July 13, 1983.

UPDATED PARAMETERS FOR THE

AC MAGNET DESIGN

J.R.J. Bennett, M.R. Harold, L. Rinolfi

Preliminary remark :

The following parameters are based on the lattice 83.04. It is updating of those mentionned in note AC-12.

INTRODUCTION

The lattice design for the anti-proton collector, to be sited in the AA Hall, includes 24 dipoles and 56 quadrupoles^{*}. Although these magnets are somewhat smaller than those in the AA ring, the design and construction philosophy is very similar to that employed on the larger magnets. The cores will consist of low carbon laminated steel, stacked and compressed between thick end plates. Energising coils are water cooled copper, insulated with glass or glass-mica tape and vacuum impregnated with epoxy resin.

DIPOLES

The effective length of the dipoles is 1.9513 m and the required field is 1.6T. Since the sagitta is only $\pm 32 \text{ mm}$, it was considered worthwhile to widen the pole by this amount and thus avoid the expense and complication of having a curved magnet and coils. In order to maximise straight-section space the coils will have bent-up ends. The extra cost of this is compensated by the fact that the coils can now be placed on the magnets' median plane, with a consequent saving in magnet steel.

Non-linear two-dimensional calculations, using the code PE2D, were used to determine the pole profile and to optimise the lamination size. Threedimensional analysis of the end field will be done later, as an aid to the fitting of shims which will produce the required sextupole component.

QUADRUPOLES

Of the 56 quadrupoles, 12 are of one type (QW) and 44 are of another (QN). The QW's are required in those positions in the lattice where dispersion causes the beam to be particularly wide in the horizontal plane. The QN's have been made as narrow as possible in order to ease the problems of injection and extraction.

Since the two quadrupole types have different internal bore diameters, and each type has to act both as a focussing and a de-focussing lens, the diameters and turns/pole have been adjusted so that a given current will produce the same gradient in both the QW and the QN. Any small difference between the gradientlength integrals of the two types can be accommodated either by the use of end

*One dipole and two quadrupoles will be modified due to injection constraints

shims or by current shunting.

Two-dimensional calculations have confirmed the field quality required in each case ($\Delta g/g \sim 10^{-3}$); future 3-D computations will allow end effects to be accommodated in the lamination profiling. Because of the relatively large length-to-aperture ratio of these magnets, end effects will be much smaller than for the AA quadrupoles, but a sextupole term will again be included so that there will be a left-right assymetry. Provision will be made for shimming the quadrupole ends so that higher-order field components may be incorporated at the measurement stage.

TABLE I

Dipole

Number	24	
Field	1.6T	
Eff length	1.9513 m	
Core length	1.820 m	
Gap height	132 mm	
Overall length	2204 mm	
Overall width	1900 mm	
Overall height	1084 mm	
Good field width	± 197 mm	
Good field height	± 58 mm	
Nominal current	1838 A	
Nominal power	71 kW	
<u>Coil 1</u> (2 off) turns	42	<u>Coil 2</u> (1 of
Conductor sections	$24 \times 24 \text{ mm}^2$	
Current density	3.42 A/mm^2	
Hole diameter	7 mm	
Avge length/turn	6.5 m	
Temp rise/layer (coil 1)	20 ⁰ C	/coil2
Pressure drop/layer	3.2 Bar	/coil2
Water flow/layer	3.7 1/m	/coil2
Resistance/layer	1.53 m Ω	/coil2
Total water flow	50.61/m	
Total resistance	20.92 mΩ	
Copper weight	2.611 + .293	
Steel weight	24.75 tonnes	

(1 off) 12 $28 \times 19 \text{ mm}^2$ $3.8.1 \text{ A/mm}^2$ 8 mm 5.7 m 20°C 3.012 6.4 Bar 6.2 1/m 3.012 $2.56 \text{ m}\Omega$

Jowtrod O

TABLE II

	QW	QN
Number	12	44
Gradient	6.384 T/m	6.384 T/m
Eff length	700 mm	700 mm
Core length	568 mm	618 mm
Inscribed circle radius	132 mm	98.39 mm
Overall length	770 mm	880 mm
Overall width	1500 mm	760 mm
Good field width	± 192 mm	± 87 mm
Good field height	± 64 mm	± 74 mm
Nominal current	1721 A	1721 A
Nominal power	52.5 kW	21.8 kW
Turns/pole	27	15
Conductor cross-section	$20 \times 17.3 \text{ mm}^2$	20 x 17.3 mm ²
Current density	5.86 A/mm^2	5.86 A/mm ²
Coolant hole diameter	8 mm	8 mm
Average length/turn	2.7 m	2.0 m
Temp rise per coil	30 ⁰ C	15°C (2 coils in serie will
Pressure drop per coil	6.9 Bar	4.1 Bar ^{give} 30°C)
Water flow per quadrupole	25 1/m	10.4 1/m
Resistance per quadrupole	17.7 mΩ	7.36 m Ω
Copper weight	0.76 tonnes	.315 tonnes
Steel weight	5 tonnes	1.66 tonnes

- 7 ·

- 8 -

AC QUADRUPOLE QW

AC QUADRUPOLE QN

(Hartwell

POWER SUPPLIES

The power supplies will be "conventional" dc units from suitable manufacturers experienced in this field. Stability will be better than 1 part in 10^4 . Table - lists the parameters.

Туре	Nominal Output Current A	Nominal Output Voltage V	Nominal dc Power kW	Number
Quadrupole	1721	497	856	2
Dipole	1838	927	1704	1

Table -	Magnet	Power	Suppl	ies
---------	--------	-------	-------	-----

Power supply for F quads :

4 $(2 \times 52.5 + 5 \times 21.8) = 856 \text{ kW}$ (W) (N)

Power supply for D quads :

4 (1 x 52.5 + 6 x 21.8) = 733 kW (W) (N)

VACUUM

Stainless steel vessels with circular end flanges for aluminium diamond seals and V-band couplings are envisaged for all magnets. The chamber crosssections are tailored to fit the different groups of beam sizes.

Table - details the various parameters. The dipole chambers are assumed straight, not curved to follow the beam.

Magnet	Cross-section, internal width x height or internal diameter x wall thickness	Length	Flange outer diameter	Number
	mm	mm	mm	
QN	190ø x 3	920	225	40
	174 x 106	920	225	4
QW	254 x 130	810	310	4
	386 x 80	810	420	8
DAC	228 x 112	2250	270	16
	398 x 116	2250	440	8

Table - rarameters of Vacuum champers in the magne	Tab	le		Parameters	of	Vacuum	Chambers	in	the	Magnet
--	-----	----	--	------------	----	--------	----------	----	-----	--------