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Abstract

We present the performance of Machine Learning–based anomaly detection techniques for extracting
potential new physics phenomena in a model-agnostic way with the CMS Experiment at the Large
Hadron Collider. We introduce five distinct outlier detection or density estimation techniques, namely
CWoLa, Tag N’ Train, CATHODE, QUAK, and QR-VAE, tailored for the identification of anoma-
lous jets originating from the decay of unknown heavy particles. We demonstrate the utility of these
diverse approaches in enhancing the sensitivity to a wide variety of potential signals and assess their
comparative performance in simulation.
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1 Introduction
One of the core components of the research program of high-energy particle physics experi-
ments at the Large Hadron Collider, like ATLAS [1] and CMS [2] is to search for physics beyond
the Standard Model.

One of the most generic and signal-agnostic type of search to be performed at colliders is a
search for new heavy resonances decaying into jets [3–10]. As many models of new physics
predict such dijet resonances, this search can provide sensitivity to a wide range of signal mod-
els. However, quantum chromodynamics (QCD) processes also produce copious pairs of high
energy jets, which represent a large background to these searches and limit their sensitivity.
However, some signals may produce jets with properties differing from those of standard QCD
jets. Therefore, a large class of searches has also been performed targeting specific signal mod-
els in which jet substructure is used to reject QCD background and improve upon the sensitiv-
ity of the inclusive search [11]. However, each of these searches are typically optimized based
on Monte Carlo simulation of the targeted signal, and makes a selection targeted towards a
specific jet substructure signal. Each search therefore only has sensitivity to a small subset of
potential dijet resonance signals, and numerous possibilities remain unexplored.

To improve the analysis sensitivity beyond the inclusive dijet search, while preserving a high
degree of signal independence, several methods for performing signal-agnostic searches in dijet
topologies using Machine Learning (ML) have been proposed [12]. These searches use various
ML techniques to design discriminating variables that differentiate QCD jets from signals pro-
ducing jets with ’anomalous’ substructure. Many of these methods are entirely data-driven;
utilizing data events to train the ML model used to identify potential anomalies and estimate
backgrounds. In this paper, we describe five ML-driven anomaly detection methods used to
enhance sensitivity of dijet resonances with anomalous substructure.

Though these methods are agnostic about the specific substructure characteristics of the signal,
several assumptions are made about the overall event topology. Signal events assumed to arise
from the decay of a narrow generic resonance A with a mass of O( TeV) to two other generic
particles B and C which can be either single quarks or gluons, or resonances of unknown mass
decaying to hadrons. In the case in which B and C are massive resonances, we consider masses
of the A for which B and C are produced at high Lorentz boost such that their decay products
are merged into single, large-radius jets. The substructure of the jets can thus be exploited for
an efficient signal-independent tagger able to suppress the background rate by several order of
magnitude.

The anomaly detection algorithms we explore are complementary to one another both in choice
of architecture and training paradigm; un-, weakly- and semi-supervised. Their performance
and correlations in simulation is compared.

2 ML techniques
Five different ML-based anomaly detection techniques are used in order to suppress the over-
whelming QCD background, while enhancing a potential New Physics signal in a model-
independent way. A demonstration of this principle is shown in Figure 1, using the Tag N’

Train (TNT) method described in the following. This figure shows the data (pseudodata) dis-
tribution after injection of a New Physics signal without a cut on an anomaly detection score
(left) and after a cut on an anomaly detection score (center). The background is significantly
suppressed, while the signal is persistent. Ensuring these methods do not change the shape of
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Figure 1: Dijet mass distribution of a simulated set of QCD background events injected with
24 fb of the X→YY signal before any cut on the anomaly score (left) and after cutting on the
anomaly score of the TNT algorithm (middle). The distribution after cutting on the TNT
anomaly score in a background only sample is shown on the right. In both cases the back-
ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than
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labels for individual events. This training paradigm requires two mixed samples of data events.
The samples are chosen such that one is a mixture of potential signal events and background
events, and the other is nearly background pure. The classifier is trained to distinguish between
events in these two samples. If there sufficient signal is present in the dataset, the classifier will
learn to distinguish signal from background, provided that the background composition in
the two samples is the same. These methods train directly on data events in the signal region
of the analysis, and thus learn the specific characteristics of the signal if it is present in the
dataset. All of the weakly supervised methods pursued in this analysis assume the signal is a
narrow resonance, and use the invariant mass of the two jets in their definition of the mixed
samples. These methods therefore assume a particular hypothesis for the mass of the new
resonance in order to construct the samples for training. If a narrow resonance exists inside the
hypothesized region in sufficient abundance, the weakly supervised training procedure will
produce a classifier able to discriminate between it and the QCD background. In the absence of
a signal, the two samples will be indistinguishable in the training procedure and the resulting
classifier will produce random results.

For all 3 weakly supervised methods, the training procedure is repeated for multiple hypothe-
ses of the signal mass in order to scan over the full dijet mass spectrum. The signal region is
split into 8 orthogonal mjj windows to be used for the training procedure. The size of these
windows is chosen to be significantly larger than the dijet mass resolution, such that we would
expect a narrow resonance to be nearly fully contained in a single bin. An additional set of win-
dows, shifted half a bin width with respect to the original set, are defined in order to ensure no
signals close to a bin boundary are missed.

For CWoLa Hunting, the two mixed samples are obtained using windows in dijet invariant
mass. A potentially signal-rich sample is defined as all events falling in a dijet invariant mass
window, and the background-rich sample is defined as events in the neighboring sideband
regions. The upper and lower sidebands are reweighted in the training to have the same total
weight. Two per-jet classifiers, one for the heavier jet and one for the lighter jet in the event,
are trained rather than a single classifier for the full dijet system as was done in Refs. [14, 18].
This allows an additional reweighting procedure during the training: jets in the background
region are reweighted to match the pT distribution of jets in the signal region. This procedure
mitigates correlation between the final anomaly score and mjj.

The per-jet classifiers are fully connected feed forward neural networks. They take as input the
softdrop mass of the jet mSD [19], the n-subjettiness variables t21,t32 and t43 [20], the number
of PF candidates inside the jet nPF, the lepton subjet fraction (LSF) LSF3 [21] and the maximum
b-tagging from the DeepCSV algorithm [22] of to the two leading subjets of the large jet.

In TNT, the two mixed samples are defined in a similar way to CWoLa Hunting, with one
addition: an additional unsupervised classifier, a jet-based autoencoder, is used to increase
the purity of the signal-rich sample. In addition to the dijet mass, the anomaly score of the
autoencoder, evaluated on one of the jets the event at time, is used to sort events into the signal-
rich or background-rich categories. The autoencoder used is based on an image representation
of the jet [23, 24] and uses a CNN architecture. A separate model is trained for each signal
region based on using events in the corresponding sidebands.

To construct the signal-rich and background-rich samples, the two jets in each event are first
randomly sorted into two groups. The dijet mass of the event and the autoencoder score of
the jet from the first group are used to categorize jets of the second group into mixed samples.
The signal-rich mixed sample is defined as events in which the jet from the first group is in the
top 20% of the autoencoder scores and have mjj within the signal region. The background-rich
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mixed sample is defined as jets coming from events in the dijet mass sidebands or have jets from
the first group in the bottom 40% of the autoencoder scores. This process is then repeated: the
autoencoder is evaluated on the second group of jets and is used to define mixed samples of jets
in the first group. The samples of categorized jets from both groups are then merged together
for a single weakly supervised training. The TNT classifier uses identical network architecture,
reweighting schemes and input variables as used for the CWoLa Hunting method.

For CATHODE, a dijet mass window is also used to define the potentially signal-rich sample
but a different approach is used for the background-rich sample. First, the conditional probabil-
ity density of background events as function of invariant mass is learned using a normalizing
flow architecture [25–33] trained on all events outside the signal window. This probability den-
sity is then interpolated into the signal window and used to generate a sample of synthetic
background events which are used as the background-rich sample. This approach fully learns
correlations between the input features and mjj, allowing the use of variables that are signifi-
cantly correlated with mjj. The input variables used in CATHODE are the mass of the heavier jet
mj1, the mass difference between the two jets Dmj1j2 = mj1 � mj2 , and the n-subjettiness variable
t41 for each jet.

Finally, a semi-supervised algorithm referred to as QUAK [34] is used. This method seeks
a middle ground between the fully model-agnostic approach of the previous methods and a
standard dedicated search. In QUAK, density estimators are used to encode a ’prior’ about
what the signature of a new physics signal is likely to be based on labeled signal Monte Carlo
samples. An additional density estimator is trained using simulated background events to help
reject QCD events.

Each density estimator is trained per-event, utilizing the sub-structure information of both jets.
The substructure variables used are the same as those used in the CWoLa Hunting method
except a modified N-subjettiness metric, ts =

p
t21

t1
, and r = M

pT
are used instead of the LSF

variable and softdrop mass variables respectively.

A two-dimensional ’QUAK space’ is formed, in which each event’s position is defined by its
negative log probability in the background- and signal-trained flows. We will refer to this
probability as a “loss” value; a lower probability indicates a more out-of-distribution event. The
most anomalous events are expected to populate the region with high background loss and low
signal loss. For a given mass hypothesis, mH, an approximate template of background events is
created by considering events in sidebands (mH � 900, mH � 400) and (mH + 200, mH + 700).
The signal region is taken to be (mH � 400, mH + 200). The template itself is a binned 2D
histogram of the QUAK space. QUAK space bins with an excess of events in the signal region as
opposed to the sidebands are chosen for the selection. Events from the full dijet mass spectrum
which fall into into these selected QUAK bins are then utilized for final statistical tests for
the presence of a potential signal. A general search is performed using QUAK by using a
combination of all the benchmark signal samples as a signal prior.

3 Performance
The algorithms described above are tested on a simulated dataset of QCD and other minor
backgrounds representing 27 fb�1 of luminosity. A basic pre-selection requiring two anti-
kT [35] R = 0.8 jets groomed with the PUPPI algorithm [36] with pT > 300 GeV is applied.
A requirement of |Dhjj| < 1.3 is applied to target s-channel resonances and the dijet mass is
required to be larger than 1455 GeV to be above trigger thresholds. Two benchmark signals are
used to test performance. The first consists of a heavy resonance (X) of mass 3 TeV, decaying to
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two daughter resonances (Y and Y’) each of mass 170 GeV which each decay into two quarks.
The second consists of a W’ boson of mass 3 TeV decaying to a top quark and a B’ of mass 400
GeV. The B’ subsequently decays into a bottom quark and a Z boson. The performance of these
anomaly detection algorithms is verified and compared in several ways: First, it is verified that
none of the methods distorts either the background or signal dijet mass shape, as shown in
Fig. 1.

Figure 2: Scatter plots showing the correlation between the anomaly score of the CATHODE
method as compared to that of VAE-QR (left), TNT (middle) and QUAK (right) on events from
the X→YY’ signal. The Pearson linear correlation coefficient as well as the DISCO correla-
tion [37] are computed in each case.

Figure 3: Summary plots showing the Pearson correlation coefficient for each pair of anomaly
detection algorithms as evaluated on events from the X→YY’ signal (left), W’ → B’t signal
(middle), and QCD background (right). In many cases, the correlations are weak, indicating
there is complementarity information in the different approaches.

Secondly, the correlations of the anomaly scores of the different methods are compared in Fig. 2
and Fig. 3. In Fig. 2, we show the CATHODE anomaly score versus three of the other meth-
ods (VAE-QR, TNT and QUAK) and compute their Pearson and DISCO [37] correlation co-
efficients. It is found that the anomaly scores of the different approaches have relatively low
correlations, indicating their complementary. The full Pearson correlation matrix between the
different methods is shown in Fig. 3.

Finally, the ability of these anomaly scores to enhance search sensitivity to a unknown reso-
nances is assessed and compared to traditional methods in Figure 4. The performance of the
anomaly detection methods was verified in a simulated mock dataset. The mock dataset was
constructed by selectively sampling events from simulations of different background processes
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according to their cross section, instead the commonly used practice of applying event weights.
This sampling procedure better captures the dataset size and statistical fluctuations that would
present when being applied to data, both of which effect the performance achieved when train-
ing a neural networks. Versions of the mock dataset with different amounts of injected signal
events were constructed, and the search procedure was repeated on each version. It was veri-
fied that no method produces artificial excesses in the absence of signal.

Mock datasets with injected signals were used to test the sensitivities of the anomaly detection
methods based on the expected statistical significance of the signal as a function of the size
of the injected signal. Their sensitivity was compared to that of an inclusive dijet search, that
used only the basic selection criteria and did not feature a cut on an anomaly score, as well
as several model-dependent event selections. The first (second) model-specific event selection
was tailored to two-pronged (three-pronged) signals and required t21 < 0.4 (t32 < 0.65) and
mSD > 50 GeV for both jets in the event. All search strategies utilize the same basic selection
criteria, fitting procedure and statistical analysis as employed by the anomaly detection meth-
ods. A comparison of the extracted p-value as a function of the signal cross section is shown for
two candidate signals, X ! YY

0 (MX = 3 TeV, MY = 170 GeV, MY0 = 170 GeV) and W
0 ! tB

0

(MW 0 = 3 TeV, MB0 = 400 GeV) , is shown in Fig. 4.

Figure 4: p-values as a function of injected signal cross sections for the different anomaly detec-
tion methods (solide lines) for two different signals: X→YY’ with MX= 3 TeV, MY= 170 GeV and
MY’= 170 GeV (left), and W’ →tB’ with MW’= 3 TeV and MB’= 400 GeV (right). The performance
of the anomaly detectors are compared to several reference methods (dashed lines): an inclu-
sive search (black), a traditional two-prong-targeted event selection (brown), and a traditional
three-prong-targeted selection (beige)

The two-prong targeted and three-pronged targeted selections were found to achieve similar
performance to the anomaly detection methods on the signal that matched the targeted number
of prongs, but were found to be significantly worse than the inclusive selection on the opposite
case. In contrast, all anomaly detection methods were able to demonstrate increased sensitivity
above an inclusive search for both signals. For both signals, signal cross sections that resulted
in  2s significances for the inclusive search led to � 5s significances for multiple anomaly
detection methods, illustrating the enhanced discovery potential of these approaches. The sen-
sitivities of the weakly supervised methods depend non-linearly on the signal cross section
because the amount of signal present in the data affects the training procedure and therefore
the signal selection efficiency.
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4 Summary
This note described the performance of several signal-independent methods to identify heavy
resonances decaying to anomalous jets. Approaches based on weakly supervised, unsuper-
vised, and semi-supervised paradigms were explored. When applying these methods to simu-
lated samples, it was found that all methods were successfully able to identify anomalous jets
as distinct from QCD backgrounds, and are therefore able to enhance the discovery potential
of these signals in a model-agnostic fashion. It was found that the anomaly scores produced
by these methods generally have low correlations, underscoring their complementary and the
need for a robust set of tools for such an open-ended objective such as anomaly tagging. These
methods lay the groundwork for future model-agnostic explorations of LHC data.
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