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TIME DEPENDENT PERTURBATION THEORY FOR ACCELERATORS

J. Bengtsson

INTRODUCTION

We start from the Hamiltonian for the linear motion of a particle in an accele-
rator. We transform the Hamiltonian to action-angle variables. We then add a
perturbation from nonlinear fields and apply time-dependent perturbation theory.

It is found that the equatio?s for the first order perturbation are the same as
the ones obtained by B. Autin through direct use of succesive approximation of
the linear equations of motion. We also show how one may continue to the second

order in the perturbatiorn in the particular case of a single dipole
perturbation.



1. THE LINEAR MOTION

The Hamiltonian for the linear motion 152
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The equations of motion are obtained from Hamilton's equations :
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Since the equation of motion is inhomogeneous, we get the general solution as a
linear combination of a particular solution to the inhomogeneous equation and
the general solution of the homogeneous equation. We chose as the particular
solution the closed orbit xels]. pe(s). y = 0.

We now may perform a canonical transformation generated by :
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The transformation is obtained from :

oF
= —2 =
px ox pB * peISJ
oF
= = -
xB 5;1 x xe[s] (5]

w0
224

F
= —
HB H + 38

This gives :

X2

2
- 1 ¢ 2 yi1, .,
HB(xﬁ' pﬂ, ¥, py] = Py [(52 K1) . + x1 2 ] + + (6)




The new Hamilton's equations are :
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If we use x , Py instead of xB, pp and define :
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X p @ 1 y p 1
and solve for x, y. We find Hill's equation :
2" +K[s]z=0),2z=x0ry (3

Where :

K(s) + K{s + C) , C = the circumference

The periodicity of K is that of the closed orbit.



2. ACTION-ANGLE VARIABLES

The transformation to action-angle variables is done by a canonical transfor-
mation with the generating function :
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The new Hamiltonian is :
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These may be integrated :
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3. TIME DEPENDENT PERTURBATION THEQRY (Variation of constants).

The unperturbed Hamiltonian in action angle variables is :
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The perturbed Hamiltonian is then :
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Due to the perturbation the old constants of motion J ¢ (0), ¢ (0) are now

varying with time. Their time dependence are given by HamYlton $ lqu!txons :

n



ds = d¢_ ' ds ~ oJ
x x

dJ oH de oH

—l:—— _-Z:_—‘.

ds de ‘ ds oJ
y Yy

or by [(17) : (23)

d’xlal . 3H1 1

ds aJx B,(sl

de [0) OH 1

y - 1 _
ds aJy By[s)

Until now everything is exact. However the new equations are normally not
possible to solve without approximations.

Guignard3 solved the equations by Fourier expanding the Hamiltonian, which is
possible because it is periodic for a circular machine. He then only kept the
dominating terms for the motion close to a single resonance and was then 1left
with a simplified Hamiltonian for which the equations could be solved. However
the fourier coefficients are calculated by wusing the betafunctions for the
linear motion which then gives first order perturbations.

Another approach is to apply time-dependent perturbation theory‘ directly. One
then gets the n-th order perturbation by after derivation using the n-1 order
expressions for the variables on the right hand side in (23). In particular is
the first order perturbation obtained by using the solution for the 1linear
motion (where Jx' J . Qx(U), ¢ (0) are constants) in the right hand sides of
(23). Generally, weYhavé from 022), (23)
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Where I .q means that the n-1 order expressions for J and ¢ should be used. The
first oraer perturbation is obtained by using :
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from the linear motion.

We will now give explicit examples of first order perturbations due to different
types of magnetic multipoles.

Dipole
In this case we have :
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Quadrupole
For right quadrupoles we have :
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and we find
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Sextupole

For right sextupoles we have :
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and we get :
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We tind the same equations for the first order perturbations as B. Autin1 by
direct use of succesive approximations of the linear equations of motion. In
this paper he used a thin lens approximation for the integration of thege
quations. This has been extended for thick lenses by symbolic integration .
also shows how one may find the perturbed closed orbit by taking the limit
when the phase p tends to infinity.



4. SECOND ORDER PERTURBATIONS

It is now straightforward to go to the next order in the perturbation. We just
have to resubstitute the new solutions that has been found either by thin lens
approximation or by symbolic integration in the right hand sides of (23). These
new equations may also be solved by using thin lens approximation or by symbolic
integration. Observe that, because the perturbations are assumed to be small we
may use
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0t cource one may also use direct numerical integration. The distorted closed
orbit may then be found by taking the limit when p tends to infinity.

As an example we calculate the second order perturbations due to a dipole.
roximatij

The perturbation is in this case concentrated in discrete locations sj.

where C is the circumference of the machine.

The perturbed Hamiltonian is then of the form :

_ m n o
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The integration of the perturbed equations is then straightforward, however, it
may require a lot of algebra.

Dipole

In the case of a single dipole perturbation we have from (27)
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Direct integration gives :
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where N is the integer part of s/C.
The sums may be evaluated, and when n tends to infinity we find :
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The equations for the second order perturbations are obtained by using (38) in
(24).
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where N is the integer part of s/C.
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The sums are evaluated by (37) when N tends to infinity.
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By using the expansions (32) to second order in 6: this may be simplified to :
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The motion to second order is given by putting (42) in (17)
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or if we expand by using (32)
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This may be continued for higher multipoles. However due to the amount of
algebra this is preferably done by symbolic computation.
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