

INFORMATION No. 82

8.3.1989

1. FONCTIONNEMENT DES MACHINES

Statistiques

								L11
Temps prévu h Temps réalisé h Disponibilité X	68 0	720 687	720 706	720 718	501 489	630 558*	708 643	shut

DECEMBRE	•		•					LII
Temps prévu h Temps réalisé h Disponibilité %	484 472	529 517	529 529	529 528	524 479	504 432*	557 527	ehut -

JANVIER	sc	PS 1	PSB	LI2	LP1	AAC	LEAR	L11
Temps prévu h Temps réalisé h Disponibilité X		G R A	N D	ARR	E T	A H N	UEL	

FEVRIER	sc	PS	PSB	L12	LPI	AAC	LEAR LI1
Temps prévu h	408	6 1	ANI) A (RRE	T A N	NUEL
Temps réalisé h	389				ET		
Disponibilité X	95.3	01	BU.	B 1	U DI	HAI	RRAGE

^{*} y compris l'équivalent de pertes de stock d'antipretons

Machine SC

Au début du mois de <u>novembre</u>, un incident dû à un défaut d'un relais dans l'automatisme d'extraction de la source causa une entrée d'air dans l'enceinte à vide du SC, et par là une pollution d'huile de toute la région centrale de la machine. Ceci nécessita le démontage complet de la partie centrale et de la source. De plus, la partie centrale du "dee" fut aussi démontée, inspectée et nettoyée. Une semaine complète de physique fut ainsi perdue. À l'avenir, le remplacement de l'ensemble à relais par une logique programmable est prévu, pour une meilleure fiabilité. Le reste du mois, la machine a bien fonctionné.

En parallèle à la marche du SC, le mécanisme de l'électrode d'extraction de Isolde 3 fut modifié pour le rendre plus opérationnel. En effet, depuis le démarrage d'IS3, cette électrode d'extraction se bloquait après un certain temps d'utilisation. Ceci était d'autant plus ennuyeux que cette panne n'apparaissait jamais au cours de tests, mais seulement quand ce dispositif était irradié après utilisation pour les expériences. L'erreur de conception a été localisée et corrigée, si bien que l'injecteur de IS3 fut une fois encore réinstallé et prêt pour la physique en décembre.

Le démarrage après l'arrêt annuel a été rapide, après quelques petits problèmes vite résolus. Félicitations à tout le monde pour le travail effectué pendant l'arrêt, surtout pour le transfert des contrôles du vide sur Simatic.

Ce <u>dernier mois de l'année</u> a, par conséquent, permis une excellente période de physique. Le condensateur rotatif a très bien fonctionné; il a même été décidé de ne pas l'échanger pendant l'arrêt de janvier comme initialement prévu. L'arrêt planifié était consacré essentiellement à la modernisation du système de contrôle du vide de la machine, ainsi qu'à la maintenance habituelle de la source d'ions. En outre, une partie du système de traitement de l'eau de refroidissement a été revisé et les lignes de pompage primaire du SC ont été nettoyées.

Ensemble PS

L'ensemble des machines PS à hadrons (protons et antiprotons) continuaient, pour le troisième mois, la longue période avec, comme utilisateurs principaux, le collisionneur SPS et LEAR. Le mois de movembre fut extrêmement difficile, que ce soit pour les équipes d'opération, les spécialistes des divers systèmes des accélérateurs et tous ceux qui ont la charge du bon fonctionnement continu de l'ensemble. Quelques contraintes supplémentaires durent être absorbées, commes les jours à puissance électrique limitée (contrat EdF dit Effacement des Jours de Pointe), une coupure au niveau du 18 kV, et diverses pannes d'appareillages.

Du côté positif, de bons résultats furent enregistrés :

- le nouveau type de faisceau de protons à 26 GeV/c destiné à la production d'antiprotons mis en opération et atteignant régulièrement 1,2 x 10¹³ ppi (valeur de pointe 1,38 x 10¹³ pour 1,5 délivrés par le Booster);
- une valeur instantanée de 5 x 10⁷ p/impulsion, correspondant à une vitesse de stockage de 3,7 x 10¹⁸ p/h;
- les procédures imposées par les jours à puissance électrique limitée furent testées pour la première fois en opération, et avec succès. En effet, non seulement nous pûmes descendre au niveau prévu de puissance rapidement (2,5 MW sur le réseau EdF), mais dans ce cadre, fournir des antiprotons à LEAR et ses utilisateurs. De plus, pendant le court intervalle où la puissance était disponible entre deux jours critiques (01.00-07.00), des antiprotons ont été produits.

Du côté moins brillant, nous avons dû déplorer plusieurs pertes de stocks d'antiprotons, à cause de pannes ou réparations essentielles des systèmes des machines AA et AC. De plus, quelques autres pannes de longue durée dans le complexe empêchèrent d'engranger la moisson journalière optimale d'antiprotons (normalement, quelque 5 à 6 x 10¹¹ p).

Quoi qu'il en soit, le programme, consistant en un transfert maximal journalier vers le collisionneur SPS, des transferts réguliers vers LEAR et une opération continue du Hall Est, fut réalisé la plupart du temps. L'efficacité globale de nos machines (extraction du PS vis-à-vis de la diminution du stock d'antiprotons dans AA) resta supérieure à 90% et très peu d'incidents marquèrent la délicate et compliquée procédure de transfert. Le but originellement planifié de 2000 nbarn-1 (luminosité intégrée dans le collisionneur) était atteint dès le milieu du mois de novembre. LEAR, partageant son temps entre études et physique, travaillait à 200 et 105 MeV/c. Les machines à leptons (LPI), elles aussi, travaillaient régulièrement sans incident notable en études et fourniture du faisceau "electron unique" à 180 MeV/c utilisé pour la calibration des cristaux du détecteur L3.

Le mois de <u>décembre</u> vit la suite (et la fin!) d'une accumulation massive de données chez nos collègues physiciens: plus de 3300 nbarn-1 étaient collectés dans le SPS! Une des plus longues périodes (2700 heures) planifiées jusqu'ici s'est achevée plutôt bien, avec un lot habituel de bons résultats. Plus de 1,5 x 10¹³ ppi frappaient la cible à 26 GeV/c après les ajustements fins du Booster, des basses énergies au PS et des conditions d'accélération et mise en forme des paquets de protons dans le PS. Dans ces bonnes conditions, AAC pouvaient conserver une vitesse d'accumulation supérieure à 3,3 x 10¹⁰ p/h. Les efficacités de transfert des antiprotons restaient supérieures à 90% vers le SPS et maintenues à 100% vers LEAR. Cette dernière machine délivrait régulièrement les antiprotons à 105 MeV/c aux expériences du Ball Sud. Quant au Hall Est, il recut des protons à 24 GeV/c jusqu'au dernier jour de la période.

Les journées à puissance limitée du réseau électrique EdF furent absorbées sans trop de problèmes, tout en permettant un programme de physique minimum en antiprotons à basse énergie via LEAR et les extractions dans le Hall Sud comme prévu. Malgré tout, ces "journées critiques" ont perturbé le programme et nécessité des efforts supplémentaires pour tous ceux qui ont la charge du bon état des accélérateurs. De plus, des instabilités de la cavité RF de AA ont occasionné des pertes partielles des antiprotons en plusieurs fois.

Quoiqu'il en soit, la fin de cette très longue période fut la bienvenue pour les machines et le personnel. 4,8 x 10¹³ antiprotons ont été produits pendant cette période! L'excitation doit maintenant être dans le camp des équipes d'analyse des données...

En <u>janvier et février 1989</u>, l'ensemble des accélérateurs ont été stoppés pour les travaux habituels de maintenance générale, d'installations et améliorations. Parmi l'inventaire considérable de ces tâches, citons :

- au Linac2, travaux de maintenance sur la colonne du pré-injecteur et de nettoyage de la cage de Faraday;
- au Booster, démontage des équipements non utilisés sur l'anneau 4, dans le but de se débarasser d'éventuelles impédances de couplage néfastes, réalignement complet de la ligne de mesure 1 GeV;
- au PS, installation expérimentale de la nouvelle éjection lente, installation d'un détecteur de profil utilisant la lumière synchrotronique;
- e dans le complexe AAC, mise en place de la grande lentille à lithium à grand diamètre (36 mm), dans le but d'accroître la production d'antiprotons, améliorations nombreuses dans les systèmes de refroidissement stochastique du AC et du AA:
- à LEAR, installation de nouveaux équipements pour le refroidissement stochastique de faisceaux à très faibles et hautes intensités, améliorations sur le refroidissement à électrons et montage de nouveaux détecteurs de profils;
- à LPI, démontage pour réparation, puis remontage de toutes les accélératrices du Linac, et amélioration de l'instrumentation de LIL et EPA;
- au Linac2, Booster, LEAR, rénovation du contrôle d'accès.

L'état d'avancement des travaux est satisfaisant pour l'ensemble des machines du complexe PS, qui a redémarré le 27 février avec des protons, puis des antiprotons pour une nouvelle grande période de 4 mois. Cette période sera similaire à la dernière période de 1988 et aura comme utilisateurs principaux le collisionneur SPS et LEAR.

2. INFORMATIONS GENERALES

Nettoyage des Halls 150, 151, 152 et 157 du PS

Il sera procèdé à un nettoyage des halls 150, 151, 152 et 157, y compris la sone de stockage sur le pont de blindage entre les halls 150 et 151, dans le courant du mois de mars. Tout matériel non identifié sera enlevé et stocké pendant 15 jours à l'extérieur et ensuite mis à la récupération. Pour toute information : Contacter R. Coccoli - Tél.: 3478 ou 13*3135.

Interdiction de fumer dans les bâtiments 150, 152 et 157 (L. Danloy, Officier de Sécurité Gaz Inflammables du PS)

Dans les parties de ces bâtiments occupées par les faisceaux, les expériences de physique (bâtiments 150 et 152) et les tests (bâtiment 157), il est interdit de fumer à cause du risque d'incendie, local ou général, dû tout particulièrement à l'utilisation de gaz inflammables dans une multitude de détecteurs.

Ces parties de bâtiment sont clairement définies à toutes les entrées par des bandes rouges au sol et des panneaux de signalisation. Nous demandons à tous de respecter scrupuleusement cette règle.

Opération "ESPACE LIBRE"

A l'occasion de la réunion des Chefs de Groupe PS du 10.2.1989 les décisions suivantes ont été prises dans le cadre de l'opération ESPACE LIBRE :

- a) Les armoires appartenant à des personnes ayant quitté le CERN seront ouvertes et inspectées en présence du chef de groupe concerné.
- b) Le nombre des armoires à l'extérieur des bureaux et labos sera limité au strict minimum, à priori, à une armoire par personne. Les armoires supplémentaires seront ouvertes en présence du chef de groupe et de la personne concernée afin que l'on puisse décider si leur contenu devra être éliminé ou stocké ailleurs. On commencera par le groupe LP et on poursuivra avec le PO, AR, DI etc...
- c) Pour les secrétariats le nombre des armoires est, en principe, limité à cinq. Un local de stockage sera mis à la disposition des secrétariats pour les documents peu demandés.

AVIS

Nous demandons à tous de respecter les zones de parcage réservées aux handicapés. Si ces places ont été créées, c'est qu'elles ont leur raison d'être. Merci de votre collaboration.

Acces aux différentes zones des machines du PS

Les nouvelles procédures d'accès entreront en vigueur dès le redémarrage des différentes machines et elles sont codifiées, pour l'opération, dans l'instruction SR1, annexée.

Les stylodosimètres sont à disposition :

- à la salle de contrôle du PS (MCR)
- aux portes : 101, 102, 111 (anneau PS); 137 (zone primaire EST); 221 (TT2); 601 (LPI); 31 (BO).

Les dosimètres sonores :

Une soixantaine de dosimètres sont à disposition : →50% sont distribués, dont un certain nombre au MCR, et →50% sont détenus par les techniciens de la Radioprotection (J. M. Hanon, 4505, 13-1111). Nous rappelons qu'un seul débitmètre sonore est

Nous rappelons qu'un seul débitmètre sonore est requis pour une équipe entrant dans une machine. Quelques débitmètres par groupe, répartis dans les différentes sections et services intervenant dans les machines, devraient pouvoir couvrir tous les besoins.

/elidite	fillimite MA	CES AUX CHINES DU			INULNIER C	R 1	
APPRO	20HES	CARTE ACCES		Temps d'in	Temps d'intervention		
Sign	LINAC 1	0	С	N	Sans Restr	iction	
ZONES FROIDES	EPA LEAR ring+ E2 AAC hall+tunnel TT70	0 0 0	C C	2 2 2 2		:	
~_		<u> </u>			L		
	ZONES	CARTE ACCES	dosimetre style	dosimetra senere	Presence Technic temps d'interven 1 heure et 50 mrem (500 µSv)		
TIEDES	RING PSB	0	0	0	N N	0	
ZONES TI	LINAC V+W	0	0	0	N N	0	
NOZ	LINAC 2 ligne linac/boost	0	0	0	N N	0	
CHAUDES	ligne toost/ps DUMPS 47/48 SEPTA 16,31,42,	0	0	°	N N	0	
ZONES CH	62,83,85 FT 62 ps•hall est	0	0	0	N N	0	
¥	AAC TARGET AREA	IN	STRUCTIO	NS SPEC	IFIQUES OP 9		

<u>LEGENDE</u> O. Obligatoire C: Conseille N: Pas Necessaire

<u>PORIPIERS:</u> Acces toutes zones pour urgence en accord avec le shift-leader

NB : En cas de doute pour une intervention, contacter le piquet RP via les pompiers

• 500 u/s = 50 mem.

Mise à la récupération de matériel périmé

Afin d'encourager les groupes à se séparer le plus rapidement possible de tout matériel périmé, il a été décidé qu'à partir de cette année, le produit de la vente de ce matériel sera crédité en totalité au groupes concerné.

Pour le matériel qui pourrait éventuellement être vendu à l'extérieur, le demandeur devra établir une réquisition de vente visée par le Chef de Groupe. De plus, s'il s'agit de matériel inventorié le formulaire adéquat de régularisation devra être rempli. Le matériel pourra ensuite être remis au Service de Récupération (G. Gruaz), accompagné de la réquisition de vente visée par le Service de Gestion du Budget (P. Noverraz).

Ces deux formulaires sont disponibles dans ce même service.

Vovages

Dans notre division, le plafond maximum remboursable pour des frais de voyage outre-mer avait été fixé à 4.000 FS par voyage il y a plusieurs années. Vu l'augmentation du coût des vols, des frais d'inscription et des indemnités de subsistance, il a été porté à 5.000 FS.

Autre point important. Si vous avez l'intention d'inviter des visiteurs au CERN, auxquels il faudra rembourser les frais de déplacement et/ou payer des indemnités de subsistance, vous devez d'abord obtenir l'autorisation de D. Dekkers avant de prendre contact avec ces personnes. Sinon, ces frais ne seront pas remboursés. Vous devez envoyer une copie de la lettre d'invitation à S. Neboux, Secrétariat PS afin de faciliter la procédure de remboursement. Merci de votre collaboration.

3. PERSONNEL

Un message du responsable de la formation au PS (E.J.N. Wilson)

Depuis que j'ai repris la tâche de C. Germain au début de l'année, j'ai été impressionné par ce qu'il a fait et par les nombreux cours techniques et académiques organisés au CERN et suivis par plusieurs d'entre vous. En plus de ces cours, qui sont gratuits pour la division, une partie de notre budget (300.000 FS en 1989) sert à contribuer aux frais de cours de langues et à organiser des cours spéciaux tels que "Mise à la terre et blindage" ou "Electronique de puissance", pour lesquels nous faisons venir des professeurs de l'extérieur.

Si vous voulez suivre un cours ou si vous pensez qu'un sujet pourrait intéresser un certain nombre de membres de la division, dites-le à votre chef de groupe ou contactez-moi (ou D. Dekkers pour les cours de management). Le secrétariat des cours de langue ou du Service de l'Enseignement se fera un plaisir de vous envoyer les renseignements voulus.

 En dépit des nombreux cours de langues que nous avons tous suivis, je suis sûr que nous connaissons des collègues qui ont passé toute leur vie au CERN sans réellement perfectionner "l'autre langue officielle", que ce soit le français, l'anglais ou l'allemand.

Je suis convaincu que ceci est dû au fait que pendant les premières années de l'existence du CERN, afin de créer une communauté de différentes nations, nous avons développé deux habitudes : la première étant de "laisser chacun parler sa propre langue" (ou la langue officielle qu'il connaissait le mieux), et la seconde était de "ne jamais corriger la grammaire de personne".

Tout ceci partait de bons sentiments, mais vous reconnaîtrez que nous aurions pu apprendre bien davantage les langues officielles du CERN si nos erreurs les plus flagrantes avaient été corrigées amicalement : je suis sûr de n'être pas le seul à penser cela.

Il n'est jamais trop tard pour bien faire et je suggère que le mois de mars soit déclaré "mois du CORRIGE-MOI SI JE ME TROMPE".

Evidemment, il y a des circonstances qui ne se prêtent pas à cette expérience : si votre chef est de mauvaise humeur, si la situation est tendue par exemple ... Mais pourquoi ne pas essayer ceci pour tous les autres cas.

Vers la fin du mois, s'il apparaît que c'est une bonne idée ... ou si vous pensez qu'on frise le chaos, faites-le moi savoir et l'on avisera pour la suite.

Groupe de planification du personnel CERN

Ce groupe est présidé par le Chef de la Division du Personnel, G.Michel. Les représentants des divisions techniques sont : F.Buhler-Broglin et W.Middelkoop. Ils sont aidés dans leurs travaux par D.Dekkers(PS), B.Sagnell(SPS), A.Lecomte(ST/TIS).

Dans un premier temps, on s'efforce d'harmoniser les principes pour l'affectation des personnes dans les activités techniques retenues. Il faudra aussi inclure les coûts de personnel dans les programmes du CERN. A cet effet, dans la division PS, avec l'aide des chefs de groupe, on a déterminé pour chaque membre du personnel son pourcentage de participation aux programmes suivants:

SC et zones experimentales

Protons Linac 2 + Booster + Anneau PS

Hall Est

Antiprotons Source d'antiprotons

Machine LEAR Hall Sud

Leptons LIL+EPA+Anneau PS

Recherche et Développements

Ions Linac 1 + Transfert

Services Controles + Opération + Instrumentation

Support Technique Mécanique

Electrique et RF Climatisation et Ventilation

Support Informatique Généraux

La principale difficulté est de limiter le nombre de programmes indiqués pour chaque membre du personnel, car nous sommes tous amenés à être des "touche-à-tout", étant donné la grande variété des activités de la Division.

Organigramme fonctionnel de la division (en annexe)

Les années passées, cet organigramme qui paraît en début d'année, donnait à la fois la structure de la Division (Groupes, Sections) et entraît dans le détail de certaines activités. Le degré d'information variait cependant d'un groupe à l'autre et les membres du personnel qui n'y figuraient pas étaient mécontents. De plus, c'était fort "touffu". Nous sommes arrivés à la conclusion qu'il valait mieux se contenter de mentionner les groupes et sections avec leurs responsables et secrétaires, et de reporter les informations plus précises dans les organigrammes de groupe.

Rappelons que pour l'administration de la Division on trouve dans VM sous PSADMIN les noms des divers responsables classés par sujet. (Faire HELP PSADMIN quand on a Ready:T=1.....).

4. HOUVEHENTS DU PERSONNEL

Arrivées

FESSLER Pierre, PS/PA/Attaché
HOOGEBOOM Stefan, PS/SC/Stagiaire Technique
JENSEN Erk, PS/RF/Boursier
KOUZMENKO Vladimir, PS/CO/Attaché
ORSINI Luciano, PS/CO/Stagiaire Technique

Transferts

BAUD Gilbert PS/ML → LEP
BOSSART Rudolph SPS → PS/LP
GUSTAR Stephen PS/AR → PS/DI
SZELESS Balazs PS/ML → SPS

ROCHER Christophe, PS/DI/Attaché

<u>Départs</u>

DIND Ami, PS/PA KHOU Pokheng, PS/ML

KLEINKNECHT Ulrich, PS/AR/Stagiaire Technique

KREJCIK Patrick, PS/AR/Attaché LOMBARDI Augusto, PS/HI/Boursier

MATSER Timotheus, PS/SC/Stagiaire Technique

MAUS Gisela, PS/PA
PEREIRA Ana, PS/CO
ROSSET Gérard PS/OP
SIEGFRIED Rudolf, PS/PO

SUN Yaolin, PS/AR/Attaché
WALKER Nicholas, PS/AR/Boursier

La rédaction de "PS Information"

J. Boillot, M. Bouthéon, D. Blechschmidt, D. Dekkers avec l'aide des Chefs de Groupe et Associés et du Secrétariat PS Secrétaire : Eveline Durieu

Distribution (ouverte)

Personnel de la Division PS

YNCHROTRON DIVISION	4603	BILLINGE ROY		3380	JONES Eifionydd/Deputy
Division leader's o			DI	4605	MOUSSALI Irene
Associate for accel-	erator developm	ment		3173 2503	WILSON Edmund
Associate for design Associate for finance	cial resources			3716	HASEROTH Helmut BLECHSCHMIDT Diether
Associate for human				2605 2594	DEKKERS Daniel
Associate for instru Associate for users				3493	KOZIOL Heribert LEFEVRE Pierre
Divisional budget of Divisional secretar.	ffice			2505 2523	NOVERRAZ Pierre NEBOUX Susan
ANTIPROTONS RINGS GROUP		PEDERSEN Flemming		3035	MOEHL Dieter/Deputy
Secretariat	, 5000		AR	3808	MOLAT-BERBIERS Anne
AAC controls and in				2719	CHOHAN Vinod
AAC operation and so Electron cooling	cuales			2569 3786	MAURY Stéphan BOSSER Jacques
Electronics				2560	ASSEO Edgar
LEAR operation, stu	lies, instrumer	ntation		3812 5775	CHANEL Michel THORNDAHL Lars
Stochastic cooling Target area				3859	LE DALLIC GUY
CONTROLS GROUP	5044	PERRIOLLAT Fabier	1	3181	SERRE Christian/Deputy
Secretariat			CO	2535	WILKINSON Wally
Application software Data bases	: systems			3071 3063	SICARD Claude-Henri CUPERUS Jan
Exploitation				3033	DAEMS Gilbert
Informatics support Instrumentation and	micronsocces	re interfera		5140 2782	SHERING George HEINZE Wolfgang
RT and instrumentat	ion software	'S THEET TOCK		4278	BENINCASA Gianpaolo
Systems and console TEBOCO				2023 2919	DE METZ-NOBLAT Nicolas KUIPER Berend
HADRON INJECTOR GROUP	2845	SCHINDL Karlheinz	 2	2539	WARNER David/Deputy
Secretariat	1		ні	3498	PROST France
Studies & Performan	ce		***	2539	WARNER David
Instrumentation LINACS exploitation	£ SFM			3810 2537	GELATO Giovanni TETU Pierre
Pre-injectors RFQ	الهوي ب			3659 4287	HILL Charles WEISS Mario
LEPTON PRODUCTION GROUP	3490	DELAHAYE Jean-Pie	erre	2558	MADSEN Jan/Deputy
Secretariat	1		LP	3629	GUEMARA Hannelore
Accelerator structu	res and wavegu	ides		2664	BOSSART Rudolph
Accelerator physics Beam instrumentatio				5961 3223	HUBNER Kurt BATTISTI Sylvain
Electron sources, e Mechanics and engin	lectrical engi	neering		2893 2967	KAMBER Ignaz GODOT Jean-Claude
MECHANICAL GROUP	3072	RIBONI Pierluigi		2793	PONCET Alain/Deputy
Secretariat	3	•	MIL	3492	RITZ Sylviane
Secretariat Engineering support			ML	2793	PONCET Alain
Design office				3085	BOURQUIN Pierre
Manufacture and ins Vacuum for accelera				3144 3806	MANN Peter VAN ROOIJ Mattheus
OPERATIONS GROUP	3179	BOILLOT Jean		3495	BOUTHEON Marcel/Deputy
Secretariat	•		OP	3704	DURIEU Eveline
AAC operation	security			2569 2569	MAURY Stéphan HENNY Louis
Access control and LEAR operation	securitly			2554	BAIRD Simon
LI/BR operation				3661	MALANDAIN Elena
LPI operation PS operation				2584 3483	POTIER Jean-Pierre STEINBACH Charles
POWER GROUP	3459	GRUBER Jacques	 	3472	COULL Leslie/Deputy
Secretariat	•	.	PO	2469	AUTONES Mireille
BOOSTER and PS sept Development and sup	a power convergort, LINACS a	ters nd PS power convert	ters	2574 6632	VOELKER Friedrich GODENZI Bernardo
Electrical installa	tions	•		2891	PASQUALI Jean
AAC, LPI, LEAR and ex PS main magnet powe	r converter and	d PS water cooling		3263 4116 2273	BUTTKUS Jürgen ULLRICH Hanns JENE Tom
SC power converters PS RING AND AREAS GROUP	and SC safety	SIMON Daniel		2273 3496	RIUNAUD Jean-Pierre/D
Secretariat]		Pλ	2438	TERLET Martine
Beam monitors				2509	AGORITSAS Vassilis
Experimental planni	ng			2548 2625	SIMON Daniel DANLOY Luc
Installations Magnets				3468	BOSSARD Paul
Pick-up and RF inst	rumentation			3011	SCHULTE Elmar THIVENT Michel
Septa Studies				4152 2882	CAPPI Roberto
RADIO-FREQUENCY GROUP	3820	FIANDER David		2892	GAROBY Roland/Deputy
Secretariat			ML	2524	GHILARDI Lidia
Low level RF	machines			2892 3465	GAROBY Roland KRUSCHE Achim
High power circular High power LINACS a	nd SC			2276 4424	FIEBIG Arne METZMACHER Klaus
Kickers SYNCHRO-CYCLOTRON GROUP	2681	ALLARDYCE Brian		3154	RAVN Helge/Deputy (EP
DINCIPLO CICEDINON GUODE] ===.		sc	2313	GAILLARD Nicole
Secretariat				4731 2786	LUSTIG Hans-Dieter SCHOFEL Franz
Beam control				4100	
Beam control Beam transport				2362	MULDER Pieter
Beam control Beam transport Ion source Mechanical				2362 3995	SPINNEY Glen
Beam control Beam transport Ion source				2362	