A PRELIMINARY COMPARISON OF SEXTUPOLE

ARRANGEMENT FOR THE AC RING

Z.Y. Guo, C.D. Johnson

There are three straightforward ways of introducing sextupoles into a lattice: sextupole magnets, end shimming of dipoles or quadrupoles and suitable profiling of quadrupole pole faces. In this note we make a preliminary comparison between the following patterns of sextupole distribution, all based on the lattice 83-08.

i)	Sextupole magnets, in two different distributions	(S1, S2)
ii)	Sextupole components in all quadrupoles	(AQS)
iii)	Some quadrupoles only with sextupole components	(PQS)
iv)	Sextupole shims on all bending magnets only	(ABS)
v)	Some quadrupoles and some dipoles with sextupole	(PQBS)

Only two families of sextupoles are considered. We attach the beam stability outputs from the tracking program PATRICIA¹ for each pattern. A further study will use the program HARMON² to increase stability while minimizing the sextupole strengths.

In practice we will install sextupoles in the end shims of dipoles, in the pole profiles of quadrupoles and as separate elements in missing magnet sections. We may also need vacuum chamber windings to enhance or trim the sextupoles built into quadrupoles. The end shims of quadrupoles are best reserved for octupole shimming.

References

- 1. H. Wiedemann, PEP Technical Memo PTM-230.
- 2. M. Donald, PEP Note-311.

				· · · · · · · · · · · · · · · · · · ·			
patter	£	8308	83085	&308AQS	8308A BS	8308 P&S	2309 3088
cto. H.	Ч Л	-0.285	- 0.281	-0.162	-0.414	-0./68	-0./27
when	رى	0.424	0.407	+ 0.295	0.605	0.303	0.216
	SF ,	60	ø				
	<i>S0</i> ,	00	6				
كمدل سينايل	ۍای			14		Ø	00
	SDa			14		80	đo
	SFB				9		ŝ
	SD8				6		m
5206:1	i.X.	>				>	>

Two pamidias and by end skims for all pattern.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$SF = m^{-2} = -0.162 = -0.162$ $SF = m^{-2} = -0.162 = -0.165$ $($	9/2.0
$\begin{cases} 1.652 & 1.696 \\ 0.9486 & 0.9838 \\ 0.9486 & 0.9838 \\ 0.1652 & 0.1698 \\ 0.09838 \\ 0.09838 & 0.09886 & 0.09838 \\ 0.09838 & 0.09838 \\ 0.09838 & 0.09838 & 0.09838 \\ 0.09838 & 0.09838 & 0.09838 \\ 0.09838 & 0.09838 & 0.09838 & 0.09838 \\ 0.09838 & 0.09838 & 0.09838 & 0.09838 \\ 0.09838 & 0.09838 & 0.09838 & 0.09838 & 0.09838 \\ 0.09838 & 0.09838 & 0.09838 & 0.09838 & 0.09838 & 0.00888 & 0.008838 & 0.008888 & 0.008888 & 0.00888 & 0.00888 & 0.00888 & 0.0$	-0.127
$\begin{cases} 0.9486 & 0.9486 \\ 0.9486 & 0.9638 \\ 0.1652 & 0.1666 \\ 0.1666 & 0.6838 \\ 0.09838 & 0.09838 \\ 0.0988 & 0.09838 \\ 0.0988 & 0.0988 \\ 0$	1.208
$ \begin{array}{c c} & 0 & 0 & 0 \\ \hline & 0 & 0 \\ \hline & 0 & 0 $	0.7437
$x^{3})_{SF} = 0.09486 = 0.09838$ for lattice 8308 AC, every alemant wi $= \left \frac{G_{2}}{G_{1}} \right - \left \frac{K'J'}{K} \right = \left \frac{K'J}{KJ} \right $	0. 1208
for lattice 83 of AC, every alamant wi $= \left \frac{G_2}{G_1} \right - \left \frac{K'J_1'}{K} \right = \left \frac{K'J}{KJ} \right $	0.07437
$= \left \frac{q_2}{q_1} \right = \left \frac{k'g'_4}{k} \right = \left \frac{k'g}{k'g} \right $	the two servite polens.
$\beta_{\alpha} = \frac{\frac{1}{2} G_{1} \chi^{L}}{G_{1} \chi} = \frac{G_{2} \chi}{2 G_{1}}$	

Eig I.

10.000

.

			t.	r		ī				•	-	t	1
inent (2)	$R = \frac{B_3}{\partial a}$	Ro	0.0980	0.0858	0.080	C. 0 706	0.0779	ه. د ځځ ع	92500	0.580.0	0.0370	C, 024 f	
oles arrange	field rate	\mathcal{R}_{F}	0.0263	0.0140	0. 0170	× .	Ń		× .	X			
of rextur	guadru pales	SD	0.25-06	0.2284	0.2324	1102.0	てわたの	o.1738	0.1779	0.1375	0.1415	0.1193	
uit pattern	sextupoles with	sF	-0,1210	- 0. 100	-0.1041	- 0, 0 7486	-0.08717	-0.04955	-0.05351	62510.0-	-0,01975-	6.00 /0S	
- the differe	utepolas sugnat exection	SD2	0,0	0.0	01.0	0, 15	0.20	0, zo	o. 4 o	0.50	· 0. 60	<i>o.</i> 60	
Compare jor	Special sex	SF 2	0.0	0.0	-0.10	0 . 15	- 0.70	- 0, 30	- 0.40	- 0. 50	-0.60	0.60	
bra liminary	in mednet	105	0,10	0, 15	0.10	0. 15	0,10	0, 15	0.10	ه، رک	0,10	0.15	
The 1	Chims for burd	SF I	-0,10	-0, 15	- 0.10	- 0.15	- 0.10	-0.15	-0.10	o, IS	- 0. [0	-0. زک	
		. °W	1	۰ <i>۲</i>	S	4	45	q	2	8	δ	0/	

2). The curit of soxtaple strangth is m⁻², (K'2).

1). for AC lattice 8308 only.

 $R = \frac{B_s}{B_R} = \frac{\gamma_s \, q_s x^2}{q_s x} = \frac{\chi_k (I)}{2kJ}, \quad K' I = 2 \binom{SF}{sU} - c_s (S), \quad c_s (S) \, b_s \, w^{s_1} d_s (B), \quad J = c_s 7 m, \quad X = c_{s,2} m$ R is the rate between sextuped and quadrupole field components from pole profile. 3).

Table 4. Prekiminary	Compark	the	sextupola	stringto	for	different	amage ment	(3)
----------------------	---------	-----	-----------	----------	-----	-----------	------------	-----

	Number	r schams for		Special Sexitypalas		guaitripole with soxitipole compress.				
	of putter	benching	- mujac.t	in missin See	s mugner Trin <u>s</u>	the so	frieng th	by winding	by projul.	
		SFI	SDI	SF2	SD.	SF	SD	-		
	1	-0,4140	c.6050	c. 0	c. C	C+ S		c . c	c. c	
		- 0.40	C. 30	0.0	0.0	c.cc 538	0.1755	-		
	3	- 0.35	c.30	0.0	0.0	- 0.01414	c.1686			
	⊿	- 0.30	0.25	0.0	<i>o</i> . c	-0.03498	0.1905			
X	5	- 0.30	<i>v</i> .20	<i>c</i> .c	C, C	-0103230	0.2199			
	6	-0.2355	c.4342	C. O	0.0	-0.075	0.075	0.15	C. C	
	7	- c. 1351	0.3332	Cre	0.0	-0.117	C. 120	0.15	0.025	
	8	0.0315	0.207/	0.0	0.0	-0.159	0.175	0.15	0.050	
	9	0.0663	0.1324	0.0	0.0	-0,20 İ	0.209	0.15	0.075	
	10	c.1675	c. 0277	C. C	<i>0</i> 、0	-0.243	e.256	0,15	0.102	
	[]	-0.2956	6.4912	0.0	0,0	-c.c50	0.050	0.10	0.0	
	12	-c.1949	0.3908	0.0	D, 0	-0.042	0.0946	0.10	0.025	
	13	_c.c942	0.2906	0.0	0. C	-c.134	0.139	0.10	0.050	
	(4	c.00 66	c.1895	G, O	0.0	- c. 176	c.184	0.10	0.075	
	15	0.1074	0.08\$3	0.0	0.0	- c, 218	6.279	¢. (o	c.100	
	(6	-c. 3553	c. 5484	6.0	0.0	-0.025	0:025	0.05	C. C	
	(7	-0.2544	0.4472	0.C	0.0	- c. c67	0.070	0.05	0.025	
	(8	-c.1538	c.3477	0.0	0.0	-0.109	0.114	0.05	0.050	
	(9	- 6. 0 530	c.2466	0.0	C, D	-c. 151	0.159	0.05	0.075	
	20	e.c 871	0.136	c. o	0.0	-0.211	0.2=4	0.05	0.100	
						1				

	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			·····		
Numair	SFI	SDI	SF≥	SP2	SF	SD	Winding	profil.
21	-c. 4048	0.5170	c. c	0.0	c. 0	c.05	0.0 0.10	0, 0
22	-0.3041	0.4165	0.0	0.0	-0.042	0.0946	C.O 0.10	0.025
23	-0.2=34	0.3164	0.0	0.0	-0.084	0.139	C.C C.10	0.050
24	-c.1026	0.2152	0.0	0.0	-0.126	0.184	0.0 0.10	0.075
25-	-0.0017	0.1140	0.0	0.0	-0.168	0.229	0.0 0.10	0.100
				· · · · · · · · · · · · · · · · · · ·				
26	-a1144	a 3177	-0.30	c.30	-0.075	0.075	c.15	e. 0
27	-0.0135	c. 2105	-0.30	0,30	-0.117	0,120	0.15	0.025
28	2.0901	0.0846	-0.30	0.30	-0.159	0.179	0.15	0.050
29	0.1879	0.0035	0.30	0.30	-0.201	0.209	0.15	¢.c75
30	0.2891	- 0.0948	-0.30	0.30	-0,243	0.256	0.15	0,100
	SFI	SDI	SFI	S.D 2	SFQW	SDQW	winding	profeete
31	-0.3095	0.5145	610	0.0	-0.050	olosc	0.10	Gic
32	-0.2205	0.4346	0.0	0.0	-0.0926	0.0946	0,10	0.025
33	-c.1315	0.3550	0.0	0.0	- 0,1340	0.139	0.10	0.050
34	-0.0425	e=2746	0,0	0.0	-0,176	0.184	0.10	0.075
35	e.0466	Ð. 194	0.0	0.0	-0.218	c.22 J	0.10	5.100
36	-c,4063	0.5379	C. C	c, ¢	c.0	0.05	0,0	C.U
37	-0.3173	0.45.80	O, O	C.C	-0.042	0.0946	E.C 0,10	0,025
38	-0.7284	0.3784	0.0	c. 0	-0.084	c.139	C. C C. /v	د دری
39	-0.1393	c.298c	0.0	0.0		c. 184	C.C C.lo	0.c75
40	-0.0502	0.2175	0.0	C. C	-0.168	0.225	C. 0 G.10	C. [0C
41	0.1352	c.3466	- 0.30	c.30	-2.075	c. e75	0.15	6.0
42	-c.c4(1	c. 2660	-0.30	c.30	-0.117	D. 120	c.15	6.025
43	0.ec453	0.168	- 0.30	c. 3c	-0.159	c.179	0 15	0.050
44	0.1315	c.1066	-0.30	c.3~	-0.201	0.259	c.15	c. c75
45	C.2212	0.0235	-0.30	0.383	-0.243	0.256	0.15	c./00

Tables. Priliminary Compare for sextuple struggth (3. continue)

$$R = \frac{B_S}{B_Q} = \frac{\frac{1}{2}Gx^2}{Gx} = \frac{x\kappa'l}{2\kappa l}$$

$$(k')_{\text{profile}} = R \frac{2kl}{X} = 7RK$$

$$\frac{SF}{SP} = \frac{1}{2} \left(\kappa' \mathcal{L} \right)_{\text{profile } p} + \frac{1}{2} \mathcal{W}$$

l = 0.7 m X = 0.2 m. $K_{\mu} \doteq -0.48 \text{ m}^{-2}$ $K_{\nu} \doteq 0.5/ \text{ m}^{-2}$

thun
$$\frac{SF}{SD} - \frac{1}{2}W = 0.35 R K F$$

Table 6.

Ŕ	0.0	¢, c 25	0.050	0.075	0,100
$SF = \frac{1}{2}W$	0.0	-0.042	-0.084	-0.126	0 168
$SD = \frac{1}{2}W$	0.0	c.0446	0.08925	c.1338	c.1785

*) grown the single winding (W) for calculation **) SFQW. SDQW., Just wicke quadrupole with sextupcle component.