MAGNETIC STUDIES ON QDC53 USING THE TOSCA CODE

^M R Harold

19 February 1985

Introduction

At R. Sherwood's suggestion, the last quadrupole in the injection line to ACOL is to be combined with one of the lattice quadrupoles, QDC53, to form ^a "normal" quadrupole the two halves of which are split vertically by a tapered neutral pole (see figure 1). The magnet is to be made from QN laminations and colls, and the magnetic effect of the neutral pole is required to be known. All results quoted below are for a core length of 60 cm (as for the QN), with non-linear iron.

Two-Dimensional Work

As ^a first step the quadrupole was modelled on PE2D, the neutral pole having a half thickness of 85mm. The mesh is shown in figure 2, and the flux line distribution in figure 4, the ampere turns being 27476 per pole. Later, a ² mm air gap was introduced between the two half-quadrupoles in order to take account of the fact that each half will need to be independently adjusted in position. The air gap made no significant difference to the field distribution seen by the beam, but did cause much more flux to travel down the neutral pole rather than across it (compare figures ⁴ and 5). The horizontal field component in the air gap was computed (see Appendix I), but of course these values will vary rapidly depending on the size of the air gap.

The field gradient within the aperture of the quadrupole was as expected (figure 3), with no untoward perturbation close to the neutral pole. The pole profile contains a 12-pole correction to counteract end effects, and the variation of $\Delta g/g_5$ vs x agrees well with previous computations on the QN. The central gradient g_5 is here taken as dBy/dx at $x=5$ cm, the approximate beam position.

 $-1 -$

Three-Dimensional Work

Having established the shape of the field in the centre ($z=0$), the quadrupole was then run on TOSCA. First, the half-neutral pole (thickness 8.5 cm) was assumed parallel-sided, so that only half the azimuthal length of the magnet needed modelling (QNH). The neutral pole overhang of ¹² cm just exceeded the coil overhang, so as not to interfere with other equipment. Later, the tapered pole was introduced (QNW), and then the ² mm air gap (QQQ). The field integrals for all three cases are given in Appendix II, the energization being 28036.8 A-t per pole.

The mesh, shown in figures ⁶ and ⁷ is necessarily coarser than that used for the QN because of the need to keep computation times within reasonable limits (e.g. <1 hr.). The intention was to adjust the mesh until TOSCA gave the same field distribution at z=0 as that given by PE2D. However, the rather "noisy" results shown in figure ⁸ were regarded as satisfactory for the following reasons:

- a). the field integrals did not show the discontinuities apparent at z=0 (which seems to be typical of TOSCA)
- b). the size of the problem was already quite large
- c). we were primarily interested in end effects, which are possibly not so mesh dependant.

The variation of $\Delta G/G_5$ across the aperture remained essentially the same for all three cases, and is shown in figure 9. The end-fields contain appreciable dipole components which would be removed if the neutral pole could be made infinitely long, or compensated for by displacing the magnet transversely by about 0.7 mm. In the case of the tapered pole, the dipole components differ from end to end, and this might need to be taken into account.

^A simple analysis of the field in QNW yields (in gauss-cm)

$$
\int_{-97}^{97} B_y dz = 2951.38 + 40455.73x + 8.59 (5.5-x)^2
$$

 $- 2 -$

The sextupole term is weak, and should be readily removed either by machining the end shims or by the use of washers.

Horizontal field component (gauss) in the 2 mm air gap between neutral poles (PE2D).

VALUES OF BX ALONG LINE.

 $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \, \frac{1}{\sqrt{2}} \,$

 L_{eff} = 70.919 cm

GNH

$$
g_5 = 570.195
$$
 g/cm
 $G_5 = 40429.3$ g-cm/cm
 $L_{eff} = 70.904$ cm

QQQ

Figure ²

Figure 3

Figure ⁴

Figure 8

Figure ⁹