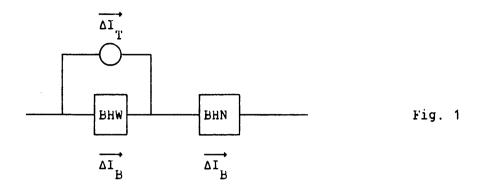
PS/OP/Note 87-12 ACUL Note 51 2.6.1987

ACOL CLOSED ORBIT CHANGE ASSOCIATED WITH TRIM CURRENT VARIATIONS


L. Rinolfi

1. Introduction

In the ACOL machine, all dipoles are connected in series. However one trim supply connected on wide dipoles allows a closed orbit change in straight sections where the dispersion is zero.

The correction coefficients on main power supply and trim power supply are calculated. They allow a closed orbit change by a given amount and keep the orbit length constant.

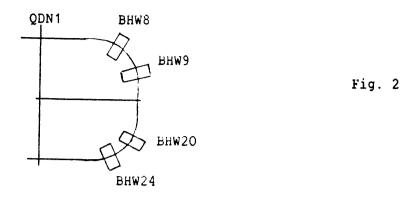
2. Principle

The figure 1 shows the connections of ACOl dipoles. ΔI_{T} is the trim current variation and ΔI_{B} is the main current variation. They are 8 BHW, 15 BHN and 1 BHS. All have the same deflection angle.

Changes at position(s) are associated with changes in BHW magnetic field by the relation $^{1} \end{tabular}$

$$\Delta q(s) = \frac{\sqrt{\beta_{H}(s)}}{2 \sin \pi Q_{H}} \frac{\Phi}{1} (\Delta I_{T}) \sum_{n=1}^{8} \left\{ \sqrt{\beta_{e}} \cos \varphi_{n} - \frac{1}{2\sqrt{\beta_{e}}} \left[\alpha_{e} \cos \varphi_{n} + \sin \varphi_{n} \right] \right\} (1)$$

where $\varphi_n = -\pi Q_H + \mu_{e_n}(\sigma) - \mu(s)$ and the index "e" means at the entrance


of the element.

The main current has no effect on closed orbit modulation.

To keep the orbit length constant, the relation between $\Delta I \mbox{I}$ and $\Delta I \mbox{B}$ should be

$$\Delta I_{T} + 3\Delta I_{B} = 0 \tag{2}$$

3. Correction coefficients

The figure 2 shows the 4 BHW dipoles for one superperiod.

The trim correction current is given by

$$\Delta I_{T} = CT \Delta q \tag{3}$$

The main correction current is given by

$$\Delta I_{B} = CB \Delta q \qquad (4)$$

where CT is the inverse coefficient of ΔI_{T} in formulae (**1**) and CB = $-\frac{1}{3}$ CT.

4. Numerical results

The correction is calculated at s = 0, i.e. middle of QDN1. The calculation is made for one superperiod. However, it is possible to obtain these coefficients at different azimuths.

With Δq expressed in mm : CT = -1,36 A/mm CB = +0,45 A/mm.

The values assume a linear relation between the magnetic field and the current. The nominal current is 2280 A.

For AA machine, these coefficients are :

$$CT = -0, 18$$
 and $CB = +0, 102$.

5. <u>Dipole characteristics</u>²

	BHN and BHW	BHS
l (m)	1.963	1.986
φ _o (rad)	0.2458	0.2458
I (A)	2280	2280

<u>References</u>

- 1. B. Autin, Lattice perturbations, CERN/PS 84-22 (AA), 1984.
- 2. J. Vlogaert, ACOL dipoles, CERN/PS 87-5 (EMA), 1987.

<u>Distribution</u>

ACOL/1 List

/ed