten as

δ(rm, x⃗pk)

r2m
=

4

9
∇2

xpk

∫
k⃗

eik⃗·x⃗pkW3(krm)ζk⃗. (B.1)

We now take the derivative rm∂rm of both sides to get

1

rm
∂rδ(r, x⃗pk)

∣∣∣
r=rm

= −2
δ(rm, x⃗pk)

r2m
+

1

rm
∂rδ(r, x⃗pk)

∣∣∣
r=rm

=
4

9
∇2

xpk

∫
k⃗

eik⃗·x⃗pkζk⃗ rm∂rW3(kr)
∣∣∣
r=rm

.

(B.2)

By using Eq. (2.4) we get

∂rδ(r, x⃗pk)
∣∣∣
r=rm

= 0, (B.3)

and consequently

−2
δ(rm, x⃗pk)

r2m
=

4

9
∇2

xpk

∫
k⃗

eik⃗·x⃗pkζk⃗ rm∂rW3(kr)
∣∣∣
r=rm

(B.4)

or

rm∂rW3(kr)
∣∣∣
r=rm

ζk⃗ = − 9

2r2m

∫
x⃗pk

e−ik⃗·x⃗pk ∇−2
xpk

δ(rm, x⃗pk) (B.5)

which is a non-local operator.
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