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PROGRAMS FOR SYMBOLIC SOLVING OF DIFFERENTIAL EQUATIONS
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Abstract

When one studies nonlinear resonances in storage rings by 
perturbation theory, one is led into a system of first order coupled 
differential equations. By using Lie-series, it is possible to write the 
solution of those as a series expansion. We will here study the 
possibilities to let a program do that. In other words, we study the 
possibilities to have a program which reads the differential equations 
and gives the solution as symbolic series expansions to any desired 
order. It is then possible to have a second program which reads those 
expansions and, when given starting values, it may calculate the valuesof 
the solutions for any chosen time.
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Theory

Given a set of nonautonomous first order coupled equations

(1)

One may define a differential operator D by

It can be shown that the solutions to (1) may be written as a Lie-series 
of the form1).

If one had a subroutine which makes symbolic differentiation followed by 
algebraic simplification, then this solution could easily be calculated 
to any given order.

LISP

A programming language well adapted to this kind of problems is 
LISP. 2) gives an example of functions for symbolic differentiation and 
algebraic simplification in LISP. Those routines were taken over to the 
LISP on the PRIAM-VAX, and routines for the Lie-series expansion were 
added.

A Program to Obtain Numerical Results

When we have given the equations and the order for the expansions of

(2)
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the solutions, the LISP program will do these calculations and write the 
symbolic expansions on a file. This file is read by the second program 
which then reads starting values: Xi(t0) and t0. It may now calculate 
Xi(t) for any t. In order to improve the convergence xi(t) should be 
calculated in steps by first calculating Xi(to + h) for all i where h 
is the time step and then Xi (t0 + 2h) by using the previously 
calculated values as starting values, and so on until xi(t) is reached.

This program should be written in a language suitable for numerical 
calculations such as FORTRAN or PASCAL. By using prefix notation for the 
symbolic expressions the program is preferably written as a recursive 
program. This, of course, excludes the use of FORTRAN.

Conclusions

In the Appendix we apply the programs to some examples of 
differential equations. Note that a higher order differential equation 
may always be split into a set of first order differential equations by 
the following trick:

define then

We see that the method works fairly well for simple equations. For 
more complicated equations the solutions contain a lot of terms, 
especially when we go to higher order for improvement of the 
convergence. This reduces the efficiency of the program which does the 
numerical calculations.

A possible means to simplify and improve the efficiency is to have a 
more sophisticated function for algebraic simplification. The one used



- 4 - 

here does not look for common factors in different terms etc. Another 
possibility is to directly generate FORTRAN code for the solutions 
instead of having a program reading a file with the expansions. This 
could easily be done by implementing this under MACSYMA, a system 
specially developed to solve this kind of problem.

Note that we have not taken into consideration whether the Lie-series 
(2) converge so that they really are solutions to the equations. For 
such considerations we refer to the references1).
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APPENDIX

We show here some examples. Note that the derivative is written with 
the use of an operator, where

Dtx

is the derivative of x with respect to time, etc. The different examples 
are :

Exponential decay
Harmonic oscillator

Pendulum equation

Motion of particle in sextupolar fields 

where the prime denotes differentiation with respect to 0.

Note that D in the examples of the equations means the total 
derivative, whereas in the expression for the differential operator D 
stands for the partial derivative.
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